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Abstract

Numerous traits under migration-selection balance are shown to exhibit complex pat-
terns of genetic architecture with large variance in effect sizes. However, the conditions
under which such genetic architectures are stable have yet to be investigated, because
studying the influence of a large number of small allelic effects on the maintenance of spa-
tial polymorphism is mathematically challenging, due to the high complexity of the systems
that arise. In particular, in the most simple case of a haploid population in a two-patch
environment, while it is known from population genetics that polymorphism at a single
major-effect locus is stable in the symmetric case, there exists no analytical predictions on
how this polymorphism holds when a polygenic background also contributes to the trait.
Here we propose to answer this question by introducing a new eco-evo methodology that
allows us to take into account the combined contributions of a major-effect locus and of a
quantitative background resulting from small-effect loci, where inheritance is encoded ac-
cording to an extension to the infinitesimal model. In a regime of small variance contributed
by the quantitative loci, we justify that traits are concentrated around the major alleles,
according to a normal distribution, using new convex analysis arguments. This allows a
reduction in the complexity of the system using a separation of time scales approach. We
predict an undocumented phenomenon of loss of polymorphism at the major-effect locus
despite strong selection for local adaptation, because the quantitative background slowly
disrupts the rapidly established polymorphism at the major-effect locus, which is confirmed
by individual-based simulations. Our study highlights how segregation of a quantitative
background can greatly impact the dynamics of major-effect loci by provoking migrational
meltdowns. We also provide a comprehensive toolbox designed to describe how to apply
our method to more complex population genetic models.
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1 Introduction
Biological motivation. Many species, if not most, evolve in heterogeneous habitats, where varying
selection acts upon phenotypic traits in a manner that causes local adaptation. The genetic architecture
that underlies those traits is known to present an array of possibilities, from major responses at one
particular gene to diffuse polygenic reponses (Slate 2005; Walsh and Lynch 2018). However, despite
the boom in of genome sequencing of the last four decades, global conclusions on the conditions leading
to a major gene or a polygenic response to local adaptation are yet to be drawn from empirical studies.
For example, as reviewed in Walsh and Lynch (2018), different conclusions on the genetic basis of the
evolution of resistance to the insecticide BT toxin have emerged between field and lab experiments.
Indeed, in the field, major-effects are more often found to be the main drivers of evolution of resistance,
whereas a polygenic response is more commonly found in the lab (McKenzie and Batterham 1994),
even if intensity of selection might not differ (Groeters and Tabashnik 2000). In more recent studies,
divergent conclusions about the genetic basis of pathogen resistance in cattle have been reached in
different regions of the world (major-effect in Australia: Turner et al. 2010, polygenic in the tropics:
Porto-Neto et al. 2014). Other empirical studies also highlight cases where the genetic basis of local
adaptation has a large variance in effect size, thus combining major and polygenic responses (see e.g.
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Koch et al. 2022 about the genetic architecture of local adaptation in Littorina saxatilis and Gagnaire
and Gaggiotti 2016 for a review for marine species). We are therefore interested in investigating
the following biological question: What are the stability conditions of either major gene responses or
polygenic responses (with either a small or large variance in effect size) underlying species’ evolution
in patchy environments?

From a theoretical point of view, the genetic basis of adaptation has been the subject of an ongoing
debate since the early days of evolutionary biology. On the one hand, the field of population genet-
ics explicitly describes and models the dynamics of a few major genes and alleles that have discrete
Mendelian effects, like eye color. On the other hand, the quantitative genetic field explores the evolu-
tion of quantitative and continuous traits, like limb size, which are thought to arise from the combined
small effects of many genes. A first theoretical milestone in the relationship between the two fields was
reached in 1919, when Fisher proposed the infinitesimal model to formalize how such a polygenic trait
can be inherited, using the Mendelian framework, clarifying the connection between the two genetic
approaches (Fisher 1919). His framework was subsequently made more precise (Bulmer 1971; Lange
1978) and recently justified in various situations using a multi-loci model and a central limit theorem
approach (Barton, Etheridge, and Véber 2017). This debate on the genetic basis of adaptation can be
illustrated by the tension between the textbook prediction of Orr (1998) of an exponential distribution
of allelic effect sizes following adaptation in a homogeneous environment and the review in Rockman
(2012), which presents several lines of evidence highlighting infinitesimal polygenic basis of quantitative
traits. Here, we would like to revisit the classical prediction of an exponential distribution in allelic
effects from Orr (1998), not in the context of weak selection in panmictic populations, but rather in the
context of spatial heterogeneity. Although this has been explored through individual-based simulation
studies (see Yeaman and Whitlock 2011; Yeaman 2022), we aim at providing analytical predictions
that can yield mechanistic insights on the distribution of effect sizes likely to be observed following
adaptation in patchy environments.

Aims. The adaptation of species to heterogeneous environment at a small number of loci has been
extensively studied in the population genetic field (see Nagylaki and Lou 2001; Bürger and Akerman
2011 for one or two-locus models, Yeaman and Otto 2011 for a model including the effect of drift,
Geroldinger and Bürger 2014 for a two-deme two-locus model). In particular, we would like to draw
attention to the predictions from the simplest one-locus model describing the dynamics of local adapta-
tion of a haploid species to a symmetrical two-deme environment. In the case-study where two alleles
segregate at a single locus, each allele being favoured in one deme and selected against in the other, it
can be shown that polymorphism is always maintained at this locus, independently of the migration rate
or selection strength (unless the population goes extinct - see a proof of this result in Proposition D.3).
However, it is not clear whether this polymorphism would similarly be maintained if, in addition to
this biallelic major-effect locus, local adaptation was also influenced by very small contributions from a
large number of unlinked loci. The main aim of this paper is therefore to answer the following question:
Could a polygenic background constituted by very small allelic effects topple the polymorphism at the
major-effect locus, even though the latter is a priori beneficial for local adaptation when considered on
its own?

From the point of view of population genetics, answering this question in heterogeneous environ-
ments would require the analysis of models whose complexity would quickly grow as the number of
small effect loci considered increases (however, note that multi-loci models in heterogeneous environ-
ments exist, but either focus on the case where all the alleles have equal effects - see Lythgoe 1997;
Szép, Sachdeva, and Barton 2021 - or on panmictic populations - see Vladar and Barton 2014; Jain and
Stephan 2017; Höllinger, Pennings, and Hermisson 2019). In this work, we propose to circumvent this
limitation with a new eco-evo model and methodology. It merges the point of views of population ge-
netics and quantitative genetics and considers the combined contributions of a quantitative background
(summarizing the polygenic background’ small effects contributions) and a major-effect locus on the
focal trait determining local adaptation (note that the latter is typically not considered in quantitative
genetic models; see Ronce and Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Débarre, Ronce, and
Gandon 2013; Mirrahimi 2017; Mirrahimi and Gandon 2020; Hamel, Lavigne, and Roques 2021; Dekens
2022).
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This approach has the immediate benefit that each individual is only described by two variables
(major-effect allele and quantitative background) instead of potentially many (for each alleles). The
drawback is that how to implement efficiently the inheritance of the quantitative background becomes
less obvious, which adds a methodological challenge to our objectives. One way to proceed would be
to make the ad-hoc assumption that the quantitative background only adds Gaussian noise around the
major-effects. This was employed in Lande (1983) in order to investigate the genetic architecture of
adaptation to a shifting environment (via major-effect allelic sweeps or subtle shifts in the frequency of
many small effect alleles). However, our proposed method aims to avoid any prior assumption on the
distribution of the quantitative background and rather analyze the distribution that naturally emerge
from the dynamics of adaptation.Instead, we focus on the within-family distribution by extending
Fisher’s infinitesimal model (Fisher 1919; Bulmer 1971; Lange 1978; Bulmer 1980; Turelli and Barton
1994; Barton, Etheridge, and Véber 2017).

Contributions. We show that our model for composite traits gives new analytical insights on
the stability of polymorphism at a major-effect locus underlying local adaptation in a symmetrical
heterogeneous environment in the presence of a quantitative background due to a large number of
small effect loci. Due to small perturbations induced by the quantitative component of the trait,
polymorphism at the major-effect locus is lost both at low and high strengths of selection, below a
certain level of migration. The first region of loss of polymorphism, at low selection intensities, is
intuitively expected, as migration blends more strongly than selection differentiates. More surprising
is the lost of polymorphism at high intensities of selection, where one would expect polymorphism at
the major-effect locus to be strongly favoured. To our knowledge, this phenomenon, where quantitative
differences displace polymorphism at a major-effect locus, has not yet been documented. We confirm
that our analysis is consistent with individual-based simulations.

This case study suggests that the long-term influence of a quantitative polygenic background on
the polymorphic equilibrium at major-effect loci can lead to unforeseen phenomena. In this work, we
present an integrative framework that is meant to help analytically bridge population genetics and
quantitative genetics. Our method goes deeper than previous models (Lande 1983) by justifying in
a certain regime of small variance that the traits are normally distributed around the major-effect
alleles effects, thanks to new arguments of convex analysis. It allows a separation of time scales, which
ultimately leads to the conditions for when the infinitesimal quantitative background slowly disrupts
the rapidly established symmetrical polymorphism at the major-effect locus.

Furthermore, we provide a comprehensive toolbox that describes how to apply our methodology to
more general cases in terms of number of major-effect loci, number of patches, and form of selection
for haploid or diploid populations (see Appendices A and B).

2 Methods
2.1 Model
2.1.1 From a generic quantitative genetic model to a composite model.

We consider a haploid population reproducing sexually and characterized by a quantitative trait
ζ in a heterogeneous environment with two habitats connected by constant migration at rate m1
(from habitat 1 to habitat 2) and m2 (from habitat 2 to habitat 1). Following classical models of
quantitative genetics, we model each habitat i selecting toward a different optimum θi with strength
gi. Maladaptation and local uniform competition for resources (with intensity κi in deme i) are sources
of mortality leading to a per capita decline at rate:

−gi(ζ − θi)2 − κi Ni,

for individuals of trait ζ in habitat i (Ni denotes the local population size). At time t ≥ 0, let n1(t, ζ)
and n2(t, ζ) be the local trait densities in patches 1 and 2, and B[ni](t, ζ) the number of individuals
born with a trait ζ in habitat i, with reproduction occuring at rate λi. The dynamics of the local trait
densities read:
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

∂n1
∂t (t, ζ) = λ1 B[n1](t, ζ) − g1 (ζ − θ1)2 n1(t, ζ) − κ1N1(t) n1(t, ζ)

+m2 n2(t, ζ) − m1 n1(t, ζ),

∂n2
∂t (t, ζ) = λ2 B[n2](t, ζ) − g2 (ζ − θ2)2 n2(t, ζ) − κ2 N2(t) n2(t, ζ)

+m1 n1(t, ζ) − m2 n2(t, ζ).

(1)

We can define the trait axis such that: θ := θ2 = −θ1 > 0 without loss of generality. We next
describe the novel aspect of this work, which allows the trait ζ to be the sum of two components, a
major-effect locus and a quantitative background z. We furthermore describe the sexual reproduction
operator used.
major-effect. The first component comes from a locus where two alleles A/a are segregating. They
have a major-effect on the trait: ηA and ηa. Inheritance of this locus is Mendelian.

Quantitative background. The second component, denoted by z ∈ R, represents the quantita-
tive background due to infinitesimally small additive contributions to the trait from a large number of
unlinked alleles. Although it comes from infinitesimally small contributions, z should not be thought
of as being necessarily small, due to the large number of alleles contributing to it. We also assume that
the major-effect locus is effectively unlinked with the small-effect ones.

Inheritance of the trait: an extension of the infinitesimal model. Let us recall that
the infinitesimal model, first introduced in Fisher (1919), provides a way to encode efficiently the
inheritance of complex traits coming from a large number of alleles, each with small effects. The
classical version states that an offspring receives a trait Z from its parents with traits Z1 and Z2,
where Z differs from the mean parental trait Z1+Z2

2 following a centered Gaussian law, with variance
σ2

2 . The latter accounts for the stochasticity of segregation, and therefore the variance is called the
segregational variance. Specifically:

Z|Z1, Z2 ∼ Z1 + Z2

2 + Y, Y ∼ N
(

0,
σ2

2

)
, Y ⊥ Z1, Z2.

The Mendelian view of the infinitesimal model has been discussed in Fisher (1919), Bulmer (1971),
and Lange (1978): the common interpretation is that the trait results from a large number of small
additive contributions at unlinked loci. For a more in depth description, see Barton, Etheridge, and
Véber (2017).

Because the trait we are considering is a composite of a major-effect locus inherited according to
Mendelian laws and an infinitesimal background, it is natural to use an extension of the infinitesimal
model for this composite case. Now, the offspring’s trait (A, Z) given their parents (A1, Z1) and
(A2, Z2) reads:

(A, Z, ) | (A1, Z1), (A2, Z2) ∼
(

XA1 + (1 − X)A2,
Z1 + Z2

2 + Y
)

, (2)

where Y ∼ N
(

0, σ2

2

)
follows a centered Gaussian law of variance σ2

2 and X ∼ B
( 1

2
)

follows a Bernoulli
law with parameter 1

2 (assuming fair meiosis). The random variables are independent of each other
and of Z1, Z2, A1, A2.

Let us translate Eq. (2) into a continuous density model. Let nA
i (z) (respectively na

i (z)) denote the
density of individuals of patch i carrying allele A (respectively a) along with an infinitesimal background
z, therefore having a trait ζ = ηA + z (respectively, ηa + z). In agreement with Eq. (2), the number
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of offspring born with the allele A and an infinitesimal contribution z in habitat i then reads:

BA
σ [nA

i , na
i ](z) =

∫
R2

1√
πσ

exp
[

−
(
z − z1+z2

2
)2

σ2

]
×

1
Ni

[
nA

i (z1) nA
i (z2) + 1

2
[
nA

i (z1) na
i (z2) + na

i (z1)nA
i (z2)

]]
dz1 dz2

=
∫
R2

1√
πσ

exp
[

−
(
z − z1+z2

2
)2

σ2

]
nA

i (z1)
nA

i (z2) + na
i (z2)

Ni
dz1 dz2.

Similarly, the corresponding number of offspring born with the allele a and an infinitesimal part z
reads:

Ba
σ[nA

i , na
i ](z) =

∫
R2

1√
πσ

exp
[

−
(
z − z1+z2

2
)2

σ2

]
×

1
Ni

[
na

i (z1) na
i (z2) + 1

2
[
nA

i (z1) na
i (z2) + na

i (z1)nA
i (z2)

]]
dz1 dz2

=
∫
R2

1√
πσ

exp
[

−
(
z − z1+z2

2
)2

σ2

]
na

i (z1)
na

i (z2) + nA
i (z2)

Ni
dz1 dz2.

The operator reproduction Bσ indicates that it is more relevant to model the dynamics of the two local
allelic densities na

i , nA
i , instead of ni (which is their sum). From now on, we will therefore adopt this

point of view.

Remark 1: Bridging a population genetic model and a quantitative genetic model. Our
model described above bridges the following population genetic and quantitative genetic models:

1. The one-locus haploid model in a two-patch environment, which considers two alleles A and a
segregating at the same locus, each improving the survival chance in one of the habitats and being
deleterious in the other. We recall that with symmetrical migration and selection, this model pre-
dicts that polymorphism at the focal locus is always stable, whenever the metapopulation persists
(see Remark 4 and Proposition D.3 for a proof of this fact).

