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Abstract 

The etiopathogenesis of critical COVID-19 remains unknown. Indeed given major confounding 

factors (age and comorbidities), true drivers of this condition have remained elusive. Here, we 

employ an unprecedented multi-omics analysis, combined with artificial intelligence, in a young 

patient cohort where major comorbidities have been excluded at the onset. Here, we 

established a three-tier cohort of individuals younger than 50 years without major 

comorbidities. These included 47 “critical” (in the ICU under mechanical ventilation) and 25 

“non-critical” (in a non-critical care ward) COVID-19 patients as well as 22 healthy individuals. 

The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma and 

blood mononuclear cells proteomics, cytokine profiling and high-throughput 

immunophenotyping. An ensemble of machine learning, deep learning, quantum annealing 

and structural causal modeling led to key findings. Critical patients were characterized by 

exacerbated inflammation, perturbed lymphoid/myeloid compartments, coagulation and viral 

cell biology. Within a unique gene signature that differentiated critical from non-critical patients, 

several driver genes promoted critical COVID-19 among which the upregulated 

metalloprotease ADAM9 was key. This gene signature was supported in a second independent 

cohort of 81 critical and 73 recovered COVID-19 patients, as were ADAM9 transcripts, soluble 

form and proteolytic activity. Ex vivo ADAM9 inhibition affected SARS-CoV-2 uptake and 

replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, 

COVID-19 cohort, we provide the landscape of biological perturbations in vivo where a unique 

gene signature differentiated critical from non-critical patients. The key driver, ADAM9, 

interfered with SARS-CoV-2 biology. A repositioning strategy for anti-ADAM9 therapeutic is 

feasible. 
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INTRODUCTION 

Unlike many viral infections and most respiratory virus infections, COVID-19 is characterized 

by an extraordinarily complex and diversified spectrum of clinical manifestations, which results 

in the use of “syndemic” within, or in lieu of, pandemic (1). Indeed, upon infection with SARS-

CoV-2, age-, sex-, and phenotype-matched individuals can be classified within four distinct 

groups, i.e., (1) asymptomatic individuals, (2) patients displaying influenza-like illnesses, (3) 

patients affected by respiratory dysfunction who eventually need an external oxygen supply, 

and (4) patients suffering from acute respiratory distress syndrome (ARDS) who need invasive 

mechanical ventilation in an intensive care unit (ICU). Even though the last group represents 

only a small fraction of COVID-19 patients, this group encompasses the most critical form of 

the disease and has an average case-fatality rate of approximately 25% (2). Despite intense 

investigation, the fundamental question of why the course of the disease shows such a marked 

difference in an otherwise, apparently indistinguishable set of individuals, remains despite key 

findings in discrete subpopulations (3-6), largely unanswered i.e. the exact pathophysiological 

mechanism governing the disease severity within a demographically and clinically 

homogeneous group of patients remains, for the majority of such patients, mostly unclear. To 

better understand this issue, high-resolution molecular analyses should be applied to well-

defined cohorts of patients and controls where a maximum of confounding factors have been 

eliminated. These include notably older age as well as a number of comorbidities – e.g., 

cerebrovascular disease, types 1 and 2 diabetes, chronic kidney disease, chronic obstructive 

pulmonary disease, heart conditions, etc. (7) – present in COVID-19 patients. This is the case 

for the three-tier cohort studied in this work. 

Several studies have used single, or a restricted number of omics technologies to 

uncover key molecular processes associated with disease severity, usually in unfiltered critical 

COVID-19 patients. Systemic inflammation with high concentrations of acute-phase proteins 

(C reactive protein; CRP, serum amyloid A; SAA, calprotectin) (8) and inflammatory cytokines, 

particularly interleukin (IL)-6 and IL-1β (9-11) has been found to be a hallmark of disease 

severity. In contrast, following an initial burst shortly after infection, the type I interferon (IFN) 
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response is impaired at the RNA (12) and plasma (13) concentrations. Severity was also 

correlated with profound immune dysregulations, including modifications in the myeloid 

compartment with increases in neutrophils (14, 15), decreases in nonclassical monocytes (8) 

and dysregulation of macrophages (10, 16). The lymphoid compartment is also modified by 

both a B-cell response activation (17) and an impaired T-cell response characterized by 

skewing towards a Th17 phenotype (18, 19). Moreover, coagulation defects have been 

identified in critically ill patients who are prone to thrombotic complications (20-22). 

Nevertheless, the full spectrum of omics technologies has not been applied to a highly curated 

cohort of COVID-19 patients and controls that was established by discarding a number of key 

confounding factors that affect severity and death, such as older age and comorbidities, at 

onset. 

In this cross-sectional study, we aimed to analyze the SARS-CoV-2 induced molecular 

changes that are characteristic to critical patients and differentiate them from non-critical 

patients. We hypothesized that certain host driver genes might be responsible for the 

development of critical illness and that those genes might represent therapeutic targets. To 

test these hypotheses, we performed an ensemble artificial intelligence (AI)/machine learning 

(ML)-based multiomics study of 47 young (aged <50 years) COVID-19 patients without 

comorbidities admitted to the ICU and under mechanical ventilation (“critical” patients), versus 

matched COVID-19 patients (i.e., aged <50 years with no comorbidities) needing “only” 

hospitalization at a non-critical care ward (25 “non-critical” patients) and an age- and sex-

matched control group of 22 healthy individuals not infected with SARS-CoV-2 (“healthy”). The 

multiomics approach included whole-genome sequencing (WGS), whole-blood RNA 

sequencing (RNA-seq), quantitative plasma and peripheral blood mononuclear cells (PBMCs) 

proteomics, multiplex plasma cytokine profiling and high-throughput immune cell phenotyping. 

These analyses were complemented by the status of anti-SARS-CoV-2 neutralizing antibodies 

and multitarget IgG serology as well as the measurement of neutralizing anti-type I IFN auto-

antibodies in the entire cohort. 
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RESULTS 

Patients’ characteristics and study design 

The present study focused on patients who were hospitalized for COVID-19 at a university 

hospital network in northeast France (Alsace) during the first French wave of the pandemic 

(March-April 2020), before the routine use of corticosteroids. A total of 72 patients under 50 

years of age without comorbidities were enrolled. Fifty-three of these patients were men (74%), 

and the median age of the patients was 40 [IQR 33; 46] years. The patients were divided into 

two groups: (i) a “critical” group consisting of 47 (65%) patients hospitalized at the ICU due to 

moderate or severe ARDS according to the Berlin criteria (23) with 45 requiring invasive 

mechanical ventilation and 2 requiring high-flow nasal oxygen and noninvasive mechanical 

ventilation due to acute respiratory failure and (ii) a “non-critical” group consisting of 25 patients 

(35%) who stayed at a non-critical care ward. In the latter group, nineteen (76%) needed low-

flow supplemental oxygen. Patients who were transferred from the non-critical care ward to 

the ICU (n=19) were considered “critical” patients and for these the sampling was done upon 

ICU admission in the same conditions as patients directly admitted to the ICU. The median 

simplified acute physiology score (SAPS) II of the patients at the ICU was 38 [IQR 33; 47] 

points, and the median PaO2/FiO2 ratio of these patients was 123 [IQR 95; 168] mmHg upon 

admission. All the patients were discharged from the hospital or were deceased at the time of 

data analysis. The overall hospital- and day-28 mortality rate was 8.3% (6 patients, all in the 

critical group, for a mortality of 13% in this group). The characteristics of the patients in both 

groups are summarized in Table 1. 

Based on these two patient groups and an additional group of 22 healthy (SARS-Cov-

2 negative) sex- and aged-matched controls, we applied a global multiomics analysis strategy 

to identify pathways and drivers of ARDS (Figure 1). PBMCs were analyzed by mass-cytometry 

(CyTOF®) and shotgun proteomics. Plasma samples were used for multiplex cytokine 

quantification and shotgun proteomics. Serum samples were used for multiplex IgG serology 

(24), detection of anti-SARS-CoV-2 neutralizing antibodies and anti-type I IFN neutralizing 

autoantibodies. Finally, RNA-seq and WGS were performed using whole-blood samples. 
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Unless otherwise specified, all measures were obtained from samples that were collected at 

the time of hospital admission (whether at the ICU or the non-critical care ward). Validation of 

the identified driver genes was performed using an ex vivo model of SARS-CoV-2 infection. 

The top 600 genes found via classification of patient cohort 1 were evaluated in a second, 

independent cohort of 81 critical patients and 73 recovered critical patients (Table S1).  

 

Cytokines, antibodies and immune cell hallmarks of critical COVID-19 

The global proinflammatory cytokine profile showed significantly increased concentrations of 

IFNγ (P=0.034), TNFα (P=0.022), IL-1β (P=0.0002), IL-4 (P=0.036), IL-6 (P<0.0001), IL-8 

(P=0.0004), IL-10 (P=0.0002), and IL-12p70 (P=0.0221) in critical versus non-critical patients 

(Figure 2A). This “cytokine storm” (25) was more pronounced in critical patients, as only IFNγ, 

TNFα and IL-10 are higher in non-critical patients as compared to healthy controls. Although 

the disease severity was initially associated with an RNA-seq based type I IFN signature, the 

absence of a significant increase in the plasma concentration of IFNα in critical versus non-

critical patients, the decrease in the IFNα concentration during the ICU stay and the reduction 

in the number of plasmacytoid dendritic cells, which are the main source of IFNα, suggest that 

the IFN response is indeed impaired in critical patients (Figure S1) (12). 

At a systemic level, lymphopenia is correlated with disease severity (25-27) (Figure 

2B). To further characterize the immune cells, we analyzed PBMCs by mass cytometry using 

an immune profiling assay covering 37 cell populations. Visualization of stochastic neighbor 

embedding (viSNE) showed a cell population density distribution pattern that was specific to 

the critical group (Figure 2C). This pattern could be partly linked to the known 

immunosuppression phenomenon in critical patients (12, 28, 29), which was characterized by 

marked differences in the T cell compartments where memory CD4 and CD8 cells and Th17 

cells were negatively correlated with disease severity (Figure 2D). The latter observation is in 

line with the absence of a clear association between the plasma concentration of IL-17 and 

disease severity (Figure 2A). In contrast, the B-cell compartments of critical patients contained 

more naïve B cells and plasmablasts and fewer memory B cells than those of healthy controls 
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(Figure 2E). In accordance with previous reports (17), the number of plasmablasts tended to 

be higher in critical versus non-critical patients. Moreover, non-critical and critical patients were 

also characterized by lower numbers of dendritic cells and nonclassical monocytes (Figure 2F 

and G). The remaining cell populations are presented in Figure S2. 

Altogether, the results indicate that critical illness was characterized by a 

proinflammatory cytokine storm and notable changes in the T, B, dendritic and monocyte cell 

compartments. These specific changes were independent from the extent of viral infection per 

se, as both the global anti-SARS-CoV-2 antibody concentrations and their neutralizing activity 

were not significantly different in critical versus non-critical patients (Figure S3A and B). 

To complete the immunologic profile, based on findings suggesting that at least 10% 

of critical patients have preexisting anti-type I IFN autoantibodies (30, 31), we measured anti-

IFNα2 and anti-IFNω neutralizing autoantibodies in patients and controls. Autoantibodies 

against type I IFNs were identified in two critical patients (Figure S3C) but none of the non-

critical patients nor the healthy controls. Interestingly, in these two patients, the presence of 

autoantibodies was associated with an absence of SARS-CoV-2 neutralizing activity (Figure 

S3D). 

