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The current filamentation instability, which generically arises in the counterstreaming of super-
sonic plasma flows, is known for its ability to convert the free energy associated with anisotropic
momentum distributions into kinetic-scale magnetic fields. The saturation of this instability has
been extensively studied in symmetric configurations where the interpenetrating plasmas share the
same properties (velocity, density, temperature). In many physical settings, however, the most com-
mon configuration is that of asymmetric plasma flows. For instance, the precursor of relativistic
collisionless shock waves involves a hot, dilute beam of accelerated particles reflected at the shock
front and a cold, dense inflowing background plasma. To determine the appropriate criterion for
saturation in this case, we have performed large-scale 2D particle-in-cell simulations of counter-
streaming electron-positron pair and electron-ion plasmas. We show that, in interpenetrating pair
plasmas, the relevant criterion is that of magnetic trapping as applied to the component (beam or
plasma) that carries the larger inertia of the two; namely, the instability growth suddenly slows
down once the quiver frequency of those particles equals or exceeds the instability growth rate. We
present theoretical approximations for the saturation level. These findings remain valid for electron-
ion plasmas provided that electrons and ions are close to equipartition in the plasma flow of larger
inertia. Our results can be directly applied to the physics of relativistic, weakly magnetized shock
waves, but they can also be generalized to other cases of study.

I. INTRODUCTION

The interpenetration of fast charged particle beams or
plasmas gives rise to the current filamentation instability
(CFI), often referred to as the Weibel instability [1, 2].
One of its remarkable features is to convert part of the
free energy associated with the anisotropic momentum
distribution into intense magnetic fields on skin-depth
scales, even in the absence of pre-existing, coherent mag-
netization [3–12]. Its generic nature, its robustness and
its physical implications have thus given it a compelling
role in many fields of research, e.g., high-energy density
physics [13–17], laboratory astrophysics [18–23], cosmol-
ogy [24, 25], and high-energy astrophysics, where it is
thought to shape much of the nonthermal electromag-
netic radiation from powerful explosive transients [26–
37].

Specifically, the CFI regulates the structure of weakly
magnetized, collisionless shocks, which form through
the counterstreaming of plasma shells at supersonic
speeds [38]. As such, it controls the production of
high-energy particles and radiation in such environments,
whether in the near [39] or the remote Universe [26]. Be-
cause of their paramount consequences, those “Weibel-
mediated” collisionless shocks have inspired a large body
of literature, both in the subrelativistic [40–49] and rel-
ativistic regimes [36, 50–63]. Long-standing issues, with
obvious phenomenological implications in the aforemen-
tioned domains of research, are the level of saturation of
the CFI [12, 64–72] and the long-term evolution of the
self-generated magnetic turbulence [46, 73–78]. Satura-
tion is thought to occur through either transverse trap-

ping of the particles in the magnetic filaments [64, 79, 80],
cyclotron gyration of the particles around the magnetic-
field extrema [38, 65, 66, 80], or exhaustion of the avail-
able particle current [65]. Most previous studies on the
saturation of the CFI, and, to our knowledge, all those
related to relativistic astrophysical systems, have con-
sidered symmetric configurations in which the interpen-
etrating plasmas share similar characteristics (i.e., iden-
tical temperatures, densities and drift velocities). In the
precursor of collisionless shock waves, however, the in-
teraction is strongly asymmetric, as it involves a hot,
dilute beam of accelerated particles interacting with a
cold, dense background plasma.

The main objective of the present work is therefore to
examine the saturation processes of the CFI in generic
asymmetric configurations. In particular, we seek to de-
termine which criterion holds, and whether this crite-
rion applies to the beam, or to the background plasma,
an ambiguity which obviously does not arise in symmet-
ric configurations. We do so by confronting analytical
predictions with particle-in-cell (PIC) simulations of ini-
tially unmagnetized, collisionless plasmas. For most of
our study, we consider plasmas composed of equal mass
species, interpenetrating each other at a relativistic ve-
locity. This configuration is typical of the precursor of
a relativistic shock propagating in a pair plasma, but it
is also relevant for the study of the CFI in asymmetric
electron-electron or ion-ion flows. We nonetheless extend
our simulations to the case of electron-ion plasmas, in the
ultrarelativistic and mildly relativistic regimes.

Our study is laid out as follows. In Section II, we recall
the salient features of the CFI in asymmetric counter-
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streaming flows. In particular, we emphasize the notion
of the preferred “Weibel frame”, in which the instability
is of a purely magnetic nature, and which becomes crucial
in the asymmetric interaction regime. We then discuss
the main saturation mechanisms and give the correspond-
ing estimates of the maximum magnetic field energy. In
Sec. III, we present our PIC simulations for pair plasmas
and analyze their results in light of the above mecha-
nisms. We extend our analysis to the case of electron-ion
counterstreaming configurations in Sec. IV, and finally
summarize our results and conclusions in Sec. VI.

II. THE ASYMMETRIC CURRENT
FILAMENTATION INSTABILITY

In this section as well as the next one, our initial setup
comprises two counterstreaming, unmagnetized pair plas-
mas drifting along the x−axis. We note the beam with a
subscript b and the plasma with a subscript p. By con-
vention, the beam corresponds to the population with the
lower relativistic plasma frequency. The latter is defined
as (cgs units are used throughout)

Ωpα =

(
4πnαe

2

w̃α/c2

)1/2

, (1)

where e is the elementary charge, c the velocity of light,
nα the proper number density and w̃α the enthalpy per
particle of charged species α ∈ {b+, b−, p+, p−} in its
initial state. Note that, in our notations, n refers to a
single charged species; it thus represents half of the ini-
tial total number density of the corresponding component
(beam or plasma). Introducing the corresponding parti-

cle mass mα, adiabatic index Γ̂α and proper temperature

Tα, one has w̃α = mαc
2 + Γ̂αkBTα/(Γ̂α − 1). This im-

plies w̃α ' mαc
2 for a plasma of subrelativistic temper-

ature (kBTα/mαc
2 � 1), and w̃α ' Γ̂αkBTα/(Γ̂α − 1)

for a relativistically hot plasma (kBTα/mαc
2 � 1).

Given the inverse normalized temperature of species α,
µα ≡ mαc

2/(kBTα), one has w̃α ' mαc
2 and Ωpα ' ωpα

for a plasma of nonrelativistic temperature (µα � 1),

but w̃α ' Γ̂αkBTα/(Γ̂α−1), and hence Ωpα ' ωpα
√
µα/2

(taking Γ̂α = 4/3) for a relativistically hot plasma (µα �
1). In the following, use will also be made of

ωpα =
(
4πnαe

2/mα

)1/2
, (2)

the nonrelativistic plasma frequency of species α.
In this configuration, the counterstreaming instabil-

ity can be described in wavenumber space (k‖, k⊥), in
terms of the longitudinal k‖ = k · x̂ and perpendicular
k⊥ wavenumbers. This instability breaks into two main
branches [8]: purely transverse modes (the CFI) with
k‖ � k⊥, and the so-called oblique two-stream modes,
for which k‖ ∼ k⊥. We neglect here the purely par-
allel electrostatic branch with k⊥ � k‖, which is usu-
ally subdominant in the relativistic limit. The oblique

modes are essentially electrostatic, while the transverse
CFI modes are essentially magnetic [81], of direct interest
to the present study.

