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Abstract
Using van der Waals tunnel junctions, we perform spectroscopy of superconducting NbSe2 flakes,

of thicknesses ranging from 2–25 monolayers, measuring the quasiparticle density of states as a

function of applied in-plane magnetic field up to 33T. In flakes up to ≈ 15 monolayers thick,

we find that the density of states is well-described by a single band superconductor. In these

thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the

electrons, and superconductivity is further protected by Ising spin-orbit coupling (ISOC), which pins

Cooper pair spins out-of-plane. The superconducting energy gap, extracted from our tunnelling

spectra, decreases as a function of the applied magnetic field. However, in bilayer NbSe2, close to

the critical field (up to 30T, much larger than the Pauli limit), superconductivity appears to be

even more robust than expected if only ISOC is considered. This can be explained by a predicted

subdominant triplet component of the order parameter, coupled to the dominant singlet component

at finite field. This equal-spin, odd-parity triplet state arises from the non-colinearity between the

applied magnetic field and the Ising field.

PACS numbers:
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I. INTRODUCTION

When bulk superconductors are subjected to an external applied magnetic field, the

field is screened by circulating supercurrents, in what is known as the Meissner effect. The

transition from the superconducting to the normal state occurs when the diamagnetic energy

of the pairs exceeds the condensation energy. In 2D superconductors in parallel magnetic

field, the Meissner effect is absent. Here the field acts only on the spin degree of freedom

of electrons. In conventional (Bardeen-Cooper-Schrieffer or BCS) superconductors, due to

the singlet wavefunction, the critical field Hc is set by the Pauli or Clogston-Chandrasekhar

limit µBHP = ∆0/
√

2, where µB is the Bohr magneton and ∆0 is the superconducting order

parameter at zero field1. The material becomes normal when the paramagnetic state of

spin-aligned quasiparticles becomes more energetically favourable than the superconducting

ground state2.

Recently, superconductors of (few-)monolayer thicknesses have been obtained by

exfoliation3 or single-layer deposition 4,5. Both show critical fields much larger than HP

6,7. In monolayer transition metal dicalcogenides such as 2H-NbSe2 (hereafter NbSe2) or

gated 2H-MoS2, this enhancement of the critical field is due in large part to spin-orbit cou-

pling arising from the lack of in-plane crystal inversion symmetry8,9. This gives rise to an

out-of-plane Zeeman-equivalent magnetic field HSO with opposite signs at the K and K ′

points of the hexagonal Brillouin zone10. In NbSe2, µBHSO = ESO ≈ 50 meV for a mono-

layer. As it is invariant with respect to time-reversal (flipping both spin and momentum),

this Zeeman valley-dependent field does not affect singlet superconductivity. It does how-

ever pin Cooper pair spins out-of-plane, hence the moniker ‘Ising (spin-orbit) field’11,12. In

the absence of a magnetic field, the superconducting wave-function is expected to show a

mixture of odd-parity spin-singlet and even-parity spin-triplet components, with spin parts

of the wavefunction respectively Φs = |↑↓〉 − |↓↑〉 and Φt = |↑↓〉 + |↓↑〉13. For ESO smaller

than the Fermi energy (EF ), the Φt triplet and Φs singlet decouple. The odd-parity triplet

component Φt is thought not to coexist with the singlet component Φs
14,15. (Even if Φt were

energetically favourable, it would still be sensitive to disorder, and is suppressed when the

mean free path is shorter than the superconducting coherence length16.)

An applied in-plane magnetic field H never completely aligns the Cooper pair spins in

the plane even when the corresponding Zeeman energy EZ = µBH � ESO. (Here, µB is
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the Bohr megneton.) Thus, the in-plane critical field becomes much larger than HP
6,11,12.

Indeed, it diverges logarithmically at zero temperature8,17. Because ESO is larger than the

inter-layer coupling, out-of-plane spin-locking persists in bilayer and few-monolayer TMDs18:

the critical in-plane field Hc increases monotonically with diminishing NbSe2 thickness down

to the monolayer6,19. Ising protection thus seems to be a quite general feature of NbSe2 as

intuited in early critical field studies20.

Very recently, the pronounced two-fold anisotropy of the critical field, non-linear trans-

port, and magneto-resistance of few- and mono-layer NbSe2 devices close to the transition

to the normal state have been interpreted as resulting from unconventional superconductiv-

ity21,22: triplet components induced by the applied magnetic field and lateral lattice strain

reduce the six-fold rotational symmetry expected from the hexagonal lattice to two-fold

symmetry. Such triplets are essentially distinct from Φt considered above. They are induced

by vector fields, and therefore come in pairs of partners transforming non-trivially under

in-plane hexagonal symmetry. Previously, one such non-trivially transforming triplet of the

form, ΦtB = |↓↓〉 + |↑↑〉16,23,24 had been predicted to substantially affect the critical field25.

We report here tunnelling spectroscopy of few-layer NbSe2 devices in a broad range of applied

in-plane magnetic fields. As the magnetic field increases, our measurements progressively

deviate from the prediction based on pure singlet pairing. We attribute this field-induced

deviation to the onset of equal-spin triplet pairing in the form of ΦtB.

II. RESULTS

ΦtB arises from the non-colinearity of the spin-orbit field HSO and the applied field H.

This unpolarised equal-spin triplet component is coupled to linearly to the singlet Φs by the

applied magnetic field, which means that with increasing fields Φs and ΦtB strongly affect

each other. ΦtB is thus expressed, even when ∆tB < ∆s, and it is also robust to disorder.