 

Quantitative plasma and PBMC proteomics highlight signatures of acute inflammation, 

myeloid activation and dysregulated blood coagulation 

Quantitative nanoLC-MS/MS analysis of whole unfractionated plasma samples identified a 

total of 336 proteins, of which an average of 178 ± 7, 189 ± 11 and 195 ± 8 proteins in healthy 

individuals, non-critical and critical patients, respectively were used for differential analysis 

(Figure 3A). These experiments were conducted on crude liquid digested plasma samples 

without any fractionation or depletion of high abundant proteins to favor repeatability and 

robustness of quantification and differential analysis, at the cost of a lower proteome coverage. 

After validating the homogeneous distribution of the three groups using a multidimensional 

scaling plot, we performed a differential protein expression analysis to identify protein 

signatures that were specific to critical patients (Figure 3B and C). In line with previous studies 
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(8, 32), the antimicrobial calprotectin (heterodimer of S100A8 and S100A9) was among the 

top differentially expressed proteins (DEPs) in critical versus non-critical patients, which 

confirms that calprotectin is a robust marker for disease severity (Figure 3D). Our data also 

showed dysregulation of multiple apolipoproteins including APOA1, APOA2, APOA4, APOM, 

APOD, APOC1 and APOL1 (Figure 3C and E). Most of these proteins were associated with 

macrophage functions and were downregulated in critical patients. Acute-phase proteins 

(CRP, CPN1, CPN2, C6, CFB, ORM1, ORM2, SERPINA3, and SAA1) were strongly 

upregulated in critical patients (Figure 3C and E). These findings are consistent with previous 

studies showing that acute inflammation and excessive immune cell infiltration are associated 

with disease severity (26, 33, 34). 

Whole-cell lysates of PBMCs from the same groups of patients and controls were also 

subjected to quantitative nanoLC-MS/MS analysis. A total of 2196 proteins were identified, of 

which an average of 801 ± 213, 1050 ± 309 and 1052 ± 286 proteins in healthy individuals, 

non-critical and critical patients, respectively were used for differential analysis (Figure 3F). 

Although the human proteome coverage was relatively low after exclusion of contaminating 

fetal calf serum peptides and the distribution of the three groups in the multidimensional scaling 

plot was less clear than that found for plasma proteins, the differential expression analysis 

between non-critical and critical patients showed dysregulation of blood coagulation and 

myeloid cell differentiation (Figure 3H-I). The latter observation involving the CA2, AHSP, 

SLC4A1, TFRC, DMTN, FASN, and PRTN3 proteins was in line with the plasma proteomics 

results evidencing dysregulation of macrophages and with other reports showing that severe 

COVID-19 is marked by a dysregulated myeloid cell compartment (15). The profile of the blood 

coagulation proteins HBB, HBD, HBE1, SLC4A1, PRDX2, SRI, ARF4, MANF, ITGA2, ORM1, 

and SERPINA1 confirmed that severity is also associated with coagulation-associated 

complications that can involve either bleeding or thrombosis (35).  

 

Combined transcriptomics and proteomics analysis supports inflammatory pathways 

associated with critical disease 
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Consistent with the proteomics data, differential gene expression and gene set enrichment 

analysis of RNA-seq data from whole blood samples collected from the patients showed that 

regulation of the inflammatory response, myeloid cell activation and neutrophil degranulation 

were the main enriched pathways in critical patients with normalized enrichment scores of 

2.33, 2.65 and 2.66, respectively (Figure 4A and B). 

To identify enriched pathways that were supported by different omics layers, we 

performed nested GOSeq (nGOseq) (36) functional enrichment of the differentially expressed 

genes or proteins identified from the RNA-seq, plasma and PBMC proteomics data. Figure 4C 

shows the nGOseq terms that were found to be statistically enriched in at least two omics 

datasets in critical compared with non-critical patients. In line with the cytokine profiling results 

(Figure 2A), inflammatory signaling and the response to proinflammatory cytokine release (IL-

1, IL-8 and IL-12) were supported by multiple omics datasets. As suggested by the results from 

immune cell profiling (Figure 2C and D) and previous studies, the B-cell response was 

activated, whereas the T-cell response was impaired (17, 37). As previously witnessed (8, 14, 

15, 38), the activation of neutrophils and monocytes was confirmed by the enrichment of nine 

different nGOseq terms (Figure 4C). The nGOseq enrichment analysis also indicated that 

dysfunction of blood coagulation involves a fibrinolytic response, an observation that could, 

however, be linked to the anticoagulant therapy administered to most critical patients. 

Moreover, nGOseq terms related to viral entry and even viral transcription were strongly 

enriched in the three omics datasets. This result was consistent with the identification of viral 

gene transcripts in the RNA-seq data of eight critical patients but not in those from non-critical 

patients (Table S2).  

 

Integrated ensemble AI/ML and probabilistic programming discovers a robust gene 

expression signature and driver genes that differentiate critical from non-critical 

patients 

To robustly identify a set of genes that might differentiate between non-critical and critical 

COVID-19 patients and could thus be related to the progression to ARDS, we adopted the 
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pipeline depicted in Figure 1B. Briefly, we partitioned the 69 patient blood RNA-seq data (46 

critical and 23 non-critical patients) 100 times to account for sampling variation, using 80% for 

training and 20% for testing, and evaluated the performance of seven distinct AI/ML algorithms, 

including a quantum support vector machine (qSVM) to differentiate between non-critical and 

critical COVID-19 patients. We have previously shown that quantum annealing is a more robust 

classifier for relatively small patient training sets (39). The receiver operating characteristic 

curves (ROCs) for the 100 partitions of the patient data as well as other classification 

performance metrics are shown in Figure 5A and Table S3. The classification performance on 

the test set provided a high degree of confidence that the signals learned by the various AI/ML 

algorithms are generalizable. 

After successfully classifying non-critical versus critical patients based on whole-

transcriptome RNA-seq profiling, we assessed feature scores across the six distinct ML 

algorithms (see Methods section) and all partitions to determine an ensemble feature ranking, 

ignoring features from the partitions of patient data where the test AUROC was less than 0.7. 

Aggregating the best performing features across both the algorithm and data partitions 

afforded a more robust and stable set of generalizable features. 

This signature represents hundreds of genes that are differentially expressed and by 

itself does not distinguish between driver genes of critical COVID-19 and genes that react to 

the disease. Therefore, we then selected the top 600 most informative genes and used them 

as input for structural causal modeling (SCM) to identify likely drivers of critical COVID-19 

disease. We confirmed that these 600 genes are biologically relevant for distinguishing 

between critical and non-critical patients by retraining an ensemble ML classifier using only 

those 600 genes (Table S4). Previous work has shown that SCM of RNA-seq data produces 

causal dependency structures, which are indicative of the signal transduction cascades that 

occur within cells and drive phenotypic and pathophenotypic development (40). However, this 

approach works best if the gene sets are stable and consistent across six different algorithms, 

as shown here. The resultant SCM output is presented as a directed acyclic graph (DAG) in 

Figure 5B, a gene network representing the putative flow of causal information, with genes on 



13 
 

the left predicted to have the greatest degree of influence on the entire state of the network. 

That is, perturbing these genes is most disruptive to the state of the network (Figure S4) and 

is expected to exert the greatest effect on the expression of downstream genes. The top five 

genes associated with the greatest degree of putative causal dependency were ADAM9, 

RAB10, MCEMP1, MS4A4A and GCLM, and all five of these genes were significantly 

upregulated in critical patients with false discovery rates (FDR) of 1.6x10-11, 3.1x10-12, 

1.6x10-11, 1.0x10-9 and 5.3x10-13, respectively (Figure 5C). 

To further assess the informativeness of this COVID-19 gene expression signature, a 

second, independent patient cohort consisting of critical COVID-19 patients sampled at the 

time of entry into the ICU and recovered critical patients sampled at three months after 

discharge from the ICU was used. Patients in this second cohort were a more “typical” COVID-

19 ICU-population as no exclusion criteria (unlike the primary cohort) based on age (<50) or 

absence of comorbidities were applied (Table S1). Although non-critical COVID-19 patients 

cannot be assumed to be the same as recovered critical COVID-19 patients, and thus the 

machine learning (ML) models from the first patient cohort cannot be directly applied to the 

second, the second patient cohort was used to provide additional evidence of the overall 

importance of the gene expression signature related to critical forms of COVID 19. The driver 

genes followed the same trend in the second patient cohort; namely that all five of these genes 

showed increased expression in the critical COVID-19 patient groups (Figure S5A). Moreover, 

an ensemble of ML classifiers trained on the second cohort using the 600 genes identified in 

the first group of patients was well  able to differentiate between critical and recovered patients 

(Figure S5B and C); classification performance when training on the differentially expressed 

genes between critical and recovered patients was nearly the same as the first patient cohort 

(Table S5), which further suggests a substantial degree of biological relevance of this gene 

signature.  

 

ADAM9 is a major driver of ARDS in critical COVID-19 patients 
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Among the five driver genes identified by structural causal modeling, we primarily focused on 

experimentally determining the role of ADAM9 (a disintegrin and a metalloprotease 9) in 

COVID-19 etiology because (i) it was the gene with the greatest degree of causal influence in 

the SCM DAG, (ii) it was the only driver gene that was previously shown to interact with SARS-

CoV-2 through a global interactomics approach (41, 42) and (iii) it is an entry factor for another 

RNA virus, the encephalomyocarditis virus (43). ADAM9 is a metalloprotease with various 

functions that are mediated either by its disintegrin domain for adhesion or by its 

metalloprotease domain for the shedding of a large range of cell surface proteins (44). The 

ADAM9 gene encodes two isoforms, which encode membrane-bound and secreted proteins. 

Although neither isoform could be detected using our proteomics approach, ADAM9 was 

upregulated at the RNA level, and the secreted form was found at a higher concentration in 

the serum of critical versus non-critical patients (Figure 6A and B). The transcriptional 

upregulation of ADAM9 was also found to be associated with disease severity in a previously 

published bulk RNA-seq dataset (Figure S6) (45). To assess a potentially increased 

metalloprotease activity in the critical group, we quantified the soluble form of the MICA protein 

(46), which is known to be cleaved by ADAM9 (47) by ELISA. The concentration of soluble 

MICA was indeed significantly higher in the plasma of critical patients as compared to non-

critical patients (P=0.016) and healthy controls (P=0.0001; Figure 6C). A global eQTL analysis 

using WGS and RNA-seq data identified eight SNPs associated with three of the top five 

putative driver genes with genome-wide significance (Table S6). Among these SNPs, 

rs7840270 is localized just 0.3 kb upstream of the ADAM9 gene and an eQTL for blood 

expression reported in GTEX. In the present cohort, including all 3 groups together, the C allele 

was associated with a higher amount of ADAM9 transcripts (Figure 6D) as it is in the GTEX 

dataset. The higher expressing allele C was indeed more frequent in critical than in non-critical 

patients (71.3% vs. 50%, OR=2.48, 95% CI: [1.14-5.36], P=0.017) (this was not due to any 

difference in ethnicities between critical and non-critical groups; Figure S7; (48)). ADAM9 RNA 

expression was significantly higher in the CC compared to CA (P=0.049) and AA (P=0.0046) 

genotypes only in the critical group, suggesting that the CC genotype was contributing to higher 
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ADAM9 RNA expression most strongly in critical patients although the other phenotype 

subsets are smaller datasets (Figure S8). 