A. The “Weibel frame”

The notion of being “magnetic” or “electrostatic” is
a frame-dependent statement, which must be made pre-
cise in a relativistic setting. This is discussed in detail
in Ref. [62], and we recap here the most salient features.
The purely transverse CFI (meaning k‖ → 0) develops
through the pinching of the counterstreaming plasmas
into filamentary structures oriented along x̂, each en-
dowed with a net current. These structures are sur-
rounded by toroidal magnetic fields δB⊥ and radial elec-
tric fields δE⊥. The CFI growth also comes with an in-
ductive electric field component δE‖, oriented along the
drift direction. In a first approximation, the latter field
can be neglected, because its magnitude is of the order
of |=ω/k⊥c| � 1 relative to the magnetic field compo-
nent. The dominance of the magnetic component means
δB2
⊥ − δE2

⊥ > 0 for each unstable wavenumber k⊥, and
hence that there exists a frame, moving at velocity (in
units of c)

βw =
δE⊥ × δB⊥

δB2
⊥

, (3)

in which the transverse electric field component vanishes.
In this frame, which we call the “Weibel frame”, the CFI
can be regarded as purely magnetic, up to the weak in-
ductive component which cannot be erased by a Lorentz
boost.

In the precursor of relativistic shocks, this frame gains
special importance because the interaction between the
beam of accelerated particles and the background plasma
is so asymmetric that βw ' 1, meaning δE⊥ ' δB⊥. It is
crucial to properly characterize this frame, as it controls
the heating and slowdown of the background plasma and
because it greatly helps evaluate the scattering rate of
suprathermal particles [59]. Hence, the Weibel frame is
connected to acceleration processes and has direct phe-
nomenological consequences.

Let us consider a set of initial beam
{
nb, Tb, ub|r

}
and

plasma
{
np, Tp, up|r

}
parameters, where uα|r ≡ γα|rβα|r

denotes the x−component of the four-velocity of species
α, and βα|r and γα|r are the associated normalized three-
velocity (in units of c) and Lorentz factor, all defined in
some reference frame (subscript |r). We use proper den-
sities and temperatures unless explicitly specified other-
wise. The corresponding Weibel frame velocity can be
determined in the following two ways.

In the linear phase of the CFI, one can define the
Weibel frame as that in which the electrostatic compo-
nent of the dispersion relation vanishes. This has been
done in Ref. [48] in the subrelativistic regime, and in
Refs. [59, 62] in the relativistic regime. This amounts to
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setting the εxy component of the total dielectric tensor
to zero, assuming k⊥ = k⊥ŷ. This is not a trivial step,
as the dielectric tensor itself depends on the solution to
the dispersion relation, see Ref. [62] for a discussion of
the procedure.

Alternatively, one can describe the nonlinear phase of
the instability as a quasistatic equilibrium between parti-
cles and fields, ordered along the transverse y−direction
(a reduced 2D x− y geometry is assumed throughout for
simplicity) in a periodic sequence of current filaments. In
a four-fluid (isothermal) description, the density of each
component at equilibrium can be written as a function of
the electromagnetic potentials, see Ref. [78] for details.
Setting the electrostatic contribution to zero imposes a
relationship between the physical characteristics of the
fluid, in the form

nbγ
2
b|wβb|w

Tb
+
npγ

2
p|wβp|w

Tp
= 0 , (4)

where the normalized x-velocities βα|w and Lorentz fac-
tors γα|w are here measured in the Weibel frame. The
above equation can be solved to obtain the velocity of
the Weibel frame in the reference frame. As it turns out,
both methods give similar expressions for this velocity
under conditions relevant to the precursor of relativistic
shocks. Here, we rely on the latter method and make the
result explicit, as follows.

Writing βα|w and γα|w in terms of βα|r and γα|r through
standard Lorentz transforms, one finds that the Weibel
frame velocity, relative to the reference frame, can be
expressed as

βw|r =
Qw −

√
Q2

w − 4

2
, (5)

where

Qw =
nbγ

2
b|r

(
1 + β2

b|r

)
/Tb + npγ

2
p|r

(
1 + β2

p|r

)
/Tp

nbγ2
b|rβb|r/Tb + npγ2

p|rβp|r/Tp
.

(6)
The minus sign in Eq. (5) reflects the fact that βw|r ' βp|r
if the beam component becomes negligible: the turbu-
lence is then mostly magnetic in the rest frame of the
background plasma. Once βw|r is known, the velocity of
each species in a given reference frame can be Lorentz
transformed to the Weibel frame.

Henceforth, all velocities or Lorentz factors that do not
carry a subscript |r are understood to be defined in the
Weibel frame. The Weibel frame associated with the ini-
tial state of the system is the reference frame in which
our simulations will be conducted. Note that this frame
can differ from the instantaneous Weibel frame that re-
sults from the time-evolving properties of the beam and
the plasma as the instability develops. This will be man-
ifest in our simulations, and we will return to this point
in Sec. III.

B. Linear stage of the CFI growth

Let us first consider the linear properties of the purely
transverse CFI modes, that is, with wave vector k⊥ =
k⊥ŷ and frequency ω ≡ iΓw, where Γw is the k⊥-
dependent growth rate. In the linear phase of the CFI,
each mode grows as

δBz(k⊥) = δB0(k⊥)eΓw(k⊥)t , (7)

where δB0(k⊥) is the seed magnetic field fluctuation. As-
suming that the magnetic spectrum ends up being dom-
inated by modes of similar growth rate and seeded by
comparable fluctuations, one can infer the instantaneous
growth rate through

Γw =
1

2

d

dt
ln

[
〈δBz(t)2〉
〈δBz(0)2〉

]
. (8)

The quantity in the rhs can be easily extracted from nu-
merical simulations and directly compared with analytic
estimations of Γw. The latter involve rather heavy cal-
culations of the dielectric tensor contained in the kinetic
dispersion relation of which we will summarize here only
the general key points.

The system is initially charge and current neutral with
no equilibrium electromagnetic fields. Linearizing the
Vlasov-Maxwell equations by expressing every perturbed
physical quantity as δξ ∝ ei(k⊥·r−ωt) yields the disper-
sion relation of the CFI:

εyy
(
εxx − 1/ζ2

)
= ε2xy , (9)

where ζ = ω/k⊥c, and the elements of the dielectric ten-
sor are given by

εij = δij +
∑
α

γαω
2
pα

ζ2k2
⊥c

2

∫
ui
γ

∂f
(0)
α

∂uj
d3u (10)

+
∑
α

γαω
2
pα

ζ2k2
⊥c

2

∫
uiuj
γ2

∂f
(0)
α /∂uy
ζ − βy

d3u , (11)

where i, j = (1, 2, 3) and u = γβ. Hence, the filamen-
tation instability is generally not purely magnetic unless
the off-diagonal term of the dielectric tensor vanishes,
which would be the case for symmetric counterstreaming
flows.

In the present work, we consider particle populations
characterized by Maxwell-Jüttner momentum distribu-
tion functions. As shown in Ref. [62], approximate
growth rates of the CFI can be obtained in two asymp-
totic limits that depend on the value of the parameter

χα = γα|ζ|/
√

1− ζ2. For each plasma species, we de-
fine the hydrodynamic limit in which the thermal veloc-
ity spread of the distribution function is, broadly speak-
ing, smaller than the (imaginary) “phase velocity” of the
waves, and the opposite kinetic limit. More precisely, re-
calling that µα = mαc

2/kBTα, the hydrodynamic (resp.
kinetic) limit for the cold plasma component corresponds
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to χ̃p ≡ χp

√
µp/2 � 1 (resp. � 1). For the relativis-

tically hot beam component, the hydrodynamic (resp.
kinetic) limit is rather defined as χb � 1 (resp. � 1),
see [62] for details.

We can thus derive two useful approximations of the
maximum growth rate and associated wave number in
terms of the nonrelativistic plasma frequencies of the
plasma species, one in the fully kinetic regime – mean-
ing the kinetic approximation for both species – and
one in the combined hydrodynamical (beam) and kinetic
(plasma) regimes, respectively,

Γw,k−k '
(ω2

pbµb)3/2γ3
b|pβ

3
b|p√

2πµpω2
pp + 3π

2 ω
2
pbµbγ3

b|p
,

k⊥,k−k '
√

2

3
µbγb|pωpb , (12)

and

Γw,k−h '
√
ω2

pbµb ,

k⊥,k−h ' (2πω2
pbµpµb)1/6ω2/3

pp . (13)

The quantities βb|p and γb|p represent the normalized
three-velocity of the beam relative to the plasma and its
corresponding Lorentz factor. It is important to stress
that the above formulae have been derived solving the
dispersion relation of the instability making the approx-
imation of cold plasma (kBTp � mαc

2) and hot beam
(kBTb � mαc

2) in the respective dielectric tensor. Fur-
thermore, those approximations assume that the plasma
moves at subrelativistic velocities with respect to the
Weibel frame; consequently, it neglects terms of order
O(βp|w). Those formulas encompass the majority of the
situations addressed in the following but not all; this will
be made explicit.