In contrast, Φt is decoupled from Φs at all fields and is not expressed for energetical rea-

sons. Our model thus includes Φs and ΦtB order parameters and neglects Φt. In the case

where a finite pairing interaction is present in the ΦtB channel as suggested by recent DFT

calculations26, assuming a single-band superconductor and neglecting inter-valley scatter-

ing, the superconducting energy gap ∆ can be obtained from the quasiclassical theory of

superconductivity (cf. Equation S9 in S.I.) :
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∆ = (ESO∆s + EZ∆tB)/
√
E2

SO + E2
Z , (1)

where ∆s and ∆tB are, respectively, the singlet and equal-spin triplet order parameters. Here

we can see that, compared to the case of Φs with Ising protection alone, the coexistence of

∆tB with ∆s and the coupling between the two can make superconductivity even more

robust to an applied magnetic field. In the case where there is no pairing in the equal-

spin triplet channel (∆tB = 0), ∆ is reduced by the applied magnetic field through the

factor ESO/
√
E2

SO + E2
z and vanishes asymptotically, giving the afore-mentioned logarithmic

divergence of the critical field at zero temperature. To obtain the order parameters ∆s and

∆tB at finite temperature and magnetic field, one has to solve two coupled equations self-

consistently (cf. Supp. Info.). As we will show below, the inclusion of the field-induced

equal-spin component ΦtB boosts the critical magnetic field and provides a more accurate

description of our spectroscopic data.

The quasiclassical theory also gives the density of states (DOS), which is found for E <

ESO to be simply the BCS DOS, with the gap as in Equation 1 (see Equation 14 in the

Supp. Info.). Note that, unlike 2D superconductors with low spin-orbit coupling in in-

plane fields, the coherence peak is not Zeeman-split27. In addition, the Ising protection

results in a sharp BCS coherence peak in the DOS, regardless of the strength of the triplet

coupling or the applied magnetic field. Nevertheless, in the presence of inter-valley scattering

(τ being the inter-valley scattering time), the density of states is smeared out15 as in the

Abrikosov-Gor’kov theory28,29. Thus inter-valley scattering not only reduces Ising protection

by averaging over valleys with opposite signs of ESO, it also modifies the shape of the DOS

and regularizes the divergence of the critical field at zero temperature17. Finally, in the limit

of strong inter-valley scattering (1/τ � ∆s) that doesn’t correspond to our experimental

situation (in which(1/τ ∼ ∆s), the dependence of ∆ on the applied magnetic field becomes

similar to that expected from the Abrikosov-Gor’kov theory with the critical field given by

µBHc = ESO

√
2∆τ/h̄.

We fabricate tunnel junctions (J1 to J7) on superconducting NbSe2 flakes of 1.2–50 nm

thickness. The tunnel barriers are thin flakes of semiconducting WSe2 or MoS2 exfoliated

by the van der Waals dry transfer technique described in Ref.30. A Ti/Au normal counter

electrode is then evaporated on the semiconductor leading to a structure shown schematically

in Figure 1(a). An ohmic contact to the NbSe2 is also fabricated. The typical surface area
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FIG. 1: Tunneling spectroscopy of bulk and few-monolayer NbSe2 through van der Waals barriers.

(a) Schematic drawing of the tunnel junction: few layer- NbSe2, covered with thin WSe2 (or MoS2)

and a Ti/Au electrode. (b) Differential conductance (G = dI/dV ) as a function of bias voltage (V )

of J2 (blue) and d2I/dV 2 vs V of J2 (red). (c) Same as panel (b) for J6. (d)-(h) Colormaps of the

magnetic field dependence of the d2I/dV 2 curves for Junctions 1-5. All measurements were taken

at temperatures of 30-70 mK.

of the junction is about 1 µm2 and the resistance in the normal state >10 kΩ. The critical

temperature Tc decreases from 7.2 K in the thickest flakes to ∼2.6 K in the thinnest ones.

Using standard lock-in techniques, we first measure the current I and differential con-

ductance G = dI/dV across the junctions as a function of applied bias voltage V 31 and

in-plane magnetic fields H in dilution refrigerators with base temperatures of 30–70 mK.

G(V ) is proportional to the DOS convolved with the derivative of the Fermi distribution

function32. Therefore, in principle, the energy resolution of our spectroscopy is given by the

temperature and the integrated voltage noise across the junction.

Typical G(V ) curves are shown for a 25 nm thick sample (J2) and a 6 monolayer sample

(J6) in Figure 1(b,c), top panels. The main differences between these junctions are: (1) the

smaller superconducting gap in the thinner device due to a smaller Tc, and (2) the low-energy

6



shoulder, very clearly seen in the thicker junction, is absent in the thinner one. This is even

more apparent in the second derivative of the current as a function of the voltage bias,

dG/dV , in figure 1(b,c): the two peaks in J2, merge to a single peak in J6. This merging

was previously observed30,33 and it is now shown to persist in flakes up to 11 nm (≈ 15

monolayer) thick: the two-band superconductivity of bulk NbSe2
34 is lost. A single-band

theory thus seems most suitable for the thinnest flakes.

Figures 1(d-h) show the evolution of the dG/dV curves of five junctions (J1-J5) with

increasing in-plane magnetic field. Junctions 1 and 2, the thickest, show similar responses

to the applied field: the inner peak shifts to lower energies faster than the outer peak. This

is consistent with previous experiments, and is likely due to the 3D character of the Se

pz-orbital-derived band at the Γ point, which is associated with the smaller superconducting

energy gap, as well as its higher diffusion coefficient30,35. For the thinner junctions, J4 and J5,

a single gap persists from zero field up to 9 T in agreement with recent results on MoS2
36. As

noted above, the robustness of the gap to applied magnetic fields is expected in thin samples

due to Ising protection and drastically reduced orbital depairing. To significantly reduce the

gap and to study the effect of the applied field on the density of states it is necessary to go

to even higher fields.

