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Abstract. Communicative gestures and speech acoustic are tightly
linked. Our objective is to predict the timing of gestures according to
the acoustic. That is, we want to predict when a certain gesture occurs.
We develop a model based on a recurrent neural network with attention
mechanism. The model is trained on a corpus of natural dyadic interaction
where the speech acoustic and the gesture phases and types have been
annotated. The input of the model is a sequence of speech acoustic and
the output is a sequence of gesture classes. The classes we are using for
the model output is based on a combination of gesture phases and gesture
types. We use a sequence comparison technique to evaluate the model
performance. We find that the model can predict better certain gesture
classes than others. We also perform ablation studies which reveal that
fundamental frequency is a relevant feature for gesture prediction task.
In another sub-experiment, we find that including eyebrow movements
as acting as beat gesture improves the performance. Besides, we also find
that a model trained on the data of one given speaker also works for the
other speaker of the same conversation. We also perform a subjective
experiment to measure how respondents judge the naturalness, the time
consistency, and the semantic consistency of the generated gesture timing
of a virtual agent. Our respondents rate the output of our model favorably.

Keywords: Machine Learning · Communicative Gesture · Prosody.

1 Introduction

Human naturally performs gestures while speaking [25]. There are different
types of communicative gestures which vary based on the types of information
they convey [36] such as iconic (e.g., linked to the description of an object),
metaphoric (e.g. conveying abstract idea), deictic (indicating a point in space) or
beat (marking speech rhythm). Gesture helps the locutor to form what he or she
wants to convey and also helps the listener to comprehend the speech [13]. Thus,
it is desirable for a virtual agent which interacts with humans to show natural-
looking gesturing behaviour. Because of that, researchers have been working on
automatic gesture generation in the context of human-computer interaction [9,30].
The techniques behind these generators are based on the principle that gestures
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and speech are related [36]. Most of the prior gesture generators simplify the
problem by focusing and generating only one type of gesture (e.g. beat inly or
iconic only). There is also a recent work [31] which tries to infer the gesture from
both the speech acoustic and the text, which in principle enables the model to
learn both the beat gestures and the semantic gestures. However, there is also a
benefit of separating the learning of the gesture timing (when does it occur in
relation to speech) from the learning of the gesture shape (the hands shape, wrist
position, palm orientation, etc). By learning them separately, it would enable
different models to be plugged in. On the other hand, if a model which does
everything happens to not perform well on a certain task (e.g. generating the
shape of semantic gestures), then fixing that weakness would require modifying
the whole model. In our current work, we first attempt to compute when a
virtual-agent should perform a certain type of gesture. That is, we compute the
gesture timing. We also simplify the problem by considering two categories of
gesture: beat and other gesture types.

We compute the gesture class based on the speech acoustic. We learn their
relationship by using a recurrent neural network with an attention mechanism [2].
The input is the sequence of speech prosody and the output is the sequence
of gesture classes. Our input features are the fundamental frequency (F0), the
F0 direction score, and intensity. These features have been found to be highly
correlated with gesture production. We also experiment with using other acoustic
features that consider human perception of speech, namely the Mel-Frequency
Cepstral Coefficients (MFCC) as the input features because they have been
successfully used to generate body movements [21,30]. It should be noted that
the model we are developing uses only the acoustic features as the input; the
semantic feature is not considered yet. Our model aims to predict where gestures
occur; more precisely the type of gestures (beat or ideational) and the timing of
occurrence of gesture phases (stroke and other phases). We are not yet dealing
with the problem of predicting the form of the gestures nor which hand is used
for the gesture. We will deal with this topic in a next step.

In Section 2 (Background), we explain the background concepts. In Section
3, we explain the relevant prior works about gesture and gesture generation
techniques. In Section 4, we explain the dataset we use for our experiments. We
explain the raw content and the various annotations provided in the dataset. In
Section 5, we explain about how we extract usable data from the raw dataset.
In Section 6, we explain the model which we use and how it is implemented.
In section 7, we present the way we measure the performance of the model. In
Section 8, we describe our objective experiments. In Section 9I, we describe our
subjective experiment. In Section 10, we discuss our results and we draw the
conclusions. Finally, we explain our future direction in Section 11.

2 Background

Gestures and speech are related. In most cases, communicative gestures only
occur during speech [36]. They are also co-expressive, which means that gestures
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and speech express the same or related meanings [36]. They are also temporally
aligned, that is gesture strokes happen at almost the same time as the equivalent
speech segment [36]. Gesture strokes themselves are known to occur slightly before
or at the same time as the pitch accent [27]. McNeill [36] splits gestures into
four classes, namely metaphorical, deictic, iconic, and beat. This classification
is based on the information conveyed by the gesture. Metaphorical gestures are
used to convey an abstract concept. Deictic gestures are used to point at an
object or a location. Iconic gestures are used to describe a concrete object by its
physical properties. Lastly, beat gesture does not convey any specific meaning,
but it marks the speech rhythm.