C. Saturation criteria for the CFI

In the early linear stage of the instability, the charged
particles are deflected by magnetic field fluctuations with
a polarity perpendicular to their initial drift velocity. As
a result, particles of opposite charge from each compo-
nent of the system (beam or plasma) are focused in dif-
ferent regions, forming transverse current modulations
or “current filaments”. Particles of opposite charges
from both components concentrate in the same filaments
where their currents add up; this amplifies the initial
magnetic field perturbation, thus leading to the develop-
ment of the instability.

Eventually, the particle dynamics becomes modified by
the fields so that saturation mechanisms take place. Ul-
timately, the CFI enters a strongly nonlinear stage, in
which secondary instabilities, such as the merging of fila-
ments of equal polarity, or the kink of current filaments,
can arise, see Ref. [78] for a detailed discussion. The
transition between these two phases, i.e., saturation and

the strongly nonlinear stage, is fraud with ambiguities,
as filaments can coalesce while the current filaments keep
building up through the CFI. We define here the satu-
ration as the point at which the growth of the magnetic
energy density is halted, or at least significantly reduced.
This will be made clear in the figures that follow.

To investigate the saturation of the instability, we will
compare the temporal evolution of the magnetic field as
extracted from simulations, with different criteria of satu-
ration borrowed from the literature, which we summarize
below. We emphasize a key difference with respect to the
case of symmetric counterstreaming plasmas, which are
more commonly envisaged. In the asymmetric configura-
tion, an ambiguity arises as to which component (beam or
plasma) is eventually responsible for the saturation, and
through which mechanism. For this reason, we discuss in
the forthcoming paragraphs the saturation criteria as ap-
plied to a generic component. We will then apply each of
them to the beam and to the plasma and compare those
to the simulation results in the next Section.

1. Transverse trapping

The widely used trapping-based saturation crite-
rion, first proposed by Davidson in the nonrelativis-
tic regime [64], and later generalized to the relativistic
regime [12, 50, 79, 82], expresses the fact that, in the
weakly nonlinear phase of the CFI, particles quiver trans-
versely around the center of the filament (i.e., around
a magnetic field node) in which they are focused. As-
suming a harmonic B-field profile of amplitude B and
wavenumber k⊥, a particle of Lorentz factor γ and mass
m oscillates at the bounce frequency

ωB =

(
ek⊥β‖B

γm

)1/2

. (14)

The onset of saturation can be viewed as when the as-
sumption of zero-order ballistic particle motion no longer
holds. This occurs when ωB becomes comparable with
the instability growth rate, Γw. Introducing 〈γ〉 the typ-
ical Lorentz factor of the considered species, the corre-
sponding saturation magnetic field can thus be expressed
as

Bt =
Γ2

w

k⊥

〈γ〉m
β‖e

. (15)

2. Magnetization limit

In the nonlinear phase of the CFI, the plasma can be
modelled as an ensemble of cylindrical filaments of ra-
dius r ' λ⊥/4 ' π/2k⊥, carrying a current density j.
As the B-field grows in amplitude, the Larmor radius of
the particles, rL = γβmc2/eB, shrinks, possibly up to
the point where it becomes smaller than the filament ra-
dius. Particles then become spatially trapped within the
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filaments in both the longitudinal and transverse direc-
tions, while orbiting around the B-field extrema. In the
literature, this limit is often referred to as the “Alfvén
limit” [65]. Similarly, particles gyrating at a Larmor fre-
quency ωL = eB/mγ higher than the instability growth
rate can be regarded as temporally magnetized. In either
case, the linear approximation, which assumes rectilinear
motion across the filaments, breaks down. The maximum
value of the magnetic field set by this condition is then
given by

Bm = max (Bm, rL , Bm, ωL
) , (16)

where

Bm, rL =
2

π
k⊥〈γβ〉

mc2

e
(17)

satisfies the spatial constraint and

Bm, ωL
= Γw〈γ〉

mc

e
(18)

the temporal one. Since the CFI is characterized by
Γw � k⊥c in relativistic shock precursors [62], it follows
that usually Bm = Bm, rL if β ∼ 1. Similar saturation
criteria were considered in [26, 38, 42, 50].

3. Particle current limit

The magnetic field is also bounded by above by the
maximum current density that can sustain it [65]. This
maximum current density corresponds to the current car-
ried by one of the two oppositely charged species making
up the component (i.e., beam or plasma) under study.
This limit thus tacitly assumes that, at maximum mag-
netic field, all the particles of a given component within a
transverse length λ⊥/2 have undergone complete spatial
separation in two adjacent filaments. Assuming these
have a uniform current density, the B-field created by
a charged species of initial apparent density γn (with
γ characterizing here the drift motion) has a maximum
strength

Bp ' 2π2 eγn

k⊥
〈β‖〉 . (19)

In the case of complete spatial separation, the contri-
butions of counterstreaming species of opposite charge
should add up within a filament. Yet in the asymmet-
ric configurations addressed in the following, only the
particle limit associated with the component that carries
most, if not all of the particle current density, matters.
We will therefore identify that component, which will
turn out to be the beam component in most cases, and
ignore the particle limit associated with the other (back-
ground plasma) component.

D. Analytical estimates

The hierarchy among the above saturation criteria de-
pends on the characteristic wave number of the instability
and the growth rate, given that

Bt

Bp
∼
(

Γw

ωp

)2

, (20)

Bm

Bp
∼
(
k⊥c

ωp

)2

, (21)

where ωp represents here the nonrelativistic plasma fre-
quency of the component to which the saturation cri-
terion is applied, and k⊥ denotes the dominant trans-
verse wavenumber. Considering first a cold symmetric
counterstreaming configuration, one has Γw ∼ ωpp and
k⊥ � ωpp/c to leading order, e.g. [7, 10]. As a con-
sequence, Bt ' Bp � Bm, implying that the trapping
and particle limits are equivalent and determine satura-
tion. For symmetric counterstreaming hot plasmas, Γw

is reduced to values below ωpp, because it scales with the
relativistic plasma frequency Ωp = ωp

√
µ/2 and µ � 1.

Consequently, the trapping criterion is expected to be-
come more stringent than the other two. In addition,
a relativistic temperature likely prevents the oppositely
charged species of a given component from fully segregat-
ing from each other within a filament, further weakening
the particle limit in this regime.

In an asymmetric configuration, we identify distinct
saturation limits for the beam and the plasma, using
the respective superscripts b and p. As a general trait
of such configurations, we observe that the beam moves
at relativistic velocities in the Weibel frame, while the
drift of the background plasma is most often sub- or
mildly relativistic. This can be read off Eq. (4), which
relates the quantities nb/Tb ∝ Ω2

pb and np/Tp ∝ ω2
ppµp.

The beam is usually defined as the component with the
smaller plasma frequency of the two, hence Ωpb � ωpp

suggests that γ2
b|w|βb|w| � γ2

p|w|βp|w|. Therefore, one

must expect Bb
t � Bp

t . We anticipate that, for what
concerns saturation through trapping, only the larger of
the two values Bb

t and Bp
t matters, and this trend will

be confirmed by the simulations.
We also expect, for the same reasons as above, that

Bb
t < Bb

p and Bb
t � Bb

m, because of the large tempera-
ture of the beam. Consequently, we may anticipate that
the overall criterion for saturation will be set by the trap-
ping limit of beam particles.