Therefore, we measure two tunnel junctions (J6, 6-monolayer) and (J7, bilayer) in in-plane

magnetic fields of up to 33 T at 1.3 K (pumped liquid helium). Their critical temperatures

are, respectively, 5.4 K (HP = 10.5T ) and 2.6 K (HP = 5T ), giving ∆/kBTc ≈ 1.8, close

to the BCS prediction and in agreement with previous studies30. Finally, the critical in-

plane fields are Hc = 18 T for J6 and Hc =30 T for J7, corresponding respectively to

Hc = 1.5HP and Hc = 6HP . (See Figure 3.) These junctions had earlier been characterized

at 50mK (dilution refrigerator) at zero magnetic field (Figures 2(a) and (d)) — hard gaps

were observed, pointing to tunneling as the main transport mechanism. These tunnel spectra

are well-described by a fit to a BCS density of states, broadened by a ∼ 200µeV effective

temperature. (The fact that this is much larger than 50mK is addressed below.)

III. DISCUSSION

The evolution of G(V ) with the in-plane magnetic field at 1.3K is shown in Figures

2(a) (J6) and 2(d) (J7). For clarity, spectra at selected magnetic fields are also shown in
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FIG. 2: Differential conductance G = dI/dV as a function of the voltage V and of the in-plane

magnetic field H of J6 (6 monolayers) and J7 (bilayer). The tunneling spectra are normalized by

the normal state conductance, GN (V ), measured above Hc. (a,d) Colormap of G(V ) as a function

of field at T = 1.3 K. The dotted lines indicate the critical fields. (b,e) Horizontal slices of the data

in the colormaps (a) and (d) respectively, showing G(V ) at different fields, vertically displaced for

clarity. The black lines are fits to an Abrikosov-Gor’kov-like density of states, with the energy gap

and A-G broadening parameter as fitting parameters. (c,f) Data at T = 50mK and zero magnetic

field (red lines) together with the fits obtained using a BCS DOS and an effective temperature (black

linkes). The superconducting gaps obtained from the fits are, respectively, 400µeV and 800µeV,

while the temperatures are respectively 1K and 0.9K.

Figures 2(b) and 2(e) together with an Abrikosov-Gor’kov-like density of states with a field-

dependent broadening parameter29,37, convolved with a Fermi function to account for the

temperature. The fits account remarkably well for the experimental data.
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The superconducting gaps obtained from these fits are shown as a function of the in-

plane magnetic field in Figure 3. (Note that in the case of bilayer NbSe2 close to Hc, the

Zeeman and ISOC energy scales are much larger than ∆0.) In the same figure we also plot

the theoretical curves calculated at T = 1.3 K using the Ising model with and without a

triplet subdominant component of the order parameter as described above (i.e. ∆tB 6= 0 and

∆tB = 0 respectively). The fitting parameters are given in the caption of Figure 3. Note

that, for the bilayer device (J7), the temperature of the experiment (1.3K) is higher than

the critical temperature of the triplet component (Tct = 0.05Tcs = 130mK, obtained from

the fit). Therefore, the triplet order parameter ∆tB exists only through its coupling with

the singlet order parameter ∆s.

Focusing on the thinner, bilayer device (J7), we see that the Ising theory alone (without

triplet) fits the data reasonably well up to about 20T, but not close to the critical field, where

the superconducting energy gap is more robust than expected. This is very suggestive of

a second order parameter revealed as the dominant order parameter disappears14. Indeed

introducing a small triplet component of the gap, a better fit of the overall experimental

data is obtained. As the experiment is carried out above the triplet critical temperature,

the main effect of triplet pairing is to enhance the critical field through the coupling with

the singlet order parameter. In addition, the triplet subdominant component also renders

the gap vs. field dependence more linear. This is in contrast to what is expected in an Ising

theory including strong inter-valley scattering (equivalent to Abrikosov-Gor’kov), which is

also shown for completeness in Figure 3, where the only fitting parameter is the critical field.

For the thicker device (J6) a triplet component does not significantly change the fit. This is

perhaps due to a smaller ESO and a smaller critical field.

Finally, we address the issue of in-gap states and the broadening of the coherence peaks.

Indeed, the broadening parameters obtained from the fits are larger than expected from

self-consistent Abrikosov-Gor’kov theory (see Supp. Info.), and at the critical field the

broadening parameter is larger than theoretically allowed. There are several possible reasons

for DOS broadening: (1) A slight misalignment of the applied magnetic field (leading to

pair-breaking). A misalignement of ∼1◦ (the maximum possible in our experiment), gives

a perpendicular component of the magnetic field smaller than 0.3 T, several times smaller

than the perpendicular critical field38. (2) Nodes in the gap. In-gap states may appear in

triplet superconductors because of field-induced gap nodes at the Fermi surface39. If they
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Magnetic field (Ising + triplet)

+ = - + +

No magnetic field (Ising)

-

FIG. 3: Equal-spin triplet superconductivity (a) Normalized superconducting energy gap as a

function of the in-plane magnetic field obtained from the fits of the quasiparticle density of states

in Figure 2. The error bars have been calculated following the procedure described in the Supp.