The semantic gestures (communicative gestures other than beat, also called
“ideational gesture” [7]) are characterized by temporal phases, namely preparation,
pre-stroke-hold, stroke, post-stroke-hold, hold and retraction [27]. The stroke
phase carries the meaningful segment of a gesture; it is obligatory while the
other phases are optional. Successive gestures may co-articulate one from the
others. That is, when multiple gestures are performed consecutively, the gesture
phases can be chained together. On the other hand, beat gestures do not have a
phase [36]. They are often produced with a soft open hand gestures and mark
the speech rhythm.

Beat gestures can also be performed by facial and head movements [29]. Specif-
ically, it is noted that eyebrow movements can be related to beat gestures [29]. It
was observed that eyebrow movements tend to accompany prosodically prominent
words [43]. It was also observed that pitch accents are accompanied by eyebrow
movements [43,46,17].

3 Related Work

Embodied Conversational Agents (ECAs) are virtual agents endowed with the
capacity to communicate verbally and non-verbally [9]. We present existing works
that aim to compute communicative gestures ECAs should display while speaking.
Many researchers agree that gestures and speech are generated from a common
process [36,27]. Most prior computational models simplify this relationship into
that gestures can be inferred from speech. The earliest gesture generators for
ECAs are rule-based [9,32]. However, the relationship between speech and gestures
is complex. Lately, to deal with the lack of precise knowledge, researchers develop
machine-learning based gesture generators.

A common approach among the machine-learning based generators is gener-
ating a sequence of the gestures based on the acoustic. These techniques have a
similar formulation: they express the problem as a time series prediction problem
where the input is the acoustic and the output is the gesture motion. Hasegawa
et al use Bi-Directional LSTM [21] with MFCC as their input. Kucherenko et al
extend the work of Hasegawa et al by compacting the representation of the motion
by using Denoising Autoencoder [30]. Kucherenko et al also experiment with
other prosodic features, namely the energy of the speech signal, the fundamental
frequency contour logarithm, and its derivative. Kucherenko et al report their
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technique yields a more natural movement. Ginosar et al [19] use UNet and use
MFCC as their input. They also add an adversarial learning component to enable
mapping an input to multiple possible outputs. Ferst et al [16] expand the use
of adversarial learning further. They use multiple discriminators to evaluate the
generated motion according to several qualities: phase structure, motion realism,
intra-batch consistency, and displacement. They use fundamental frequency (F0)
and MFCC as their input. Interestingly, embedded within their model archi-
tecture, there is a phase classifier. The classifier takes the three-dimensional
velocities of the joints and the F0 as input and yield the phase (preparation, hold,
stroke, and other). The purpose of the phase classifier is to enforce of a realistic
phase structure. For example, a preparation cannot be immediately followed by
a retraction.

Among the machine-learning based generators, there are also text-based
generators. Their aim is to generate ideational gestures. These gestures are related
to the semantics, which are inferred from the text. Bergmann et al [6] use Bayesian
Decision Network to generate iconic gestures, by using the referent features and
the pre-extracted discourse context. Ishii et al [24] use Conditional Random
Field to generate a whole body pose. This technique does not model temporal
dependency: the technique works at the level of phrase and the dependency
between consecutive phrases is not modeled. Ahuja and Morency [1] use a joint-
embedding of text and body pose. The text is processed by using Word2Vec [38].
The technique generates whole body pose including arm movement.

There are also approaches which learns gesture statically. Nihei et al [39] use
neural network to statically learn iconic gestures from a set of images. They use
various images of similar objects, feed them into a pre-trained image-recognition
neural network, and then extract the simplified shapes from the network. These
simplified shapes can be reproduced as iconic gestures. Lücking et al [35] attempt
to statically gather the typical metaphoric gesture for each image schema by
running a human experiment. Image schema itself is a recurring pattern of
reasoning to map one entity to another [26].

There is also an approach which use both the acoustic and the text. Kucherenko
et al [31] build a neural network model which takes both the text and the acoustic
as the input to generate body movements. The text is represented as BERT
embedding and the acoustic is represented by log-power mel-spectrogram. Because
this technique takes both the text and acoustic as the input, in principle it can
generate both the beat gestures and the ideational gestures. Interestingly, in their
subjective study, they find that their respondents have a low agreement on which
segments of the gestures represent the semantic.

Some interesting developments we observe in the recent work are the shift
toward neural network [21,30,19,16,1,23,39,31], the use of adversarial learn-
ing [19,16], and the use of word embedding [1,23,31]. Neural network has been
successful in recent years, which therefore makes it into a reasonable choice for
machine learning problems. Adversarial learning enables one input to be correctly
mapped to multiple different outputs. Effectively, it allows the same acoustic
input to be mapped into different body movements. Word embedding is a repre-
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sentation of word as a vector. Two similar words will have their corresponding
vectors also close to each other. Therefore, given 2 similar text inputs, the outputs
would also be similar.