III. PIC SIMULATIONS RESULTS

We have performed a number of 2D3V (2D in space,
3D in momentum) PIC simulations of counterstream-
ing electron-positron pair plasmas, which initially obey
Maxwell-Jüttner distribution functions, using the mas-
sively parallel calder code [83]. To resolve properly
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the initial Weibel instability, the cell size is set to ∆x =
∆y = 0.1 c/ωpp and the simulations are run over 2× 104

time steps of ∆t = 0.099ω−1
pp on a 2D (x, y) grid of

2000 × 2000 cells. Henceforth, ωpp represents the non-
relativistic plasma frequency of each of the two charged
species of the plasma component in its initial state, i.e.,

ωpp =
(
4πnpe

2/me

)1/2
(me is the electron mass). Each

cell contains initially 100 macro-particles per species,
yielding a total number of about 109 macro-particles.
Time and length are normalized to the inverse nonrel-
ativistic plasma frequency ω−1

pp and the plasma inertial
length c/ωpp.

As previously mentioned, we aim to investigate the
saturation of the current filament instability in an asym-
metric interaction between a hot dilute beam and a cold,
dense, inflowing plasma as it happens in the precursor of
astrophysical collisionless shock waves in pair plasmas.
For this reason, we initiate our study making use of ini-
tial parameters borrowed from a large-scale shock simula-
tion corresponding to a relative upstream to downstream
Lorentz factor of 10, as described in [59]. The parameters
of the beam and plasma populations, as measured in the
downstream shock frame, are as follows (temperatures
are given in units of mec

2/kB) : γb|d = 1.38, γp|d = 9.67,
Tb = 45, Tp = 0.2, and nb/np = 0.1. Those values are
extracted from a region deep inside the precursor of the
shock, where the background plasma has been slightly
slowed down and heated to mildly relativistic tempera-
tures. As announced, we then transform those initial pa-
rameters from the downstream shock frame to the Weibel
frame. This gives the set of parameters indicated by
(a) in Table I, hereafter referred to as the reference run.
Note that the plasma moves at subrelativistic velocities
in this Weibel frame, while the beam is now ultrarela-
tivistic. This difference demonstrates the importance of
the Weibel frame regarding the development of the in-
stability, and more importantly, regarding its saturation,
since the saturation criteria depend on the inertia of the
particles, which in turn depend on the reference frame.

The parameters of subsequent runs have been varied
accordingly to fall in the region of the parameter space
dominated by the CFI over electrostatic and oblique
modes. In particular, we investigate a case where the
initial beam proper density is tripled with respect to the
reference case [run (b)], one in which the initial beam
proper temperature is reduced by a factor of 1/3 [run
(c)], one with an initial beam Lorentz factor reduced by
a factor of 1/3 [run (d)]. Finally, we examine two more
extreme configurations by reducing the initial tempera-
ture of the beam while increasing its initial Lorentz fac-
tor and the initial plasma temperature by a factor of 10
each [run (e)] or 30 each [run (f)]. The latter runs are
of particular interest for the present study, because their
parameters are such that the roles of background plasma
and beam are interchanged with respect to other runs.

What we refer to as the beam is set in motion in the
positive x−direction and represents the hot cloud re-
flected by the shock, which encounters the cold incoming

Run γb γp Tb/γb Tp/γp γbnb/γpnp

(a) 18.9 1.01 2.4 0.2 1.9
(b) 16.7 1.05 2.9 0.2 4.6
(c) 16.7 1.05 0.95 0.2 1.5
(d) 40.8 1.2 1.09 0.2 3.5
(e) 25. 5.3 0.2 0.4 0.5
(f) 25. 15.4 0.06 0.4 0.2

TABLE I. Summary of simulation parameters for pair plas-
mas. Run (a) is the reference simulation. The parameters
of the other runs differ from those of run (a) as follows: (b)
nb×3; (c) Tb/3; (d) γb|d×3; (e) γb|d/3,(e) γb|d×10, Tp×10,
Tb/10; (f) γb|d × 30, Tp × 30, Tb/30. The table gives the
simulation parameters once transformed to the Weibel frame.
Temperatures are given in units of mec

2/kB.

plasma streaming along the negative direction. Corre-
spondingly, the transverse CFI generates an out-of-plane
magnetic field component, Bz, aligned with the ẑ direc-
tion, and its associated electrostatic component Ey, along
ŷ. Since the simulation frame initially coincides with the
Weibel frame, Ey remains much smaller than Bz during
the initial development of the instability. A stronger Ey
then emerges gradually, and as time progresses, the phys-
ical conditions of the plasma and/or the beam change,
and so does the instantaneous Weibel frame. In par-
ticular, the filamentary structures start to move along
x̂ at an approximately coherent velocity corresponding
to the time-dependent value of βw. To discriminate be-
tween the various saturation criteria, the magnetic field
is directly extracted from PIC simulations and compared
with the theoretical estimates of the saturated B-field
given in Sec. II C.

In what follows, we focus on the linear and saturation
phases of the instability, while the late-time evolution is
left aside and treated in Sec. V.

A. Reference run

The growth of the magnetic field during the linear
and saturation phases of our reference case (a) can be
clearly seen in Fig. 1 (thick black line). In this fig-
ure, and subsequent similar ones, the B-field strength
is expressed in dimensionless units, Bz = eBz/mecωpp =

Bz/
√

4πnpmec2. The expected maximum growth rate is
Γw ' 0.02ωpp at k⊥ ' 0.6ωpp/c, as obtained by solving
numerically the dispersion relation of the CFI [9]. This
computation also yields χ̃p ' 0.006 and χb ' 0.07, thus
showing that the kinetic limit does apply for both compo-
nents. For reference, the approximations of Eq. (12) give
Γw,k−k ' 0.01ωpp and k⊥ ' 0.7ωpp/c in that regime.
These predictions fairly match the simulations results:
the growth rate evaluated using Eq. (8) between t =
200ω−1

pp and t = 450ω−1
pp is ΓPIC

w ' 8 × 10−3 ωpp, while
the dominant k⊥ in the Fourier spectrum of Bz at satu-
ration (t ' 500ω−1

pp ) is measured to be kPIC
⊥ ' 0.8ωpp/c.

Considering that the spectrum of the instability is rather
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FIG. 1. Temporal evolution of the simulated mean B-field
strength (Bz, black curves) compared to various saturation
criteria for reference run (a). Top panel: particle (Bb

p , green

dashed-dotted curve) and trapping (Bb
t , blue dotted curve)

limits as applied to the beam particles. Bottom panel: spatial
magnetization (Bp

m, red dashed curve) and trapping (Bp
t , blue

dotted curve) limits as applied to the plasma particles. All
curves are in units of mecωpp/e.

broad and variable with time, the factor of ∼ 2 discrep-
ancy between the theoretical and simulation results is not
very significant.