2. The quantitative genetic model from Dekens (2022), which studies the eco-evo dynamics of a
quantitative trait in a heterogeneous environment, where the trait is inherited according to the
standard version of the infinitesimal model. Our work can be seen as an extension of this model,
to which we add the segregation of two major-effect alleles at a single locus. Moreover, one can
notice that if one major-effect allele fixes (loss of polymorphism), the two models are equivalent.
Because Dekens (2022) gives a complete analytical description of the outcomes of their system (in
the small segregation variance regime), the outcomes for our present study are known given the
fixation of a major-effect allele. Therefore, our study focuses on the description of polymorphism
at the major-effect locus and its stability.

2.1.2 Dimensionless system.
Let us rescale Eq. (1) according to:

ηA := ηA

θ
, z := z

θ
, gi := giθ

2

λ1
, mi := mi

λ1
, ε := σ

θ
, t := ε2λ1t, , α := κ1

κ2
, λ := λ2

λ1
,

and introduce the rescaled trait densities:

nA
ε,i(t, z) := κi

λ1
nA

i (t, z), na
ε,i(t, z) := κi

λ1
na

i (t, z).
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so that Eq. (1) reads:



ε2 ∂nA
ε,1

∂t (t, z) = Bε
A(nA

ε,1, na
ε,1)(t, z) − g1(z + ηA + 1)2 nA

ε,1(t, z) − Nε,1(t) nA
ε,1(t, z)

+α m2 nA
ε,2(t, z) − m1 nA

ε1
(t, z),

ε2 ∂na
ε,1

∂t (t, z) = Bε
a(na

ε,1, nA
ε,1)(t, z) − g1(z + ηa + 1)2 na

ε,1(t, z) − Nε,1(t) na
ε,1(t, z)

+α m2 na
ε,2(t, z) − m1 na

ε1
(t, z),

ε2 ∂nA
ε,2

∂t (t, z) = λ Bε
A(nA

ε,2, na
ε,2)(t, z) − g2(z + ηA − 1)2 nA

ε,2(t, z) − Nε,2(t) nA
ε,2(t, z)

+ m1
α nA

ε,1(t, z) − m2 nA
ε2

(t, z),
ε2 ∂na

ε,2
∂t (t, z) = λ Bε

a(na
ε,2, nA

ε,2)(t, z) − g2(z + ηa − 1)2 na
ε,2(t, z) − Nε,2(t) na

ε,2(t, z)
+ m1

α na
ε,1(t, z) − m2 na

ε2
(t, z),

(3)

where the rescaled reproduction operator is given by:

BA
ε (nA

ε,i, na
ε,i)(t, z) = 1√

πε

∫
R2

exp
[−(z − z1+z2

2 )2

ε2

]
nA

ε,i(t, z1)
nA

ε,i(t, z2) + na
ε,i(t, z2)

Nε,i(t)
dz1 dz2. (4)

2.2 Derivation of a moment-based system in the regime of small variance
ε2 ≪ 1

In this subsection, we explain how we derive a closed moment-based ODE system on which the sepa-
ration of time scale analysis will be conducted, starting from the PDE system (3) based on the trait
distributions, in the regime of small variance ε2 ≪ 1. To do so, we justify that the quantitative back-
ground values are approximately normally distributed among bearers of the same major-effect allele.
Moreover, the mean of these quantitative background values is the same for individuals in the same
patch. This implies in particular that the main driver for trait divergence within each habitat is the
major-effect locus.

2.2.1 Gaussian approximations of quantitative background values in the regime
of small variance: a formal analysis.

We choose to place our study in a regime where the amount of diversity introduced by the segregation
of the infinitesimal background at each event of reproduction is small in comparison to the difference
between the habitats’ optima:

σ2

θ2 ≪ 1 =⇒ ε2 ≪ 1.

In this regime of small variance, the trait distributions are expected to converge to Dirac masses. Our
focus is to give an accurate description of the distribution near this limit. To do so, we extend a
small variance methodology introduced by Diekmann et al. (2005) for asexual populations and adapted
recently to sexual populations with the standard infinitesimal model (Calvez, Garnier, and Patout
2019; Patout 2020; Garnier et al. 2022) and develop new convex analysis arguments. Throughout this
section, the time dependency will be omitted for the sake of clarity.

Presentation of the methodology. Almost two decades ago, Diekmann et al. (2005) introduced
a methodology to determine the dynamics of the trait values around which trait distributions get
concentrated as Dirac masses under the regime of small variance. This methodology has since been
used successfully to study several evolutionary questions, initially for asexual models, where the diversity
generated by mutations of small variance is modelled by a linear operator translating the distribution of
mutational effects (Perthame and Barles 2008; Barles, Mirrahimi, and Perthame 2009; Mirrahimi 2017;
Mirrahimi and Gandon 2020). It has recently been adapted to study sexually reproducing populations
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Figure 1: Illustration of the Hopf-Cole transform to study concentration phenom-
ena. This transformation unfolds singular distributions nε close to a Dirac mass (in purple),
by defining more regular proxies: Uε (in green) such that nε = 1√

2πεe
− Uε

ε2 . This figure suggests
that, when ε vanishes, the limit U is regular and positive and cancels at the support of the
limit measure n.

with the infinitesimal model operator in homogeneous spaces (Garnier et al. 2022; Calvez, Garnier, and
Patout 2019; Patout 2020; Dekens 2022).

As the analytical crux heavily relates to the singular nature of the trait distributions nε as Dirac
masses, the method consists in defining proxies Uε from nε through a suitable transformation so that
such proxies are regular functions (by comparison to Dirac masses) and their asymptotic analysis is
easier. Studying them often induces a reduction in the complexity of the system while still retaining
fundamental quantitative information about the distributions, such as around which traits they are
concentrated. Here, we follow quantitative genetic studies that use the infinitesimal model according
to the same methodology (Garnier et al. 2022; Calvez, Garnier, and Patout 2019; Patout 2020; Dekens
2022) and define the proxies UA

ε,i (resp. Ua
ε,i):

nA
ε,i = 1√

2πε
e−

UA
ε,i

ε2 , na
ε,i = 1√

2πε
e−

Ua
ε,i

ε2 . (5)

A helpful analogy is to take the example of a spiky Gaussian distribution with small variance ε2 for
nA

ε,i. Then UA
ε,i is a smooth quadratic function (even when ε ≪ 1). Figure 1 displays an example of

this kind of exponential transformation (called Hopf-Cole transformation in scalar conservation laws).
A key observation to deduce the traits around which the distribution concentrates is that it does so at
the minima (zero) of Uε. As the proxies UA

ε and Ua
ε are expected to be more regular in the regime of

small variance, they are thought to be the right object on which to perform a Taylor expansion series
to gain information on the asymptotic distributions in the limit of small variance (see Calvez, Garnier,
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and Patout 2019). We therefore define uA
0,i (resp. ua

0,i) as the leading term in the Taylor expansion of
UA

ε,i (resp. Ua
ε,i) :

UA
ε,i = uA

0,i + ε2 uA
1,i + ε4 vA

ε,i, Ua
ε,i = ua

0,i + ε2 ua
1,i + ε4 va

ε,i (6)

where uA
1,i and ua

1,i are the next term in the Taylor expansion, and ε4vA
ε,i and ε4va

ε,i are the residues.
Calvez, Garnier, and Patout (2019) provides the tools to control these residues and thus rigorously
justify that (6) is an admissible Taylor expansion; adapting them is left for future work.

Characterization of the main terms uA0,i and ua0,i to justify Gaussian approximations.
The first step of the analysis in the regime of small variance is the characterization of the main terms
uA

0,i and ua
0,i. Indeed, in the regime of small variance, these have to satisfy a strong constraint that arises

naturally for the contribution of the infinitesimal model reproduction operator term to remain well-
balanced within (3). In Garnier et al. (2022) and Dekens (2022), where the standard infinitesimal model
operator is used, this constraint yields the analogous main term to be quadratic, which implies that the
trait distribution is approximately Gaussian, with a small variance ε2. However, here, the arguments
given in Garnier et al. (2022) and used in Dekens (2022) are not sufficient, due to the mixing of alleles
between patches and the discrete nature of Mendelian inheritance. However, we extend the convex
analysis to circumvent this limitation (Proposition 2.1) and identify uA

0,i and ua
0,i as the same quadratic

function z 7→ (z−z∗
i )2

2 , where z∗
i ∈ R is to be determined later in the analysis. Assuming that (6) is

an admissible Taylor expansion (which is suggested by the analysis of Calvez, Garnier, and Patout
(2019)), this result is crucial as it justifies the following formal Gaussian approximations of nA

ε,i and
na

ε,i (i ∈ {1, 2}):

nA
ε,i(z) = e−

−(z−z∗
i

)2

2ε2

√
2πε

e−uA
1,i(z)+O(ε2), na

ε,i(z) = e−
−(z−z∗

i
)2

2ε2

√
2πε

e−ua
1,i(z)+O(ε2). (7)

Hence, to the leading order, nA
ε,i and na

ε,i are formally Gaussian, centered at the same quantitative
contribution z∗

i , with the same variance ε2. However, they differ in the next-order, which involves the
corrector terms uA

1,i and ua
1,i, which generate asymmetries in the distributions.

To support (7), we first derive the following constraints (C) on the main terms uA
0,i and ua

0,i. In
order for the contribution of both reproduction operators BA

ε and Ba
ε to remain well-balanced with the

other biological phenomena in the regime of small variance in (3), uA
0,i and ua

0,i formally need to satisfy
the following (see Appendix C for the details):

∀z ∈ R, max
[

sup
z1,z2

uA
0,i(z) −

(
z − z1+z2

2
)2 − uA

0,i(z1) − uA
0,i(z2),

sup
z1,z2

uA
0,i(z) −

(
z − z1+z2

2
)2 − uA

0,i(z1) − ua
0,i(z2)

]
= 0,

∀z ∈ R, max
[

sup
z1,z2

ua
0,i(z) −

(
z − z1+z2

2
)2 − ua

0,i(z1) − ua
0,i(z2),

sup
z1,z2

ua
0,i(z) −

(
z − z1+z2

2
)2 − uA

0,i(z1) − ua
0,i(z2)

]
= 0.

(C)

We next state the following proposition, which characterizes the main terms uA
0,i and ua

0,i as aforemen-
tioned.
Proposition 2.1. Let uA

0 and ua
0 satisfying Eq. (C) positive almost everywhere and cancelling some-

where. Then, there exists z∗ ∈ R such that:

∀z ∈ R, uA
0 (z) = ua

0(z) = (z − z∗)2

2 . (8)

The conditions on uA
0,i and ua

0,i in Proposition 2.1 (positive everywhere and cancelling somewhere)
are explained in Appendix C. In the Appendix B, we actually state and prove a stronger result Propo-
sition B.1, which generalizes Proposition 2.1 to more complex genetic architectures.

Consequently, assuming that (6) is the correct ansatz so that we can control the residues in (7)
(which the analysis of Calvez, Garnier, and Patout (2019) suggests and provides a framework to show),
using the result of Proposition 2.1 in (5) and (6) leads to (7).
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2.2.2 Moment-based system in the regime of small variance
This section follows directly the results of the previous one, where we showed formally that, in each

habitat, the two allelic trait distributions nA
ε,i and na

ε,i can be approximated by the same Gaussian
distribution. We present here how the latter allows us to close the moment-based system obtained from
integrating (3).

First, we derive formal expansions of the first moments (population size, mean trait, variance and
skew) of nA

ε,i and na
ε,i when ε2 ≪ 1, thanks to (6) and (7) (as in Dekens 2022):

NA
ε,i :=

∫
R
nA

ε,i(z) dz = e
−uA

1,i(z∗
i )
[

1 + ε2

((
∂zuA

1,i(z∗
i )
)2

2 −
∂zzuA

1,i(z∗
i )

2 − vA
i,ε(z∗

i )
)]

+ O(ε4),

zA
ε,i :=

∫
R
z
nA

ε,i(z)
NA

ε,i

dz = z∗
i − ε2∂zuA

1,i(z
∗
i ) + O(ε4),(

σA
ε,i

)2
:=
∫
R

(z − zA
ε,i)

2 n
A
ε,i(z)
NA

ε,i

dz = ε2 + O(ε4),(
ψA

ε,i

)3
:=
∫
R

(z − zA
ε,i)

3 n
A
ε,i(z)
NA

ε,i

dz = O(ε4).

(9)

Using (9) when integrating (3), we can close the infinite system of moments in the regime of small
variance, producing a system of eight ODEs governing the dynamics of the four allelic subpopulation
sizes Na

ε,1, NA
ε,1, Na

ε,2, NA
ε,2 and the four allelic local mean quantitative traits za

ε,1, zA
ε,1, za

ε,2, zA
ε,2:

ε2 d Na
ε,1

dt = Na
ε,1 −

(
NA

ε,1 + Na
ε,1
)

Na
ε,1 − g1

[
za

ε,1 + ηa + 1
]2

Na
ε,1 + α m2 Na

ε,2 − m1 Na
ε,1,

+O(ε2),

ε2 d NA
ε,1

dt = NA
ε,1 −

(
NA

ε,1 + Na
ε,1
)

NA
ε,1 − g1

[
zA

ε,1 + ηA + 1
]2

NA
ε,1 + α m2 NA

ε,2 − m1 NA
ε,1

+O(ε2),

ε2 d Na
ε,2

dt = λ Na
ε,2 −

(
NA

ε,2 + Na
ε,2
)

Na
ε,2 − g2

[
za

ε,2 + ηa − 1
]2

Na
ε,2 + m1

α Na
ε,1 − m2 Na

ε,2
+O(ε2),

ε2 d NA
ε,2

dt = λ NA
ε,2 −

(
NA

ε,2 + Na
ε,2
)

NA
ε,2 − g2

[
zA

ε,2 + ηA − 1
]2

NA
ε,2 + m1

α Na
ε,1 − m2 Na

ε,2

+O(ε2),

ε2 d za
ε,1

dt = ε22g1
[
−1 − ηa − za

ε,1
]

+
(

zA
ε,1−za

ε,1
2

)
NA

ε,1
Nε,1

+ α m2
Na

ε,2
Na

ε,1

(
za

ε,2 − za
ε,1
)

+ O(ε4),

ε2 d zA
ε,1

dt = ε22g1

[
−1 − ηA − zA

ε,1

]
+
(

za
ε,1−zA

ε,1
2

)
Na

ε,1
Nε,1

+ α m2
NA

ε,2
NA

ε,1

(
zA

ε,2 − zA
ε,1

)
+ O(ε4),

ε2 d za
ε,2

dt = ε22g2
[
1 − ηa − za

ε,2
]

+
(

zA
ε,2−za

ε,2
2

)
NA

ε,2
Nε,2

+ m1
α

Na
ε,1

Na
ε,2

(
za

ε,1 − za
ε,2
)

+ O(ε4),

ε2 d zA
ε,2

dt = ε22g2

[
1 − ηA − zA

ε,2

]
+
(

za
ε,2−zA

ε,2
2

)
Na

ε,2
Nε,2

+ m1
α

NA
ε,1

NA
ε,2

(
zA

ε,1 − zA
ε,2

)
+ O(ε4).

(10)

Biological description of the equations of the moment-based system (10). The first
four equations encoding the dynamics of the allelic subpopulations sizes involve four terms, that we
describe using the first equation for Na

ε,1. The first term Na
ε,1 is a growth term, the second one −(NA

ε,1 +
Na

ε,1)Na
ε,1 is a non-linear negative death term by competition, proportional to the total subpopulation

size. The third one −g1
[
za

ε,1 + ηa + 1
]2

Na
ε,1 is a negative death term by selection (with strength g1),
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which is more lethal when the allelic local mean trait za
ε,1 + ηa is far from the local optimum −1. The

last migration term α m2 Na
ε,2 − m1 Na

ε,1 represents the asymmetrical transfer of populations between
the two patches.