To assess the role of ADAM9 in viral infection, we set up an ex vivo assay in which 

ADAM9 was silenced by siRNA in Vero 76 or A549-ACE2 (49) cells and subsequently infected 

the cells with SARS-CoV-2. Viral replication was monitored by flow cytometry quantification of 

the intracellular nucleocapsid protein and by quantitative viral RT-PCR of the culture 

supernatant (Figure 6E). The average silencing efficiency reached 66% in Vero 76 cells and 

93% in A549-ACE2 cells (Figure S9). In both cell lines, the amount of intracellular virus and 

the quantity of released virus were lower when ADAM9 was silenced as compared to the 

control condition that was treated with a control siRNA (Figure 6F and G). Our results 

collectively demonstrate that ADAM9 is an in vivo upregulated driver in critical patients. We 

also show a higher global proteolytic activity in the sera of these patients and demonstrate that 

a higher amount of ADAM9 facilitates viral infection and replication in an ex vivo cellular model. 

 

DISCUSSION 

A number of studies have detailed the molecular and cellular modifications associated with 

COVID-19 disease severity (8, 11, 12, 15, 16, 34, 45, 50-54), yet very few studies have 

targeted a young population with no comorbidities to reduce confounders that may also drive 

severity and mortality, and these confounders were limited to epidemiology and/or standard 

bioclinical parameters such as CRP, D-dimers or SOFA scores (e.g. (55-57)). A 

comprehensive understanding of the immune responses to SARS-CoV-2 infection is 

fundamental to an explanation as of why some young patients without comorbidities progress 

to critical illness whereas others do not, a phenomenon that has been exacerbated with new 

viral variants in current epidemic waves across the globe (58, 59). In particular, knowledge of 

the molecular drivers of critical COVID-19 is urgently needed to identify predictive biomarkers 

and more efficient therapeutic targets that function through drivers of critical COVID-19 rather 

than to downstream or secondary events (60-62). 
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Here, we used a multiomics strategy associated with integrated AI/ML and probabilistic 

programming methods to identify pathways and signatures that can differentiate critical from 

non-critical patients in a population of patients younger than 50 years without comorbidities. 

This in silico strategy provided a detailed view of the systemic immune response that was 

globally in accordance with previously published data. The thrust of our work, however, was to 

define a consistent transcriptomic signature that can robustly differentiate critical from non-

critical patients, as shown by the classification performance metrics assessed in this study 

(Figure 5A and Table S3). Moreover, one can infer generalizability of the COVID-19 gene 

expression signature found in patient cohort 1 as the same classification performance was 

achieved in the second, independent patient cohort composed of 81 critically ill patients and 

73 recovered critical patients (Figure S5). 

Using the top 600 gene expression features of the signature as the input for structural 

causal modeling, we derived a causal network that uncovered five putative driver genes: 

RAB10, MCEMP1, MS4A4A, GCLM and ADAM9. RAB10 (Ras-related protein Rab-10) is a 

small GTPase that regulates macropinocytosis in phagocytes (63), which is a mechanism that 

has been suggested to be involved in the entry of SARS-CoV-2 into respiratory epithelial cells 

(64). MCEMP1 (mast cell expressed membrane protein 1) is a membrane protein specifically 

associated with lung mast cells, and decreasing the expression of this protein has been shown 

to reduce inflammation in septic mice (65, 66). MS4A4A (a member of the membrane-

spanning, four domain family, subfamily A) is a surface marker for M2 macrophages that 

mediates immune responses in pathogen clearance (67) and regulates arginase 1 induction 

during macrophage polarization and lung inflammation in mice (68). GCLM (glutamate-

cysteine ligase modifier subunit) is the first rate-limiting enzyme of glutathione synthesis and 

has been linked to severe COVID-19 (68). Although these four genes are all good candidates 

that can at least partially explain the severity of the disease, we focused our functional 

validations on ADAM9, which represented, from an in silico standpoint, the most promising 

driver gene. The confirmed upregulation of ADAM9 at the RNA and protein levels in critical 

patients (which might partly be linked to pre-stored ADAM9’s release by neutrophils; see (69)), 
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the increased metalloprotease activity in these same patients and our ex vivo validation of its 

effect on viral uptake/replication are indeed strong arguments supporting the targeting of this 

protein as a potential therapeutic strategy for the treatment or prevention of critical COVID-19. 

ADAM9 appears to dramatically affect viral uptake. The inhibition of this presumed mechanism 

of action of ADAM9 might represent a novel means for the treatment SARS-CoV-2 and/or other 

viral illnesses. Moreover, therapies that block viral uptake rather than host receptor binding are 

more likely to be variant-independent, a known virological behavior which might - at least 

partially - derail current vaccination efforts (70). 

Due to its implication in tumor progression and metastasis, ADAM9 is currently being 

tested as a target of antibody-drug-conjugate therapy for solid tumors (71). A repurposing 

strategy using ADAM9-blocking antibodies for the treatment of critical COVID-19 patients could 

therefore be envisioned. Alternatively, other therapeutic agents to reduce the ADAM9 

concentration or activity could be pursued. 

 Our study has several limitations. Based on the present experimental results, we 

cannot conclude yet as to the molecular mechanism linking ADAM9 and viral 

uptake/replication. The predictive performance of ADAM9 as diagnostic marker for disease 

severity, as well as therapeutic target has to be evaluated in further studies. Finally, it would 

be interesting to test the silencing of ADAM9 on various SARS-CoV-2 variants. 

 In conclusion, this study presents a detailed multiomics investigation of a well-

characterized cohort of young, previously healthy, critical COVID-19 patient series compared 

with non-critical patients and healthy controls. In addition to uncovering a landscape of 

molecular changes in the blood of critical patients, we applied a data-driven ensemble AI/ML 

strategy, which was independent of prior biological knowledge and thus significantly minimized 

possible annotation biases, to gain novel insights into COVID-19 pathogenesis and to provide 

potential candidate diagnostic, prognostic and especially much needed therapeutic targets that 

might be helpful in the ongoing battle against the COVID-19 pandemic. 

 

MATERIALS AND METHODS 
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Patients and study design 

In March and April 2020, patients aged less than 50 years, who had no comorbidities (of note, 

obesity alone was not considered an exclusion criterion) and were admitted for COVID-19 to 

the infectious disease unit (hereafter designated non-critical care ward) or to the designated 

ICUs at the university hospital network in northeast France (Alsace) were investigated within 

the framework of the present study. Follow-up was performed until hospital discharge. SARS-

CoV-2 infection was confirmed in all the patients by a quantitative real-time reverse 

transcriptase PCR tests for COVID-19 nucleic acid of nasopharyngeal swabs (72). The ethics 

committee of Strasbourg University Hospitals approved the study (COVID-HUS, reference CE: 

2020-34). Written informed consent was obtained from all the patients. The demographic 

characteristics, medical history, and symptoms were reported. Three groups were considered: 

(1) the “critical group” which included 47 patients admitted to the ICU, (2) the “non-critical 

group”, which was composed of 25 hospitalized patients at the non-critical care ward, and (3) 

the “healthy control group”, which included 22 healthy age- and sex-matched blood donors 

aged less than 50 years. A second, independent cohort composed of 81 critical patients and 

73 recovered critical patients from one of the ICU departments of Strasbourg University 

hospitals was used to further evaluated our molecular classification findings. Additional details 

of the study design are presented in the first paragraph of the results section and in Figure 1. 

 

Sampling 

Venipunctures were performed within the first hours after admission to the ICU or medical ward 

within the framework of routine diagnostic procedures. A subset of ICU patients (73%) were 

sampled every 4-8 days posthospitalization until discharge or death. Patient blood was 

collected into BD Vacutainer tubes with heparin (for plasma and PBMCs), EDTA (for DNA) or 

without additive (for serum) and into PAXgene® Blood RNA tubes (Becton, Dickinson and 

Company, Franklin Lakes, NJ, USA). Blood from healthy donors was sampled in BD 

Vacutainer tubes with heparin, with EDTA or without additive. Plasma and serum fractions 



19 
 

were collected after centrifugation at 900 x g at room temperature for 10 min, aliquoted, and 

stored at -80°C until use. PBMCs were prepared within 24 h by Ficoll density gradient 

centrifugation. Aliquots of 1 x 106 dry cell pellets were frozen at -80°C until use for proteomics. 

Aliquots of a minimum of 5 x 106 cells were frozen at -80°C in 90% fetal calf serum (FCS)/10% 

dimethyl sulfoxide (DMSO). The EDTA and PAXgene® tubes were stored at -80°C until use for 

DNA and RNA extraction, respectively. 

 

Cytokine profiling 

The plasma samples were analyzed using the V-PLEX Proinflammatory Panel 1 Human Kit 

(IL-6, IL-8, IL-10, TNF-α, IL-12p70, IL-1β, IL-2, IL-4 and IFN-γ) and the S-PLEX Human IFN-

α2a Kit following the manufacturer’s instructions (Mesoscale Discovery, Gaithersburg, MD, 

USA). The plasma was used undiluted for the S-PLEX Human IFN-α2a Kit and diluted 2-fold 

for use with the V-PLEX Proinflammatory Panel 1. The MSD plates were analyzed with an 

MS2400 imager (Mesoscale Discovery, Gaithersburg, MD, USA). Soluble IL-17 in undiluted 

serum was quantified by Quantikine® HS ELISA (Human IL-17 Immunoassay) following the 

manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA). All standards and 

samples were measured in duplicate. 

 

Immune phenotyping by mass cytometry 

PBMCs were thawed rapidly, washed twice with 10 volumes of RPMI (Roswell Park Memorial 

Institute) medium (Thermo Fisher Scientific, Waltham, MA, USA) and centrifuged for 7 min at 

300 x g at room temperature between each washing step. Cells were then treated with 250 U 

of DNase (Thermo Fisher Scientific, Waltham, MA, USA) in 10 volumes of RPMI medium for 

30 min at 37°C in the presence of 5% CO2. During this step, the viability and the number of the 

cells were determined with Trypan Blue (Thermo Fisher Scientific, Waltham, MA, USA) and 

Türk’s solution (Merck Millipore, Burlington, MA, USA), respectively. After the elimination of 

DNase by centrifugation for 7 min at 300 x g at room temperature, a total of 3 x 106 cells were 

used for immunostaining with the Maxpar® Direct Immune Profiling Assay kit (Fluidigm, San 
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Francisco, CA, USA), following the manufacturer’s instructions, except that we used 32% 

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, USA). A red blood cell lysis 

step was included after the immunostaining following the manufacturer’s instructions. The 

prepared cells were stored at -80°C until use for acquisition with a Helios mass cytometer 

system (Fluidigm, San Francisco, CA, USA). An average of 600000 events were acquired per 

sample. The mass cytometry standard files produced with the Helios instrument were analyzed 

using Maxpar® Pathsetter software v.2.0.45 that was modified for live/dead parameters: the 

tallest peak was selected instead of the closest peak for the identification and quantification of 

the cell populations. The FCS files from each group (healthy, critical, non-critical) were then 

concatenated using CyTOF® software v.7.0.8493.0 for viSNE analysis (Cytobank Inc, 

Mountain View, CA, USA). A total of 300000 events were used for the viSNE map that was 

generated with the following parameters: iterations (1000), perplexity (30) and theta (0.5). 

viSNE maps are presented as the means of all samples in each group. 

