Dynamics of Ku and bacterial non-homologous end-joining characterized using single DNA molecule analysis - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Nucleic Acids Research Année : 2021

Dynamics of Ku and bacterial non-homologous end-joining characterized using single DNA molecule analysis

Résumé

We use single-molecule techniques to characterize the dynamics of prokaryotic DNA repair by non-homologous end-joining (NHEJ), a system comprised only of the dimeric Ku and Ligase D (LigD). The Ku homodimer alone forms a ∼2 s synapsis between blunt DNA ends that is increased to ∼18 s upon addition of LigD, in a manner dependent on the C-terminal arms of Ku. The synapsis lifetime increases drastically for 4 nt complementary DNA overhangs, independently of the C-terminal arms of Ku. These observations are in contrast to human Ku, which is unable to bridge either of the two DNA substrates. We also demonstrate that bacterial Ku binds the DNA ends in a cooperative manner for synapsis initiation and remains stably bound at DNA junctions for several hours after ligation is completed, indicating that a system for removal of the proteins is active in vivo. Together these experiments shed light on the dynamics of bacterial NHEJ in DNA end recognition and processing. We speculate on the evolutionary similarities between bacterial and eukaryotic NHEJ and discuss how an increased understanding of bacterial NHEJ can open the door for future antibiotic therapies targeting this mechanism.
Fichier principal
Vignette du fichier
gkab083.pdf (2.64 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Licence : CC BY NC - Paternité - Pas d'utilisation commerciale

Dates et versions

hal-03438620 , version 1 (04-07-2023)

Licence

Paternité - Pas d'utilisation commerciale

Identifiants

Citer

Robin Öz, Jing Wang, Raphael Guerois, Gaurav Goyal, Sriram Kk, et al.. Dynamics of Ku and bacterial non-homologous end-joining characterized using single DNA molecule analysis. Nucleic Acids Research, 2021, 49 (5), pp.2629-2641. ⟨10.1093/nar/gkab083⟩. ⟨hal-03438620⟩
26 Consultations
18 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More