The last four equations encoding the dynamics of the allelic local mean quantitative traits involve
three different terms that we describe, taking for reference the first of these equations for za

ε,1. The
first term is the selection gradient that pushes the total mean trait za

ε,1 + ηa towards the local opti-
mum −1, with an intensity 2ε2g1, proportional to the intensity of selection gi and the small variance
of the quantitative trait ε2 (in agreement with the Gaussian approximation (7)). The second term(

zA
ε,1−za

ε,1
2

)
NA

ε,1
Nε,1

does not exist in the analogous moment-based system in Dekens (2022) (without the

major-effect locus), as it originates from the segregation of A/a at the major-effect locus. It describes
a force which pushes each allelic mean quantitative component towards one another within the same
habitat due to the mixing effect of the infinitesimal model. It is consistent with the result provided
by Proposition 2.1 and the Gaussian approximations (7), which are centered at the same quantitative
component z∗

i , close to both zA
ε,i and za

ε,i according to the second line of the expansions (9). The last
term α m2

Na
ε,2

Na
ε,1

(
za

ε,2 − za
ε,1
)

relates to the effect of the transfer of population by migration onto the
mean quantitative component: it pushes the local mean quantitative components corresponding to the
same major-effect allele za

ε,2 and za
ε,1 towards one another.

Remark 2: Selection shifts the allelic local mean quantitative trait slowly. In the last four
equations of (10), there is a noticeable difference between the first term, proportional to ε2, and the
other two terms, which are of order 1. This demonstrates the fact that, in the regime of small variance,
selection shifts the local mean quantitative traits very slowly toward the local optima compared to how
fast the other two terms intervene in the equation (describing selection on the major-effects alleles and
migration). Notice also that the time scale in which the differential system (10) is written (ε2 d·

dt ) is the
correct one to capture this slow shift.

Remark 3: Magnitude of the residues in (10). In the system (10), the difference in the system
between the residues in the first four equations on the local sizes of population of order O(ε2) and the
ones in the last four equations on the mean quantitative components of order O(ε4) is consistent with
the analysis of Patout (2020) (see in particular Theorem 1.4).

2.3 Separation of time scales: slow-fast analysis
As highlighted by Remark 2, the shift of allelic local mean quantitative components zA

ε,i and za
ε,i occurs

on a slower time scale than growth, death and transfer of populations for the allelic subpopulation
sizes (first four equations of (10)) and than the two relaxing forces of gene flow and segregation for
the allelic local mean quantitative traits (last two terms of the last four equations of (10)). Therefore,
in this subsection, we show that the moment-based system (10) has a particular structure (up to
a change in variables) that allows the possibility to separate two different time scales, which can
be interpreted as fast ecological time scale (including selection on the major-effects locus) and slow
quantitative evolutionary time scales.

First, we need to transform (10) into an equivalent system which has a suitable form to prove the
separation of time scales. This requires the following change of variables, which is motivated by the
formal analysis of Section 2.2 (especially the results of Proposition 2.1):

δa
ε =

za
ε,2 − za

ε,1

2ε2 , δA
ε =

zA
ε,2 − zA

ε,1

2ε2 , δε =
zA

ε,1 + zA
ε,2 − za

ε,1 − za
ε,2

4ε2 , Zε =
zA

ε,1 + zA
ε,2 + za

ε,1 + za
ε,2

4 .

(11)
Zε can be interpreted as the mean infinitesimal part of the metapopulation, δε the spatial average of the
local difference between the two allelic mean infinitesimal parts, δA

ε and δa
ε the equivalent term among

bearers of A and a, respectively (see an illustration of those new variables in Fig. 2). The quantities
defining δε, δA

ε , δa
ε are divided by ε2 because Remark 2 suggests that zA

ε,1, za
ε,1, zA

ε,2 and za
ε,2 all relax

quickly towards the same value due to the fast action of gene flow and segregation, with an error of
order ε2.
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ε2 δaε ε2 δAε

ε2 δε + 2η

Zε

Figure 2: Illustration of the slow-fast variables Zε, δε, δA
ε and δa

ε (in red), introduced
in (11). This figure displays a situation where the two major-effect alleles are segregating in
both habitats in a symmetrical fashion. The graph represents the two local trait densities
for each of the two alleles: ñA1,ε, ñA2,ε, ña1,ε, ña2,ε (the same color is for the same deme, and
the same linestyle is for the same major-effect allele), as a function of the trait ζ = z + ηA

(resp. z + ηa), where z is the infinitesimal contribution and ηA (resp ηa) is the effect of the
major-effect allele. In red, we indicate a visualization of the new variables introduced in (11).
Zε is the mean infinitesimal part of the metapopulation, δε the spatial average of the local
difference between the two allelic mean infinitesimal parts, δAε and δaε the spatial discrepancies
in the mean infinitesimal parts per allele. Note the difference in notation between the trait
densities ñAi,ε and the infinitesimal contribution densities nAi,ε (which are the ones used in the
analysis), which are linked by nAi,ε(z) = ñAi,ε(z + ηA) (respectively z + ηa for ñai,ε).
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After the change in variables (11), we obtain a new system (shown in its explicit form Eq. (28) in
Appendix D) which can be written compactly as follows{

ε2 dȲε

dt = G(Ȳε, Zε) + ε2 νG
ε (t),

dZε

dt = −(g1 + g2) Zε + F (Ȳε) + ε2 νF
ε (t),

(Pε)

where Ȳε :=
(
Na

1,ε, Na
1,ε, NA

1,ε, NA
2,ε, δa

ε , δA
ε , δε

)
denotes the vector of fast variables, located in a set

denoted Ω :=
(
R∗

+
)4 × R3. The two smooth functions G ∈ C∞(Ω × R) and F ∈ C∞(Ω) encode

respectively the fast and slow dynamics. Moreover, the functions νG
ε and νF

ε are residues that are
uniformly bounded w.r.t ε.

Biological interpretation of the different timescales in (Pε). As the first four coordinates
of the fast variable Ȳε are the allelic subpopulation sizes, the function G(·, Zε) describes the fast
dynamics of growth, death and transfer of populations occurring when the mean quantitative component
is at the value Zε. The fast timescale of the dynamics of Ȳε can be interpreted as the ecological time
scale (including selection on the major-effects locus). On the contrary, the dynamics of the slow variable
Zε, which is the mean quantitative component, are driven by the shift by selection −(g1 +g2)Zε and the
demographic feedback F (Ȳε), on a slower timescale, which we interpret as the quantitative evolutionary
time scale. Indeed, notice that the time derivatives are different between the two lines of Pε: the first
line involves ε2 d·

dt , whereas the small factor ε2 is absent in the second line.

Convergence to a simplified limit system. The slow-fast analysis developed in Appendix D
is dedicated to show that, when ε goes to 0, the solutions of (Pε) converge to the solutions of the
following limit system which separates the ecological and evolutionary time scales{

G(Ȳ , Z) = 0,
dZ
dt = −(g1 + g2) Z + F (Ȳ ).

(P0)

The first line of (P0) is an algebraic system defining the slow manifold, constituted by the fast ecological
equilibria Ȳ corresponding to a value Z of the evolutionary variable (these are formally defined by
{Ȳ ∈ Ω, such that G(Ȳ , Z) = 0}). The second line describes the dynamics of the slow variable Z
constrained to occur on the slow manifold.

The convergence result linking (Pε) to (P0) is stated by the following:

Theorem 2.1. For (Ȳ , Z) a solution of (P0), there exists T ∗ > 0 such that, for 0 < ε < 1, any solution
(Ȳε, Zε) of (Pε) on [0, T ∗] converges to (Ȳ , Z) uniformly on [0, T ∗], as ε goes to 0 and (Ȳε(0), Zε(0))
goes to (Ȳ (0), Z(0)).

The proof the Theorem 2.1 is detailed in Appendix D. The main argument relies crucially on
the stability of the fast equilibria at any level defined by a value of the slow variable Z ∈] − 1, 1[
(Proposition D.3, Proposition D.4), ensuring that, at the limit, the fast dynamics converge quickly
toward the slow manifold and not away from it. The stability argument is completed by the algebraic
description of the slow manifold: we show that, for every level Z ∈]−1, 1[, there exists a single ecological
equilibria Ȳ satisfying G(Ȳ , Z) = 0 (Proposition D.1, Proposition D.2). We also summarize in Fig. 7
the links between the different systems, propositions and theorem involved in the slow-fast analysis.

Remark 4: The one-locus haploid model’s equilibrium is part of the fast equilibrium corre-
sponding to the level Z = 0. The one-locus haploid model is equivalent to the first four differential
equations of (10) on the allelic sizes of each subpopulation, with (za

ε,1, za
ε,1, za

ε,1, za
ε,1) = (0, 0, 0, 0) (no

infinitesimal part - we can obtain from these equations a system describing the allelic frequencies and
local population sizes (p1, p2, N1, N2) :=

(
NA

1
NA

1 +Na
1

,
NA

2
NA

2 +Na
2

, NA
1 + Na

1 , NA
2 + Na

2

)
, dropping the ε that is

a parameter of the infinitesimal part). Applying Proposition D.1 with Z = 0 gives a unique equilibrium
satisfying the first four equations, which is the one found with the one-locus haploid model. One can
thus interpret the symmetrical polymorphic equilibrium of the one-locus haploid model as a fast equilib-
rium in the model presented in this article. It is therefore stable (Proposition D.3) whenever it entails
positive population sizes (same condition as in Proposition D.1).
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Remark 5: Degrees of freedom of the slow manifold compared to Dekens 2022. Propo-
sition D.1 states that for every level Z ∈] − 1, 1[, there exists a single fast equilibrium Ȳ such that
G(Ȳ , Z) = 0. This implies that there are fewer degrees of freedom in the subsystem (S0(Z)) defining
the four allelic subpopulations sizes (see the details in Appendix D) than in the analogous system of two
equations from the analysis done in Dekens (2022), that can be obtained in the case where one allele
has fixed (up to a translation). Indeed, Dekens (2022) shows that the analogous system can have up to
three algebraic solutions depending on the parameters. The result of Proposition D.1 is thus unexpected,
since S0(Z) has twice the number of equations and variables.

3 Results: stability of polymorphism at the major-effect locus
in the limit system

This section follows naturally the separation of timescales shown in Section 2.3 and focuses on the study
of the stability of polymorphism at the major-effect locus in the limit system (P0), in the presence of
a quantitative background contributing additively to the trait under selection. To be able to derive
analytical conditions, we assume henceforth a symmetrical environment setting (in migration rates,
selection strengths, carrying capacities, reproduction rates and major-effect allelic effects):

m := m1 = m2, g := g1 = g2, α = 1, λ = 1, η := ηA = −ηa > 0.

Under these symmetrical conditions, and in the absence of any quantitative background, we recall
that there exists a symmetrical polymorphic equilibrium in the one-locus haploid model, which is
always stable (see Proposition D.3 for a proof). This symmetrical polymorphic equilibrium in the
one-locus model corresponds, in our model which considers additionally the additive contribution of a
quantitative background on the trait, to the fast equilibrium Y ∗ associated to the level Z∗ = 0 (Z∗ = 0
corresponds to the average quantitative trait between patches cancelling). Because the property of the
fast equilibrium does not necessarily transpose to a global equilibrium over multiple timescales, we are
therefore interested in the following questions:

1. Does a symmetrical polymorphic equilibrium for the global limit system (P0) exist at the level
Z∗ = 0, ie: does the pair of variables (Z∗, Ȳ ∗) defined above cancel both the first line and the
right-hand side of the second line of (P0)?

2. When the symmetrical polymorphic equilibrium exists, is it always stable ? Or, in the long-run,
can the slowly evolving infinitesimal background undermine the rapidly established polymorphism
at the major-effect locus, even though the latter is appears favored for local adaptation?

3. If so, can our analysis predict in which range of parameters of migration rate m, selection strength
g and major-effect η does that phenomenon occur?

In a first part, we present the results of our analysis to answer these questions. We also provide
illustrations of the complex patterns that can emerge in terms of parameters range, as the studied phe-
nomenon of disturbance of the polymorphism at the major-effect locus by the infinitesimal background
exhibits non-monotonic behaviours with regard to each parameter.

In a second part, we confirm the results of the first part thanks to individual-based simulations.

3.1 Analytical predictions
The results of this section indicate that the unconditional stability of the polymorphism in the OLM
can be disturbed by the presence of a quantitative background, for a substantial range of parameters,
including, surprisingly, at the strongest selection levels. The interpretation of Remark 4 offers the idea
that the infinitesimal background slowly disrupts the rapidly established symmetrical polymorphism at
the major-effect locus.
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Existence of a symmetrical polymorphic equilibrium. We first show that a symmetri-
cal polymorphic equilibrium can exist under a range of parameters specified in Proposition 3.1, as a
stationary state of the limit system (P0), hence a solution of the explicit version of the latter:

Na
1 −

[
NA

1 + Na
1
]

Na
1 − g [Z − η + 1]2 Na

1 + m(Na
2 − Na

1 ) = 0,

NA
1 −

[
NA

1 + Na
1
]

NA
1 − g [Z + η + 1]2 NA

i + m(NA
2 − NA

1 ) = 0,

Na
2 −

[
NA

2 + Na
2
]

Na
2 − g [Z − η − 1]2 Na

2 + m(Na
1 − Na

2 ) = 0,

NA
2 −

[
NA

2 + Na
2
]

NA
2 − g [Z + η − 1]2 NA

2 + m(NA
1 − NA

2 ) = 0,

2g − m δa
[

Na
2

Na
1

+ Na
1

Na
2

]
+ δA−δa

4

[
NA

2
Na

2 +NA
2

+ NA
1

Na
1 +NA

1

]
+ δ

2

[
NA

2
Na

2 +NA
2

− NA
1

Na
1 +NA

1

]
= 0,

2g − m δA
[

NA
2

NA
1

+ NA
1

NA
2

]
+ δa−δA

4

[
Na

2
Na

2 +NA
2

+ Na
1

Na
1 +NA

1

]
+ δ

2

[
NA

1
Na

2 +NA
2

− Na
2

Na
1 +NA

1

]
= 0,

− δ
2 − 2 g η + m

(
δA

2

[
NA

2
NA

1
− NA

1
NA

2

]
− δa

2

[
Na

2
Na

1
− Na

1
Na

2

])
= 0,

−2 g Z + m
(

δa

2

[
Na

2
Na

1
− Na

1
Na

2

]
+ δA

2

[
NA

2
NA

1
− NA

1
NA

2

])
+ δA−δa

4

[
NA

2
NA

2 +Na
2

− NA
1

NA
1 +Na

1

]
+ δ

2

[
NA

1
NA

1 +Na
1

+ NA
2

NA
2 +Na

2
− 1
]

= 0.

(12)

Proposition 3.1. There exists a unique polymorphic equilibrium corresponding to the infinitesimal
average Z = 0 under the condition:

[
g(η2 + 1) < 1

]
∨
[
m <

2 g2 η2

g(η2 + 1) − 1 − g(η2 + 1) + 1
]

. (13)

The allelic local population sizes corresponding to this equilibrium satisfy the property:

Na,∗
1 = NA,∗

2 , Na,∗
2 = NA,∗

1 ,

and for both alleles, the spatial discrepancies between the mean infinitesimal parts of the two patches
per allele are the same:

δA,∗ = δa,∗.

Therefore, this polymorphic equilibrium at Z∗ = 0 is called symmetrical.