 

Plasma proteomics analysis 

Sample preparation 

Samples were prepared using the PreOmics iST Kit (PreOmics GmbH, Martinsried, Germany) 

according to the manufacturer’s protocol. Two microliters of plasma was mixed with 50 µl of 

Lyse buffer and heated at 95°C for 10 min at 1000 rpm. The protein concentration was 

determined using the Bradford assay (Bio-Rad, Hercules, CA, USA) according to the 

manufacturer’s instructions. The samples were transferred to 96-well-plate cartridges, and 50 

µl of resuspended Digest solution was added. The samples were then heated at 37°C for 2 h, 

and 100 µl of Stop buffer was added. The samples were centrifuged to retain the peptides on 

the cartridge and washed twice with “Wash 1” and “Wash 2” buffers. The peptides were then 

eluted twice with Elute buffer before evaporation under vacuum. The peptides were then 

resuspended using the “LC-load” solution containing iRT peptides (Biognosys, Schlieren, 

Switzerland), and the samples were rapidly sonicated before being injected into the nanoLC-

MS/MS system. 
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NanoLC-MS/MS analysis 

The NanoLC-MS/MS analyses were performed with a nanoAcquity Ultra-Performance LC® 

(UPLC®) device (Waters Corporation, Milford, MA, USA) coupled to a Q-ExactiveTM Plus mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Peptide separation was 

performed on an ACQUITY UPLC BEH130 C18 column (250 mm × 75 μm with 1.7-μm-

diameter particles) and a Symmetry C18 precolumn (20 mm × 180 μm with 5-μm-diameter 

particles, Waters). The solvent system consisted of 0.1% FA in water (solvent A) and 0.1% FA 

in ACN (solvent B). The samples (equivalent to 500 ng of proteins) were loaded into the 

enrichment column over 3 min at 5 μl/min with 99% solvent A and 1% solvent B. The peptides 

were eluted at 400 nl/min using the following gradient of solvent B: from 1 to 35% over 60 min 

and from 35 to 90% over 1 min. The 90 samples were injected in randomized order. The MS 

capillary voltage was set to 2.1 kV at 250°C. The system was operated in the data dependent 

acquisition mode with automatic switching between MS (mass range 300–1800 m/z with R = 

70000, automatic gain control (AGC) fixed to 3 x 106 ions, and maximum injection time of 50 

ms) and MS/MS (mass range of 200–2000 m/z with R = 17500, AGC fixed at 1 x 105 and 

maximal injection time of 100 ms) modes. The ten most abundant ions were selected on each 

MS spectrum for further isolation and higher energy collision dissociation fragmentation, 

excluding unassigned and monocharged ions. The dynamic exclusion time was set to 60s. A 

sample pool comprising equal amounts of all protein extracts was constituted and regularly 

injected during the course of the experiment as an additional quality control.  

 

Data analysis 

The raw data obtained from each sample (45 critical patients, 23 non-critical patients, and 22 

healthy controls) were processed using MaxQuant (version 1.6.14). Peaks were assigned 

using the Andromeda search engine with trypsin/P specificity. A database containing all human 

entries was extracted from the UniProtKB-SwissProt database (May 11 2020, 20410 entries). 

The minimal peptide length required was seven amino acids, and a maximum of one missed 
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cleavage was allowed. Methionine oxidation and acetylation of the proteins’ N-termini were set 

as variable modifications, and acetylated and modified methionine-containing peptides, as well 

as their unmodified counterparts, were excluded from the protein quantification step. Cysteine 

carbamidomethylation was set as a fixed modification. The “match between runs” option was 

enabled. The maximum false discovery rate was set to 1% at the peptide and protein levels 

with the use of a decoy strategy. The normalized label-free quantification (LFQ) intensities 

were extracted from the ProteinGroups.txt file after the removal of nonhuman and keratin 

contaminants, as well as reverse and proteins only identified by site. This resulted in 336 

quantified proteins. Complete datasets have been deposited in the ProteomeXchange 

Consortium database with the identifier PXD025265 (73). 

 

Differential protein expression analysis 

The LFQ values from MaxQuant were used for differential protein expression analysis. For 

each pairwise comparison, the proteins expressed in at least 80% of the samples in either 

group were retained. Variance stabilization normalization (Vsn) was performed using the 

justvsn function from the vsn R package (74). Missing values were imputed using the random 

forest approach (75). This process resulted in 161 proteins. Differential protein expression 

analysis was performed using the limma bioconductor package in R (76). Significant 

differentially expressed proteins were determined based on an adjusted P-value cutoff of 0.05 

using the Benjamini-Hochberg method. 

 

PBMC proteomics analysis 

Samples were prepared using the PreOmics’ iST Kit (PreOmics GmbH, Martinsried, Germany) 

according to the manufacturer’s protocol. Briefly, PBMC pellets were resuspended in 50 µl of 

Lyse buffer and heated at 95°C for 10 min at 1000 rpm before being sonicated for 10 min on 

ice. The protein concentration of the extract was determined using the Pierce™ BCA Protein 

Assay Kit (Thermo Fisher, Waltham, MA, USA). The samples were transferred to 96-well plate 

cartridges and 50 µl of resuspended Digest solution was added. The samples were then 
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heated at 37°C for 2 h and 100 µl of Stop buffer was added. The samples were centrifuged to 

retain the peptides on the cartridge and washed twice with “Wash 1” and “Wash 2” buffers. 

The peptides were then eluted twice with Elute buffer before evaporation under vacuum. 

Finally, the peptides were resuspended using the “LC-load” solution containing iRT peptides 

(Biognosys, Schlieren, Switzerland), and the samples were rapidly sonicated before being 

injected into the nanoLC-MS/MS system. 

 

NanoLC-MS/MS analysis 

NanoLC-MS/MS analyses were performed with a nanoAcquity UPLC device (Waters 

Corporation, Milford, MA, USA) coupled to a Q-Exactive HF-X mass spectrometer (Thermo 

Fisher Scientific, Waltham, MA, USA). Peptide separation was performed on an Acquity UPLC 

BEH130 C18 column (250 mm × 75 μm with 1.7-μm-diameter particles) and a Symmetry C18 

precolumn (20 mm × 180 μm with 5-μm-diameter particles, Waters). The solvent system 

consisted of 0.1% formic acid (FA) in water (solvent A) and 0.1% FA in acetonitrile (ACN) 

(solvent B). The samples (equivalent to 414 ng of proteins) were loaded into the enrichment 

column over 3 min at 5 μl/min with 99% solvent A and 1% solvent B. The peptides were eluted 

at 400 nl/min using the following gradient of solvent B: from 2 to 25% over 53 min, from 25 to 

40% over 10 min and 40 to 90% over 2 min. The 77 samples were injected using a randomized 

injection sequence. The MS capillary voltage was set to 1.9 kV at 250°C. The system was 

operated in data dependent acquisition mode with automatic switching between MS (mass 

range of 300-1800 m/z with R = 60000, automatic gain control (AGC) fixed to 3 x 106 ions and 

maximum injection time of 50ms) and MS/MS (mass range of 200–2000 m/z with R = 15000, 

AGC fixed at 1 x 105 and maximal injection time of 100 ms) modes. The ten most abundant 

ions were selected on each MS spectrum for further isolation and higher energy collision 

dissociation fragmentation with the exclusion of unassigned and monocharged ions. The 

dynamic exclusion time was set to 60 s. 

 

Data analysis 
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The raw data obtained from each sample (34 critical patients, 21 non-critical patients and 22 

healthy controls) were processed using MaxQuant (version 1.6.14). Peaks were assigned 

using the Andromeda search engine with trypsin/P specificity. A combined human and bovine 

database (because of potential traces of fetal calf serum in the samples) was extracted from 

UniProtKB-SwissProt (8 September 2020, 26413 entries). The minimal peptide length required 

was seven amino acids and a maximum of one missed cleavage was allowed. Methionine 

oxidation and acetylation of the proteins’ N-termini were set as variable modifications, and 

acetylated and modified methionine-containing peptides, as well as their unmodified 

counterparts, were excluded from protein quantification. Cysteine carbamidomethylation was 

set as a fixed modification. The “match between runs” option was enabled. The maximum false 

discovery rate was set to 1% at the peptide and protein levels with the use of a decoy strategy. 

Only peptides unique to human entries were retained and their LFQ intensities were summed 

to derive the protein intensities. This process resulted in 2196 quantified proteins. Complete 

datasets have been deposited in the ProteomeXchange Consortium database with the 

identifier PXD 025265 (73).  

 

Differential protein expression analysis 

Summed peptides normalized label-free quantification (LFQ values from MaxQuant software) 

values were used for differential protein expression analysis. For each pairwise comparison, 

proteins expressed in at least 80% of the samples in either group were retained. Variance 

stabilization normalization (Vsn) was performed using the justvsn function from the vsn R 

package (74). Missing values were imputed using the random forest approach (75). This 

resulted in 732 proteins. Differential protein expression analysis was performed using the 

limma bioconductor package in R (76). Significant differentially expressed proteins were 

determined based on an adjusted P-value cutoff of 0.05 using the Benjamini-Hochberg 

method. 

 

Serology analysis 
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The serum IgG reactivity towards three SARS-CoV-2 viral antigens was measured as 

previously described (24)  by means of a multiplex antigen bead array. The three viral antigens 

included in our multiplex bead array comprise two representations of the Spike protein (a 

soluble trimeric form of the spike glycoprotein stabilized in the pre-fusion conformation 

expressed in HEK, and the Spike S1 domain expressed in CHO cells), and the C-terminal 

domain of the Nucleocapsid protein (expressed in E.coli). Briefly, each antigen was 

immobilized on the surface of uniquely color-coded magnetic beads (Bead ID; MagPlex®, 

Luminex Corporation, Austin, TX, USA), and the bead IDs pooled together to generate the 

bead array used to test the serum samples. Sera were incubated with the multiplex antigen 

array in a 384-well plate format, and the IgG reactive to the viral antigen was detected by 

means of a phycoerythine-conjugated anti-hIgG (H10104, Invitrogen, Thermo Fisher Scientific, 

Waltham, MA, USA) in a FlexMap3D instrument (Luminex Corporation, Austin, TX, USA). The 

cut-off for reactivity was evaluated for each antigen singularly and defined as the mean +6SD 

of the intensity signals of 12 negative controls. The 12 controls were carefully selected among 

pre-pandemic samples as representative of the background range for each single antigen 

included in the test. The performance of this serology assay was previously evaluated on 2090 

negative samples (pre-pandemic samples collected in 2019 or earlier and including 26 

samples from individuals infected by other Coronaviruses) and 331 samples from COVID-19 

PCR-confirmed cases (sampled collected at least 17 days after disease onset), showing 99.7% 

sensitivity and 100% specificity.  

 

Neutralizing antibodies 

Spike pseudotype neutralization assay was conducted using vesicular stomatitis virus (VSV) 

where glycoprotein gene (G) has been deleted and substituted in trans with SARS-CoV-2 

Spike protein (D614G variant) lacking terminal eighteen amino acids of the cytoplasmic 

domain. The pseudotype VSV-ΔG SARS-CoV-2 S D614G is cytopathic and expresses the 

firefly luciferase. For the neutralization assay, VSV-ΔG SARS-CoV-2 S D614G was incubated 
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with serial dilutions of patient sera starting at 1:40 dilution for 1 h at room temperature. A 

monolayer of Vero cells seeded at 60000 cells/well in black-well plates was infected with the 

pseudotype virus (virus only) or virus and serum mixture overnight at 37C - 5% CO2. The 

following day, cells were lysed using passive lysis buffer (Promega, Madison, WI, USA) and 

luciferase activity was measured upon addition of substrate (Promega® CellTiterGlo®, 

Madison, WI, USA) using Biotek plate reader and Gen5 software. Neutralization was 

calculated by comparing relative luciferase units of serum treated versus the virus only control. 

To determine neutralizing titers, the concentration of the antibody resulting in 50% 

neutralization (NT50) was determined using XLFit and graphed using Prism (GraphPad, San 

Diego, CA, USA). 