Info. The blue lines are a fit of experimental data using the Ising theory with (solid) and without

(dashed) an equal-spin triplet component of the order parameter as described in the text. For the

bilayer, in the Ising fit, ESO = 14.45Tcs; in Ising with triplet fit ESO = 9.62Tcs and Tct = 0.05Tcs,

where Tcs = 2.6K. For the 6-monolayer, ESO = 2.21Tcs, where Tcs = 5.4K. The solid black

line is the calculated ∆(H) curve using the Ising theory with strong disorder (equivalent to the

Abrikosov-Gor’kov theory), setting the critical field to the experimental one. (b) At zero magnetic

field, singlet Cooper pairs form from electrons at opposite corners of the Brouillon zone (K and

K’ points). Their spins are pinned out-of-plane by the Ising field. (c) An in-plane magnetic field

partially aligns electron spins orthogonal to the Ising field, and gives rise to equal-spin triplet pairs.

exist, such nodes are expected along the Γ-M direction and are thus related to multiband

effects. (3) Inelastic tunneling. (4) Coupling of the charge density waves via phonons either

to the quasiparticles, or to amplitude fluctuations (Higgs mode) of the order parameters40.

These various factors are difficult to disentangle; however, none of them significantly affects

the energy gap, which can be determined with high precision from the fits. (See Supp. Info.
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for more details.)

While previous reports on Andreev spectroscopy experiments have shown a reduction of

the gap consistent with field-induced depairing in the presence of Ising protection41, our hard-

gap tunnel junctions allow a quantitative analysis of the main microscopic mechanism for the

enhancement of the critical field, pointing to possible equal-spin triplet superconductivity.

Within the scenarios of Refs.21,22 the triplet order parameters allowed by symmetry such as

ΦtB are nearly degenerate with the leading singlet order parameter. Attraction in the triplet

channel is supported by recent DFT calculations26; however, there is at present no evidence

of near degeneracy between triplet and singlet channels. Our interpretation does not require

near degeneracy, and the singlet-triplet coupling comes from a clear microscopic mechanism

(the in-plane magnetic field), which is quantitatively accounted for both in the theory and

in the analysis of the experimental data.

Further study at even lower temperatures and of a new generation of devices with different

barrier materials will be required to unambiguously confirm the existence of equal-spin

triplets in NbSe2.

IV. MATERIALS AND METHODS

Especially at high magnetic fields, special care was taken to ensure that the applied

magnetic field is parallel to the flakes. It is aligned to better than ∼1◦. In addition, we

checked that the voltage noise due to mechanical vibrations is lower than that from the

thermal broadening. This is described in detail in the Supp. Info.
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I. THEORY

In this appendix, we calculate the superconducting energy gap of a monolayer superconductor without an inversion
center and in the presence of an in-plane magnetic Zeeman field. We first present the appropriate Hamiltonian.
Then, we obtain the quasi-classical Green functions for the case where there is only intra-valley scattering. We
derive expressions for the density of states and the coupled self-consistency equations for the singlet and triplet order
parameter in the limit of large spin-orbit couplingS1, which allow us to compute the energy gap as a function of
magnetic field and fit the experimental data. The effect of inter-valley disorder is studied using a Landau expansionS2

to obtain the thermodynamic potential. Minimization of the thermodynamic potential yields the thermodynamic
order parameters (OPs) which are used in the calculation of the energy gap.

A. The model Hamiltonian

Our model is defined by the Hamiltonian which describes the band structure, the effects of the spin-orbit interaction,
the applied parallel magnetic field, the paring interaction, and the disorder potential. A single energy band crosses
the Fermi level, which gives rise to the three hole pockets in the absence of the spin-orbit interaction. One large hole
pocket is centered at the Γ point, and the pair of pockets related via the time reversal symmetry are located at the
K and K ′ valleys. Most of the thermodynamics properties of NbSe2 monolayers can be reliably addressed within a
simplified model retaining only the pockets centred at K and K ′ valleys. The magnitude of the spin-orbit splitting is
constant in this case. Unlike in the bulk, in monolayers bands derived from the Se p orbitals do not cross the Fermi
level. The transition metal ions such as Nb produce a noticeable atomic spin-orbit interaction. As a result, since the
mono-layer lacks the inversion symmetry, the bands are spin-split except along the high symmetry ΓM -lines, where
the horizontal and vertical mirror planes cross. The model Hamiltonian reads

H =
∑

k,s

ξkc
†
kscks +

∑

k,ss′

[γ (k)−B] · σss′c†kscks′ (S1)

+
1

2

∑

k,k′

∑

{si,s′i}
V s1s2s′1s

′
2

(k,k′) c†ks1c
†
−ks2c−k′s′2ck′s′1

+
1

2

∑

k,k′

∑

s

U0 (k− k′) c†ksck′s,

where c†ks = V −1/2
∫
dr eik·rψ†rs and the operator ψ†rs creates a particle with spin projection s along the z-axis at

position r in a volume V . Here, ξ (k) = ξ (−k) is the dispersion measured from the chemical potential, γ (−k) = −γ (k)
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is the spin-orbit coupling (SOC) present in a lattice lacking an inversion center, and B = EZ x̂ is the Zeeman field,
where EZ absorbs the prefactor gµB/2 with the g-factor and the Bohr magneton, and has dimension of energy. The
vector of Pauli matrices is denoted by σ = (σ1, σ2, σ3). The superconducting pairing interaction V s1s2s′1s

′
2

(k,k′) contains
the pairing channels allowed by the lattice symmetry.