The measured value of Bz is compared to the satura-
tion limits Bb

t and Bb
p in the upper panel of Fig. 1, and to

Bp
t and Bp

m in the lower panel. As explained earlier, we
only plot the maximum of the two “particle limit” criteria
corresponding to either component, since the lower one
is not relevant for determining saturation. In the present
case, the current density carried by the beam largely
dominates that of the plasma because |βp| � 1. We
do not plot Bb

m because it lies far above Bb
t , as expected

from the discussion of Sec. II D. Recalling that the limits
given in Eqs. (15), (16) and (19) are upper limits, satura-
tion is expected to occur once the measured B value ex-
ceeds one of the corresponding curves in Fig. 1. All limits
shown here are computed from the instantaneous quanti-
ties measured in the simulation, which explains their evo-
lution in time. A word of caution thus appears necessary
regarding Bt: as it scales with Γ2

w, which is computed
through Eq. (8), this limit becomes meaningless outside
the phase of linear growth of the CFI. In particular, the

fact that B
b

t < Bz at early times (t . 100ω−1
pp ), does not

mean that saturation has occurred. On the other hand,

the fact that B
b

t and B cross each other at t ' 400ω−1
pp

is indicative of saturation through trapping.
Around t ' 400ω−1

pp the magnetic field indeed becomes
so strong that the quiver frequency of the beam parti-
cles exceeds the growth rate of the instability. Beam

FIG. 2. Comparison of the typical filament size, as extracted
from simulation (black line), with the Larmor radius of plasma
particles in the simulation frame (red dashed line) and of
beam particles in the instantaneous Weibel frame (orange dot-
ted line). Both radii are computed using dynamical quantities
extracted from the reference run (a) as defined in Table I.

particles can then be regarded as transversely trapped
around the B-field nodes (Fig. 1 top panel). To quantify
this, we use the characteristic momentum and Lorentz
factor averaged over the Maxwell-Jüttner distribution
as 〈γbβb‖〉 ' 〈γb〉 ' 4γb/µb. Combining those val-
ues with the theoretical estimates of Γw, k⊥, and the
parameters of Table I, we derive the trapping limit

as B
b

t ' (Γw/ωpp)2(ωpp/k⊥c)〈γb〉/βb‖ ' 0.5, which

matches well the observed saturation value Bz ' 1.

B
b

t is also close to the estimate from the measured val-

ues of Γw, k⊥, 〈γb〉 and βb‖, that is, B
b,PIC

t ' 0.3.
As expected, the particle limit for the beam lies above

those values, B
b

p ' (π/2)(nb/np)(ωpp/k⊥c)〈γbβb‖〉 '
50, and the magnetization limit well above, B

b

m,rL '
(2/π)(k⊥c/ωpp)〈γbβb‖〉 ' 1.6 × 103. As anticipated in
Sec. II D, the trapping limit for the beam thus appears
to provide the relevant criterion for saturation. Interest-
ingly, B

p

t � Bz at all times, even during linear growth,
indicating that the strong quiver motion of the plasma
component does not prevent the CFI from growing, nei-
ther does it matter from the point of view of saturation.

The large value of B
b

m confirms that magnetic trapping
does not act longitudinally, meaning that the Larmor ra-
dius of the beam particles remains much larger than the
characteristic radius of a filament; see in particular Fig. 2
which carries out such a comparison. As already pointed
out in Sec. II C 2, if the drift velocity is relativistic, as is
the case for the beam particles, the magnetization limit
is determined by the spatial constraint rL . r. We re-
call that the notion of Larmor radius implies a constant
B-field along with a null electric field, and hence has to
be computed in the instantaneous Weibel frame, which
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FIG. 3. Transverse profiles of the beam (blue curves) and
plasma (yellow curves) current densities, at saturation t '
400ω−1

pp in the reference run (a) listed, and in a limited re-
gion of the periodic y-domain. For each species, the solid and
dashed curves correspond to positrons and electrons, respec-
tively.

departs, given the development of the instability, from
the simulation frame. This change of frame is relevant
for the beam, which moves relativistically in the simula-
tion frame at ub ' 19 ' const, while it can be neglected
for the background plasma, given that its velocity and
the Weibel frame velocity remain sub-relativistic in the
simulation frame (|βp|w| � 1).

To better understand why the particle limit does not
provide the relevant saturation criterion here, we quan-
tify the contribution of the beam to the total current to
this effect. We plot in Fig. 3 the particle current density
(n〈γβ‖〉c) of each species in a limited region of the pe-
riodic y-domain. One can see that the contributions of
the beam and the plasma to the electric current density
fluctuations are comparable in scale, although the beam
dominates the total particle current density, which enters
Eq. (19). Importantly, charge separation is not complete
and the filaments are rather diluted than spatially split.
For this reason, the magnetic field associated with the
maximum particle limit among the components remains
always greater than the simulated value (compare the
green and black curves in Fig. 1), and therefore does not
account for saturation.

Concerning the background plasma, it remains sub-
relativistic and relativistically cold in the Weibel frame,
hence 〈γp〉 ∼ γp and 〈up〉 ∼ γpβp. As previ-
ously mentioned, the B-field associated with parti-
cle trapping inside the filaments is nearly everywhere
much smaller than measured in the simulation: B

p

t '
(Γw/ωpp)2(ωpp/k⊥c)〈γp〉/βp‖ ' 0.001, as can be verified
using the above theoretical estimates for Γmax and k⊥.
As a matter of fact, the bottom panel of Fig. 1 shows that
the background plasma particles are rapidly trapped in-
side the filaments, , both transversely and longitudinally,

since B
p

m,rL ' (2/π)(k⊥c/ωpp)γpβp ' 0.1 < Bz. Ac-

tually, B
p

m,rL rapidly approaches Bz (at ωppt ' 200)
and stays remarkably close to it at later times. We
do not interpret this as a cause for saturation of the
CFI, but rather as a relaxation of the low-inertia back-
ground plasma into the strong magnetic fields driven
by the large-inertia beam particles. In runs (b), (c)

and (d), B
p

m,rL gets even smaller than Bz during linear
growth, indicating that plasma particles become magnet-
ically trapped inside the filaments without inhibiting the
CFI growth.

Well beyond saturation, the characteristic filament ra-
dius r increases, roughly linearly in time (see Fig. 2), as
a consequence of filament coalescence. However, the B-
field strength as measured in the Weibel frame, that is,
(B2

z−E2
y)1/2, remains approximately constant. The slow

evolution of B in the simulation frame results from the
slow evolution of the Weibel frame velocity; it is there-
fore of kinematic origin. Interestingly, Fig. 2 shows that
the typical Larmor radius of background plasma parti-
cles adjusts at all times to the filament radius, rL,p ∼ r,
which implies that those particles gain energy inside the
growing filaments. Qualitatively, this process can be re-
lated to the chaotic dynamics of particles trapped in an
effective potential characterized by the potential four-
vector Ax ∼ rBz, which tends to bring equipartition
between kinetic 〈p〉 and potential eAx/c energies, un-
der the approximate conservation of the canonical mo-
mentum Πx = px + eAx/c. Such equipartition indeed
corresponds to rL,p ∼ r.

B. Scan in parameter space

The parameters of the reference run (a) are such that
the beam carries most of the energy density of the sys-
tem, and its relativistic plasma frequency is the lower
among the two. The smaller inertia of the background
plasma particles, which remain sub- or mildly relativis-
tic in the Weibel frame, explains why they relax rapidly
in the magnetized filamentary structures while the rigid
beam current keeps driving the instability. For this ref-
erence run, we thus find that the transverse trapping of
beam particles provides the relevant criterion for deter-
mining the saturation of the CFI. This general picture
proves robust (i.e., it applies from runs (a) to (e) in Ta-
ble I) even if the initial parameters are pushed to extreme
values, though always in the CFI-dominated regime.

For instance, Fig. 4 compares the saturation criteria
for run (e), in which the initial γb and Tp have been
multiplied by 10 and Tb divided by 10. The instability
grows fast, with a measured growth rate ΓPIC

w ' 0.3ωpp,
kPIC
⊥ ' 0.9ωpp/c, saturating at t ' 30ω−1

pp . Here as well,
transverse magnetic trapping of beam particles appears
to control the saturation level, while the Larmor radius
of background plasma particles still adapts to the fila-
ments size. The parameters of this simulation, though,
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FIG. 4. Same as Fig. 1 for simulation run (e).

are such that Eq. (12) cannot be applied because the
plasma is hot, and because it moves at relativistic veloc-
ities in the Weibel frame. Solving numerically the dis-
persion relation of the CFI, we obtain Γw ' 0.3ωpp at
k⊥ ' 1.2ωpp/c, which nicely agrees with the PIC values.