Our work is a bridge between the acoustic-based generators and the text-
based generators. We attempt to tell when a virtual agent should perform a
certain type of gesture. We distinguish beat gestures from ideational. First of
all, the ideational gestures convey a specific meaning, beat gestures mark the
speech rhythm. Moreover, beat gestures tend to appear during the theme while
ideational gestures tend to appear [9] during the rheme that carry the new
information [20]. Additionally, we also distinguish the stroke phase from the
other phases because the stroke phase is known to usually be near the pitch
accent [27]. Although it can be argued that a technique which learns the body
movements from both the text and the acoustic also implicitly learns the timing,
there is also a benefit from separating the learning of the timing and the shape.
By learning them separately, it would enable different models to be plugged
in. For example, as Kucherenko et al [31] find in their subjective study, the
respondents have a low agreement on which segments are actually the semantic
gestures. It suggests that the semantic gestures they generate probably happen
to be not so prominent. However, because they have only one model, attempts to
make the semantic gestures more prominent might change something else. Our
usage of gesture phases as the classes is similar to [16]. However, their phases
do not differentiate between beat and ideational gestures. Besides that, their
phase classifier takes both acoustic and body movements as input while we do
not have any body movement data. We evaluate our results by using a sequence
comparison technique which tolerates shift and dilation. The spirit is similar to
adversarial learning: for each input, there can be multiple correct output.

4 Dataset

We use the Gest-IS English corpus [41]. The corpus consists of 9 dialogues of a
dyad, a man and a woman, discussing various topics in English face to face. The
total duration is around 50 minutes. In those dialogues, the speakers are talking
about physical description of some places, physical description of some people,
scenes of two-person interactions, and instructions to assemble a wooden toy.

The corpus has been annotated along different layers [41]: gesture phases
(preparation, pre-stroke hold, stroke, post-stroke hold, partial retraction, retrac-
tion, and recoil), gesture types (iconic, metaphoric, concrete deixis, abstract
deixis, nomination deixis, beat, and emblems), chunk boundaries, classification
annotations on whether the gesture is communicative (i.e. contributing to the
dialogue discourse) or non-communicative (e.g. rubbing the eyes or scratching
nose), the transcription with timestamps. The gesture annotations only consider
gestures which are performed by at least one hand. The transcription timestamps
include the starting timestamps and the ending timestamps of each word.

We divide the communicative gestures into beats and ideational gestures (i.e.
iconic, metaphoric, etc). As explained above beat gestures appear often during
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Fig. 1: Both Speakers During A Dialogue

Fig. 2: The Neural Network Model

the theme while the other gesture types during the rheme. Theme and rheme are
marked by different prosodic features [20,22]. We also divide the gesture phases
into strokes and non-strokes. Strokes are often temporally aligned with pitch
accent. Therefore, we classify the gestures into four classes:

– “NoGesture”: when no gesture is done
– “Beat”: when beat gesture is done
– “IdeationalOther”: when a non-stroke phase (e.g. preparation, retraction) of

an ideational gesture is done
– “IdeationalStroke”: when the stroke phase of an ideational gesture is done

5 Feature Extraction

We decompose the speech into utterances where an utterance is defined by
sequence of words surrounded by pauses. One utterance is one sample. To define
the utterance boundaries, we use the concept of Inter-Pausal Unit (IPU) [33]:
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two consecutive utterances are separated by a silence of at least 200 milliseconds
long [40].

We use OpenSmile [15] to extract the audio features with 100 milliseconds
time-step. We choose 3 prosody features, fundamental frequency / F0, F0 direction
score, and intensity, for their temporal relation with gestures [34,11]. We also
extract the Mel-frequency cepstral coefficients (MFCC), which is represented
as a 13-dimensional vector. MFCC has been successfully used to generate body
movements [21,30].

We also extract eyebrow movements by using OpenFace [4]. There are 3
relevant action units (AU): AU1 (inner brow raiser), AU2 (outer brow raiser),
and AU4 (brow lowerer). AU 1 and 2 represent rising eyebrow while AU 4
represents lowering eyebrow.

After we obtain the raw AU values, we filter out those whose confidence
value is below 0.85 or the AU is absent. Then, we group them into consecutive
blocks and we eliminate those whose average value is less than 1. This is done to
eliminate noisy data.

The samples are natural utterances that have different lengths. Thus, we
pad the sequences to make them have the same length. We pad the inputs with
0-vectors and we pad the outputs with the “suffix” auxiliary class. In our full
dataset, we have 4161 time-steps of “NoGesture”s (6.14%), 1106 time-steps of
“Beat”s (1.63%), 4208 time-steps of “IdeationalOther”s (6.20%), 2739 time-steps
of “IdeationalStroke”s (4.04%), and 55616 time-steps of the auxiliary “suffix”s
(81.99%). In total, we have 798 samples.

6 Model

We use recurrent neural network with attention mechanism [2] to perform the
prediction. We use the model which we propose in our previous work [47].

6.1 Problem Statement

Let X be the input and Y be the output. Both X and Y are sequences with the
same length. Onward, we will refer to their length as l. X is a sequence of vector.
Let Xi be the vector at timestep i, Xi is a 3-dimension vector of real numbers
containing the three speech prosody features, namely the fundamental frequency
(F0), the F0 direction score, and the intensity. Y is a sequence of gesture class
(Formulae 3 and 2).