The presence of randomly distributed scalar impurities gives rise to a scattering potential U0 (k− k′). Singlet
pairing as well as inter-valley triplet pairing is not sensitive to intra-valley scattering. To study the effect of inter-
valley scattering, we consider a short-range impurity potential such that U0 (k− k′) = U0. The effect of the impurity
potential is described within the self-consistent Born approximation by the appropriate self-energy Σ̂, which we do
not write here explicitly. Σ̂ is proportional to the scattering rate Γ = πnimpN0U

2
0 , where nimp is the impurity density

and N0 is the normal state density of states per spin species. In the following, we set kB = 1.
The SOC has the form γ (k) = ESOγ̂ (k) ẑ. Here we consider the simplest model for nodeless SOC γ̂ (k) =

sgn [cos (3ϕk)], where ϕk is the angle the vector k forms with the kx axis. Along the Fermi surface centered at Γ the
SOC γ̂ (k) changes sign six times at the ΓM lines. The SOC is constant and antiparallel at the pockets centered at
K and K ′ valleys. In order to reduce the Hamiltonian to be quadratic in the field operators, we perform a mean field
decoupling of the pairing interaction part and define the self-consistent order parameter

∆s1s2 (k) =
1

V

∑

k′,s′1,s
′
2

V s1s2s′1s
′
2

(k,k′)
〈
c−k′,s′2ck′,s′1

〉
. (S2)

We organize the superconducting OPs in the standard matrix form as

∆ (k) = [ψ (k) + d (k) · σ] iσ2. (S3)

Here ψ (k) and d (k) parametrize the singlet and triplet components of the OP respectively. We neglect singlet
anisotropy, setting ψ (k) = ∆s. The symmetry of the system characterizes the triplet OP component as

d (k) = γ̂ (k) (ηE1x̂+ ηE2ŷ + ηAẑ) (S4)

and leads us to the effective interaction

V s1s2s′1s
′
2

(k,k′) = vs [iσ2]s1s2 [iσ2]
∗
s′1s

′
2

(S5)

+
∑

j=1,2

vt [γ̂ (k)σjiσ2]s1s2 [γ̂ (k′)σjiσ2]
∗
s′1s

′
2

+ vtz [γ̂ (k)σ3iσ2]s1s2 [γ̂ (k′)σ3iσ2]
∗
s′1s

′
2
.

As shown in Ref.S3 the magnetic field couples the singlet order parameter ∆s and the equal spin triplet order param-
eter ηE2. For the purpose of fitting the data, we assume that singlet pairing is dominant and that the temperatures
is larger than the critical temperature of all the possible triplet pairings. In that case, we can set ηA = ηE1 = 0 and
keep only the singlet and the ηE2-triplet order parameters.

We define the transition temperature Tcs (Tct) by setting EZ = ESO = Γ = 0 and keeping only the ∆s(ηE2) OP
in Eq. (S3). The relation between Tcs and vs is Tcs = 2ΛeγEπ−1 exp [−1/2N0 |vs|], where Λ is a cutoff for the high
energy attraction and γE is Euler’s constant. Similarly, for Tct, we have Tct = 2ΛeγEπ−1 exp [−1/2N0 |vt|]. For the
analysis, we use the transition temperatures rather than the interaction amplitudes as parameters.

In the basis
{
c†k↑, c

†
k↓, c−k↑, c−k↓

}
, the Hamiltonian (S1) for the clean case, that is U0 (k− k′) = 0, may be written

after mean field decoupling as a 4× 4 matrix [H],

[H] =

[
ξk + [γ (k)−B] · σ ∆ (k)

∆† (k) −ξk + [γ (k) + B] · σ

]
. (S6)

The dispersion relation is determined by solving the equation

det [Eσ̂0 − [H]] = 0 (S7)

for E, where σ̂0 is the 4×4 unit matrix. We choose the phase of the singlet OP ∆s to be 0. The coupling between the
singlet and triplet order parameters imposes their relative phases such that d (k) = i sign(EZ)γ̂ (k) ∆tB ŷ with ∆tB

real and positive. The physically relevant solution for the energy is

E (ξk) =

(
ξ2
k + E2

SO + E2
Z + ∆2

s + ∆2
tB (S8)

− 2

√
ξ2
k (E2

SO + E2
Z) + (|EZ |∆s − ESO∆tB)

2

)1/2

.
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The dispersion E (ξk) has a minimum at ξk =
√
ρ2 − P 2/ρ2, where we introduced the notation ρ =

√
E2

SO + E2
Z and

P = |EZ |∆s − ESO∆tB , which gives the superconducting energy gap

∆ =
1

ρ
(ESO∆s + |EZ |∆tB) . (S9)

B. Without inter-valley scattering: Quasiclassical Green functions

The coupled order parameters and density of states can be computed using quasiclassical Green functions. In the
absence of inter-valley scattering, we obtainS1

ν(E) = 2N0<


 ωn sign(Σ)
√

2
[
Σ− 2ρ2 + sign(Σ)

√
Σ2 − 4P 2

]1/2
(

1 +
|Σ|√

Σ2 − 4P 2

)

iωn→E+iδ

, (S10)

∆s = 2πT |vs|
∑

ωn>0

1
√

2
[
Σ− 2ρ2 +

√
Σ2 − 4P 2

]1/2
[
∆s

(
1 +

Σ− 2E2
Z√

Σ2 − 4P 2

)
+ ∆tB

2|EZ |ESO√
Σ2 − 4P 2

]
, (S11)

∆tB = 2πT |vt|
∑

ωn>0

1
√

2
[
Σ− 2ρ2 +

√
Σ2 − 4P 2

]1/2
[
∆tB

(
1 +

Σ− 2E2
SO√

Σ2 − 4P 2

)
+ ∆s

2|EZ |ESO√
Σ2 − 4P 2

]
, (S12)

where ωn = πT (2n+ 1) are fermionic Matsubara frequencies and we introduced the notation Σ = ω2
n+ρ2 +∆2

s+∆2
tB .