 

Autoantibodies against type I IFNs 

The blocking activity of anti-IFNα and anti-IFNω autoantibodies was determined by assessing 

a reporter luciferase activity as previously described (30). Briefly, HEK293T cells were 

transfected with the firefly luciferase plasmids under the control of human ISRE promoters in 

the pGL4.45 backbone, and a constitutively expressing Renilla luciferase plasmid for 

normalization (pRL-SV40). Cells were transfected in the presence of the X-tremeGene 9 

transfection reagent (Sigma Aldrich, Saint-Louis, MI, USA) for 36 hours. Then, Dulbecco’s 

modified Eagle medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA) supplemented 

with 10% healthy control or patient serum and were either left unstimulated or were stimulated 

with IFNα or IFNω (10 ng/mL) for 16 hours at 37°C. Each sample was tested once. Finally, 

Luciferase concentrations were measured with the Dual-Glo reagent, according to the 

manufacturer’s protocol (Promega, Madison, WI, USA). Firefly luciferase values were 

normalized against Renilla luciferase values, and fold induction is shown relative to controls 

transfected with empty plasmids. 

 



27 
 

Whole-genome sequencing (WGS) 

WGS data was generated from DNA isolated from whole blood. NovaseqTM 6000 (Illumina Inc., 

San Diego, CA, USA) machines were used for DNA sequencing to a mean 30X coverage. The 

raw sequencing reads from FASTQ files were aligned using Burrows-Wheeler Aligner (BWA) 

(77), and GVCF files were generated using Sentieon version 201808.03 (78). Functional 

annotation of the variants was performed using Variant Effect Predictor from Ensembl (version 

101). GATK version 4 (79, 80) was used for the joint genotyping process and variant quality 

score recalibration (VQSR). We removed one duplicate sample based on kinship (king cutoff 

of 0.3) and retained 24476739 SNPs that were given a ‘PASS’ filter status by VQSR. The 

analysis of the 72 samples from the critical and non-critical groups identified 15870076 variants 

with MAF < 5%. The first two principal components were generated using plink2 on LD-pruned 

variants with Hardy-Weinberg equilibrium in the controls with a P-value ≥ 1 × 10−6 and MAF > 

5% and were used as covariates to correct for population stratification. 

 

Analysis of expression quantitative trait loci (eQTLs)  

We performed local (cis-) eQTL analysis to test for associations between genetic variants and 

gene expression in 67 samples having both RNA-seq and SNP genotype data. Briefly, we used 

the MatrixEQTL R package (81) where we selected a linear model and a maximum distance 

for gene-SNP pairs of 1 × 106. The top two principal components identified from the genotype 

principal component analysis were used as covariates to control for population stratification. 

We selected 304044 significant eQTLs with FDR ≤ 0.05.  

 

RNA sequencing (RNA-seq) 

RNA extraction 

Whole-blood RNA was extracted from PAXgene tubes with the PAXgene Blood RNA Kit 

following the manufacturer’s instructions (Qiagen, Hilden, Germany). A total of 69 samples, 

including 46 critical and 23 non-critical patients were processed. The RNA quantity and quality 

were assessed using the Agilent 4200 TapeStation system (for the RIN) (Agilent Technologies, 
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Santa Clara, CA, USA) and RiboGreenTM (for the concentration) (Thermo Fisher Scientific, 

Waltham, MA, USA). RNA sequencing libraries were generated using the TruSeq Stranded 

Total RNA with Ribo-Zero Globin kit (Illumina, San Diego, CA, USA) and sequenced on the 

Illumina NovaSeq 6000 instrument with S4 flow cells and 151-bp paired-end reads. The raw 

sequencing data were aligned to a reference human genome build 38 (GRCh38) using the 

short reads aligner STAR (82). Quantification of gene expression was performed using RSEM 

(83) with GENCODE annotation v25 (http://www.gencodegenes.org). Raw and processed 

datasets have been deposited in GEO with identifier GSE172114. 

 

Differential gene expression (DGE) analysis 

DGE analysis was performed for two different purposes: 1) for the combined omics analysis of 

differentially expressed genes and proteins, and 2) as step to determine feature selection for 

classification in the in silico computational intelligence approach. For the combined omics 

analysis, we first removed low expressed genes for the 69 samples by removing genes with 

less than 1 count per million in less than 10% of the samples. We then performed DGE analysis 

on all 69 samples using the trimmed mean of M-values method (TMM) from the edgeR R 

package (84, 85). 

In our computational intelligence approach, we performed DGE analysis for each 

partition of the train data using a frozen TMM normalization to calculate normalization factors 

based only on the training data, in order to avoid data leakage. Briefly, we removed low 

expressed genes for the 69 samples with genes with 1 count per million in less than 10% of 

samples. For each partition of the training data, we calculated the normalization factors, and 

then selected the library that had a normalization factor closest to 1. We used this library as a 

reference library to normalize all the samples keeping the training normalization factors 

unchanged. Differentially expressed genes were identified using quasi-likelihood F-test (QLF)-

adjusted P-values from the edgeR R package. Differentially expressed genes with FDRs less 

than 0.05 were used for further downstream analysis. 
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Identification of potential driver genes through structural causal modeling 

To identify potential biomarkers that might differentiate patients in the non-critical group from 

those in the critical group, we used classification as a feature selection approach and then 

used the most informative features as input for structural causal modeling to identify potential 

driver genes. More specifically, classification was performed using the RNA-seq data by 

repeatedly partitioning non-critical and critical patients into 100 unique training and 

independent test sets representing 80% and 20% of the total data, respectively, ensuring that 

the proportions of non-critical and critical patients were consistent in each partition of the data. 

One hundred partitions of the data were used to capture the biological variation and to obtain 

increased statistical confidence in the results. After classification, feature scores for each 

method were determined and combined across all 100 partitions of the data and six of the ML 

algorithms, not including the deep learning algorithm. In order to capture as much information 

as possible while still being able to finish the analysis in a reasonable amount of time, the 600 

most informative features were retained for structural causal modeling (600 features is the 

maximum that the structural causal modeling can finish in a reasonable amount of time). More 

details about the classification algorithms used, the feature ranking, and the structural causal 

modeling are provided below. 

 

Ensemble artificial intelligence  

We used seven distinct ML approaches for our classification models. The relevant 

hyperparameters for each method are mentioned in their respective sections. 

Hyperparameters were selected by using 10-fold cross-validation of the training data, and the 

performance was evaluated using the held-out test data.  

 

Least Absolute Shrinkage and Selection Operator (LASSO), and Ridge Regression 

LASSO (86) is an L1-penalized linear regression model defined as: 

 𝛃̂(λ) =  argmin
𝛃, β0 

[− log[𝐿(𝑦; 𝛃,β0)] + λ||𝛃||1 (1) 

Ridge (87, 88) is an L2-penalized linear regression model defined as: 
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  𝛃̂(λ) = argmin
𝛃, β0 

[− log[𝐿(𝑦; 𝛃,β0)] + λ||𝛃||2
2
 (2)  

where the loss function is 

 

 𝐿 =
1

𝑁
∑(𝑦𝑖(β0 + 𝒙𝑖 ⋅ 𝛃) −  𝑙𝑜𝑔(1 + 𝑒

β0−𝒙𝑖⋅𝛃))

𝑁

𝑖=1

 

In both cases, λ  > 0 is the regularization parameter that controls model complexity, 𝛃 are the 

regression coefficients, β0 is the intercept term, 𝑦 represents an indicator function for the critical 

patients (i.e., 𝑦𝑖 = 1 if the 𝑖-th training sample is a critical patient; otherwise 𝑦𝑖 = 0), the vector 

𝒙𝑖 is the 𝑖-th training sample, and the goal of the training procedure is to determine 𝛃̂ and 𝛽0, 

the optimal regression coefficients and the optimal intercept, that minimize the quantities 

defined in Eqs. (1) and (2). The predicted label is given by 𝑦 = β0 + 𝒙 ⋅ 𝛃, where a threshold of 

0.5 is introduced to binarize the label for classification problems. In LASSO, the constraint 

placed on the norm of 𝛃 (the strength of which is given by λ) causes coefficients of 

uninformative features to shrink to zero. This leads to a simpler model that contains only a few 

nonzero coefficients. We used the ‘glmnet’ function from the caret (89) R package to train all 

Lasso and Ridge models. For Ridge, the constraint placed on the norm of 𝛃 plays a similar role 

in determining model complexity, except that coefficients for uninformative features do not 

necessarily shrink to zero. 

For both Lasso and Ridge, we opted to implement the function over a custom tuning 

grid of λ from 2−8 to 22. λ was selected via 10-fold cross-validation as the value that gave the 

minimum mean cross-validated error.  

 

Support Vector Machines (SVM) 

SVMs (90, 91) are a set of supervised learning models used for classification and regression 

analyses. The primal form of the optimization problem is: 
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𝒘𝑜𝑝𝑡 = argmin
𝒘,𝑏,𝒂

 [𝐿𝑝 =
1

2
‖𝒘‖2

2 −∑ 𝑎𝑖

𝑁

𝑖=1

𝑦
𝑖
(𝒙𝑖 ⋅ 𝒘 + 𝑏) +∑ 𝑎𝑖

𝑁

𝑖=1

] 
(3)  

 

where 𝐿𝑝 is the loss function in its primal form (p for primal), 𝒘 represents the weights to be 

determined in the optimization, 𝒙𝑖 is the 𝑖-th training sample, 𝑦𝑖 is the label of the 𝑖-th training 

sample, 𝑎𝑖  ≥ 0 are Lagrange multipliers, 𝑁 is the number of training points, and 𝑏 is the 

intercept term. Labels are predicted by thresholding 𝒙𝑖 ⋅ 𝒘 + 𝑏. 

The optimization problem in its dual form is defined as 

𝒂𝑜𝑝𝑡 = argmax
𝒂

 [𝐿𝐷(𝒂) =∑ 𝑎𝑖

𝑁

𝑖=1

−
1

2
∑ 𝑎𝑖

𝑁

𝑖,𝑗=1

𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝒙𝑖, 𝒙𝑗)] 

 

where 𝐿𝐷 is the Lagrangian dual of the primal problem, 𝑎𝑖 are the Lagrange multipliers, 𝑦𝑖 and 

𝒙𝑖 are the 𝑖-th label and training sample, respectively, and 𝐾(⋅,⋅) is the kernel function. 

Maximization takes place subject to the constraints ∑ 𝑎𝑖𝑖 𝑦𝑖 = 0 and 𝑎𝑖 ≥ 𝐶 ≥ 0, ∀𝑖. Here 𝐶 is a 

hyperparameter that controls the degree of misclassification of the model for nonlinear 

classifiers. The optimal values of 𝒘 and 𝑏 can be found in terms of the 𝑎𝑖 ’s, and the label of a 

new data point 𝒙 can be found by thresholding the output ∑ 𝑎𝑖𝑖 𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏. 

In most cases, many of the 𝑎𝑖 ’s are zero, and evaluating predictions can be faster using 

the dual form. We used SVM with a linear kernel (‘svmLinear2’) (i.e., 𝐾(𝒙𝑖 , 𝒙𝑗) = 𝒙𝑖 ⋅ 𝒙𝑗, the 

inner product of 𝒙𝑖 and 𝒙𝑗) function from the caret (89) R package to train all SVM models. 𝐶 

ranged from 2−2 to 23, and a 10-fold cross-validation was used to tune and select the 

hyperparameters with the best cross-validation accuracy for training the model. 

 

Random Forest (RF) 

RF (92, 93) is an ensemble learning method for classification and regression that builds a set 

(or forest) of decision trees. In RF, 𝑛 samples are selected (typically two-thirds of all the training 

data) with replacement from the training data 𝑚 times, which yields 𝑚 different decision trees. 