Xi = (F 0, F 0 direction score, intensity) ∈ R3, (1)

CLASSES = {NoGesture,Beat, IdeationalOther, IdeationalStroke, Suffix}
(2)

Yi ∈ CLASSES (3)
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6.2 Model Overview and Implementation

The recurrent neural network with attention mechanism is an extension of
the encoder-decoder model. The standard encoder-decoder model compresses
the entire information from the input sequence into the last encoder node. The
attention mechanism adds an attention map between the encoder and the decoder.
The map itself is a neuron matrix of the size l2. If wij is the weight in the attention
map at position 〈i, j〉, then wij represents the weight of the input at timestep i
on the output at timestep j. This neuron matrix enables focusing the “attention”
toward some specific input timesteps. Because this is a multi-class classification
problem, we use a one-hot encoding to encode Yi. The model schema is in Figure
2.

We implement the code by using the Zafarali 4's code as the template. The
code is written in Keras 5. We replace the input of the original code 6 by the
input we describe in Sub-Section 6.1. We use categorical cross-entropy as the loss
function and Adam as the optimization method. To deal with the class imbalance,
we assign weights inversely proportional to the class frequency.

7 Evaluation Measure

The prior works which also use encoder-decoder model like us use domain
specific measurements to evaluate their model. Sutskever et al [42] use BiLingual
Evaluation Understudy (BLEU) to evaluate their language translator. Chorowski
et al [10] use phoneme error rate (PER) to evaluate their speech recognizer.
Meanwhile, Bahdanau et al [3] use Character Error Rate (CER) and Word Error
Rate (WER) to evaluate their speech recognizer.

There is not always a gesture on every pitch accent. Moreover gesture stroke
may precede the speech prominence. Thus, our evaluation technique should
tolerate shifts and dilations to a certain extent. It means that the technique
must tolerate that the matching blocks can start at different times and can have
different lengths to a certain extent. For example, in Figure 3a, the predicted
“IdeationalStroke” starts 100 ms earlier and is 200 ms longer.

Dynamic Time Warping [5] is a sequence comparator which tolerate shifts
and dilations. However, this technique does not have a continuity constraint.
That is, two consecutive elements which belong to the same class in a sequence
might be matched against 2 non-consecutive elements. Without the continuity
constraint, we might end up with a match like in Figure 3b. In that figure, we can
see that the “NoGesture”s in the middle of the ground truth are matched with the
“NoGesture”s in the prediction before and after the “IdeationalStroke”. However,
a continuous “NoGesture” is different from a “IdeationalStroke” preceded and
followed by “NoGesture”.
4 https://github.com/datalogue/keras-attention
5 https://keras.io/
6 Originally for date format translation (e.g. the input is “Saturday 9 May 2018” string
and the output is “2018-05-09” string)
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Thus, we propose a sequence comparison technique to quantify the similarity
between the ground truth and the prediction where a block of consecutive elements
with the same class is matched against a block of consecutive elements of that
class. We use this technique to evaluate our result.

Our measurement uses the sequence comparison algorithm proposed by Der-
mouche and Pelachaud [12]. It measures the city-block distance between a block
in the ground truth and a block in the prediction. This distance metric tolerates
shift and dilation up to a certain threshold. If the distance between the 2 blocks
is below the threshold, then they are aligned. We define bps and bpe respectively
as the start and the end of the prediction block. Correspondingly, we define bts
and bte respectively as the start and the end of the ground truth block. We also
define T as the distance threshold. We define the alignment condition between
the prediction block and ground truth block in Formula 4.

ALIGNED ⇐⇒ |bps − bts|+ |bpe − bte| ≤ T (4)

We measure the alignment based on how many blocks are aligned and we
normalize it against the lengths of those blocks and the frequency of that particular
class. Basically, we try to find out for how many time-steps the prediction is
aligned to the ground truth, subject to the condition that consecutive time-steps
in the ground truth which share the same class must be matched to consecutive
or the same time-steps in the prediction which belong to that class as well. This
is then normalized against the frequency of that class.

We also introduce the concept of “insertion” and “deletion”. A block which
exists in the prediction but has no match in the ground truth is considered to
be “inserted”. This is conceptually similar to false positive. The block exists in
the prediction but it does not exist in the ground truth. Similarly, a block which
exists in the ground truth but has no match in the prediction is considered to be
“deleted”. This is similar to false negative. For example, in Figure 3c, we observe
an “inserted” “NoGesture” block and a “deleted” “IdeationalOther” block. The
precise definition of alignment, insertion, and deletion score are at Formulae
5. In the Formulae, n stands for the number of samples in the dataset, tc is
the timestep count of class c in the dataset, pc is proportion of class c in the
dataset, l is sample length (which is the same for all samples), b.d stands for
deleted block, dc is the deletion score of class c, b.i stands for inserted block, b.p
stands for predicted block, b.t stands for ground truth block, and ac is the class
c's alignment score. The ideal alignment score is 1 while the ideal deletion and
insertion score are 0. It means everything is aligned and there is neither deleted
nor inserted block. The insertion score of class c can exceed 1 if we predict class c
more frequently than it actually occurs. On the other hand, the deletion score is
always between 0 and 1. The deletion score of class c is 1 when we fail to predict
any of the block of that class. For the alignment score, if the predictor is accurate
but slightly overestimates the length of the block, then the alignment score will
be slightly higher than 1. On the other hand, if the predictor is accurate but
often slightly underestimates the length of the block, then the alignment score
will be slightly lower than 1.
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pc =
tc

n× l

dc =
Σb.dlength(b.d)

n× l × p

ic =
Σb.ilength(b.i)

n× l × p

ac =
Σ(b.p,b.t).aligned(length(b.p) + length(b.t))