The proof uses the results of Proposition D.1 and Proposition D.2 and is shown in Appendix E.

Stability of the symmetrical polymorphic equilibrium. Let us recall the limit system
(P0): {

G(Ȳ , Z) = 0,
dZ
dt = −2 g Z + F (Ȳ ).

(14)

The stability of the symmetrical polymorphic equilibrium denoted (0, Ȳ ∗) described above in Proposi-
tion 3.1 is studied in the same manner as in Dekens (2022). Because the differential equation on Z in
the second line of (P0) involves both Z and Ȳ , it is not sufficient to do a standard linear analysis. The
first step is to express the solution to G(·, Z) = 0 as a function of Z: Ȳ (Z). This is possible thanks to
the implicit function theorem used in the vicinity of the symmetrical polymorphic equilibrium, because
[∂Ȳ G] |Z=0,Ȳ =Ȳ ∗ is invertible (thanks toProposition D.3 and Proposition D.4). This step allows us to
recast (P0) as

dZ

dt
= F(Z) := −2 g Z + F

(
Ȳ (Z)

)
, Z ∈] − 1, 1[. (15)

The stability of the symmetrical polymorphic equilibrium (0, Ȳ ∗) can now be analysed by using the
chain rule of differentiation on the right-hand side of (15). We obtain that the symmetrical polymorphic
equilibrium is asymptotically locally stable if and only if

0 < 2g + ∂Ȳ F ·
(

[∂Ȳ G]−1
∂ZG

)∣∣∣
Z=0,Ȳ =Ȳ ∗

.
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Due to the large number of dimensions involved, the explicit formula of the latter is too long to be
given here.

The patterns resulting from the numerical analysis of the stability of the symmetrical polymorphic
equilibrium for four values of the effect of the major-effect locus η ∈ {0.5, 0.7, 1, 1.3} are computed in
Fig. 3. For each value of η, the region of the stability of the polymorphism is indicated in yellow with
selection strength (g, x-axis) and migration rate (m, y-axis) varying in [0, 3]. We can first observe that
these yellow regions have complex boundaries, and exhibit non-monotonic behaviours with regard to
both migration rate m and selection strength g. These are not predicted by the one-locus symmetric
model (OLM), which states that polymorphism is maintained everywhere under the dashed yellow line,
which represents the extinction threshold without the quantitative component (computed thanks to the
viability condition (13) stated in Proposition D.1 for Z = 0). The latter leads to the conclusion that,
when it occurs, the instability of polymorphism at the major-effect locus shown by our analysis results
stems from the presence of the quantitative background due to small-effect loci.

To describe the non-monotonic behaviour with respect to increasing selection strengths, one can
consider holding a constant intermediate migration rate and increase selection (going left to right on a
horizontal line in Fig. 3a, Fig. 3b, Fig. 3c and Fig. 3d). While the polymorphism at the major-effect
locus is not stable with weak selection, stability is gained at an intermediate level of selection that
depends on the migration rate and subsequently lost at a higher level of selection. This non-mono-
tonic behaviour when increasing selection levels is quite robust with regard to different values of η, as
shown by the different panels in Fig. 3 (even if the effect is attenuated when η = 1 in Fig. 3c, which
means that the major-effects coincide with the local optima). When selection is weak compared to
migration (left sides of Fig. 3a, Fig. 3b, Fig. 3c and Fig. 3d), it is expected that the relative blending
by migration, which is strong compared to the divergent forces of local selection, provokes the loss of
polymorphism. The loss of polymorphism at the major-effect locus is more surprising and counter-in-
tuitive as one would expect that the bonus provided by polymorphism at the major-effect locus, which
helps subpopulations to be locally adapted, would be even more important at stronger selection levels,
and therefore maintained. Unfortunately, the explicit mathematical expression of (15) is too involved
to be truly informative about what is the cause of the loss of polymorphism at the major-effect locus
with strong selection. We recommend the reader interested in this to consult the next section presenting
the results of individual-based simulations, which provide insights on the origin of this phenomenon.

Pushing further the numerical analysis of polymorphic equilibria. Here, we show
a numerical analysis of all the equilibria of the limit system (P0) in Fig. 4. To do so, we use the
autonomous differential equation (15) derived previously thanks to the implicit function theorem (used
on the whole interval Z ∈]−1, 1[ thanks to Proposition D.3 and Proposition D.4). From (15), (Z, Ȳ (Z))
is a polymorphic equilibrium if F(Z) = 0, and this equilibrium is locally stable if F ′(Z) < 0.

Even if the complexity of the limit system is still too great to be analytically solved (due to the
implicit nature of the function Ȳ defined by the relation G(Ȳ (Z), Z) = 0), we show in Fig. 4 the
phase lines corresponding to the limit equation (15), when the migration rate and the effect size of the
major-effect locus are held constant (m = 0.1, η = 0.5) and the selection strength varies (the lighter the
color, the stronger the selection). Solid lines indicate that the system is polymorphic, whereas dotted
lines indicate that one major-effect allele has fixed. Every intersection of the zero horizontal line and a
solid colored line with a negative slope indicates a locally stable polymorphic equilibrium (conversely,
a positive slope indicates an unstable equilibrium).

This figure is consistent with the analysis of Section 3.1 and Fig. 3a: at Z = 0, all the curves return
to 0 (F (Z)), confirming that a polymorphic equilibrium exists when the mean contribution of the small-
effect loci is 0. Their local slope indicates the stability of this equilibrium (stable if negative, unstable
if positive). Furthermore, Fig. 4 gives insights on the existence of asymmetrical polymorphic equilibria.
Particularly, it seems that such equilibria exist for a narrow window of intermediate selection strength:
the green curve corresponding to g = 0.86 displays two mirrored stable asymmetrical polymorphic
equilibria at Z ≈ ±0.5 (indicated by the red arrows), which is hard to predict analytically due to the
high orders of polynomials involved. Moreover, such equilibria are presumably quite subtle to catch
in individual-based simulations, because the window of selection and the basin of attraction are both
narrow. However, this illustrates the new and unsuspected insights that can be obtained from this
composite model.
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(a) η = 0.5 (b) η = 0.7

(c) η = 1 (d) η = 1.3

Figure 3: Stability region of the symmetrical polymorphic equilibrium (in yellow),
for four major effects η ∈ {0.5, 0.7, 1, 1.3} (recalling that θ = 1), when m (y-axis) and g
(x-axis) vary in [0, 3]). This figure highlights the gain and loss of polymorphism with regard
to increasing selection, which is not predicted by the one-locus model (abbreviated as OLM in
the legend), according to which polymorphism is maintained below the extinction threshold
represented by the dashed yellow line. The stable region (in yellow) becomes larger as η grows
closer to 1, as the major-effect allele effects can then allow local adaptation to the two patches
on their own, then shrinks again. The red crosses in Fig. 3a indicate the parameters used for
the individual-based simulations (see Section 3.2 and Fig. 5 and Fig. 9).
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Figure 4: Phase lines of the limit equation (15), when the migration rate and the
strong allelic effect are held constant (m = 0.1, η = 1

2) and the selection strength
varies (the lighter the color, the stronger the selection). Solid curves indicate that the system
is polymorphic, whereas dashed curves indicate that one major-effect allele has fixed. Every
intersection of the horizontal black line and a solid colored curve with a negative (resp. positive)
slope indicates a locally stable (resp. unstable) polymorphic equilibrium. The darker curve
with weak selection g = 0.01 has a positive slope at Z = 0 (unstable), the following curves have
a negative slope at Z = 0 (stable for selection between g = 0.18 and g = 0.86), and finally the
lightest curves have a positive slope at Z = 0 (unstable for g ≥ 1.03), which is consistent with
Fig. 3a. Note that there exists additionally two mirrored asymmetrical polymorphic equilibria
for g = 0.86, for Z ≈ ±0.5 (indicated by the red arrows), which were unsuspected prior to this
numerical analysis.
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3.2 Individual-based simulations
In this part, we confirm the results given by our analysis on the stability of the symmetrical polymorphic
equilibrium, using individual-based simulations conducted with the software SLiM (Haller and Messer
2019). We focus on the gain and loss of polymorphism with regard to increasing selection, when η ̸= 1,
for symmetrical and asymmetrical initial conditions. For each set of parameters, we ran 20 replicate
simulations. The results for the major-effect locus are displayed in Fig. 5 and Fig. 9, both with a
quantitative background (left panel) and without (right panel). The simulations confirm that variation
is maintained only for intermediate levels of selection (as measured by p(1 − p), where p is the local
frequency of allele A). They also provide some insights regarding the cause of the surprising loss of
polymophism at the major-effect locus with strong selection. The simulation procedure is detailed as
follows.

Populations and habitats. The species is split in two subpopulations living in two different
habitats, with local carrying capacity K = 104. In each habitat, individuals experience selection
toward a local trait optimum θi = (−1)i (for habitat i). Initially, the two subpopulations are at 4

5 of
the local carrying capacity. The genetic information of the individuals of the initial population is set
as follows. In each subpopulation, all the individuals have, at the major-effect locus, the allele whose
effect is the closest to the optimum of the habitat they are in (η in habitat 2 and −η in habitat 1).
The polygenic background is then set randomly and uniformly.

Genetic architecture. We consider L = 200 unlinked loci constituting the polygenic background.
At each of these loci, two alleles segregate, having an additive effect on the trait of the individual of
value σLE√

L
or − σLE√

L
, where σ2

LE is the variance at linkage equilibrum of the quantitative background.
No mutation occurs at those loci. We set the variance at linkage equilibrium to σLE = 0.1 small, so
that our analysis in a small variance regime is a good approximation. (In Appendix G, we consider the
same framework with a smaller number of loci involved in the quantitative background L = 50).

There is an additional locus of interest, which carries the major-effect alleles +η or −η. This locus
is also unlinked to all the others and no mutation occurs at this site. Note also that the trait range,
given by [−η − σLE

√
L, η + σLE

√
L] = [−η −

√
2, η +

√
2] extends beyond the local optima (-1,1),

even in the absence of major-effects.

Life cycle. The life cycle involves overlapping generations of small time length ∆t = 0.1. The life
cycle proceeds as follows:

1. reproduction: each individual of the metapopulation chooses at random one mate within its
subpopulation, and their mating produces an offspring with probability ∆t.

2. selection-competition: each individual (including offspring generated in the previous step) faces
a selection-competition trial according to its trait ζ and habitat i in which they are currently
living. They survive with probability exp

(
−g∆t(ζ − θi)2 − ∆t Ni

K

)
and are removed otherwise

(here Ni denotes the size of the subpopulation i after reproduction).

3. migration: at each migration event, within each subpopulation i, a number of migrants is drawn,
according to a Poisson law with parameter m∆t Ni (with a hard cap of Ni, which is the number
of individuals currently in the subpopulation after the selection-competition step). Migrants are
uniformly sampled accordingly within the subpopulation and are moved to the other deme. We
stress that a given value of the migration rate m = 0.8 means that, on average, a fraction
m∆t = 0.08 of the population will change deme at each generation.

Each simulation repeats this life cycle, first without migration for 100 generations of burn in (10 time
units) and next with migration for Ngen = 104 generations (103 time units). We model two types of
initial events when migration starts: either nothing happens, and the initial state is symmetrical, or we
model a sudden catastrophic loss of population in only one of the habitat during the first generation
with migration, so that the initial state is asymmetrical (results shown in Appendix G). Precisely, we
change the mortality of the uniform competition term only in the habitat 1, by replacing exp

(
−∆t N1

K

)
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by exp
(
− N1

K

)
(which is consistent with the interpretation that this catastrophic loss of population is

very abrupt). This leads to asymmetrical initial subpopulation sizes.

Qualitative results of the IBS on the stability of polymorphism with regard to
increasing selection. The solid lines in the sufigures of Fig. 5 (symmetrical initial population sizes)
and Fig. 9 (asymmetrical initial populations sizes) represent the median trajectories of the variance at
the major-effect locus (p(1−p), where p is the local frequency of allele A) in each habitat (gold lines for
habitat 1 and navy ones for habitat 2). When the variance p(1 − p) is positive, the A/a polymorphism
is maintained. In both Fig. 5 and Fig. 9, selection increases from top to bottom and the polygenic
background is present in the left panel and absent in the right one. When there exists a polygenic com-
ponent contributing to the trait, polymorphism at the major-effect locus is lost after some time with
weak selection (g = 0.1, Fig. 5a and Fig. 9a), is maintained with intermediate selection (g = 0.5, Fig. 5c
and Fig. 9c) and lost again even more quickly with strong selection (g = 1, Fig. 5e and Fig. 9e). This
is qualitatively consistent with the analytical predictions displayed in Fig. 3a, where the red crosses
indicate the three selection-migration set of parameters chosen for the IBS. Moreover, this phenomenon
is robust with regard to initial conditions (Fig. 5 and Fig. 9), although the loss of polymophism at
the major-effect locus at weak and strong selection is faster when subpopulations sizes are initially
asymmetrical (Fig. 9).

Control case without polygenic background. To confirm that the loss of polymorphism at
weak and strong selections is due to the polygenic background and not to genetic drift (although drift
is unlikely to have an effect under this time range of 103 time units with a population of order 104),
we additionally run an equal number of replicates for each set of parameters without any polygenic
background (L = 0, σLE = 0). Only the major-effect alleles segregates, and this corresponds to the
one-locus haploid model. Results shown in the right panel of Fig. 5 and Fig. 9 are consistent with
the one-locus haploid model analysis, which states that the polymorphism at this major-effect locus is
stable at all level of selection (the variance at the major-effect locus remains positive and stable).

Explanation behind the loss of polymorphism with strong and weak selection. The
IBS allow us to gain some insights about the cause of the major locus polymorphism’s collapse. We
first consider strong selection. In particular, the dynamics of the subpopulations sizes and the local
mean traits reveal that, at one point, stochasticity creates a small shift in the local mean traits. This
shift is the same between bearers of A and a and in both patches, because the small segregational
variance of the quantitative background binds the quantitative background values to be approximately
the same for everyone (in the analysis, this is reflected by the change in variables (11) introducing δa

ε , δA
ε

and δε). Therefore, this shift, which is toward one of the local optima improves the adaptation of one
subpopulation and is deleterious in the other one, which causes an asymmetry in subpopulation sizes,
which is particularly pronounced when selection is strong (see the small figure embedded in Fig. 5e,
built by selecting one of the two asymmetries for the sake of clarity). Because of this asymmetry, the
migrants’ flow is also asymmetrical and the larger population then undermines even more the small
population by gene flow, which in turn raises the frequency of the major-effect allele favoured in the
larger patch, which then further increases the disparity in population sizes among the two patches. This
positive feedback loop creates a vortex related to the phenomenon of migrational meltdown identified
in the quantitative genetic model of Ronce and Kirkpatrick (2001), which eventually leads to the loss
of one of the major-effect alleles.

One crucial feature of this explanation is the dynamics of the (varying) subpopulation sizes, which
our eco-evo model allows us to track. To confirm this intuition, we conducted the same IBS, but
with adjusting the birth rate to compensate for the deaths at every generation, effectively keeping
both subpopulations at a constant size. With constant subpopulations sizes, the polymorphism at the
major-effect locus is not lost with strong selection (see Fig. 8c in Appendix F). This truly highlights
the role of the eco-evo framework in which subpopulations sizes are variables that are allowed to vary.