The density of states Eq. (S10) displays a superconducting energy gap ∆. Furthermore, there is a partial “mirage”
gapS4 centered around E = ±

√
ρ2 + ∆2

s + ∆2
tB .

In general, the coupled self-consistency equations can be solved numerically. The fit shown in the main texte was
obtained that way. However, simplifications are possible in the limit ESO � ∆0, where ∆0 is the zero-temperature,
zero-field singlet order parameter. In that case, Eqs. (S11) and (S12) may be combined into one equation for the gap
∆,

[
2πT |vs|

∑
ωn>0

1√
ω2

n+∆2
− 1

] [
2πT |vt|

∑
ωn>0

1√
ω2

n+∆2
− 1

]

|vt|E2
SO

[
2πT |vs|

∑
ωn>0

1√
ω2

n+∆2
− 1

]
+ |vs|E2

Z

[
2πT |vt|

∑
ωn>0

1√
ω2

n+∆2
− 1

] = 2πT
∑

ωn>0

1√
ω2
n + ∆2

1

ω2
n + ρ2

.(S13)

The density of states at |E| � ESO acquires a BCS form,

ν(E) = ν0
|E|√

E2 −∆2
θ(|E| −∆). (S14)

C. With inter-valley scattering: Landau expansion

To study the effect of disorder, we resort to a perturbative treatment valid close to the critical temperature.
Considering the model Hamiltonian above and using quasiclassical methods the difference of the thermodynamic
potential in superconducting and normal state Ω may be written in the form of a Landau expansion as

(
V 2N0

)−1
Ω (∆s,∆tB) = Ω(2) + Ω(4). (S15)

Here Ω(2) contains the terms quadratic in the OPs, and Ω(4) contains the quartic terms. For Ω(2), we have

Ω(2) = A1∆2
s +A2∆2

tB + 2A3∆s∆tB . (S16)

Denoting ω̃n = ωn + sgn (ωn) Γ, the coefficients are given asS5,

A1 = 2πT
∑

ωn>0

ω̃nE
2
Z

ωn [ω̃n (E2
Z + ω2

n) + ωnE2
SO]

+ ln
T

Tcs
, (S17)
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Figure S1 Effect of the magnitude of the spin-orbit coupling: The singlet ∆s (solid lines) and triplet ∆tB (dashed
lines) OPs as a function of the field for different values of ESO with parameters T = 0.75Tcs, Tct = 0.7Tcs,Γ =
0.001Tcs. The inset shows the superconducting gap ∆ for different values of ESO and with the same parameters as
the main graph, the solid lines are with the triplet component and the dashed lines are for a singlet-only supercon-
ductor (Tct = 0). EZ , ESO are in units of Tcs. ∆,∆s,∆tB are normalized to the value of ∆ = ∆s at EZ = 0.

A2 = 2πT
∑

ωn>0

Γ
(
E2
Z + ω2

n

)
+ ωnE

2
SO

ωn [ω̃n (E2
Z + ω2

n) + ωnE2
SO]

+ ln
T

Tct
, (S18)

A3 = 2πT
∑

ωn>0

(−EZ)ESO

ω̃n (E2
Z + ω2

n) + ωnE2
SO

. (S19)

For succinctness, we do not provide here the full expression for Ω(4) and only write the term corresponding to the
singlet OP

Ω(4)
s = −πTcs

∑

ω′
n>0

D1 (ω′n) ∆4
s, (S20)

where

D1 (ω) =
1

2 [ω̃ (E2
Z + ω2) + ωE2

SO]
4

[
− ω

(
ωω̃ + E2

SO

)4 (S21)

+ 2E2
Zω
(
ω̃2 − E2

SO

) (
ωω̃ + E2

SO

)2

+ E4
Z

(
3ωω̃4 + 2E2

SOω̃
2 (Γ + ω̃)− ωE4

SO

)]
.

and where ω′n = πTcs (2n+ 1). In the limit ESO = 0 and no triplet OP, ∆tB = 0, derivation of the thermodynamic
potential (S15) by the singlet OP reproduces the self consistency equation found in Ref.S6. Equipped with the
thermodynamic potential, the OPs are found by the process of minimization.

Using the Landau expansion, we can obtain a qualitative understanding of the way the different parameters affect
∆s, ∆tB and ∆ as a function of the field. We start with the case of negligible inter-valley scattering. In Fig. S1, we
see that for large enough ESO the effect of increasing ESO is only to stretch the lines for larger critical fields EZc but
otherwise keeping the shape of lines as they are. In Fig. S2 ,we see that the effect of increasing Tct is to obtain larger
critical fields EZc by increasing the triplet component in the superconducting phase, specifically we see that for larger
Tctwe get a steeper rise of the triplet component at low fields.

We now turn to the effect of disorder. The impurity scattering potential has a broadening effect on the peak of the
density of states but does not affect the form of the effective order parameter ∆ appearing in the density of states
significantly (though the superconducting energy gap may differ), hence we use (S9) as an estimation also in the
presence of weak inter-valley scattering. In the presence of the in-plane magnetic field, the scattering off the scalar
impurities causes a spin flip with finite probability, and makes the scalar impurity to behave effectively as a magnetic
impurity with a field-dependent concentration. While the problem is captured by the Abrikosov-Gorkov theory of
magnetic impuritiesS7 in some parameter regimes, the general form of the self-consistency equation differs from the
standard situation because the spin splitting ESO intervenes as an additional energy scale.
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Figure S2 Effect of the triplet pairing: The singlet ∆s (solid lines) and triplet ∆tB (dashed lines) OPs as a func-
tion of the field for different values of Tct with parameters T = 0.7Tcs, ESO = 8.0Tcs,Γ = 0. The inset shows the su-
perconducting gap ∆ for different values of Tct and with the same parameters as the main graph. The black dashed
line is the superconducting gap for a singlet-only superconductor (Tct = 0). EZ , Tct are in units of Tcs. ∆,∆s,∆tB