Each tree is grown by considering ‘mtry’ of the total features, and the tree is split depending 

on which features yield the smallest Gini impurity. In the event of multiple training samples in 
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a terminal node of a particular tree, the predicted label is given by the mode of all the training 

samples in a terminal node. The final prediction for a new sample 𝒙 is determined by taking 

the majority vote over all the trees in the forest. We used the ‘rf’ function from the caret (89) R 

package to train all RF models. Ten-fold cross-validation was used to tune the parameters for 

training the model. A tune grid with 44 values from 1 to 44 for ‘mtry’, the number of random 

variables considered for a split in each iteration during the construction of each tree, was used 

for the tuning model. 

 

XGBoost (XGB) 

XGB (94) is a distributed gradient boosting library for classification and regression by building 

an ensemble of decision trees. In contrast to RF, XGB uses an additive strategy to add new 

trees one at a time based on whether they optimize the objective function. The objective 

function for the t-th tree is 

𝑜𝑏𝑗(𝑡) =∑[𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + λ)𝑤𝑗

2]

𝑇

𝑗=1

+ γ𝑇 

where 𝐺𝑗 = 2∑ (𝑦̂𝑖
(𝑡−1) − 𝑦𝑖)𝑖∈𝐼𝑗 , 𝐻𝑗 = 2|𝐼𝑗|, λ and γ are hyperparameters controlling model 

complexity, 𝑇 is the number of leaves in the trees, 𝑤𝑗 is the combined score across all the data 

points for the 𝑗-th leaf. Here, 𝐼𝑗 refers to the set of indices of data points assigned to the 𝑗-th 

leaf, |𝐼𝑗| is the size of the set 𝐼𝑗, 𝑦̂𝑖
(𝑡−1)

 is the predicted score (without the 𝑡-th tree) of the 𝑖-th 

data point, and 𝑦𝑖 is the actual label of the 𝑖-th data point. The default parameter tuning grid in 

R was used, and a 10-fold cross-validation was used to tune and select the hyperparameters 

with the best cross-validation accuracy for training the model. 

 

Quantum Support Vector Machines (qSVM) 

qSVM is a quantum adaptation of SVM that can be used for classification designed to be run 

with a quantum annealer (QA) (95). The advantage of running the optimization problem on a 

QA is that, since the QA samples from the quantum distribution, it retains both the lowest 
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energy solution and some of the next lowest-energy solutions (Albash and Lidar, 2018). 

Because of the suboptimal solutions, we expect qSVM to perform worse on the training data 

than classical SVM (which only includes the optimal solution). However, suboptimal solutions 

can capture different aspects of the training data and generate different decision boundaries. 

As such, a suitable combination of the suboptimal solutions in qSVM might outperform cSVM 

on the test data.  

The objective function is the same as for classical SVM up to a change in sign, i.e.,  

𝜶𝑜𝑝𝑡 = argmin
𝜶

 [𝐿𝐷(𝜶) =
1

2
∑ 𝛼𝑖

𝑁

𝑖,𝑗=1

𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝒙𝑖, 𝒙𝑗)  −  ∑ 𝛼𝑖

𝑁

𝑖=1

] [] 

subject to the constraints ∑ 𝛼𝑖𝑖 𝑦𝑖 = 0 and 0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖. 

 qSVM was run on physical quantum annealers manufactured by D-Wave Inc. (96). The 

D-Wave “Advantage” device used in this work had 5436 qubits with 15 couplers per qubit, 

featuring the “Pegasus” connectivity graph between qubits. Since D-Wave can only produce 

binary solutions, we used the encoding as defined in (95) to convert the continuous variables 

𝛼𝑖 into 𝐾 binary variables using base 𝐵:  

α𝑖 = ∑𝐵𝑘𝑎𝐾𝑖+𝑘

𝐾−1

𝑘=0

,   𝑎𝐾𝑖+𝑘 ∈ (0,1). 

Using this encoding and also adding a penalty 𝜉 to the loss function, the optimization problem 

becomes a quadratic unconstrained binary optimization (QUBO) problem, which can be run 

on a QA: 

𝐸 =
1

2
∑ 𝑎𝐾𝑖+𝑘𝑎𝐾𝑗+𝑙𝐵

𝑘+𝑙

𝑖,𝑗,𝑘,𝑙

𝑦𝑖𝑦𝑗𝐾(𝒙𝑖 , 𝒙𝑗) −∑𝐵𝑘𝑎𝐾𝑖+𝑘
𝑖,𝑘

+ ξ(∑𝐵𝑘𝑎𝐾𝑖+𝑘𝑦𝑖
𝑖,𝑘

)

2

 

= ∑ ∑ 𝑄𝐾𝑖+𝑙,𝐾𝑗+𝑙𝑎𝐾𝑖+𝑘𝑎𝐾𝑗+𝑙

𝐾−1

𝑘,𝑙=0

𝑁−1

𝑖,𝑗=0

, 

where 𝑄𝐾𝑖+𝑘,𝐾𝑗+𝑙 =
1

2
𝐵𝑘+𝑙𝑦𝑖𝑦𝑗(𝐾(𝒙𝑖, 𝒙𝑗) + 𝜉) − 𝛿𝑖,𝑗𝛿𝑘,𝑙𝐵

𝑘 . As the objective function above might 

necessitate connections between any pair of qubits, an embedding is necessary (97). 

Hyperparameters were selected using a custom 3-fold Monte-Carlo cross-validation on the 
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training data. Hyperparameters included the type of kernel (linear versus Gaussian), 𝐵 

(between 2 and 10), 𝐾 (between 2 and 6), ξ (between 0 and 5), and γ (between 2−3 and 23). 

Closely related quantum ML approaches deploying QA have been used in classifying 

transcription factor binding to DNA (98) and in classification of multiomics human cancer data 

(39). 

 

Deep artificial neural network (DANN) 

We adapted common deep learning methodologies to analyze genomic datasets (99). Typical 

deep neural networks use a series of nonlinear transformations (termed layers), with the final 

output considered a prediction of class or regression variables. Each layer consists of a set of 

weights (𝑊) and biases (𝑏) that are tuned during the training phase to learn which nonlinear 

combinations of input features are most important for the prediction task. These types of 

models “automatically” learn patterns in the data and combine them in some abstract nonlinear 

fashion, to gain an ability to make predictions about the dataset. 

The basic formulation of a fully connected DANN is given as 

𝐹𝑜𝑟 𝑚 𝑙𝑎𝑦𝑒𝑟𝑠…

{
 
 
 
 
 

 
 
 
 
 

𝑓1 = 𝜌1(∑(𝑊1,𝑗 × 𝑋𝑗)

𝑑1

𝑗=1

+ 𝑏𝑑1+1)

𝑓2 = 𝜌2(∑(𝑊2,𝑗 × 𝑓1)

𝑑2

𝑗=1

+ 𝑏𝑑2+1)

𝑓𝑚 = 𝜌𝑚 (∑(𝑊𝑚,𝑗 × 𝑓𝑚−1)

𝑑𝑚

𝑗=1

+ 𝑏𝑑𝑚+1)

 

where the dimensions of 𝑊 and 𝑏 are determined by the number of neurons in each layer 

(𝑑1, 𝑑2, … , 𝑑𝑚). Each layer used rectified linear units as activation functions:  

ρ𝑙(𝑧) = 𝑚𝑎𝑥(𝑜, 𝑧). 

The final layer used a softmax function, with the number of neurons equal to the number of 

classes (𝐾), to convert the logits to probabilities:  

ϕ(𝑓𝑚)𝑗 =
𝑒𝑓𝑚,𝑗

∑ 𝑒𝑓𝑚,𝑘𝐾
𝑘=1

 for 𝑗 = 1,⋯ ,𝐾, 
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where 𝑓𝑚,𝑗 is the output of the 𝑗-th neuron of the 𝑚-th layer. In addition, we used the concept 

of “dropout,” which randomly sets a portion of input values (η) to the layer to zero during the 

training phase (100). This has a strong regularization effect (essentially by injecting random 

noise) that helps prevent models from overfitting. Layers that included dropout were formulated 

as  

𝑓 = ρ(∑(𝑊𝑗 × 𝑋𝑗)

𝑑

𝑗=1

+ 𝑏𝑑+1)×𝑚𝑙 , 

where 𝑚𝑙  ~ Bernoulli(𝜂). 

When evaluating models on test datasets, the dropout mask was not used. We used 

the categorical cross-entropy loss function to train DANNs, where (𝐵𝑛) is the minibatch size, 𝑡𝑖 

is the correct class index, and 𝑝𝑖 is the class probability from the softmax layer: 

𝐿𝑇 = −∑𝑡𝑖

𝐵𝑛

𝑖=1

𝑙𝑜𝑔(𝑝𝑖). 

We used minibatch stochastic gradient descent with Nesterov momentum to update 

the DANN parameters based on the above-described loss function (101). We used the 

TensorFlow (102) Python package to construct the DANNs. 

 

Ensemble feature ranking 

To derive an ensemble ranking of the feature importance, we first calculated the feature 

importances for each algorithm. LASSO, Ridge, SVM, and qSVM are linear models, and thus 

the feature importance was determined based on the value of the weight assigned to each 

feature, with a larger score corresponding to greater importance. RF creates a forest of 

decision trees, and as part of the fitting process, it determines an estimate of the feature 

importance by randomly permuting the features one at a time and determining the change in 

the accuracy. XGB calculates the feature importance by averaging the gain across all the trees, 

where the gain is the difference in the Gini purity of the parent node and the two children nodes. 
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The top 1000 most informative features of each model and for each partition of the data 

were retained. Because there were 100 partitions of the data, six algorithms (LASSO, Ridge, 

SVM, qSVM, RF, and XGB; DANN was not included because it lacks a robust approach to 

determine the feature importance), and up to 1000 features were retained, a total of up to 

600000 possible features were considered for each feature set (“up to” since they might not 

be unique, as the top 1000 features for one partition of the data might exhibit some overlap 

with the top 1000 features for another partition of the data). We discarded the feature scores 

from an algorithm on any partition with a test AUROC < 0.7 in an attempt to exclude scores 

that might not truly be informative. To aggregate the scores, we scaled the scores by the most 

informative feature for each algorithm on each partition such that the feature scores were all 

between 0 and 1; i.e., for the first partition of the data, we scaled the 1000 most informative 

features from LASSO, then proceeded to do the same for Ridge, SVM, RF, and then repeated 

the process for each partition of the data. The scores were then averaged across all the 

partitions of the data to obtain a feature ranking for each method. If a feature was determined 

to be important for one partition of the data but not for others, it was given a value of 0 for all 

partitions of the data in which it did not appear. To determine a final ensemble feature ranking, 

the grand mean across all training partitions and algorithms was taken, and the features were 

sorted by the average score. 

 

Structural causal modeling 

We generated Bayesian Belief Networks (BBNs) for the top 600 most informative genes as 

defined by ensemble feature ranking described above on the first patient cohort (the 

informativeness of those 600 genes was evaluated in the second patient cohort). 600 genes 

were chosen to capture as much information possible while still allowing the algorithm to finish 

in a reasonable amount of time. A BBN is a directed acyclic graph (DAG), where the 

directionality of the arcs represents conditional dependencies between the nodes. BBNs were 

used to assess the conditional dependence and probabilistic relationships between the most 

informative genes and thereby identify putative driver genes. We relied on a set of common 
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assumptions to determine the causal structure: (1) causal sufficiency assumption, where there 

are no unobserved cofounders; (2) causal Markov assumption, where all d-separations in the 

graph (G) imply conditional independence in the observed probability distribution; and (3) 

causal faithfulness assumption, where all of the conditional independences in the observed 

probability distribution imply d-separations in the graph (𝐺). We acknowledge that our data 

might not strictly meet all of these assumptions, however, the generated BBNs provide useful 

biological hypotheses that could be experimentally validated.  