We next consider weak selection, where one might wonder if the loss of polymorphism at the major-
effect locus relies on the same mechanism. In this case, random fluctuations at the major-effect locus
cause the quantitative trait to shift in the opposite direction, ensuring that the mean trait remains near
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0 (the midpoint between the two optima). This is because migration is so high relative to selection that
selection favours lineages that survive well in both patches. However, here, the small figure embedded
in Fig. 5a suggests the role of varying subpopulations sizes in this phenomenon is not as important.
This is confirmed by the fact that the loss of polymorphism also occurs in IBS where subpopulations
sizes are kept at a constant level (Fig. 8a). This implies that the loss of polymorphism at the major-
effect locus with weak and with strong selection fundamentally differ. With strong selection, randomly
generated asymmetries drive the system toward specialization in one patch and fixation of the major
allele in that patch, whereas with weak selection, randomly generated asymmetries drive one major
allele to fix and the quantitative trait to compensate in such a way that individuals are generalist with
a mean trait near the midpoint between the patch optima.

Quantitative comparison of IBS with the continuous-time deterministic model (1).
We also ran deterministic numerical iterations of (1) to check the quantitative constistency of the
stochastic IBS with the deterministic model (1). Two series were run, one for each type of initial
condition (symmetrical or asymmetrical initial subpopulations sizes). The median trajectory obtained
from these deterministic numerical resolutions of (1) for each set of parameters and initial conditions
are displayed by the dashed lines in all the subfigures of Fig. 5 and Fig. 9. These deterministic
trajectories are in excellent agreement with the ones obtained from the stochastic IBS and provide
good approximations. We choose to distinguish the two types of initial conditions (asymmetrical or
symmetrical) because the deterministic numerical resolutions are unequally sensitive to them. Indeed,
since the environment is symmetrical, the symmetrical initial state is at an unstable edge between two
symmetrical stable valleys for the interesting range of parameters and thus wanders for some time before
choosing a valley to fall into. Therefore, we initialized the deterministic resolutions with the symmetrical
initial state according to their respective IBS replicate states at 20% of the time before the median
fixation time (140 times units for Fig. 5a and 40 time units for Fig. 5e). With the asymmetrical initial
conditions (shown in Fig. 9 in Appendix G), this sensitivity is greatly reduced, and the deterministic
resolutions are initialized according to their respective IBS replicate states when migration starts (0
time units). Furthermore, the numerical scheme for the resolution of the deterministic model (1) uses a
splitting scheme to handle successively migration and the ecological dynamics internal to each habitat.
For the latter, we use a discretization of the Duhamel’ integral formula on time step of lengths ∆t for
the asymmetrical initial state series and ∆t

4 for the symmetrical initial state series (with an accordingly
increased number of time steps).
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(a) Major-effect locus with polygenic back-
ground: weak selection (g = 0.1).

(b) Control case without polygenic back-
ground: weak selection (g = 0.1).

(c) Major-effect locus with polygenic back-
ground: intermediate selection (g = 0.5).

(d) Control case without polygenic back-
ground: intermediate selection (g = 0.5).

(e) Major-effect locus with polygenic back-
ground: strong selection (g = 1).

(f) Control case without polygenic back-
ground: strong selection (g = 1).

Figure 5: Variance at the major-effect locus across time for increasing selection (top to
bottom: g = 0.1, 0.5, 1) at a fixed rate of migration (m = 0.8), with symmetrical initial
subpopulation sizes. p denotes the local frequency of the major-effect allele A. The left panel is
obtained with both a major-effect locus (η = 1/2) and a polygenic background of 200 loci, whereas
only the major-effect locus is present in the right panel. For each subfigure, 20 replicates simulations
were run per set of parameters, according to the setting explained in Section 3.2. In each subfigure,
the solid line represents the median trajectory and the shaded area indicates the 0.2 and 0.8 quantiles.
The dashed lines represent the median trajectories of the numerical resolutions of the deterministic
model (1). This figure confirms that polymorphism of the major-effect locus is maintained only when
selection is intermediate in strength (panel c) in presence of a polygenic background (left panel). The
small figures embedded in each figure of the left panel represent the dynamics of the subpopulation
sizes (N1 and N2). They highlight the qualitative difference between the loss of polymorphism at the
major-effect locus with weak or strong selection, as fixation occurs without change in subpopulation size
with weak selection (Fig. 5a) and as subpopulations sizes become asymmetrical with strong selection
(Fig. 5e).
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4 Discussion
Summary. In this work, we present a new eco-evo model for selection in a heterogeneous environ-
ment that combines a major-effect locus with a quantitative genetic background, without assuming
that the latter is normally distributed. With this model, we aim to examine how the presence of a
small quantitative background can disturb the polymorphism at the major-effect locus, which on its
own would be favoured in the type of setting we consider. This model bridges a population genetic
model (one-locus haploid model) with a quantitative genetic model recently studied in a heterogeneous
environment (Dekens 2022). To do so, it introduces a new reproduction operator, inspired by the in-
finitesimal model, that encodes the inheritance of a major-effect and a quantitative background. The
analysis goes deeper than previous studies, by formally justifying that the polygenic component of the
trait is normally distributed around the major-effect allelic effects in a regime of small variance and
hence justifying the Gaussian assumption made in Lande (1983) and Chevin and Hospital (2008). To
show this, we find new convex analysis arguments that leads to a separation of time scales, which
allows us to study the stability of the polymorphism at the major-effect locus. We show that this poly-
morphism, which is maintained at intermediate selection, is subsequently lost when selection increases
beyond a certain threshold, a phenomenon qualitatively confirmed by individual-based simulations.
The separation of time scales’ point of view offers the interpretation that the infinitesimal background
slowly disrupts the rapidly established symmetrical polymorphism at the major-effect locus. There-
fore, this phenomenon cannot be predicted by the one-locus haploid model (without the quantitative
background). To our knowledge, this phenomenon has not yet been documented.

The importance of the eco-evo framework and the influence of small segregational
variance. In the last section, we provided an explanation for our main biological result, which is
the unexpected loss of polymorphism at the major-effect locus with both strong and weak selection.
With strong selection, the explanation relies on two factors. First, the mean quantitative background
is constrained to move similarly in both patches and for bearers of A and a because of the small seg-
regational variance. This implies that any slight shift of the mean quantitative background necessarily
increases local adaptation to one patch and decreases local adaptation to the other. Consequently,
the latter creates an asymmetry in subpopulation sizes, one being better adapted than the other.
This asymmetry is significant when local selection is strong. The larger subpopulation then sends
relatively more migrants to the other patch, undermining the local adaptation there even more, which
contributes to raise the frequency of the allele favoured in the now larger patch everywhere. In turn,
the combination of increasing specialization and increasing disparity in population sizes (and therefore
migrant production results) in a vortex that can be identified as a migrational meltdown (coined in
Ronce and Kirkpatrick 2001).

Therefore, one can observe that this phenomenon specifically relies first on our eco-evo frame-
work, which allows us to track the dynamics of subpopulation sizes. This highlights the importance of
considering eco-evo dynamics when dealing with strong selection (which can heavily impact population
sizes), as this loss of polymorphism at the major-effect locus with strong selection would not be captured
by a more traditional approach in population genetics that considers the population sizes constant.
Second, this phenomenon of loss of polymorphism at the major-effect locus also relies crucially on
the small segregational variance of the quantitative background, which is linked to the very small
effect sizes of sufficiently many alleles. It is indeed worth noting that, if the segregational variance
of the quantitative background is relatively large, then the first step of our explanation ("the mean
quantitative background is constrained to move similarly in both patches and between bearers of A
and a") does not hold and the mean quantitative background can shift in opposite directions in the
two patches, improving local adaptation in both patches. The impact of bimodality in the quantitative
trait, with mean trait values in each patch near the local optimum, on the stability of polymorphism
at the major-effects locus deserves further attention.

Robustness. To assess the robustness of the swamping phenomenon that we identified, we per-
formed various individual-based simulations. We found that these are in excellent quantitative agree-
ment with our analysis. They also connect our framework to the evolution of an explicit genetic
architecture, which provides a practical translation of the small variance regime that underlies our
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study. This is important, because we have only shown that our results hold in this small variance
regime. In particular, they might be different under parameter ranges that violate this regime, for
example under low or no migration (meaning, at a level of comparable order as the small variance).
Moreover, because the trajectories of the individual-based simulations are consistent with the determin-
istic trajectories produced by our model, we can validate essential assumptions underlying our model,
mostly the constancy of the small segregational variance for the quantitative background. The latter
requires enough loci (L) with relatively small effects (± σLE√

L
), so that the segregational variance of the

quantitative background (lower than σ2
LE) remains small while the phenotypic range produced by the

polygenic background alone
[
−σLE

√
L, σLE

√
L
]

spans well beyond the local optimal traits. The last
condition is necessary to ensure genotypic redundancy (see also Yeaman 2022), so that well adapted
mates with similar phenotypes have on average relatively different genotypes, which in turn ensures
that the variance of their offspring does not depend too much on their traits. In our simulations pre-
sented in Section 3.2, we showed that L = 200 and σLE = 0.1 produced very similar trajectories to our
deterministic model. Furthermore, in Appendix G, we even lowered the number of loci to L = 50 and
increased the segregational variance parameter σLE = 0.2 to assess the robustness of our conclusions
with regard to less favorable parameters, with the same conclusions.

Complete analytical outcomes. The analysis performed in Section 3.1 is centered on the per-
sistence of polymorphism at the major-effect locus. As stated in Remark 1, the loss of polymorphism
by fixation would lead to the dynamics of the quantitative background alone, as covered in Dekens
(2022). Hence, Fig. 6 complements Fig. 3 (for η = 0.5 and varying migration and selection). First, it
displays the region of parameters where where polymorphism at the major-effect locus would be main-
tained, leading to a bimodal trait distribution in the metapopulation (in yellow, corresponding to the
analogous region in Fig. 3a). For the rest of the parameters, either the population goes extinct (purple
region, when both migration and selection are too strong), or one major-effect allele fixes and the other
one is lost. Therefore, in this case, the equilibria are given by the analysis done in Dekens (2022) (as
anticipated by Remark 1). These equilibria are monomorphic and are of two types. First, for bounded
selection, there exists a critical threshold in the migration rate under which the polymorphism at the
major-effect locus is lost due to the strong blending effect of migration. In that case of strong relative
migration, the metapopulation occupies equally the two habitats as generalist and its trait distribution
concentrates around the midpoint between the two habitats’ optima. It is therefore constituted by indi-
viduals that do not suffer from a loss in fitness when migrating between the patches. This corresponds
to the symmetrical monomorphic equilibrium (see Ronce and Kirkpatrick 2001; Dekens 2022), where
the population can be qualified as generalist (green region). Second, for bounded migration rates, the
polymorphism at the major-effect locus lost above a certain threshold in selection. In this case of rela-
tive strong selection (blue region), the metapopulation becomes specialized in one of the two patches,
and deserts the other (at the exception of a few migrants who are too maladapted to establish there).
This type asymmetrical equilibrium, highlighted as a source-sink scenario in Ronce and Kirkpatrick
(2001), was analytically derived in Dekens (2022).

Filling a methodological gap. In population genetics, one-locus or two-locus models in hetero-
geneous environments have been well studied (Nagylaki and Lou 2001; Bürger and Akerman 2011), with
a nuanced picture when including the effect of drift (Yeaman and Otto 2011). A two-deme two-locus
model is analysed in Geroldinger and Bürger (2014), which in particular shows that a concentrated
genetic architecture (a major-effect locus and a tightly linked minor one) maintains polymorphism (full
or single-locus) even under high migration rates when selection acts in opposite directions in the two
patches. Increasing the number of loci quickly leads to analytical complexity too great for general study.
There also exist multi-loci models in heterogeneous environments (Lythgoe 1997; Szép, Sachdeva, and
Barton 2021), but they focus on equal allelic effects. On the other end of the spectrum, quantitative
genetic models do not typically account for additional discrete major-effect allelic effects on the focal
quantitative trait (for sexually reproducing populations in heterogeneous environment, see Ronce and
Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Dekens 2022 and for asexually reproducing popula-
tions, see Débarre, Ronce, and Gandon 2013; Mirrahimi 2017; Mirrahimi and Gandon 2020; Hamel,
Lavigne, and Roques 2021).
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Figure 6: Summary of the complete analytical outcomes of the model, for η = 0.5 and
varying migration (y-axis) and selection (x-axis). The figure combines the results obtained in
Section 3.1 on the stability of the symmetrical polymorphic equilibrium with the results of the
model of Dekens (2022) (equivalent to this model upon loss of polymorphism). For bounded
selection, when migration increases, there is a threshold over which the polymorphism at the
major-effect locus is lost due to the blending effect of migration (consistent with Yeaman
and Whitlock 2011). The population then becomes equally maladapted to both habitats
(generalist - symmetrical monomorphism, in the green region). For this specific major-effect
allelic effect η = 0.5, there exists additionally an interval of selection strength (≈ [0.7, 1]) for
which the major polymorphism might not be stable at all migration rates below the critical
threshold. This phenomenon does not seem to hold when the major effect is larger (see Fig. 3b).
For bounded migration (below the threshold rate over which the strong migration blending
hampers the major polymorphism), when selection strength increases, the polymorphism at
the major-effect locus (yellow region) is lost, and the population becomes adapted to one of
the two habitats (specialist - asymmetrical monomorphism, in the blue region). As this figure
is obtained in the small segregational variance regime (which should remain smaller than the
other parameters of the system for the analysis to be valid), we warn that the outcomes
displayed in the vicinity of the x-axis (very small migration rates) might not correspond to
the limit when the migration rate is 0 (no migration).
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To our knowledge, the first model that bridges this gap between quantitative traits and discrete
loci appears in Lande (1983). In this work, the author considers the dynamics of a single major-effect
locus where two alleles segregate along with a polygenic background, in a diploid panmictic population
subjected to a sudden change of environment. He models the influence of the polygenic background
on the trait by assuming that, among bearers of the same major-effect allele, the trait distribution
is Gaussian, centered around the effect of the the major-effect allele on the trait. This study opened
the way for more recent work on the genetic architecture of adaptation of panmictic populations in a
suddenly changing environment, where the central question is whether this adaptation is due to major-
effect allelic sweeps or to subtle shifts in the frequency of many small effect alleles. In Chevin and
Hospital (2008), the authors extend the framework of Lande (1983) to include less specific selection
functions than exponential ones. Subsequent studies (Vladar and Barton 2014; Jain and Stephan 2017)
explicitly model the short-term dynamics of a polygenic trait at mutation-selection balance, following
a sudden change of environment. They show that there exists a sharp threshold in allelic sizes below
which polymorphism remains and above which fixation occurs. Lately, in a similar context, Höllinger,
Pennings, and Hermisson (2019) propose an extension to take genetic drift into account on the dynamics
of adaptation with a polygenic binary trait under mutation-selection balance. However, all those works
from Lande (1983) to Höllinger, Pennings, and Hermisson (2019) study panmicitic populations, without
spatial structure, even though spatial heterogeneities are known to generate gene flow, which indirectly
shapes genetic architecture through local adaptation (see Yeaman and Whitlock (2011), or below for
more details). Moreover, they focus solely on the dynamics of the allelic frequencies without considering
their coupling with population size dynamics, assuming it to be constant.

In this paper, we presented a composite framework between population and quantitative genet-
ics aiming at going beyond these methodological limitations. Our model and methodology allows us
to study analytically the eco-evo dynamics of a sexually reproducing population characterized by a
composite trait resulting from the interplay between a few major-effect loci and a quantitative poly-
genic background, in spatially heterogeneous environments (migration-selection balance). We want to
emphasize that, by "eco-evo dynamics", we mean that we study both the ecological and evolutionary
dynamics of the local trait distributions and therefore do not assume that the sizes of the populations
remain constant; rather, they are variables of the system. This modelling choice is crucial, because the
migrational meltdown phenomenon provoking the loss of polymorphism at the major-effect locus with
strong selection relies on the building of asymmetrical subpopulation sizes.