2× n× l × p

(5)

(a) Alignment (b) Discontinuity

(c) Insertion and Deletion

Fig. 3: Each cell is 100 ms long. White: “NoGesture”, Yellow: “IdeationalOther”,
Blue: “IdeationalStroke”

8 Objective Experiments

In Experiment 1 (random output), we generate random outputs only accord-
ing to the probability distribution of the gesture classes. Specifically, we measure
two sets of probabilities, namely the probabilities that a sample is started by a
particular class and the probabilities that a class follows another (or the same)
class. This is done because our data consist of sequences, where each element
affects the next element. We match this result against the output from our ground
truth. We do this 55 times and we measure the average of their performances.
This can be seen as an extremely simple predictor and thus can be seen as the
baseline result.

In Experiment 2 (using neural network with the entire dataset),
we build a neural network model and then we train it. Besides that, We also
check whether the validation performance is a reliable proxy of the performance
on the testing performance. In a regular machine learning work, we train the
model several times, validate each of them, and choose the model with a good
performance in the validation. This is based on the assumption that the validation
performance is a reliable proxy of the testing performance. We run each of the
trained models on both the validation and the testing data set. For each gesture
class, we measure the correlation between the alignment scores in the 2 data sets.
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In Experiment 3 (ablation study), we want to observe how different
prosody features affect the model performance. We use the model from Experiment
2, but we replace some or all input features (intensity, fundamental frequency /
F0, and F0 direction score) with random values. Thus, we render those features
useless and we force the model to rely only on the remaining features.

In Experiment 4 (inclusion of eyebrow movements), we want to find
out whether inclusion of eyebrow movements helps on predicting beat class.
Eyebrow movements often mark speech prosody and are aligned with pitch
accent [8,14]. We include the eyebrow movements in the “Beat” class. We compare
the model performance when the data includes only hand movements, when
the data considers hand movements and upward eyebrow movements (Action
Unit / AU 1 or 2), and when the data considers hand movements and both
upward and downward eyebrow movements (AU 1, 2, or 4). We measure the
alignment, insertion, and deletion scores of the “Beat” class and we also measure
the validation reliability.

In Experiment 5 (MFCC as input), we use the MFCC instead of prosody
as the input features for our neural network. We measure the performance and
the validation reliability.

In Experiment 6 (both MFCC and prosody as input), we use both
the MFCC and the prosody as the input features for our neural network. We
measure the performance and the validation reliability.

In Experiment 7 (trained with one speaker, tested on the other
speaker), we train the model with one speaker of the dyad in our corpus and
test it on the second speaker, and then we do the reverse. It should be noted
that one speaker is a man and the other one is a woman.

In Experiments 1, 2, 3, 4, 5, and 6, we partition the full data set into training,
validation, and testing data sets identically. We mix all samples from all videos
from both speakers and then we randomly split our data with the proportion
of 64%, 16%, and 20% for training, validation, and testing data. This is chosen
according to the common 80/20 rule. Experiment 7, by its nature, requires us to
partition the dataset according to the speaker. We use 80% of a speaker's data
for training, the remaining 20% for validation, and 100% of the data of the other
speaker for testing.

To make the results comparable, we expend equivalent “effort” to train the
neural network models. We randomly vary the encoder and decoder dimensions
from 1 up to the number of features: 3 with prosody, 13 with MFCC, 16 with both
prosody and MFCC. We run 25 trainings with 500 epochs, 25 trainings with 1000
epochs, and 5 training with 2000 epochs. Therefore, we have 55 models for each
problem. To choose the best model during the validation, we use the weighted
average of “Beat Alignment”, “IdeationalStroke Alignment”, “IdeationalOther
Alignment”, and “NoGesture Alignment” scores, subject to the constraint that
each of them must be at least 0.05. The weights are based on the frequency
of those classes in the data set. A challenge we face is that the loss function
used in the training concerns only the matches at the same timestep, therefore
ignoring the possibilities of shifts or dilations, which means that the network is
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not completely optimized for our objective. Therefore, we have to rely on the
stochasticity of the neural network. This situation triggers a question on whether
the performance we see with the validation data set is a reliable proxy of what
we will see when we use the testing data set.

Table 1: Subjective experiment questions and results
Naturalness

How natural are the gestures?
How smooth are the gestures?

How appropriate are the gestures?
Random Output Score Model Output Score p-value

8.565 9.796 1.040× 10−5

Time Consistency
How well does the gesture timing match the speech?
How well does the gesture speed match the speech?
How well does the gesture pace match the speech?