We determined BBNs using the bnlearn R package with the score-based hill-climbing 

algorithm that heuristically searched the space of all possible DAGs (Scutari, 2010). As the 

hill-climbing algorithm can get trapped in local optima and is quite dependent on the starting 

structure, we initialized 100 BBNs starting from different network seeds. During the hill-climbing 

process, each candidate BBN was assessed with the Bayesian information criterion (BIC) 

score (103, 104): 

BIC = 𝑙𝑜𝑔 𝐿 (𝑋1, … , 𝑋𝑣) −
𝑑

2
𝑙𝑜𝑔 𝑛, 

where 𝑋1, … , 𝑋𝑣 is the node set, 𝑑 is the number of free parameters, 𝑛 is the sample size of the 

dataset, and 𝐿 is the likelihood. Note that this definition of the BIC, which is the version 

implemented in the bnlearn package, rescales the classic definition by -2. The penalty term 

was used to prevent overly complicated structures and overfitting. Each run of the hill-climbing 

algorithm returns a structure that maximizes the BIC score (including evaluating the directions 

of edges). A caveat is that these structures might be partially oriented graphs (i.e., situations 

in which the directionality of some edges cannot be effectively determined). We use the 

cextend function from the bnlearn package to construct a DAG that is a consistent extension 

of 𝑋. We then generated a consensus network based on the 100 networks after hill-climbing 

and selected to keep the edges that were present in graphs at least 30% of the time. Any 

residual undirected edges contained in the consensus network were discarded. We assessed 

the statistical significance of the edges within the imposed consensus network by randomly 

permuting the dataset 10000 times and evaluating the consensus structure on these 
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scrambled datasets (thus providing an estimate of the null distribution). BBN edges with a FDR 

of at least 5% (i.e., the edge occurred in ≥500 of the random BBNs) were removed from the 

final network.  

After deriving a final consensus network structure, we performed a series of in silico 

tests to determine the importance of each gene to the network. For each of the 600 genes, we 

removed all incident edges (both incoming and outgoing) and recalculated the BIC of the entire 

network. Doing so resulted in a lower BIC, and the magnitude of the change in BIC is a 

measure of how important a gene is to the network. We also experimented with permuting the 

data corresponding to a single gene; the results for the mean change in BIC using the 

permutation test and removing all the incident edges did not significantly differ (Pearson’s 

correlation > 0.999). Having derived a measure for the importance of each gene to the network, 

we can compare the mean change in BIC of the top five driver genes to 1000 random sets of 

five genes from the network.  

 

Real-time reverse transcription quantitative PCR (RT-qPCR) 

Total RNA was extracted from cells using the RNeasy Mini Kit (Qiagen, Hilden, Germany), and 

the RNA quality was assessed using an Agilent 2100 BioAnalyzer before reverse transcription 

into cDNA with Maxima™ H Minus Mastermix and following the manufacturer’s instructions 

(Thermo Fisher Scientific, Waltham, MA, USA). RT-qPCR was performed using QuantStudio3 

(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer's protocol, and 

using PowerTrack™ SYBR™ Green Master Mix (Thermo Fisher Scientific, Waltham, MA, 

USA). The following primers were used: ADAM9, forward 5’-

GGACTCAGAGGATTGCTGCATTTAG-3’, reverse 5’-

CTTCGAAGTAGCTGAGTCATGCTGG-3’; and GAPDH (housekeeping gene), forward 5′-

GGTGAAGGTCGGAGTCAACGGA-3′ and 5′-GAGGGATCTCGCTCCTGGAAGA-3′ 

(Integrated DNA Technologies, Coralville, IO, USA). The RT-qPCR protocol consisted of 95°C 

for 2 min followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. All reactions were performed 

in duplicate, and the relative amounts of transcripts were calculated with the comparative Ct 
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method. Gene expression changes were calculated using the 2-ΔΔCt values calculated from 

averages of technical duplicates relative to the negative control. Melting-curve analysis was 

performed to assess the specificity of the PCR products. 

 

Enzyme-linked immunosorbent assays (ELISA) 

The concentrations of soluble ADAM9 (sADAM9) and soluble MICA (sMICA) in the serum of 

critical and non-critical patients and healthy controls were quantified by ELISA. For soluble 

ADAM9, we used the Human sADAM9 DuoSet ELISA kit (R&D Systems, Minneapolis, MN, 

USA) following the manufacturer’s instructions. sMICA concentrations were measured with an 

in-house developed sandwich ELISA using two monoclonal mouse antibodies for capture 

(A13-C485B10 and A9-C255A9 at concentrations of 2 mg/ml and 0.2 mg/ml, respectively) and 

one biotinylated monoclonal mouse antibody for detection (A15-C199B9 at 60 pg/ml). Coating 

of MaxiSorp ELISA plates (Thermo Fisher Scientific, Waltham, MA, USA) was performed in 

PBS at 4°C overnight. After three washing steps with PBS, the wells were blocked with 200 μl 

of 10% BSA in PBS for 1 h at room temperature. All the following steps were carried out at 

room temperature with PBS/0.05% Tween 20/10% BSA, which was used as a diluent for all 

the reagents and sera. The plates were washed three times with PBS/0.05% Tween 20 

between incubation steps. After blocking, the plates were incubated with 100 μl of sera, 

standards and controls for 2 h, followed by incubation with 100 μl of biotinylated detection 

antibody for 1 h. The plates were subsequently incubated for 1 h with 100 μl of a 5000-fold 

dilution of streptavidin poly-HRP (Thermo Fisher Scientific, Waltham, MA, USA) per well. The 

reactions were finally revealed using TMB Ultra (Thermo Fisher Scientific, Waltham, MA, USA) 

at 100 μl/well for 15 min and stopped with 100 μl of 1 M HCl. The absorbance was measured 

at 450 nm. 

 

Cell culture 

Vero 76 cell lines were grown at 37 °C under 5% CO2 and maintained in DMEM (Thermo Fisher 

Scientific, Waltham, MA, USA) containing 100 units/ml penicillin and supplemented with 10% 
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fetal bovine serum (Pan Biotech, Aidenbach, Germany). ACE2-expressing A549 cells (A549-

ACE2) were grown at 37 °C under 5% CO2 and maintained in DMEM (Thermo Fisher Scientific, 

Waltham, MA, USA) containing 10 µg/ml of blasticidine S (Invitrogen, Carlsbad, CA, USA). 

 

Silencing and cell transfection 

The cells were transfected with predesigned Stealth siRNA directed against ADAM9 

(HSS112867) or the control Stealth RNAi Negative Control Duplex medium GC (45-55%) 

(Thermo Fisher Scientific, Waltham, MA, USA) using LipofectamineTM RNAiMAX Transfection 

Reagent (Thermo Fisher Scientific, Waltham, MA, USA). One day prior to transfection, the 

cells were seeded in a 24-well plate at 0.05 × 106 cells per well. First, 1.5 μl of LipofectamineTM 

RNAiMAX Transfection Reagent was added to 25 μl of Opti-MEMTM medium, followed by 

addition of the mix containing 5 pmoles of siRNA in 25 μl of Opti-MEMTM medium (Thermo 

Fisher Scientific, Waltham, MA, USA). The mixture was incubated at room temperature for 5 

min and then added to the cells. The cells were collected or infected after 48 h. 

 

Western blot 

After collection and centrifugation, the cells were washed once in Dulbecco’s phosphate 

buffered saline (D-PBS, Sigma Aldrich, Saint-Louis, MI, USA). The pellet was resuspended in 

60 μl of RIPA lysis buffer (150 mM NaCl, 5 mM EDTA, 1% NP40, 50 mM Tris pH 8, 0.5% 

sodium deoxycholate, and 0.1% SDS) including protease inhibitors (cOmplete, Roche 

Diagnostics, Rotkreuz, Switzerland) and maintained on ice for 20 min. The total cellular extract 

was then centrifuged for 30 min at 13000 g to remove all cell debris. A Bradford assay was 

used for protein quantification (Bio-Rad protein Assay, Bio-Rad Laboratories, Hercules, CA, 

USA). For Western blotting analysis, 20 μg of total cell extract was loaded on an 8% SDS-

polyacrylamide gel. After migration, the proteins were transferred onto a PVDF membrane with 

a semidry transfer system (Trans-Blot, Bio-Rad Laboratories, Hercules, CA, USA). The 

membranes were blocked for 1 h in 5% skimmed milk/TBS 0.05%/Tween 20 and then 

incubated with the anti-ADAM9 antibody (ab218242; Abcam, Cambridge, UK) for 2 h at 4°C in 
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5% BSA/TBS 0.1% Tween at 1/1000 dilution. The membrane was then incubated with the 

secondary antibody coupled to HRP (Bio-Rad Laboratories, Hercules, CA, USA). Bound 

antibodies were revealed with an enhanced chemiluminescence detection system using 

ChemiDoc XRS (Bio-Rad Laboratories, Hercules, CA, USA). An anti-GAPDH antibody 

(MAB374, Merck Millipore, Burlington, MA, USA) was used for loading control. 

 

In vitro viral infections 

Vero 76 and A549-ACE2 cell lines were infected with wild-type SARS-CoV-2 virus at 

Multiplicities Of Infections (MOIs) of 10 and 400, respectively. The percentage of infected cells 

was determined by staining with SARS-CoV-2 nucleocapsid (% of nucleocapsid positive cells), 

and virus released into the supernatant was analyzed by RT-PCR (copies/ml), after 2 and 3 

days of infection for Vero 76 and A549-ACE2 cells, respectively.  

 

Flow cytometry staining 

The cells were fixed for 20 min in 3.6% paraformaldehyde at 4°C, washed in 5% FCS in PBS 

and stained with anti-nucleocapsid antibody (GTX135357, Genetex, Irvine, CA, USA) at a 

1/200 dilution in Perm/WashTM (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) 

for 45 min at room temperature. The antibody was then revealed by incubation with an Alexa 

647-labeled goat anti-rabbit monoclonal antibody (Ab150083, Abcam, Cambridge, UK) diluted 

1/200 in 5% FCS in PBS for 45 min at room temperature. 

 

Viral RT-qPCR 

RNA was extracted from the supernatant of infected cells using the NucleoSpin Dx Virus Kit 

(Macherey-Nagel GmbH & Co.KG, Düren, Germany). RT-qPCR was performed using 

TaqPath™ 1-Step RT-qPCR Master Mix (CG) on the Quanstudio3 instrument (Thermo Fisher 

Scientific, Waltham, MA, USA). The primer/probe mix used for absolute quantification of the 

virus was N1 and N2 from the 2019-nCoV RUO Kit (Integrated DNA Technologies, Coralville, 

IO, USA), and the positive control for the standard curve was 2019-nCoV N Positive Control 
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(Integrated DNA Technologies, Coralville, IO, USA). The reaction was performed in 20 μl, 

which included 5 μl of eluted RNA, 5 μl of TaqPath Master Mix and 1.5 μl of the primer/probe. 

The RT-qPCR protocol consisted of 25°C for 2 min, 50°C for 15 min, and 95°C for 2 min, and 

40 cycles of 95°C for 3 s and 60°C for 30 s. All reactions were performed in duplicate, and 

absolute quantification was calculated with the standard curve of the positive control. 