The role of the Gaussian assumption of quantitative trait values. In our work, we
justify the Gaussian assumption made by Lande (1983) and Chevin and Hospital (2008) to model the
background polygenic effect on the trait via a framework that does not make a priori assumptions
on the within-population distribution. Instead, our model relies on an extension of the standard
infinitesimal model (Fisher 1919) that encodes both the inheritance of the quantitative background
and the major-effect alleles. Analytical progress is possible in a regime of small segregational variance
for the quantitative component of the trait, despite not specifying the shape of the trait distribution.
It relies on the fact that the variance introduced at each event of reproduction by the quantitative
background is small compared to the discrete allelic effects at the major-effect locus. This allows
us to use a methodology developed by Diekmann et al. (2005), meant to study trait distributions
concentrated as Dirac masses, to justify that assuming Gaussian distributions of quantitative trait
values is valid (Section 2.1). Moreover, this Gaussian approximation appears here sufficient to capture
the phenomenon of migration meltdown with strong selection that we identify through the rest of our
analysis, as higher order moments do not seem to have a significant influence on it.

Extensions to more complex population genetic models. The model and the line of
methods that we use in this paper are quite robust. We thus provide a comprehensive toolbox at the
end of this manuscript (Appendix A), to describe how to apply the method more broadly. In particular,
the toolbox is meant to indicate how to extend the method to more complex population genetic models
by adding a quantitative background. It relies on Proposition B.1, which justifies that carrying the
analysis under the Gaussian assumption of quantitative trait distribution is valid (in the regime of small
variance indicated). In Appendix A, we detail the hypotheses that the population genetic models must
satisfy in order to use it (see Appendix B for details and examples).
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Further prospects. The loss of the polymorphism at the major-effect locus with strong selection
in a symmetrical heterogeneous environment, where one might think that it is most favoured, illustrates
the value of our method. However, two natural questions stem from our work:

1. Would the stability region of polymorphism at the major-effect locus shrink as much in the pres-
ence of a quantitative background when considering asymmetrical levels of selection/migration
between the two patches? Our analysis suggest that it should, and this can be investigated
through an extension of the last step of our analysis.

2. Would this phenomenon hold if mutations can accumulate at the major-effect locus? Figure 3 for
example suggests that polymorphism at the major-effect locus would persist over a wider range
of parameters if the alleles at the major-effect locus evolve to match the difference in optima.
This possibility was indicated by the numerical findings of Yeaman and Whitlock (2011), who
found the emergence of tightly linked clusters of major-effect loci underlying local adaptation for
intermediate migration rates.

A Toolbox: How to study the interplay between a quantitative
background and a finite number of major-effect loci.

The aim is to study the interplay between a quantitative background and a finite number of major-effect
loci.

We start with a population genetic model. Let us consider K different genotypes A(k) which have
genotypic effects on the phenotype a(k) (we use the index k to indicate genotypes). For our method
to be applied, the genotypes should verify two hypotheses H1 and H2 described in Appendix B. The
metapopulation lives in a heterogeneous environement of I patches (we use the index i to indicate
location). We denote the population of patch i carrying genotype k by N

(k)
i . Let us denote the system

of equations that describes the dynamics of the genotypic local population sizes: dN̄
dT = G̃ā

(
N̄(T )

)
and of a viable stable equilibrium N̄∗. We recall that N̄∗ is an equilibrium of the system if G̃ā(N̄∗).
This equilibrium is viable if all the population sizes are non-negative, and at least one is positive. Its
local stability is determined by standard linear analysis (sign of the real parts of the eigenvalues of the
system’s Jacobian).

Let us modify the previous population genetic framework to include the effect of a quantitative
background on the trait, generically denoted z. While previously, all individuals carrying the same
genotype A(k) shared the same phenotype, now their phenotypes can differ due to the quantitative
background they present. Consequently, among individuals of the same patch k carrying the same
major genotype A(k), we distinguish those sharing the same quantitative background z, and denote
their number n

(k)
i (z):

A(k) ⇝ (A(k), z)
a(k) ⇝ a(k) + z

N
(k)
i ⇝ n

(k)
i (z).

The PDE system that we obtain on the trait distributions n
(k)
i is not easily analysed. That is why we

provide a five steps plan in order to guide the analysis when the diversity introduced by the segregation
of the quantitative component of the trait is small compared to the variance generated by the major-
effect loci (H6 - regime of small variance):

1. First, we operate a scaling of time according to the regime of small variance. It anticipates on the
separation of time scales such that the major-effect allelic frequencies change rapidly, followed
by the slow changes of the quantitative components (see step 3).

2. In this regime of small variance, we can justify the Gaussian approximation of the local genotypic
distributions n

(k)
i centered at the same mean and the same variance ε2, thanks to Proposition B.1,

as soon as the assumptions (H1) and (H2) are satisfied (see Appendix B) and every genotypic
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population randomly mates with themselves and every other genotypic population (H3) (the
latter excludes for example models that differentiate sexes). This guides the intuition toward
which change of variables to perform in order to get a system separating time scales explicitly
(see Step 3). We emphasize that Proposition B.1 is crucial to be able to apply this method.

3. From the PDE system on the distributions n
(k)
i , we can deduce the ODE system of their moments.

Since we have justified the Gaussian approximation for all local genotypic distributions n
(k)
i , the

new system is closed in the regime of small variance ε2 ≪ 1, and only involves the dynamics of the
genotypic local sizes of populations N

(k)
i and the genotypic local mean quantitative components

z
(k)
i .

4. This step aims at obtaining a system that explicitly separates time scales, in order to ultimately
reduce the complexity of the analysis. It requires a technical change of variables, which is guided
by the formal analysis of the step 1 (mean quantitative components roughly the same within
patches), and the intuition that migration has a strong blending effect between patches in the
small variance regime (which would result in the mean quantitative components roughly being
equal between patches). These considerations bring the following new variables replacing the
genotypic local mean quantitative component z

(k)
i :

⋄ for each genotype 1 ≤ k ≤ K, δ
(k)
i,ε is the difference in the mean quantitative component of

the genotypic population k between the patch i + 1 and patch i (1 ≤ i ≤ I − 1). Dividing
by ε2 comes from the intuition given above.

⋄ for each genotype 1 ≤ k ≤ K − 1, δ
(k)
ε is the difference between the mean quantitative

component averaged across patches of genotypic population k + 1 and k. Dividing by ε2

comes from the intuition given in Step 1.
⋄ Zε is the overall mean quantitative component across patches and major genotypes. It is

the slow evolving variable.

Rewriting the dynamics of the genotypic local population sizes N̄ε along these new variables δ̄ε

and Zε delivers a system in which all the differential equations are multiplied by ε2 (fast dynamics
of N̄ε and δ̄ε) except the one governing the dynamics of Zε (slow dynamics).
To finally complete the separation of time scales and obtain the limit system by letting ε2 vanish,
it is sufficient to show that at each value Z of the slow variable, the fast time-scale equilibria(
N̄ , δ̄

)
are stable, for example by using the Routh Hurwitz criterion for linear analysis on the

Jacobian JacGā

(
N̄ , δ̄

)
.

5. The last step to determine the stability of the global equilibria of the full system of the genotypic
population with the influence of the quantitative background

(
N̄∗, δ̄∗, Z∗), consists in applying

the formula given in the last box (see the next page).
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Toolbox: How to study the interplay between a quantitative background
and a finite number of major-effect loci dynamics.

The stadium:
I patches Pi (1 ≤ i ≤ I)

The teams:
K different genotypes A(k) (1 ≤ k ≤ K)
Vector of genotypic effects on phenotype: ā = (a(1), ..., a(k))
Matrix of local genotypic population sizes: N̄ =

(
N

(k)
i

)

Pop. gen. model:
dN̄
dT = G̃ā

(
N̄(T )

)
Pop gen. analysis:

(i) Viable equilibria: Gā

(
N̄∗
)

= 0 and N̄∗ > 0̄.

(ii) Stability: eigenvalues of JacGā

(
N̄∗
)

in open
left plane.

Population genetic model

The new players:

(i) Quantitative background z

(ii) Individuals carrying
genotype i and a
quantitative background z
have a phenotype z + a(k).

(iii) Distribution in patch k :
n

(k)
i (z)

Work hypotheses:

H1 - H2 (reflexivity and irreducible graph - see App.B)

H3 every genotypic population reproduces randomly
with themselves and every other in the same patch

H4 inheritance of the quantitative background in
accordance with the infinitesimal model with
segregational variance σ2.

H5 the quantitative background is unlinked to A(k)

H6 σ2 ≪ min
∣∣∣a(k)

∣∣∣2: small variance regime.

Composite model combining population and quantitative genetics

0) Scaling of time t := ε2 T

(ε2 := σ2

min|a(k)|2 ≪ 1 ⇝ few diversity

via inf. model of reproduction)

1) Formal analysis (justify Gaussian
distributions - Proposition B.1):

(i) n
(k)
i,ε (z) ≈ N

(k)
i,ε × Gauss

(
z

(k)
i,ε , ε2

)
(ii) z

(k)
i,ε ≈ z

(l)
i,ε

2) ODE system of moments (z̄ε :=
(z(k)
i,ε )):ε2 dN̄ε

dt = Gā

(
N̄ε(t), z̄ε(t)

)
,

ε2 dz̄ε
dt = Fā

(
N̄ε(t), z̄ε(t)

)
.

3) Slow-fast analysis:

(i) Change in variables: δ
(k)
i,ε = z

(k)
i+1,ε−z(k)

i,ε

2ε2 [K(I − 1)] ;

δ
(k)
ε =

∑
i
z

(k+1)
i,ε −z(k)

i,ε

2Iε2 [(K − 1)] ; Zε =
∑

k,i
z

(k)
i,ε

K×I

(ii) Slow-fast system:ε2 d[N̄ε,δ̄ε]
dt = Gā

(
N̄ε(t), δ̄ε(t), Zε

)
,

dZε
dt = Fā

(
Zε, N̄ε, δ̄ε

)
.

(iii) Separation of time scales (via stability of zeros of Gā
by Routh-Hurwitz criterion on JacGā(N̄ , δ̄))0 = Gā

(
N̄ , δ̄, Z

)
,

dZ
dt = Fā

(
Z, N̄ , δ̄

)
.

4) Analysis of the limit system:

(i) Viable equilibria: Gā
(
N̄∗, δ̄∗, Z∗

)
= Fā

(
Z∗, N̄∗, δ̄∗

)
= 0,

N̄∗ > 0

(ii) Stability:∇N̄,δ̄Fā ·
([

JacGā

(
N̄ , δ̄

)]−1
∂ZGā

)∣∣∣∣
Z∗,N̄∗,δ̄∗

> 0.

Steps to apply the analysis
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B Generalization of Proposition 2.1 for more complex geno-
types.

To state a generalization of Proposition 2.1, we first need to specify the targeted scope of population
genetic models. Let us consider K different genotypes A(k) that satisfies the following hypotheses
relating to how they interact with each other regarding the genotypes of their offspring:

H1 Reflexivity: For all k ∈ (1, K), the offspring of two parents with the same genotype A(k) has a
positive probability to be of genotype A(k).

H1 is a natural hypothesis when considering either haploid or diploid populations, even with non-
Mendelian processes (genetic linkage/recombination, gene drives), provided that they are not too ex-
treme (lowering the probability of inheriting a certain genotype is fine as long as it does not cancel it).
The second hypothesis is more conveniently apprehendable by considering the graph G whose nodes
are the genotypes A(k). A vertex links two nodes A(k) and A(l) if and only if there exists a positive
probability that their offspring has genotype A(k) or A(l).

H2 Irreducible graph: For all (k, l) ∈ (1, K)2, there exists a path of vertices of G connecting A(k)

and A(l).

This last hypothesis is satisfied by any haploid models, regardless of how many loci are considered,
because an offspring can inherit all their alleles from only one parent. Consequently, in that case, every
node of the graph is connected to every other. In diploid models, where an offspring can have a different
genotype from both its parents, which vertices of the graph G exist is not clear. However, for example,
we can show that the graph corresponding to a diploid model, with L loci and two alleles at each loci,
is connected according to H2. Indeed, each genotype is directly connected to any other that differs
from it from just one allele at one locus. Nevertheless, the interest of H2 is that it is very easy to verify
whether it is satisfied given any particular model.

To state the proposition that generalizes (Proposition 2.1), we first need to define the index set of
couples that can yield an offspring with a particular genotype. For k ≤ K, we denote it by C(k), where
(l, k) ∈ C(k) if and only if parents with genotypes A(l) and A(k) can produce an offspring with genotype
A(k). The following proposition characterizes the genotypic functions uA(k) that respect the following
constraints analogous to C

∀k ≤ K, ∀z ∈ R, max
(l,k)∈C(k)

[
sup
z1,z2

uA(k)
(z) −

(
z − z1 + z2

2

)2
− uA(l)

(z1) − uA(k)
(z2)

]
= 0. (C’)

Proposition B.1. Suppose that H1 and H2 are satisfied. For k ≤ K, we consider uA(k) a real
valued non-negative function whose zero set is non-empty and of measure 0 (for example, is finite). If
{uA(k)

, k ≤ K} respects (C’), then there exists z∗ ∈ R such that for all k ≤ K:

∀z ∈ R, uA(k)
(z) = (z − z∗)2

2 .

Proof.

0) uA(k) is continuous and has right and left derivatives everywhere. For k ≤ K and
z ∈ R, we have:

uA(k)
(z) − z2 = min

(l,k)∈C(k)
inf

z1,z2

[
−z(z1 + z2) +

(
z1 + z2

2

)2
+ uA(l)

(z1) + uA(k)
(z2)

]
. (16)

Therefore, uA(k)(z) − z2 is concave as infimum of affine functions, and thus continuous and has
right and left derivatives.
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1) uA(k) cancels only once. Let us fix k ≤ K. Let us suppose that uA(k) has two zeros z∗
1 ̸= z∗

2 .
H1 implies that (k, k) ∈ C(k). Then, we deduce from (C’) that:

uA(k)
(z) ≤ inf

z1,z2

(
z − z1 + z2

2

)2
+ uA(k)

(z1) + uA(k)
(z2).

In particular, for z = z∗
1 +z∗

2
2 , z1 = z∗

1 , z2 = z∗
2 , we obtain

uA(k)
(z∗

1 + z∗
2

2 ) ≤ 0. (17)

As uA(k) is non-negative, the midpoint between two zeros of uA(k) is also a zero of uA(k) . uA(k) is
also continuous from the previous point, therefore, we deduce that uA(k) cancels on [z∗

1 , z∗
2 ]. The latter

violates the assumption that uA(k) has a zero set of measure 0. Because it is also not empty, we get
that uA(k) cancels exactly once, in a point that we denote z∗

k.

2) The zero of uA(k) coincides with the zero of uA(l): z∗
k = z∗

l . First, let us consider the
case where (k, l) ∈ (1, K)2 is such that A(k) and uA(l) are linked by a vertex in the graph G. Then, we
deduce that (k, l) ∈ C(k) or (k, l) ∈ C(l). We can assume the first without loss of generality. Similarly
as the first part of the proof, we deduce that

uA(k)
(z) ≤ inf

z1,z2

(
z − z1 + z2

2

)2
+ uA(k)

(z1) + uA(l)
(z2).