Random Output Score Model Output Score p-value
8.565 10.409 7.271× 10−9

Semantic Consistency
How well do the gestures match the speech content?
How well do the gestures describe the speech content?

How much do the gestures help you understanding the speech content?
Random Output Score Model Output Score p-value

7.855 9.457 4.487× 10−6

9 Subjective Experiment

In the subjective experiment, 31 respondents watched 12 videos online of a virtual
agent speaking and performing communicative gestures. Among them, 17 (55%)
are male, 13 (42%) are female, and 1 (3%) refuses to disclose the gender. On the
age breakdown, 6 (19%) are 18-20 years old, 20 (65%) are 21-30 years old, 2 (6%)
are 31-40 years old, and 3 (10%) are 41-50 years old.

The 12 videos consist of 6 pairs. We extract 6 segments from the Gest-it
corpus (3 segments with a man, 3 segments with a woman). We replicate the real
human gestures on the virtual agent. We match the human gender to the agent
gender. Each pair of videos consists of the baseline and the gesture generation
model's output. The gesture timing of the baseline videos is decided by randomly
shuffling the timing from the ground truth. In both baseline and model output
videos, we retain the ground truth's gesture shapes. In both videos, the agents
have the same appearance and say the same sentence. We also use the original
voice from the corpus. Thus, the differences in the video pairs are only in the
gesture timings. The agent animation contains only the arm gestures. There is
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Table 2: Alignment: Exists in both prediction and ground truth
Insertion: Exists in the prediction only

Deletion: Exists in the ground truth only
Exp 1: Random output result

Alignment Insertion Deletion
Beat 0.009 0.936 0.990

IdeationalStroke 0.084 0.485 0.904
IdeationalOther 0.109 0.563 0.882

NoGesture 0.533 0.940 0.453
Exp 2: Using neural network

with the entire dataset
Beat 0.194 3.127 0.802

IdeationalStroke 0.507 0.485 0.582
IdeationalOther 0.304 0.226 0.671

NoGesture 0.567 0.554 0.398
Exp 4: inclusion of eyebrow movements

Alignment Insertion Deletion
Hand Only 0.194 3.127 0.802

With Upward 0.136 1.038 0.829
Eyebrow
Movement

With Upward & 0.222 0.280 0.774
Downward
Eyebrow
Movement

Exp 5: MFCC as input
Alignment Insertion Deletion

Beat 0.171 2.619 0.849
IdeationalStroke 0.166 0.977 0.855
IdeationalOther 0.362 0.538 0.652

NoGesture 0.440 0.789 0.551
Exp 6: MFCC and prosody as input

Alignment Insertion Deletion
Beat 0.000 2.429 1.000

IdeationalStroke 0.388 0.790 0.640
IdeationalOther 0.362 0.584 0.613

NoGesture 0.441 0.891 0.563
Exp 7: trained with one speaker

tested on the other
Trained on speaker 1, tested on speaker 2

Alignment Insertion Deletion
Beat 0.015 1.049 0.982

IdeationalStroke 0.506 1.142 0.559
IdeationalOther 0.367 0.359 0.575

NoGesture 0.517 0.441 0.459
Trained on speaker 2, tested on speaker 1

Alignment Insertion Deletion
Beat 0.132 3.679 0.856

IdeationalStroke 0.396 0.846 0.650
IdeationalOther 0.217 0.221 0.746

NoGesture 0.538 0.589 0.424

Exp 3: Ablation study
All features are randomized

Alignment Insertion Deletion
Beat 0.040 0.643 0.929

IdeationalStroke 0.038 0.072 0.952
IdeationalOther 0.025 0.027 0.960

NoGesture 0.347 0.275 0.641
Using intensity only

Alignment Insertion Deletion
Beat 0.0 0.786 1.000

IdeationalStroke 0.077 0.063 0.922
IdeationalOther 0.039 0.040 0.936

NoGesture 0.376 0.298 0.589
Using F0 and the F0 direction score only

Alignment Insertion Deletion
Beat 0.175 2.444 0.802

IdeationalStroke 0.481 0.503 0.563
IdeationalOther 0.313 0.179 0.637

NoGesture 0.596 0.555 0.379
Using F0 only
Alignment Insertion Deletion

Beat 0.179 2.540 0.802
IdeationalStroke 0.521 0.515 0.553
IdeationalOther 0.273 0.155 0.664

NoGesture 0.577 0.570 0.393
Using F0 direction score only

Alignment Insertion Deletion
Beat 0.044 0.548 0.929

IdeationalStroke 0.024 0.083 0.965
IdeationalOther 0.019 0.013 0.969

NoGesture 0.379 0.311 0.630
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Table 3: Validation reliability
Exp 2: Using neural network with the entire dataset

Alignment Score of ... Mean at Validation Data Mean at Testing Data Correlation
Beat 0.202 0.244 -0.037

IdeationalStroke 0.317 0.361 0.875
IdeationalOther 0.202 0.274 0.809

NoGesture 0.537 0.546 0.679
Exp 4: inclusion of eyebrow movements, “Beat” alignment score

Alignment Score of ... Mean at Validation Data Mean at Testing Data Correlation
Hand Only 0.202 0.2444 -0.037