We then obtain B
b

t ' 37, a factor of a few above the
simulated value Bz ' 10, and slightly below the theoret-

ical particle limit B
b

p ' 44. The time evolution of these
limits, computed with the instantaneous measured val-
ues and plotted in the top panel of Fig. 4, confirms that
saturation results from transverse trapping of the beam
particles. Moreover, the closeness of the PIC field value
and plasma magnetization limit (compare Bz and B

p

m in
the bottom panel of Fig. 4) indicates that the plasma
particles are fully trapped in the filaments, as before.

Case (f) of Table I, where Tb is reduced by a factor of
30 while γb and Tp are increased by the same amount,
provides an exception to that general picture. In this
particular configuration, both the beam and the plasma
become relativistically hot, leading to comparable initial
relativistic plasma frequencies, namely, Ωpb ' 0.14ωpp

and Ωpp ' 0.2ωpp. One can then hardly discern which
plays the role of the beam and which plays the role of the
background plasma. What matters for the (transverse or
longitudinal) trapping limits, however, is the inertia of
the particles. Here, 〈ub〉 ' 40 and 〈up〉 ' 100 initially,
so that the background plasma particles will be trapped
later than the beam particles.

In detail, we measure ΓPIC
w ' 0.3ωpp and kPIC

⊥ '
3ωpp/c, in fair agreement with the numerical solution
to the CFI dispersion relation (Γw ' 0.4ωpp at k⊥ '
1.6ωpp/c) and which translates into a plasma trapping

limit, B
p

t ' 38, exceeding the beam trapping limit,

B
b

t ' 15. Moreover, since the plasma now carries a larger

FIG. 5. Same as Fig. 1 for simulation run (f). In the top panel
is also plotted the time evolution of theB-field associated with
the spatial magnetization limit as applied to the beam (Bb

m,
red dashed curve).

current density than the beam, it gives a greater particle

limit: B
p

p ' 180 vs. B
b

p ' 38. Those limits have been
evaluated using the simulation parameters; they quali-
tatively match (yet overestimate by a factor of a few)
the values obtained using the instantaneous simulation
parameters (as plotted in Fig. 5). We therefore expect
saturation to be determined by transverse plasma trap-
ping as confirmed by Fig. 5.

In summary, we observe that the CFI growth rate is
set by the species with the lower (relativistic) plasma fre-
quency, while the saturation level is determined by that
component with the larger inertia per particle, accord-
ing to the transverse trapping criterion. The expected
overall B-field amplitude at saturation can thus be ap-
proximated as

Bsat.√
4πnpmc2

'
(

Γw

ωpp

)2
ωpp

k⊥c
,max (〈γb〉, 〈γp〉) . (22)

In the forthcoming section, we extend this analysis to
electron-ion compositions.

IV. THE ELECTRON–ION CASE

The presence of ions introduces a new scale in the
problem, associated with the hierarchy mi/me (mi ion
mass). If both ions and electrons are cold, the ratio of
ion to electron plasma frequencies scales in proportion to√
me/mi. If the electrons are heated to such a degree

that their effective inertia becomes similar to that of the
ion species, then the above hierarchy disappears: both
species share a similar relativistic plasma frequency, and
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Run γb γp
Tbe
γb

Tbi
γb

Tpe

γp

Tpi

γp

γbnb
γpnp

(i1) 18.9 1.011 2.4 0.024 0.20 0.0020 1.9
(i2) 6.7 1.00075 4.5 0.15 0.2 0.002 1.3

TABLE II. Parameters of the electron-ion simulations, once
transformed to the Weibel frame. Run (i1) is analogous to
run (a) in which the positrons have been replaced with ions.
Run (i2) treats a mildly relativistic regime. Electron and
ion temperatures are given in units of mec

2/kB and mic
2/kB,

respectively.

hence the electron-ion component effectively behaves as
a pair plasma. Thus, one may expect to obtain results
similar to those for the pair systems examined in the pre-
vious section.

In the particular context of relativistic shock physics,
it is known that electrons are efficiently heated up to near
equipartition in ultrarelativistic, weakly magnetized con-
ditions (see e.g. [63, 84] and references therein). By con-
trast, in the mildly relativistic and magnetized regime,
electron heating appears to be weak, implying that some
hierarchy between the response of electrons and ions re-
mains preserved. Both situations will be addressed in
the following. In order to be able to capture the physics
of the instability for both electron and ion species, with
a sufficient number of macro-particles per cell and spa-
tial extent, we will adopt an ion-to-electron mass ratio
mi/me = 100.

A. Ultrarelativistic regime

Let us first examine the saturation criteria for case
(i1) described in Table II. The parameters of this run
are obtained from run (a) by replacing the positrons
with ions of charge +e and mass mi = 100me. The
beam electrons and ions then have a comparable in-
ertia: 〈pbe〉/mec ' 4γbTbe ' 3430 and 〈pbi〉/mec '
γbβb(mi/me)K3(µbi)/K2(µbi) ' 4520 (Kn is the mod-
ified Bessel function of the nth kind). Note that the
beam ions have a proper temperature Tbi/mic

2 ' 0.45,
so that they cannot be considered as fully relativistic.

Accounting for the ion mass modifies the trapping and
magnetization limits as

Bi
t =

Γ2
w

k⊥

〈γ〉mi

β‖e
(23)

and

Bi
m, rL =

2

π
k⊥〈γβ〉

mic
2

e
. (24)

The time evolution of the simulated mean B-field is
plotted in Fig. 6. Unlike previous studies (e.g. [46]),
the system does not experience an early phase governed
by electrons, in which the CFI grows faster, before mov-
ing to a regime ruled by the slower ion-driven CFI. We
ascribe this behavior to the similar inertia of the beam

FIG. 6. Temporal evolution of the simulated mean B-field
strength (black curves) compared to various saturation crite-
ria for run (i1) defined in Table II. Top panel: particle (green
dashed-dotted curve) and trapping (blue dotted curve) limits
as applied to the beam ions. Bottom panel: spatial magne-
tization (red dashed curve) and trapping (blue dotted curve)
limits as applied to the plasma ions. All curves are in units
of mecωpp/e.

ions and electrons. Solving the CFI dispersion relation
in the presence of ions yields a maximum growth rate
Γw ' 0.025ωpp for a wavenumber k⊥ ' 0.5ωpp/c (as
before, ωpp denotes the electron plasma frequency of the
background plasma). These values are very close to the
simulation values, namely, ΓPIC

w ' 0.024ωpp (as obtained
by exponentially fitting Bz(t) over 300 < ωppt < 500)
and kPIC

⊥ ' 0.4ωpp/c (as measured from the spatial
Fourier spectrum of Bz).

As in run (a), the CFI saturates through transverse
trapping of the beam particles (electrons and ions). This
is consistent with the fact that the theoretical trapping

limit, B
b

t ' 6, is much smaller than the particle limit,

B
b

p ' 75, both limits being computed for the beam ions
and using the initial simulation parameters. This esti-

mate of B
b

t matches well that evaluated at saturation
time (t ' 400ω−1

pp ) instantaneous simulation parameters
(see top panel of Fig. 6). At later times, again similarly to
run (a), the background plasma particles turn fully mag-
netized, with their typical Larmor radius adjusting to the
mean filament size (bottom panel of Fig. 6). A notable
difference with run (a), however, is that the mean B-
field strength here remains quasi-constant following sat-
uration (up to the final simulation time, t = 2400ω−1

pp ),
rather than slowly increasing as in Fig. 1.

In short, in this asymmetric, relativistic electron-ion
simulation, in which both species share a similar inertia,
we recover the general picture of the previous section.
Accordingly, the CFI saturation is determined by the
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FIG. 7. Temporal evolution of the simulated mean B-field
strength (Bz, black curves) compared to various saturation
criteria for run (i2) defined in Table II. Top panel: comparison
of the spatial magnetization (Bbem , red dashed curve), particle
(Bbep , green dashed-dotted curve), trapping (Bbe

t , blue dot-
ted curve) limits as applied to the beam electrons, plus the
trapping limit applied to beam ions (Bbi

t , light-blue dotted
curve). Also plotted is the saturated B-field from Eq. (29)
(Bc, magenta dotted line). Bottom panel: spatial magnetiza-
tion (Bpe

m , red dashed curve) and trapping (Bpe
t , blue dotted

curve) limits as applied to the plasma electrons. All curves
are in units of mecωpp/e.

trapping limit as applied to the species with the largest
inertia.