are normalized to the value of ∆ = ∆s at EZ = 0.
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Figure S3 Effect of disorder: The singlet ∆s (solid lines) and triplet ∆tB (dashed lines) OPs as a function of the
field for different values of Γ with parameters T = 0.7Tcs, ESO = 8.0Tcs, Tct = 0.69Tcs. The inset shows the super-
conducting gap ∆ for different values of Γ and with the same parameters as the main graph. The red use black
as in Fig. S2 ? dashed line is the superconducting gap for a singlet-only superconductor (Tct = 0), and with
Γ = 2.09Tcs. EZ ,Γ are in units of Tcs. ∆,∆s,∆tB are normalized to the value of ∆ = ∆s at EZ = 0.

The parameters corresponding to the lines with the highest critical fields in Figs. S2 and S3 are identical. The
Γ parameters in Fig. S3 were chosen so that identical colors in Figs. S2 and S3 will have approximately the same
critical field. In Fig. S3 we see that by increasing Γ we negate the affect of having Tct > 0. Comparison of the OPs
suppression obtained in Fig. S2 by decreasing Tct to the suppression obtained in Fig. S3 by increasing Γ shows that
in the latter process we can retain a relatively steep increase of the triplet OP even for small critical fields, while in
Fig. S2 the decrease in the critical field is accompanied by a faster decrease in slope of the triplet. The reason for this
is that, even though increasing Γ in Fig. S3 suppresses superconductivity, we still keep a high Tct, which strengthens
the triplet component, while in Fig. S2 the suppression of superconductivity is achieved by direct suppression of the
triplet component. The gap contains contributions of both the triplet and singlet order parameters. As the triplet
order parameter is affected more strongly by a suppression of Tct than by increase in Γ the same is true for the
gap. Compared to the triplet order parameter taken separately, the distinction between ∆(H) in the two cases is less
pronounced as long as the singlet order parameter makes a dominant contribution to the gap.

II. THE SAMPLE AND EXPERIMENTAL METHODS

The devices reported in this work were fabricated in a similar method to those reported in refS8. First, NbSe2 was
exfoliated within a glovebox with an inert N2 environment onto a silicon chip covered with 285nm of SiO2. Next,
WSe2 was exfoliated on a PDMS stamp and examined to look for thin flakes. Once a suitable flake was found, it was
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aligned and brought into contact with a thin flake of NbSe2. Next, the heterostructure was removed from the glovebox
and tunnel contacts (5nm/80nm Ti/Au) were deposited on the WSe2 barrier. Finally, ohmic contacts (5nm/80nm
Ti/Au) where deposited directly on the NbSe2 after Ar milling to remove oxide layers. The resulting device is shown
in figure S4. The two junctions focused on in the main text are J7, on top of a 2ML NbSe2 flake, with a tunneling
resistance of R1 ≈ 1.8MΩ, and J6, on top of a 4-8ML NbSe2 region, with a resistance of R2 ≈ 12kΩ.

NbSe2

2ML

4-8ML

bulk

2ML
4ML

WSe2

Drain

J7
J6

NbSe2
NbSe2

WSe2 WSe2

J7

J6

J7

J6

a. b.

c. d.

10 μm

10 μm

10 μm

10 μm

Figure S4 a. NbSe2 exfoliated on SiO2 from a PDMS stamp. Flake thickness is determined from the optical
contrast. b. WSe2 exfoliated on a PDMS stamp. Flake thickness is determined from the optical contrast. c.
NbSe2 −WSe2 heterostructure formed by the deterministic transfer of the WSe 2 . d. The final device with mul-
tiple tunnel junctions (J6,J7) and and ohmic contacts (Drain).

As a part of the sample characterization the differential conductance of both junctions was measured at T = 50mK
(in a He3 −He4 dilution refrigerator) (shown in figure 2 of the main text). The extracted values for ∆ are in line with
the critical temperature Tc, estimated from the G(V = 0) temperature dependence - see figure S5.
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Figure S5 The temperature dependence of the zero voltage conductance, G(V = 0), for devices J7 (2ML) and J6
(6ML).

The high field measurements were performed at the "Laboratoire National des Champs Magnétiques Intenses" in
Grenoble, France. The magnet used allowed for magnetic fields up to H = 36T.
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The sample was cooled down to T = 1.25K in a pumped He4 cryostat, and the differential conductance was measured
using a standard lock-in technique with an excitation of Vlock−in = 100µV. Although the excitation voltage is relatively
large, it does not lead to a significant smearing of the obtained spectrum as eVlock−in << 3.5kBT ≈ 360µeV (where
3.5kbT is the FWHM width of the Fermi distribution transition). Likewise the electrical noise, generated by the
magnet flux noise is also smaller than the temperature - see figure S6. The sample was mounted on a rotating stage,
the axis of which was perpendicular to the magnetic field. A field of H = 2T was applied and the sample was rotated,
while measuring the height of the coherence peaks. By maximizing the peak height the magnetic field was aligned
with the plane of the sample, with a maximum deviation of up to 1◦.

Figure S6 Electrical noise measured at T = 1.2K, across a R = 10kΩ resistor in a bandwidth of DC − 32kHz, as
a function of the magnetic field. The left panel show the noise spectrum, while the right one shows the integrated
noise voltage.