With Upward 0.078 0.102 0.414
Eyebrow Movement

With Upward/Downward 0.226 0.219 0.925
Eyebrow Movement

Exp 5: MFCC as input
Alignment Score of ... Mean at Validation Data Mean at Testing Data Correlation

Beat 0.060 0.084 -0.056
IdeationalStroke 0.248 0.256 0.405
IdeationalOther 0.283 0.340 0.502

NoGesture 0.452 0.467 0.204
Exp 6: both MFCC and prosody as input

Alignment Score of ... Mean at Validation Data Mean at Testing Data Correlation
Beat 0.080 0.0745 0.025

IdeationalStroke 0.272 0.265 0.472
IdeationalOther 0.302 0.351 0.622

NoGesture 0.425 0.465 0.386
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no other animation (no head motion, gaze, posture shift, etc). Moreover, we
blur the face of the agent because its still blank face could have distracted the
respondents. The sequence of the 12 videos is shuffled so that a pair will not be
shown consecutively.

Our objective is to compare the respondent's perception differences between
the videos based on the model output and the baseline videos. We compare the
naturalness, the time consistency, and the semantic consistency of the videos.
For each of those dimensions, we measure it by asking the respondents to answer
3 questions. Each question asks the user to give a rating in likert scale from 1
to 5. We sum the respondent's scores on the three questions to get the score of
that dimension. We adapt the questions from the subjective study of Kucherenko
et al [30]. We find that in all the 3 dimensions, the videos created based on the
model output have higher average score. We also check the significances by using
one-way ANOVA test. The questions and results are in Table 1.

10 Discussion

We observe in “Exp 1: Random output result” (Table 2), different classes have
different complexities. For example, “Beat” classifier (alignment score = 0.009)
needs a higher Vapnik-Chervonenkis (VC) dimension than the classifiers of
another classes do. VC dimension is an abstract measure of how complex a
classifier function can be. Meanwhile, the “NoGesture” class, with (alignment
score = 0.533), can work with a lower VC-dimensioned classifier, despite the fact
that we select our samples only when the person is speaking.

Experiment 1 result might be caused by the data imbalance. The “NoGesture”
class is almost 300% larger than the “Beat” class. The “Beat” rarity might cause
the prediction to have a lower performance. Besides that, our corpus is small
(798 samples), which makes the training hard.

When we run our network (“Exp 2: Using neural network with the entire
dataset”, Table 2), we observe that the alignment scores outperform the random
output on all classes. It suggests that the 3 prosody features (F0, F0 direction
score, and intensity) enable prediction of the gesture classes with a certain degree
of reliability. However, the “Beat” class result is not reliable. As we observe in “Exp
2: Using neural network with the entire dataset, Validation reliability” (Table 3),
the correlation between the validation performance and the testing performance
is almost zero. It means that in respect to the “Beat” class, validation is useless,
thus the testing result can be attributed to chance. However, the mean alignment
scores of the “Beat” class is still higher than the random output (“Exp 1: Random
output result”, Table 2), which suggests that the neural network still learns some
pattern. However, as we have noted earlier, “Beat” is rare in our corpus.

Therefore, we wonder if we can predict “Beat” better should we have more
data. Besides that, “Beat” gestures can also be performed by head or facial
movements [8,14,28]. Indeed, in Experiment 4 we find the “Beat” class align-
ment score is slightly higher when we include both the upward and downward
eyebrow movements (“Exp 4: inclusion of eyebrow movements”, Table 2). More
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importantly, the validation reliability markedly improves (“Exp 4: inclusion of
eyebrow movements”, Table 3). These results shows that beat gestures can indeed
be performed by eyebrow movements. Therefore, including eyebrow movements
increases the amount of “Beat” data and, thus, enhances our model's reliability.

On the “IdeationalStroke” class, our predictor surpasses the random output
generator. This class encompasses the stroke of all communicative gestures except
beat gestures. The model can predict where a gesture stroke is aligned with the
acoustic features. This phase is well-studied in gesture literature as it carries the
gesture meaning. This phase usually happens around or slightly before the pitch
accent [44]. In our case, we have the intensity, F0, and F0 direction score as our
input. They participate to the characterization of the pitch accent. We also find
that our result is reliable, because the alignment scores at the validation data set
and at the testing data set show a positive correlation.

On the “IdeationalOther” class the model yields an alignment score higher
than the random output, but the alignment score is still low. As a recall, this class
contains all the gesture phases (e.g., preparation, hold, retraction) except the
stroke phase for all ideational gestures. We can notice that, in all our experiments,
we never obtain a good alignment on this class. This class is made of different
gesture phases that may not correspond to the same prosodic profile. Their
alignment may obey to different synchronisation needs [44]. However, we still
find that our validation result is reliable.