Consequently, the midpoint between z∗
k and z∗

l is a zero of uA(k) , which is necessarily z∗
k, which implies

that z∗
k = z∗

l .
Let us now show the same for every couple (k, l) not necessarily linked by a vertex in G. H2 implies

that there exists a path of vertices between uA(k) and uA(l) . As we showed that for every pair of nodes
connected by a vertex, the zeros of their function is the same point, that property also holds for the
extremities of the path of vertices, hence z∗

k = z∗
l . We denote z∗ the common zero.

3) Convex Legendre conjugates ˆuA(k)(y) = sup
z

(z − z∗)y − uA(k)(z). Let us show that (C’)
implies that the convex Legendre conjugate satisfies

∀y ∈ R, ˆuA(k)(y) = y2

4 + max
(l,k)∈C(k)

[ ˆuA(l)
(y

2

)
+ ˆuA(k)

(y

2

)]
. (18)

Using (16) and commuting the sup, we obtain, for y ∈ R,

ˆuA(k)(y) = sup
z

[
(z − z∗)y − min

(l,k)∈C(k)
inf

z1,z2

( (
z − z1 + z2

2

)2
+ uA(l)

(z1) + uA(k)
(z2)

)]

= max
(l,k)∈C(k)

[
sup
z1,z2

(
−uA(l)

(z1) − uA(k)
(z2) + sup

z
(z − z∗)y −

(
z − z1 + z2

2

)2
)]

.

(19)

Moreover, a straight-forward calculus shows that the sup
z

is reached at z = y+z1+z2
2 , which leads to

sup
z

(z − z∗)y −
(

z − z1 + z2

2

)2
=
(

y + z1 + z2

2 − z∗
)

y − y2

4

= y2

4 + (z1 − z∗) y

2 + (z2 − z∗) y

2 .

(20)
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Combining (20) and (19) (the fact that zA = za = z∗ plays a crucial part for the crossed term) leads
to (18).

Moreover, we obtain classically that:

ˆuA(k)(y) ≥ (z∗ − z∗)y − uA(k)
(z∗) = 0 = ˆuA(k)(0) (21)

.

4) max
k≤K

ˆuA(k) : y 7→ y2

2 . We obtain from (18) that:

∀y ∈ R, max
k≤K

ˆuA(k)(y) = y2

4 + max
k≤K

max
(l,k)∈C(k)

[ ˆuA(l)
(y

2

)
+ ˆuA(k)

(y

2

)]
. (22)

For y ∈ R, let k0 ≤ K be such that max
k≤K

ˆuA(k) (y
2
)

= ˆuAk0

(
y
2
)
. H1 implies in particular (k0, k0) ∈ C(k0)

and therefore, the maximum of the right-hand side of (22) is reached in 2 ˆuAk0

(
y
2
)
. Consequently, we

deduce that
∀y ∈ R, max

k≤K

ˆuA(k)(y) = y2

4 + 2max
k≤K

ˆuA(k)
(y

2

)
. (23)

Moreover, one can notice that

∀y ∈ R, max
k≤K

ˆuA(k)(y) = max
k≤K

max
z∈R

(z − z∗)y − uA(k)
(z)

= max
z∈R

(z − z∗)y − min
k≤K

uA(k)
(z)

=
ˆ(

min
k≤K

uA(k)

)
(y).

Therefore, max
k≤K

ˆuA(k) is a convex continuous function that has left and right derivative everywhere, in
particular in 0. Hence, iterating (23) implies first that:

∀y > 0 (resp. < 0), max
k≤K

ˆuA(k)(y) = y2

2 + β y (resp. α y), (24)

where (α, β) =
(

max
k≤K

ˆuA(k)
′
(0−), max

k≤K

ˆuA(k)
′
(0+)

)
. From (21), we deduce that the α ≤ 0 ≤ β. Since

max
k≤K

ˆuA(k) is the convex conjugate of min
k≤K

uA(k) , we compute that the convex bi-conjugate of min
k≤K

uA(k)

is

z 7→


(z−z∗−α)2

2 if z < z∗ + α

0 if z∗ + α ≤ z ≤ z∗ + β
(z−z∗−β)2

2 if z > z∗ + β.

(25)

As the convex bi-conjugate of min
k≤K

uA(k) is the lower convex envelope of min
k≤K

uA(k) , the two of them
are equal at the extremal points of its graph, namely for z = z∗ + α and z = z∗ + β. We deduce from
(25) that

min
k≤K

uA(k)
(z∗ + α) = min

k≤K
uA(k)

(z∗ + β) = 0.

Since all the uA(k)
, k ≤ K only cancels for z = z∗, we obtain that α = β = 0 and (24) yields that

max
k≤K

ˆuA(k) : y 7→ y2

2 .
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5) max
k≤K

ˆuA(k) = min
k≤K

ˆuA(k). First let us state that min
k≤K

ˆuA(k) is continuous as minimum of a
finite number of continuous functions and that it is non-negative and reaches its minimum in 0, with
min
k≤K

ˆuA(k)(0) = 0 (from (21)). Moreover, (18) implies that

∀y ∈ R, min
k≤K

ˆuA(k)(y) ≤ y2

4 + 2 max
k≤K

ˆuA(k)
(y

2

)
= y2

2 . (26)

Therefore min
k≤K

ˆuA(k) has left and right derivatives in 0, and min
k≤K

ˆuA(k)
′
(0+) = min

k≤K

ˆuA(k)
′
(0−) = 0.

Furthermore, (18) also implies that

∀y ∈ R, min
k≤K

ˆuA(k)(y) ≥ y2

4 + 2 min
k≤K

ˆuA(k)
(y

2

)
.

Iterating the last inequality, and knowing that

min
k≤K

ˆuA(k) (0) = min
k≤K

ˆuA(k)
′ (

0+) = min
k≤K

ˆuA(k)
′ (

0−) = 0,

leads to
∀y ∈ R, min

k≤K

ˆuA(k)(y) ≥ y2

2 = max
k≤K

ˆuA(k)(y).

Consequently, we deduce that min
k≤K

ˆuA(k) = max
k≤K

ˆuA(k) .

End of proof. The last result implies that

∀k ≤ K, ∀y ∈ R, ˆuA(k)(y) = max
k≤K

ˆuA(k)(y) = y2

2 .

From the latter we compute the bi-conjugates
ˆ̂

uA(k) : z 7→ (z−z∗)2

2 . Since z 7→ z−z∗

2 is strictly convex
and it is the lower convex envelope of uA(k) , we obtain that

∀k ≤ K, ∀z ∈ R, uA(k)
(z) = (z − z∗)2

2 .

C Formal justification of the constraints (C) on the main terms
uA

0 and ua
0

We drop the index i indicating the habitat and the time dependence t for this appendix for the sake of
simpler notations.

Let us first formally justify that UA
0 and Ua

0 are positive almost everywhere and cancelling some-
where. As we are interested in the maintenance of the polymorphism at the major-effect locus, we
consider that no major-effect allele has yet fixed. Hence, NA

ε and Na
ε need to remain positive and

bounded when ε vanishes. Using the Hopf-Cole transforms on nA
ε and na

ε (5) along with the formal
Taylor expansions (6) on UA

ε and Ua
ε leads to

NA
ε =

∫
R

nA
ε (z′) dz′ =

∫
R

1√
2πε

e− UA
ε (z′)

ε2 dz′ =
∫
R

1√
2πε

e−
uA

0 (z′)
ε2 e−uA

1 +ε2vA
ε dz′. (27)

If we assume that the residues uA
1 and vA

ε stay bounded when ε vanishes (as Calvez, Garnier, and
Patout (2019) suggests it), then (27) implies that uA

0 must be non-negative for NA
ε to remain bounded
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when ε vanishes. For NA
ε not to vanish asymptotically, uA

0 must cancel. Moreover, for any interval
I ⊂ R, uA

0 cannot cancel on I, or we would have:

NA
ε >

∫
I

1√
2πε

e
1

ε2 e−uA
1 +ε2vA

ε dz′ → +∞.

So uA
0 is positive almost everywhere, and cancelling somewhere. The same holds for ua

0 .
Now, for determining the constraints (C), let us notice that if we divide the right-hand side of the

first equality of (3) by nA
ε (z), the reproduction term BA

ε (nA
ε ,na

ε )(z)
nA

ε (z) has to remain positive and bounded
for all z ∈ R when ε vanishes for the effect of reproduction to remain well-balanced with selection,
migration and competition. We assume henceforth that (6) is the correct ansatz (as suggested by
Calvez, Garnier, and Patout 2019). Using the Hopf-Cole transforms on nA

ε and na
ε (5) along with the

formal Taylor expansions (6) on UA
ε and Ua

ε in (4) leads to

BA
ε (nA

ε , na
ε)(t, z)

nA
ε (z)

= BA
ε (nA

ε , na
ε)(z)

1√
2πε

e
−

uA
0 (z)

ε2 e−uA
1 (z)+O(ε2)

=
√

2
NA

ε
×[∫

R2
exp
(

1
ε2

[
uA

0 (z) −
(

z − z1 + z2

2

)2
− uA

0 (z1) − uA
0 (z2)

])
exp
(
uA

1 (z) − uA
1 (z1) − uA

1 (z2) + O(ε2)
)

dz1dz2

+
∫
R2

exp
(

1
ε2

[
uA

0 (z) −
(

z − z1 + z2

2

)2
− uA

0 (z1) − ua
0(z2)

])
exp
(
uA

1 (z) − uA
1 (z1) − ua

1(z2) + O(ε2)
)

dz1dz2

]
.

As NA
ε remains bounded and does not vanish asymptotically, we need the maximum of the two integrals

nor to vanish, nor to diverge to infinity when ε vanishes, for all z ∈ R. Therefore the maximum of the
terms into brackets that are multiplied by 1

ε2 needs to be null for all z ∈ R:

∀z ∈ R, max
[

sup
z1,z2

uA
0 (z) −

(
z − z1 + z2

2

)2
− uA

0 (z1) − uA
0 (z2),

sup
z1,z2

uA
0 (z) −

(
z − z1 + z2

2

)2
− uA

0 (z1) − ua
0(z2)

]
= 0,

which is the first constraint of (C). The same holds for B⊣
ε (na

ε ,nA
ε )(z)

na
ε (z) , which gives the second constraint

of (C).

D Slow-fast analysis underlying the separation of time scales
Under the change of variable (11), the system (10) is equivalent to the following:
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

ε2 d Na
ε,i

dt = λi−1Na
ε,i −

[
NA

ε,i + Na
ε,i

]
Na

ε,i − gi

[
Zε + ηa − (−1)i

]2
Na

ε,i

+α(−1)j

mj Na
ε,j − mi Na

ε,i + O(ε2),

ε2 d NA
ε,i

dt = λi−1 NA
ε,i −

[
NA

ε,i + Na
ε,i

]
NA

ε,i − gi

[
Zε + ηA − (−1)i

]2
NA

ε,i

+α(−1)j

mj NA
ε,j − mi NA

ε,i + O(ε2),

ε2 d δa
ε

dt = g1 + g2 + (g1 − g2) (Zε + ηa) + δε

2

[
NA

ε,2
Na

ε,2+NA
ε,2

− NA
ε,1

Na
ε,1+NA

ε,1

]
−δa

ε

[
m2α Na

ε,2
Na

ε,1
+ m1Na

ε,1
α Na

ε,2

]
+ δA

ε −δa
ε

4

[
NA

ε,2
Na

ε,2+NA
ε,1

+ NA
ε,1

Na
ε,1+NA

ε,1

]
+ O(ε2),

ε2 d δA
ε

dt = g1 + g2 + (g1 − g2) (Zε + ηA) + δε

2

[
Na

ε,1
Na

ε,1+NA
ε,1

− Na
ε,2

Na
ε,2+NA

ε,2

]
−δA

ε

[
m2αNA

ε,2
NA

ε,1
+ m1NA

ε,1
αNA

ε,2

]
+ δa

ε −δA
ε

4

[
Na

ε,2
Na

ε,2+NA
ε,2

+ Na
ε,1

Na
ε,1+NA

ε,1

]
+ O(ε2),

ε2 d δε

dt = − δε

2 − (g1 + g2) ηA−ηa

2 +
(

δA
ε

2

[
αm2NA

ε,2
NA

ε,1
− m1NA

ε,1
αNA

ε,2

]
− δa

ε

2

[
αm2Na

ε,2
Na

ε,1
− m1Na

ε,1
αNa

ε,2

])
+O(ε2),

dZε

dt = (g2 − g1) − (g1 + g2)
(

Zε + ηA+ηa

2

)
+ δε

2

[
NA

1,ε

NA
1,ε+Na

1,ε

+ NA
2,ε

NA
2,ε+Na

2,ε

− 1
]

+
(

δa
ε

2

[
αm2Na

ε,2
Na

ε,1
− m1Na

ε,1
αNa

ε,2

]
+ δA

ε

2

[
αm2NA

ε,2
NA

ε,1
− m1NA

ε,1
αNA

ε,2

])
+ δA

ε −δa
ε

4

[
NA

2,ε

NA
2,ε+Na

2,ε

− NA
1,ε

NA
1,ε+Na

1,ε

]
+ O(ε2).

(28)

The system (28) can be recasted more compactly into Pε. The main slow-fast analysis result is Theo-
rem 2.1, which states the convergence of Pε towards a limit system P0 which separates ecological and
evolutionary time scales. The arguments of the proof of Theorem 2.1 are similar to the analogous the-
orems proved in Levin and Levinson (1954) and Dekens (2022). The proof requires some preliminaries
results, particularly of stability, to which we dedicate the rest of this section. The structure of this
section is represented in Fig. 7. In the rest of this section, we first solve the slow manifold algebraic
system G(Ȳ , Z) = 0, showing that there can only exist one instantaneous ecological equilibrium at a
given Z ∈] − 1, 1[ (Proposition D.1 and Proposition D.2). Surprisingly, this resolution is easier than
the analogous one in Dekens (2022) (see Remark 5). Next, in Appendix D.1.2, we show a stability
criterion of the slow manifold (Proposition D.3 and Proposition D.4), which justifies the separation of
time scales approach.

D.1 Analysis of the fast equilibria.
The fast equilibria, for Z ∈] − 1, 1[, are defined as the solutions Ȳ to the algebraic system G(Ȳ , Z) = 0,
or equivalently seven equations that we group in two subsystems S0(Z) and SL(Z):

α m2 Na
2 − m1Na

1 + Na
1
[
1 − (Na

1 + NA
1 ) − g1 (Z + ηa + 1)2] = 0,

α m2 NA
2 − m1NA

1 + NA
1
[
1 − (Na

1 + NA
1 ) − g1 (Z + ηA + 1)2] = 0,

m1
α Na

1 − m2 Na
2 + Na

2
[
λ − (Na

2 + NA
2 ) − g2 (Z + ηa − 1)2] = 0,

m1
α NA

1 − m2 NA
2 + NA

2
[
λ − (Na

2 + NA
2 ) − g2 (Z + ηA − 1)2] = 0.

(S0(Z))

JSL

 δ
δA

δa

 =

 (g1 + g2) ηA−ηa

2
−(g1 + g2) + (g2 − g1)(Z + ηA)
−(g1 + g2) + (g2 − g1)(Z + ηa)

 , (SL(Z))
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(Pε)


Fast dynamics (allelic subpopulations sizes
and spatial discrepancies between mean infinitesimal parts),

Slow dynamics (mean infinitesimal part).

Theorem 2.1
ε → 0

(P0)


Fast ecological equilibria,

Slow evolutionary dynamics.