B. Mildly relativistic regime

We now address the case of two electron-ion plasmas
counterstreaming with a moderate Lorentz factor (∼ 3)
in a reference frame. These two plasma flows mainly dif-
fer in their temperatures: the beam’s electron and ion
populations are much hotter than their plasma counter-
parts, and for each (beam or plasma) component, the
electrons are also much hotter than the ions. In particu-
lar, the difference in temperature between the beam ions
and electrons is justified by the fact that, according to
kinetic simulations, the shock-reflected ions have a tem-
perature at least three times larger than their electronic
counterpart in the downstream frame (see [85–88] and
references therein). The initial parameters for this run
(i2), as expressed in the corresponding Weibel frame, are
summarized in Table II.

In this configuration, one has 〈pbe〉 ' 800mec, while
〈pbi〉 ' 3000mec. A hierarchy therefore persists between
the beam electrons and ions, leading to a somewhat dif-
ferent picture for the evolution of the instability and its

FIG. 8. Out-of-plane magnetic field (Bz) generated by the
counterstreaming of mildly relativistic electron-ion flows (i2).
The magnetic field is plotted at two different times: in the
early (ωppt = 594, top) and late (ωppt = 990, bottom) phases
of the CFI when cavities have started to form.

saturation level.
Figure 7 shows that after a transient early phase ruled

by oblique modes, the CFI sets in at t ' 300ω−1
pp and

rapidly saturates at t ' 400ω−1
pp with a measured growth

rate ΓPIC
w ' 5 × 10−3 ωpp and a dominant wave num-

ber kPIC
⊥ ' 0.35ωpp/c. During this short period, the

B-field grows only by a factor of a few, likely because the
transverse trapping limit for beam electrons is already
partially fulfilled, see top panel of Fig. 7. This figure
also suggests that the trapping of beam ions contributes
to the instability saturation, as would be expected from
their larger inertia.

At later times (t & 700ω−1
pp ), a secondary instability

develops, leading the mean B-field strength to rise by
almost two orders of magnitude. As shown in Fig. 8,
this instability generates isolated, large-scale magnetic
filamentary structures, which are essentially filled with
beam electrons and plasma ions, and devoid of beam
ions and plasma electrons. Those structures, or “cavi-
ties”, have been observed in previous electron-ion simu-
lations [47, 89] and studied recently in greater detail in
Ref. [90]. Although the latter paper considered a sim-
pler setting consisting of an electron beam-plasma sys-
tem embedded in an ion background, the picture that
it sketches can be readily extended to the present prob-
lem. Specifically, the cavities are driven by the beam
electrons, which are initially overdense relative to the
plasma (γbenbe/γpenpe ' 1.3 at t = 0). As a cavity ex-
pands due to the magnetic pressure exerted by the beam
electron current, more beam electrons join and add their
contribution to the current inside the cavity, thus feed-
ing back positively on the magnetic field. Meanwhile,
the beam ions are expelled from the cavity by the grow-
ing field, just as the plasma electrons. The background
ions accumulate in the cavity, mainly (initially) as a re-
sult of the confining force exerted by the Ey electric field
component. This scenario is illustrated in Fig. 9, in the
case of the cavity formed at (x, y) ' (450,−60) c/ωpp in
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FIG. 9. Top left panel: magnetic field profiles along the trans-
verse direction (y) and at successive times, as indicated, for
simulation run (i2). The figure reveals the growth of the mag-
netic field as the cavity expands. Bottom left panel: trans-
verse profiles of the number density of the beam and plasma
components at the onset of saturation, ωppt ' 1000. Right
panel: (y, px) phase space of the plasma ions at the same
time.

the bottom panel of Fig. 8. The top left panel depicts
the time evolution of the B-field profile across the cavity,
while the bottom left panel plots the density profiles of
the various populations of the system.

Interestingly, this secondary instability is essentially
driven by one species, here the beam electrons, and it
leads to a sharp contrast between the beam electron den-
sity inside and outside the cavity. Thus, it is not surpris-
ing that the particle limit, as evaluated for the beam elec-
trons, nicely follows the evolution of the magnetic field
during this nonlinear phase1, yet this does not cause the
instability to saturate.

We also note that a key factor for this secondary in-
stability is a clear hierarchy between the beam ions and
the beam electrons. Were they of equal inertia, these two
species would react similarly in adjacent filaments, lead-
ing to the growth of all filaments as in the standard CFI.
A comparison of this simulation with the previous one
(i1) suggests that in order for the instability to develop,
the beam electrons and ions should differ in their inertia
by at least a factor of a few.

This instability causes the magnetic field to grow
rapidly until saturation is reached at t ' 1100ω−1

pp .
While in [90], the magnetic pressure pushes a “wall”
composed of background ions initially at rest, in the

1 In Fig. 7 there is an offset of about an order of magnitude between
the measured value Bz (black solid curve) and the theoretical
limit corresponding to (19) (green dashed-dotted curve). This
offset is related to the overall geometry, in particular the fact
that the structures are not space-filling while the averages are
taken over the simulation box. It is clear, however, that inside a
cavity, the magnetic field is mostly carried by the beam electrons.

present case it evacuates the beam ions, which are rel-
ativistic. We can thus adapt the calculation of the insta-
bility growth rate made in that study to our conditions
by taking into account the inertia of the beam ions, as
follows.

Assuming that the B-field inside the cavity is mainly
generated by the beam electrons, the magnetic pressure
acting on this wall can be expressed as

B2
z

8π
=

(4πenbeγbeβberc)2

8π
. (25)

The momentum per unit area of the wall is mainly carried
by the expelled beam ions, and so can be estimated as
γbinbi〈pbi〉rc(t), where rc(t) is the instantaneous cavity
radius. Momentum balance in the transverse (y) direc-
tion then leads to

d

dt

(
γbinbi〈pbi〉rc

drc

dt

)
= 2π(enbeγbeβberc)2 , (26)

The solution to this equation grows as rc ∝ eΓct, where
the growth rate is given by

Γc =
Ωpbi

2
. (27)

In the present case, Ωpbi ' 0.020ωpp, which is in fair
agreement with the growth rate ΓPIC ' 0.015ωpp mea-
sured in the simulation over the interval 750 . ωppt .
960.

According to [90], saturation is reached once the back-
ground plasma ions are accelerated by the inductive elec-
tric field (Ex) to a point where they become relativis-
tic (pi,x ' mic) and neutralize the electron beam cur-
rent. The right panel of Fig. 9, which displays the (y, px)
phase space of the plasma ions at the onset of satura-
tion (ωppt = 990), confirms that they have indeed at-
tained relativistic momenta by that time inside the cav-
ity. Adapting again the calculations in Ref. [90], the ra-
dius of the cavity at saturation can be expressed as

rc,sat =
c

γ
1/2
b ωpbi

=
c

〈γbi〉1/2Ωpbi
, (28)

recalling that ωpbi =
√

4πnbie2/mi. This gives rc,sat '
10 c/ωpp, which agrees relatively well with the size of the
structures seen in Figs. 8 and 9.