 

Statistical analysis 

Statistical analysis was performed with GraphPad Prism (GraphPad Software) unless stated 

otherwise. A P-value below 0.05 was considered significant. For two groups comparisons, data 

were analyzed by unpaired, two-sided Mann-Whitney or student’s t-test. For three or more 

groups comparisons, data were analyzed by unpaired, two-sided Kruskal-Wallis test, followed 

by Dunn’s post-test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. In figures and tables, 

“n” represents the number of biological replicates and “N” the number of times an experiment 

was independently performed. 
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TABLES 

Table 1. Patients description 

Characteristics of all patients admitted to the hospital for COVID-19 

 
All patients 

(n=72) 

Non-critical 

Group (n=25) 

Critical Group 

(n=47) 
P 

Age – median, IQR 40 [33; 46] 38 [31; 45] 41 [34; 46] 0.24 

Male - n (%) 53 (73.6) 17 (68.0) 36 (76.6) 0.61 

BMI (kg/m2) – median, IQR 30.0 [26.8; 35.0] 29.7 [23.8; 33.0] 30.2 [27.1; 35.6] 0.54 

Time since first symptoms 

(days) – median, IQR 
8.0 [6.0; 11.0] 9.5 [7.2; 13.5] 7.0 [6.0; 10.0] 0.08 

COVID-19 treatments (during 

hospital stay) - n (%) 
    

Lopinavir/Ritonavir 21 (29.1) 3 (12.0) 18 (38.3) 0.02 

Remdesivir 3 (4.1) 1 (4.0) 2 (4.2) 1.00 

Hydroxychloroquine 19 (26.4) 2 (8.0) 17 (36.2) 0.01 

Corticosteroids 6 (8.3) 1 (4.0) 6 (12.8) 0.25 

Neurological symptoms - n (%) 26 (50.0) 10/25 (40.0) 16/27 (59.2) 0.27 

Outcome - n (%)     

In-hospital and day-28-mortality 6 (8.3) 0 6 (12.8) 0.09 

Characteristics of ICU patients 

 
Critical Group 

(n=47) 
 

Baseline severity scores 

SAPS II – median, IQR 

  

38 [33; 47]  

SOFA – median, IQR 6 [4; 9]  

ARDS - n (%) 45 (95.7)  

Moderate  21 (46.7)  

Severe  24 (53.3)  

Supportive treatments   

Invasive mechanical ventilation – n (%) 45 (95.7)  

Duration of invasive mechanical ventilation (days) – median, IQR  13 [7;24]  

NMBA – n (%) 40 (89.0)  

Catecholamines – n (%) 41 (91.1)  

Catecholamines (days) – median, IQR 4 [2;10]  

RRT – n (%) 7 (15.6)  

ECMO – n (%) 2 (4.4)  

BMI: body mass index; IL-6R: interleukin 6 receptor; IQR: interquartile range; ARDS: acute 

respiratory distress syndrome; ECMO: extracorporeal membrane oxygenation; NMBA: 

neuromuscular blocking agent; RRT: renal replacement therapy; SAPS II: simplified acute 

physiology score II; SOFA: Sequential Organ Failure Assessment.  
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FIGURE LEGENDS 

Figure 1. Multiomics analytical strategy 

A. Forty-seven critical patients (C), 25 non-critical patients (NC) and 22 healthy controls (H) 

were enrolled in the study. PBMCs were isolated by density gradient and frozen in DMSO/FCS 

until utilization for Helios mass cytometry (Maxpar Direct Immune Profiling System, Fluidigm) 

and whole proteomics. Plasma was used for cytokine profiling (IL-17 ELISA, V-PLEX 

Proinflammatory Panel and S-PLEX Human IFN-α2a Kit, Mesoscale Discovery) and whole 

proteomics. Serum was used to measure anti-type I IFN neutralizing antibodies, anti-SARS-

CoV-2 neutralizing antibodies and multi-target antiviral serology. Whole blood was used for 

RNA-seq (PAXgene tubes, PreAnalytiX) and whole-genome sequencing (WGS). The number 

of treated samples per group and per omics is indicated below each omics designation. B. 

RNA-seq pipeline based on the NC vs. C comparison. The RNA-seq data were partitioned 100 

times with 80% for training and the rest for testing. For each partition of the data, feature 

selection was performed based on differential expression and the genes that were significantly 

differentially expressed (FDR ≤ 0.05) in each partition of the training data were selected for 

both the training and corresponding test data. Classification was performed using an ensemble 

computational approach with seven different algorithms. After classification and verification of 

the quality of the results on the test dataset, an ensemble feature ranking score across six of 

the seven algorithms and all 100 partitions of the data was determined. The top 600 of those 

features were used as the input for structural causal modeling to derive a putative causal 

network. C. Cytokines and immune cells were quantified following the manufacturer’s 

instructions. WGS data were used for eQTL analysis together with the gene counts from the 

RNA-seq. Proteomics data were subjected to differential protein expression and nGOseq 

enrichment analyses. D. The key pathways and drivers resulting from the omics analyses (B 

and C) were confirmed in a second cohort of 81 critical and 73 recovered critical patients. The 

differential expression of ADAM9, the main driver gene, was compared to publicly available 

bulk RNA-seq data. Finally, ex vivo infection experiments with SARS-CoV-2 were conducted 

to validate a driver gene candidate. 
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Figure 2. Immune profiling of healthy individuals, non-critical and critical COVID-19 

patients 

A. The concentrations of proinflammatory cytokines in plasma were quantified by cytokine 

profiling assays (V-PLEX Proinflammatory Panel and S-PLEX Human IFN-α2a Kit, Mesoscale 

Discovery) or ELISA (IL-17, R&D Systems). B. Absolute lymphocyte counts. Each dot 

represents a single patient. C. viSNE map colored according to the cell density across the 

three groups. Red indicates the highest density of cells. The plots are representative of 40 

critical patients, 23 non-critical patients and 22 healthy controls (see Fig 1A, right panel). D-G. 

The proportions of modified lymphocyte subsets from COVID-19 patients and healthy controls 

as determined by mass cytometry. Proportions of T-cell subsets (D), B-cell subsets (E), 

dendritic cells (F) and nonclassical monocytes (G) are shown. The other cell subsets are 

presented in Figure S2. Each dot represents a single patient. In (A) and (D-G), the P-values 

were determined with the Kruskal-Wallis test, followed by Dunn’s posttest for multiple group 

comparisons; *P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. In (B), the P-value was 

determined by a two-tailed unpaired t-test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 

0.0001. In (A), data are shown as box-and-whiskers plots with medians, 25th to 75th 

percentiles, maximal and minimal values, and include n=41 critical patients, n=24 non-critical 

patients and n=21 healthy controls. In (B), (D), (E-G), all data points are shown and bars 

represent means with n=40 critical patients, n=23 non-critical patients and n=22 healthy 

controls. 

 

Figure 3. Plasma and PBMCs proteomics of healthy individuals, non-critical and critical 

COVID-19 patients 

A. Total number of proteins identified and used for quantification and differential analysis in 

the plasma of patients and healthy controls. Each dot represents a patient. Bars represent 

means ± standard deviations. B. Multidimensional scaling plot of the normalized intensities of 

all patients/individuals in the three groups. C. Volcano plot representing the differentially 
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expressed proteins (DEPs) in critical versus non-critical patients. The orange dots represent 

the proteins that are differentially expressed with a corrected P-value < 0.05. Proteins labeled 

in green and purple represent downregulated apolipoproteins and upregulated acute phase 

proteins, respectively. D. Normalized intensities of the proteins S100A8 and S100A9 in the 

three groups. Data are shown as box-and-whiskers plots with medians, 25th to 75th 

percentiles, maximal and minimal values, and include n=45 critical patients, n=23 non-critical 

patients and n=22 healthy controls. P-values were determined with the Kruskal-Wallis test, 

followed by Dunn’s posttest for multiple group comparisons; *P < 0.05, ** P < 0.01, *** P < 

0.001, **** P < 0.0001. E. Heatmap showing the expression of apolipoproteins involved in 

macrophage functions and acute phase proteins in the three groups. Upregulated proteins are 

shown in red and downregulated proteins are shown in light blue. F. Total number of proteins 

identified and used for quantification and differential analysis in PBMCs of patients and healthy 

controls. Each dot represents a patient. Bars represent means ± standard deviations. G. 

Multidimensional scaling plot of the normalized intensities of all patients/individuals in the three 

groups. H. Volcano plot representing the DEPs in critical versus non-critical patients. The 

orange dots represent the proteins that are differentially expressed with a corrected P-value < 

0.05. Proteins labeled in green and purple are upregulated proteins involved in the regulation 

of blood coagulation and myeloid cell differentiation, respectively. I. Heatmap showing the 

expression of proteins involved in the regulation of blood coagulation and myeloid cell 

differentiation in the three groups. Upregulated proteins are shown in red and downregulated 

proteins are shown in light blue. 

 

Figure 4. RNA-seq and combined omics analysis of critical patient-specific pathways 

A. Volcano plot representing the differentially expressed genes in critical versus non-critical 

patients. The orange dots represent the genes that are differentially expressed with a corrected 

P-value < 0.05. Proteins labeled in green and purple represent upregulated genes involved in 

blood pressure regulation and viral entry, respectively. B. Gene set enrichment analysis plots 

showing positive enrichment of inflammatory response, myeloid leukocyte activation and 
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neutrophil degranulation pathways. NES, normalized enrichment score. C. Enriched nested 

gene ontology (nGO) categories in critical vs. non-critical patients in RNA-seq, plasma 

proteomics and PBMC proteomics. 

 

Figure 5. Integrated AI/ML and probabilistic programming of non-critical and critical 

COVID-19 patients 

A. ROCs of the train and test sets for critical vs non-critical comparisons. All methods 

performed similarly. Other classification metrics are provided in Table S3. B. Putative network 

showing the flow of causal information based on the top 600 most informative genes for 

classifying RNA-seq data of critical versus non-critical patients. C. Box plots showing the 

normalized gene counts of the five driver genes in critical and non-critical patients. The 

indicated values correspond to the FDR. Data are shown as box-and-whiskers plots with 

medians, 25th to 75th percentiles, maximal and minimal values, and include n=46 critical and 

n=23 non-critical patients. 

 

Figure 6. Validation of ADAM9 as a key driver of viral infection and replication 

A. Quantitative RT-PCR confirmation of the differential expression of ADAM9 in non-critical 

(n=19) vs. critical patients (n=38) and in healthy controls (n=20). B. Soluble ADAM9 (sADAM9) 

concentration in serum of healthy controls (n=15), non-critical (n=22) and critical patients 

(n=43) determined by ELISA. C. Soluble MICA concentration (sMICA) in serum of healthy 

controls (n=11), non-critical (n=22) and critical patients (n=43) determined by ELISA. D. 

Expression of ADAM9 according to the genotype of the eQTL rs7840270 in (n are indicated 

below the genotypes). E. Experimental approach for assessing viral uptake and viral replication 

in silenced Vero 76 or A549-ACE2 cells. F. Flow cytometry-based intracellular nucleocapsid 

staining in control and ADAM9-silenced Vero 76 and A549-ACE2 cells. One representative 

experiment of N=3 independent experiments with n=3 in each group is shown.  G. Quantitative 

RT-PCR of SARS-CoV-2 in culture supernatant after the silencing of ADAM9 in Vero 76 or 

A549-ACE2 cells. The results from probe N1 are shown. One representative experiment of 
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N=3 independent experiments with n=3 in each group is shown.  In (A-D), the P-values were 

determined with the Kruskal-Wallis test followed by Dunn’s posttest for multiple group 

comparisons; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001. In (F-G), the P-values 

were determined from a two-tailed unpaired t-test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P 

< 0.0001.  In (A-C) and (F-G) bars represent means ± standard deviations. 
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