In the ablation study (Experiment 3), we replace some features with random
values to observe how it affects the model performance. We start by replacing
the entire input with random values and use it on the trained model (“Exp
3: Ablation study, All features are randomized”, Table 2), we observe that all
the alignment scores are lower than in the random output result, except for
“Beat” which is 0.040, which only marginally outperforms the random output.
Subsequently, when we use the intensity alone (“Exp 3: Ablation study, Using
intensity only”, Table 2), we find again that the model's alignment scores fail to
outperform the random output result. This result does not prove either that it
is impossible to learn the gesture timing from the intensity. Our model simply
happens to largely ignore the intensity feature, yet it still can predict some classes
(as shown in Experiment 2 results). Finally, in the sub-experiment where we only
use fundamental frequency “Exp 3: Ablation study, Using F0 only”, Table 2), the
alignment scores are similar to what we get when we use all prosody features
(“Exp 2: Using neural network with the entire dataset”, Table 2). This result
suggests that F0 is tied and is very pertinent to the gesture timing.

In Experiment 5 where we use MFCC instead of the prosody features (“Exp 5:
MFCC as input”, Table 2), we find that the alignment scores of “Beat”, “Ideation-
alStroke”, and “IdeationalOther” outperform the random output. However, the
“IdeationalStroke” alignment score is considerably lower than when we use prosody
features (“Exp 2: Using neural network with the entire dataset”, Table 2). A
possible reason is because the MFCC are represented as a 13-dimensional vector
while the prosody features are represented as a 3-dimensional vector. The higher
dimension makes the search space much larger, and thus making the training
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slower. Another possible reason is that the MFCC is indeed less informative
about stroke timing. Indeed, it has been reported in several studies that F0/pitch
are related to gesture stroke timing [44,35]. On the validation reliability, we also
find that the correlation between the validation alignment scores and on the
testing alignment scores of the “Beat” class is close to zero (“Exp 5: MFCC as
input”, Table 3). This is similar to we when use prosody features (“Exp 2: Using
neural network with the entire dataset, Validation reliability”, Table 3).

In Experiment 6 where we use both the prosody features and MFCC (“Exp 6:
both MFCC and prosody as input”, Table 2), the alignment score of the “Beat”
falls to 0.000 while the alignment score of “IdeationalOther” increases to 0.362.
The alignment score of “Beat”, like in Experiments 2 and 5, can be attributed
to chance as shown by the almost zero correlation in the validation reliability
test (“Exp 6: both MFCC and prosody as input”, Table 3). The alignment score
of “IdeationalOther”, which is still lower than what we get when we use prosody
features only, can likely be contributed to the presence of the prosody features,
especially the F0 which we have shown to be pertinent to gesture timing. Although
having more features enables the neural network to learn more information, it
also makes the search space larger, which in turn makes the search slower.

In Experiment 7 where we train the model with one speaker and test it on the
other speaker of the same interaction (“Exp 7: trained with one speaker tested
on the other”, Table 2), we find that the models'alignment scores outperform
the random output, which suggests that some generalizability exists even-though
people have different gesturing styles. These results may also be due as both
speakers are part of the same interaction and conversation participants tend to
automatically align to each other, at different levels, such as phonology, syntax
and semantics [37], as well as gesture types [45]. These different alignments make
the conversation itself successful [18].

In our subjective experiment, we measure the naturalness, time consistency,
and semantic consistency of the gestures and speech. We compare the perception
by human participants of the animation of the virtual agent where we manipulated
the timing of the gestures. It allows measurement of the impact of the timing
generated by the neural network against random timing along the 3 qualities:
naturalness of the agent gesturing, time consistency of the gesture production and
of the speech prosody, and the semantic alignment of both. The random timing
acts as the baseline. The idea is similar to what we do in our objective evaluations
(Experiments 1 and 2). We find that the timing from the model outperforms the
baseline in all measured qualities, and the differences are significant (p− value <
0.05). It shows that overall the generated result is perceived better by the human
respondents along the 3 qualities. It also shows that gesture timing is important
to how well-perceived the gestures are by humans. We keep the gesture shapes
from the ground truth in both the output of our model and the baseline, we act
only on the timing of the gestures, yet the output of our model is perceived more
favourably.
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11 Conclusion and Future Work

In this paper we have presented a model to predict where to place gestures based
only on the acoustic features. We limit the scope of the problem to only the
gesture timing. We use 3 prosodic features as the input, namely the fundamental
frequency (F0), F0) direction score, and intensity. We also experiment with using
Mel-frequency cepstral coefficients (MFCC) as the input. We consider 2 classes of
communicative gestures (beats and ideational gestures) and 2 classes of gesture
phases (stroke and others). In an experiment we also add eyebrow movements
that can have communicative functions, such as being prosodic markers. We
conduct several objective studies to evaluate the model as well as a subjective
study. Our results show the pertinence of the F0 to determine gesture timing.
We also find that considering eyebrow movements as beat gestures increases the
beat prediction accuracy.

However, gesture generation is also tightly linked to what is being said. In
the future, our aim is to consider not only the prosody but also the semantics of
the speech. The question of representing the semantics arises. We are planning
to rely on a higher representation level such as image schema that can be linked
to metaphoric gestures [26]. Combining both of semantics and the prosody is a
challenge by itself. A big part of the challenge is that aligning meaning, prosody
and gestures is far from being a trivial problem. In the future, we intend to go
into this direction.
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