The corresponding saturated value of the magnetic
field is given by

Bc ' γ1/2
be

(
mi

me

)1/2
ωpbe

ωpp
(29)

in normalized units. One obtains Bc ' 11 in correct
agreement with the observed value Bz ' 6 (see top panel
of Fig. 7). Note that in Ref. [90] an extra factor of 1/2
was added in the estimation of the saturated field, which
is not included here.
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V. LATE–TIME EVOLUTION OF THE
BEAM-PLASMA SYSTEM

We conclude by investigating briefly the late time evo-
lution of the beam-plasma system after the saturation
of the magnetic field. It is worth noting that in this fi-
nal stage, both the beam and plasma components are
expected to relax to isotropy in the turbulence frame.
This can be seen as a transition from the two-stream
collisionless system to a long-term hydrodynamical sys-
tem in which everything has been effectively mixed. In
this respect, if we assume that the beam and plasma
have relaxed to the same final velocity but with different
temperatures, the conservation of energy and momentum
implies:

γ2
biwbi − pbi + γ2

piwpi − ppi = γ2
f (wbf + wpf) (30)

− pbf − ppf ,

γ2
biβbiwbi + γ2

piβpiwpi = γ2
f βf(wbf + wpf) , (31)

where the subscripts i and f here refer, respectively, to
the initial and final states of the beam (b) and plasma (p)
components. As before, w denotes the enthalpy density
and p the pressure. Note that we have neglected the
contribution of magnetic turbulence in the final state, as
it is expected to be subdominant.

In the case where the final states of the beam and
plasma are relativistically hot, and therefore share the

same adiabatic index, Γ̂f = wf/(wf − pf) (wf and pf are
the total final enthalpy density and pressure), the final
velocity βf satisfies

γ2
biwbi − pbi + γ2

piwpi − ppi

γ2
biβbiwbi + γ2

piβpiwpi
=
κf − 1 + β2

f

κfβf
, (32)

where κf ≡ Γ̂f/(Γ̂f − 1).
Consider for instance the case, exemplified by run (a)

of Table I, of an initially sub-relativistic (βp,i ∼ 0) and
cold (pp,i ∼ 0) plasma interacting with a relativisti-
cally hot beam which carries most of the energy (i.e.
γ2

b,i pb,i � wp,i). We then have κf ' 4 (as in the initial

state), so that

βf ' βb

(
1− 1

2

wpi

γ2
bipbi

)
,

γf ' γb

(
1− wpi

pbi

)
. (33)

The second equation further assumes wpi � pbi. The
Lorentz factors are evaluated in the simulation frame of
the two-stream system.

The above indicates that the asymptotic velocity of
the relaxed components should be close to the initial
beam velocity. This behavior is illustrated in Fig. 10,
which shows the time evolution of various four-velocities
as extracted from our reference run (a). The beam
four-velocity ub (blue) indeed approaches from above

FIG. 10. Time evolution of various four-velocities as extracted
from run (a) defined in Table I. Light-green dotted curve:
four-velocity of the Weibel frame. Yellow curve: four-velocity
of the plasma. Blue curve: four-velocity of the beam. Ma-
genta dashed line: four-velocity of the relaxed plasma and
beam as given by Eq. (33).

the predicted asymptotic four-velocity, uf = βfγf (ma-
genta dashed line). Conversely, the plasma four-velocity
up is seen to increase steadily toward uf . Also overlaid
is the instantaneous four-velocity of the Weibel frame
(green dotted line), computed from the simulation data
as uw = γwβw with βw = (〈E2

y〉/〈B2
z 〉)1/2 (the average is

taken over the simulation domain). Note that this quan-
tity is not defined at early times because of the domi-
nance of oblique modes characterized by 〈E2

y〉/〈B2
z 〉 > 1.

The four-velocity of the Weibel frame tracks that of the
background plasma quite well. We note that the conver-
gence to the hydrodynamical regime is not attained over
the time scale of the simulation. As a matter of fact,
we expect the convergence to proceed at a slower rate as
time increases. This is because relaxation takes place in
the Weibel frame, hence time dilation effects associated
with the relativistic velocity of the Weibel frame rela-
tive to the simulation frame will slow down the apparent
relaxation rate.

VI. CONCLUSIONS

In this paper, we have investigated the saturation of
the current filamentation instability, or Weibel instabil-
ity, in an asymmetric configuration, meaning in the case
in which the counterstreaming plasmas differ in terms of
velocity, temperature and density. This configuration is
notably representative of the precursor region of electron-
positron or electron-ion shocks, although the implications
of our results are not restricted to such systems. Our
study relies on large-scale periodic PIC simulations of
counterstreaming flows composed of a hot dilute popu-
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lation representing the beam (e.g. the particles reflected
at the shock front) and a relatively cold plasma e.g. the
background plasma that is incoming toward the shock).
The parameters of our fiducial run have been directly
borrowed from a large-scale relativistic shock simulation
at a position deep in the precursor; the parameters of sub-
sequent runs have then been varied in an ad hoc manner
to explore different possible settings. We have discussed
several theoretically motivated criteria for saturation and
compared them to the simulation results.

The asymmetric counterstreaming configuration de-
parts from its symmetric counterpart in two important
ways: (1) there exists an ambiguity as to whether a given
criterion should be applied to the beam, or to the plasma
component; (2) there exists a preferred reference frame,
dubbed here the “Weibel frame” [62], in which the insta-
bility is purely magnetic; this reference frame does not
a priori coincide with that in which the total momen-
tum flux vanishes, as happens for the symmetric config-
uration. Here, we pay particular attention to that lat-
ter point. We have set up our simulations such that for
each set of parameters characterizing the plasma flows,
the simulation frame initially coincides with the Weibel
frame.

We have then compared different mechanisms as possi-
ble sources of saturation of the magnetic field associated
with the instability: magnetic trapping, particle limit,
Alfvén limit. Our general conclusion is that, for pair plas-
mas, the saturation level is determined by the criterion
of magnetic trapping as applied to the (beam or plasma)
component that carries the larger inertia of the two: the
growth rate is found to diminish strongly once the quiver
frequency of that component becomes comparable with,
or larger than the instability growth rate. For all studied
cases, our theoretical estimates of the instability proper-
ties, such as the maximum growth rate and associated
wave number, are consistent with those extracted from
the simulations. Consequently, it is possible to obtain
reasonable analytical approximations for the strength of
the magnetic field at saturation. Furthermore, we find
that the particle limit is never fulfilled, all the more so
when the component of larger inertia is relativistically
hot, as its temperature then prevents its charged species

from being fully segregated in separate filaments. We
have observed that the component of smaller inertia be-
comes rapidly trapped inside the filaments, in some cases
even during the linear phase of the CFI. At late times, the
Larmor radius of those particles closely follows the char-
acteristic filament radius and thus grows in time through
coalescence. Asymptotically, the system tends to a final
state where the two fluids are effectively mixed, drifting
at the same mean velocity. However, due to relativistic
time dilation effects, this ultimate regime could not be
accessed from our simulations.

We have also investigated the case of asymmetric
electron-ion systems with a mass ratio mi/me = 100.
As long as there is not a clear hierarchy in inertia be-
tween the electron and ions species of a given (beam or
plasma) component at the beginning of the simulation,
the development of the instability and the saturation pro-
ceed much as in the case of a pair plasma. The picture
and saturation criterion discussed above thus remain ap-
plicable. However, if the electron and ion inertia dif-
fer by a factor of a few or more, a different instability
eventually supersedes the CFI. It leads to the formation
of cavities in which the beam electrons and background
plasma ions accumulate and drive magnetic field growth,
while the beam ions are pushed outwards along with the
plasma electrons. This mechanism comes to an end when
the plasma ions inside the cavities, accelerated by the in-
ductive electric field, become capable of neutralizing the
electron beam current, as discussed recently in Ref. [90].
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Å. Nordlund, Astrophys. J. Lett. 608, L13 (2004).

[30] J. G. Kirk and B. Reville, Astrophys. J. Lett. 710, L16
(2010).

[31] A. M. Bykov and R. A. Treumann, Astron. Astrophys.
Rev. 19, 42 (2011).

[32] M. V. Medvedev, J. T. Frederiksen, T. Haugbølle, and
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