S0(Z) (allelic subpopulation sizes),
Resolution Proposition D.1, Remark 5,

Stability Proposition D.3.

SL(Z) (mean trait discrepancies),
Resolution Proposition D.2,

Stability Proposition D.4.

One-locus haploid model

Remark 4 (Z = 0)

Figure 7: Layout of the slow-fast analysis in Appendix D. This figure presents the
key elements of the separation of time scales leading from Pε to P0. The stability of the
fast equilibria (studied in the two subsystems S0(Z) and SL(Z)) is the crucial argument
underlying the convergence result stated in Theorem 2.1. The resolution of S0(Z) leads to
a uniqueness result that is unexpected with regard to the analogous resolution in Dekens
(2022) (see Remark 5).
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where:

JSL
:=


− 1

2
1
2

[
α m2 NA

2
NA

1
−

m1 NA
1

α NA
2

]
− 1

2

[
α m2 Na

2
Na

1
−

m1 Na
1

α Na
2

]
Na

1
NA

1 +Na
1

−
Na

2
NA

2 +Na
2

2 −
[

α m2 NA
2

NA
1

+
m1 NA

1
α NA

2

]
−

Na
1

NA
1 +Na

1
+

Na
2

NA
2 +Na

2
4

Na
1

NA
1 +Na

1
+

Na
2

NA
2 +Na

2
4

NA
2

NA
2 +Na

2
−

NA
1

NA
1 +Na

1
2

NA
1

NA
1 +Na

1
+

NA
2

NA
2 +Na

2
4 −

[
α m2 Na

2
Na

1
+

m1 Na
1

α Na
2

]
−

NA
1

NA
1 +Na

1
+

NA
2

NA
2 +Na

2
4


D.1.1 Resolution.

Following Remark 1, we recall that we assume that no major-effect allele has fixed. Here, we show that
there is at most one instantaneous ecological equilibrium at each Z-level (for Z ∈] − 1 − ηA+ηa

2 , 1 −
ηA+ηa

2 [), thanks to Proposition D.1 and Proposition D.2.

Proposition D.1. Suppose that no major-effect allele has fixed. Then, for Z ∈]−1− ηA+ηa

2 , 1− ηA+ηa

2 [,
S0(Z) has exactly one solution (Na

1 , NA
1 , Na

2 , NA
2 ) ∈ (R∗)4, given by:

Na
1 = Y A N1 − N2

Y A − Y a
, Na

2 = Y a Y A N1 − N2

Y A − Y a
, NA

1 = N2 − Y a N1

Y A − Y a
, NA

2 = Y A N2 − Y a N1

Y A − Y a
,

where the quantities (Y A, Y a, N1, N2) are defined by (29):

Y A = g1
α m2

(
ηA + ηa + 2 (Z + 1)

)
ηA−ηa

2

√1 + m1 m2

4 g1 g2
(

ηA−ηa

2

)2
(

1−
(

ηA+ηa

2 +Z
)2
) + 1

 ,

Y a = g1
α m2

(
ηA + ηa + 2 (Z + 1)

)
ηA−ηa

2

√1 + m1 m2

4 g1 g2
(

ηA−ηa

2

)2
(

1−
(

ηA+ηa

2 +Z
)2
) − 1

 ,

N1 = 1 − g1 (Z + 1 + ηA)2 − m1 + α m2 Y A,

N2 = λ − g2 (Z − 1 + ηA)2 − m2 + m1
α Y A .

(29)

This solution (Na
1 , NA

1 , Na
2 , NA

2 ) defines viable numbers of each allele in each sub-populations if and
only if:

[Y A N1 > N2] and [N2 > Y a N1]. (30)

Proof. Let us introduce the following change of variables, valid under the assumption that no major-
effect allele has fixed:

N1 := NA
1 + Na

1 , N2 := NA
2 + Na

2 , Y A := NA
2

NA
1

, Y a := Na
2

Na
1

.

Then, under the assumptions made in Remark 1, the system (S0(Z)) is equivalent to:

α m2 Y a − m1 +
[
1 − N1 − g1 (Z + ηa + 1)2] = 0,

α m2 Y A − m1 +
[
1 − N1 − g1 (Z + ηA + 1)2] = 0,

m1
α

1
Y a − m2 +

[
λ − N2 − g2 (Z + ηa − 1)2] = 0,

m1
α

1
Y A − m2 +

[
λ − N2 − g2 (Z + ηA − 1)2] = 0.

(31)
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This is equivalent to the following system:
α m2 (Y a − Y A) + g1

(
ηA + ηa + 2 (Z + 1)

)
(ηA − ηa) = 0,

m1
α ( 1

Y a − 1
Y A ) + g2

(
ηA + ηa + 2 (Z − 1)

)
(ηA − ηa) = 0,

N1 −
(
1 − g1 (Z + 1 + ηA)2 − m1 + α m2 Y A

)
= 0,

N2 −
(
λ − g2 (Z − 1 + ηA)2 − m2 + m1

α Y A

)
= 0.

As Z ̸= 1 − ηA+ηa

2 , the closed subsystem on (Y A, Y a) is, in turn, equivalent to:{
Y A − Y a = A1(Z) := g1

α m2

(
ηA + ηa + 2 (Z + 1)

)
(ηA − ηa),

−Y A Y a = A0(Z) := g1 m1
α2 g2 m2

ηA+ηa+2 (Z+1)
ηA+ηa+2 (Z−1) .

Y A and −Y a are the roots of the polynomial:

P (X) = X2 − A1(Z) X + A0(Z).

P has two real roots of opposite signs if and only if:

[A0(Z) < 0] ,

which is equivalent to:

−1 − ηA + ηa

2 < Z < 1 − ηA + ηa

2 .

Under the last condition on Z, A1(Z) is positive, A0(Z) is negative and we get:
Y A = A1(Z)

2

[√
1 − A0(Z)(

A1(Z)
2

)2 + 1
]

,

Y a = A1(Z)
2

[√
1 − A0(Z)(

A1(Z)
2

)2 − 1
]

,

(32)

which is equivalent to (29).
Inverting the initial change of variables leads to:

Na
1 = Y A N1 − N2

Y A − Y a
, Na

2 = Y a Y A N1 − N2

Y A − Y a
, NA

1 = N2 − Y a N1

Y A − Y a
, NA

2 = Y A N2 − Y a N1

Y A − Y a
,

hence (29). It defines a viable solution with positive entries if and only if Y A N1 > N2 and N2 >

Y a N1.

Proposition D.2. For all allelic sizes of subpopulations (Na
1 , NA

1 , Na
2 , NA

2 ) ∈
(
R∗

+
)4 and Z ∈ R, there

exists a unique solution (δ, δA, δa) to the system SL(Z).

Proof. Using the notation N1 := NA
1 + Na

1 and N2 := NA
2 + Na

2 , we compute thanks to a symbolic
computation tool (Mathematica©):

det(JSL
) = − 1

4

[
m1

α

N1

N2
+ α m2

N2

N1
+ 2m2

1
α2

Na
1 NA

1
Na

2 NA
2

+ 2α2m2
2

Na
2 NA

2
Na

1 NA
1

+ 2m1m2

(
NA

1
2
Na

2
Na

1 N1N2
+ Na

1
2NA

2
NA

1 N1N2
+ NA

2
2
Na

1
Na

2 N1N2
+ Na

2
2NA

1
NA

2 N1N2
+ 2NA

2 Na
1

N1 N2
+ 2Na

1 Na
2

N1N2

)]
< 0.
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D.1.2 Stability.

Convergence toward a limit system locally in time in a slow-fast analysis relies essentially on a stability
criterion of the fast equilibria which constitute the slow manifold (Levin and Levinson 1954; Dekens
2022). In this subsection, we show that all fast equilibria found in Proposition D.1 and Proposition D.2
for a level Z ∈] − 1 − ηA+ηa

2 , 1 − ηA+ηa

2 [, are stable. Due to the particular shape of the slow manifold, it
is sufficient to study separately the Jacobian matrix associated to S0(Z) denoted JS0 (Proposition D.3)
and the Jacobian matrix associated to the linear system SL(Z), which is exactly JSL

(Proposition D.4).

Proposition D.3. Let Z ∈] − 1 − ηA+ηa

2 , 1 − ηA+ηa

2 [ such that (S0(Z)) has a unique solution
(Na

1 , NA
1 , Na

2 , NA
2 ) ∈

(
R∗

+
)4. Let us define the following matrix:

JS0 =


− α m2 Na

2
Na

1
− Na

1 α m2 −Na
1 0

m1
α − m1 Na

1
α Na

2
− Na

2 0 −Na
2

−NA
1 0 − α m2 NA

2
NA

1
− NA

1 α m2

0 −NA
2

m1
α − m1 NA

1
α NA

2
− NA

2

 . (33)

Then:

1. JS0 is the Jacobian of S0(Z) at (Na
1 , NA

1 , Na
2 , NA

2 ).

2. All the eigenvalues of JS0 are located in the left open half plane.

Proof. 1. Let (Na
1 , NA

1 , Na
2 , NA

2 ) be solution of S0(Z). One can verify that:

∂
[
α m2 Na

2 − m1Na
1 + Na

1
[
1 − (Na

1 + NA
1 ) − g1 (Z + ηa + 1)2]]

∂Na
1

=
[
1 − (Na

1 + NA
1 ) − g1 (Z + ηa + 1)2 − m1

]
− Na

1 = −α m2 Na
2

Na
1

− Na
1 ,

for (Na
1 , NA

1 , Na
2 , NA

2 ) solves S0(Z). The same holds for the other diagonal entries.
2. Let:

χJS0
(X) = X4 − tr (JS0) X3 + b X2 + c X + det JS0 ,

be the characteristic polynomial of JS0 . Let us verify the Routh-Hurwitz criterion: all the eigenvalues
of JS0 are located in the left open half plane if and only if:

(i) det JS0 > 0,

(ii) − tr (JS0) > 0,

(iii) − tr (JS0) b − c > 0,

(iv) (− tr (JS0) b − c) c − tr (JS0)2 det JS0 > 0.

We have:
det JS0 = m1 m2

(
Na

1 Na
2 − NA

1 NA
2
)2
(

1
Na

1 NA
2

+ 1
NA

1 Na
2

)
> 0.

and:

− tr (JS0) = N1 + N2 + √
m1 m2

(
α

√
m2Na

2√
m1Na

1
+

√
m1Na

1
α

√
m2Na

2
+ α

√
m2NA

2√
m1NA

1
+ α

√
m2NA

2√
m1NA

1

)
> 0.

With the help of a symbolic computation tool (Mathematica©), we verify that the left hand side of the
two last conditions are sums of positive terms, but are too long to be displayed here.
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The Jacobian matrix of the linear system SL(Z) is exactly JSL
and we also show that JSL

satisfies
the Routh-Hurwitz criterion:

Proposition D.4. JSL
has all its eigenvalues located in the left open half plane.

Proof. Let the following be the characteristic polynomial of JSL
:

χJSL
(X) = X3 − tr(JSL

)X2 − 1
2
(
tr(J2

SL
) − tr(JSL

)2)X − det(JSL
).

We show that JSL
satisfies the Routh-Hurwitz criterion:

(i) − det(JSL
) > 0,

(ii) − tr(JSL
) > 0,

(iii) 1
2
(
tr(J2

SL
) − tr(JSL

)2) tr(JSL
) + det(JSL

) > 0.

We have − det(JSL
) > 0 from the proof of Proposition D.2 and:

− tr(JSL
) = 1 + √

m1 m2

(
α

√
m2Na

2√
m1Na

1
+

√
m1Na

1
α

√
m2Na

2
+ α

√
m2NA

2√
m1NA

1
+ α

√
m2NA

2√
m1NA

1

)
> 1 + 4√

m1m2.

We verify that the l.h.s. of the last condition is a sum of positive terms.

E Proof of Proposition 3.1.
Let us define the quantities:

Y A,∗ = 2 g η
m

[√
1 + m2

4 g2 η2 + 1
]

,

Y a,∗ = 2 g η
m

[√
1 + m2

4 g2 η2 − 1
]

,

N∗
1 = 1 − g η2 − g − m + 2 g η

√
1 + m2

4 g2 η2 ,

N∗
2 = N∗

1 .

(34)

Proposition D.1 states that the latter defines a solution to S0(Z) given that Z = 0:

(Na,∗
1 , Na,∗

2 , NA,∗
1 , NA,∗

2 ) =
(

N∗
1

Y A,∗ − 1
Y A,∗ − Y a,∗ , N∗

1
1 − Y a,∗

Y A,∗ − Y a,∗ , N∗
1

1 − Y a,∗

Y A,∗ − Y a,∗ , N∗
1

Y A,∗ − 1
Y A,∗ − Y a,∗

)
.

Since Y A,∗ > 1 and Y A,∗ Y a,∗ = 1, this solution is viable under the condition: N1 > 0, hence requiring
:

1 +
√

4 g2 η2 + m2 > g η2 + g + m,

which in turn is equivalent to (13).
Proposition D.2 next states that SL(Z) has a unique solution (δ∗, δA,∗, δa,∗) for such allelic popu-

lation sizes (Na,∗
1 , Na,∗

2 , NA,∗
1 , NA,∗

2 ). One can compute that:

δA,∗ = δa,∗ =
g
(
1 + η + Y A,∗(1 − η)

)
m(1 + Y A,∗) , δ∗ = −

2g
(

1 + η − Y A,∗2(1 − η)
)

Y A,∗ .

Finally, one can verify that (Na,∗
1 , Na,∗

2 , NA,∗
1 , NA,∗

2 , δ∗, δA,∗, δa,∗) along with setting Z∗ = 0 is a
solution of the last equation of (12).

40



F Supplementary IBS with fixed subpopulations sizes
In this appendix, we show in Fig. 8 the analogous results as those presented in Fig. 5, but with a slightly
different procedure for the IBS, which adjusts the birth rates to compensate exactly for the deaths by
selection at each generation, thus keeping the subpopulations sizes fixed. As mentioned in the main
text, the loss of the polymorphism at the major-effect locus still occurs with weak selection, but not
with strong selection.

G Supplementary IBS with asymmetrical initial conditions or
different parameters for the genetic architecture (L = 50
loci and σLE = 0.2)

In this appendix, we first show that the phenomenon of loss of polymorphism in the presence of a
quantitative background with weak or strong selection is robust to asymmetrical initial population sizes,
and even occurs much faster (Fig. 9). We emphasize on the excellent agreement of the deterministic
iterations with the individual-based simulations

Furthermore, we also show that our findings hold when considering a smaller number of loci involved
in the quantitative background (L = 50 instead of 200), with increased relative effect (σLE = 0.2 instead
of 0.1), so that the trait range [−η − σLE

√
L, η + σLE

√
L] ≈ [−η − 1.4, η + 1.4] extends beyond the

local optima (-1 and 1) even in the absence of major effects. We display the results of the IBS with
symmetrical initial subpopulation sizes in Fig. 10 and with asymmetrical initial subpopulation sizes in
Fig. 11. Note that the right panel of each figure does not change from Fig. 5 and Fig. 9, because the
control case does not depend on the number of loci, but we choose to display it anyway for consistency
of comparison. One can notice that the time to fixation at the major-effect locus in the presence of
a quantitative background under weak (Fig. 10e, Fig. 11a) and strong selection (Fig. 10e, Fig. 11e) is
reduced compared to when the quantitative background comes from a larger number of loci (Fig. 5,
Fig. 9). Moreover, the sensitivity of the numerical resolutions of (1) with regard to symmetrical initial
states is more pronounced here.
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0.2.
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