A. G(V ) curve fitting

With the main goal of determining the order parameter as a function of the magnetic field, ∆(H), the following
heuristic approach was adopted. Without a proper microscopic theory to describe the soft gapped spectrum in
presence of weak inter-valley scattering, and with limited ability to discern the details of the density of states (DOS)
at T = 1.3K, the simplest approach to take is to try several different models for the G(V ) traces and compare the
results. Even though there are countless models that one can utilize the discussion here is limited to the following
three: an effective temperature T ∗ with a BCS DOS, an Abrikosov-Gorkov DOS (AG DOS) S9 and a Dynes DOS
S10. At finite temperatures the G(V ) curve is obtained by convolving the DOS with a distribution ≈ 3.5kBT wide
(FWHM): G(V ) = 1

eR

∫∞
−∞ dEN(E)∂f(E−V )

∂V
. If ≈ 3.5kBT ≈ ∆ this leads to a finite conductance at zero voltage

bias (i.e. a soft gap). The Abrikosov-Gorkov depairing model lowers the spectral gap below the order parameter ∆.
When the depairing energy equals the order parameter, α(H) = ∆(H) this leads to a gapless state, but even when
α(H) < ∆(H) along with a finite temperature the resulting G(V ) trace can be gapless. Lastly, the Dynes DOS is
non-zero at E = 0, directly leading to a soft gap. To illustrate this a simple example is shown in figure S7 - the top
panel show the BCS, Abrikosov-Gorkov and Dynes densities of states, as well as the distribution function ∂f(E−V )

∂V for
some parameter values, while the bottom panel shows the corresponding differential conductance traces. Although
the BCS and the Abrikosov-Gorkov DOS’ are fully gapped the resulting spectra are quite similar, and are in fact
gapless.

The parameters for the effective temperature model were the (field dependent) order parameter ∆(H) and the
temperature T ∗(H). For the Abrikosov-Gorkov and Dynes fits the temperature was fixed to T = 1.25K, while the
depairing and Dynes energies were fitting parameters. The ∆(H) dependence obtained in this way, for both junctions
and all three models, is shown on figure S8.

It is important to note that the values of these extra field dependent parameters, have no physical significance: the
gap value is not self-consistently determined, nor should they be interpreted in the context of their usual meaning.
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Figure S7 Top: The BCS density of states (blue, ∆ = 1), the Abrikosov-Gorkov one (red, ∆ = 1.15, α = 0.38)
and the Dynes one (yellow, ∆ = 1.05, Γ = 0.24). The dashed the (derivative of the) Fermi distribution function for
T = 0.25∆ (black) and T = 0.4∆ (blue). Bottom: the corresponding G(V ) traces. The BCS DOS was convolved
with the higher temperature distribution function, while the other two were convolved with the lower temperature
one.

Figure S8 The extracted order parameters as function of the applied magnetic field using the three different G(V )
models, for the J7 (2ML, left panel), and J6 (4-8ML, right panel).

They are rather just phenomenological parameters used to describe the obtained G(V ) spectra. To illustrate this figure
S9 shows the self-consistent and experimentally obtained ∆ versus the Abrikosov-Gorkov and Dynes Γ parameters.

As this approach estimates ∆ not based on the details of the G(V ) spectrum, but rather the energy scale of the
(spectroscopic) gap, it is important to show that this is a robust feature. To this end figure S10 shows the G(V ) data
from J7 at H = 20T, as well as several theoretical traces. The first of which is the Abrikosov-Gorkov fit, followed by
two traces with the same gap, but different depairing values, which demonstrate that the energy scale of the gap is
dominantly set by ∆ while the depth of the gap at V = 0 is set by the depairing. The last trace shows that the gap is
significantly different than the one found at H = 0, countrary to what one might naively infer based on the colorplots
shown in figure 2 of the main text.

Additionally the error of the ∆ estimation can be performed in the following way: the log-likelihood distribution
for the fitting parameters (given the data) is given by

p̃(∆, x̃) = −< (Gi − f(Vi,∆, x̃))2 >i
2σ2

where x̃ stands for the additional model-dependent parameters and < ... >i denotes the average over all of the acquired
points. σ, the noise of the measurement, can be estimated either directly from data, or by the root-mean-square error



9

0 100 200 300 400 500 600 700 800
! [ 7eV]

50

100

150

200

250

300

350

400

"
 [
7

eV
]

Abrikosov-Gorkov DOS fit
Dynes DOS fit
Abrikosov-Gorkov self-consistent
Dynes self-consistent

Figure S9 The order parameter ∆ as a function of the Abrikosov-Gorkov depairing (blue) and the Dynes energy
(red) for J7, obtained from the fitting (dots) and the self-consistent gap equation (full lines).

Figure S10 The experimental data from J7 at H = 20T (green circles), the Abrikosov-Gorkov fit (solid black) and
two traces with the same ∆ but different depairings and a trace with ∆ = ∆(H = 0) with a depairing which fits the
"depth" of the spectroscopic gap.

of the fit, both of which give similar results. The log-likelihood is not necessarily quadratic in ∆, as the fitting problem
is nonlinear, but close to the maximum-likelihood point it can is approximately quadratic. Therefore by fitting p̃ near
it’s maximal point with − (∆−∆̃)2

2δ2
∆

+c, where c is related to the RMSE and ∆̃ is the best fit value, we obtain an estimate
of the fit uncertanty δ∆. The Abrikosov-Gorkov ∆(H) curve with errors estimated in this way is shown in figure 3 of
the main text. We find that the uncertainty of the extracted values of ∆ is roughly equal to the spread of the data,
regardless of the G(V ) model. The experimental G(V ) traces and the Abrikosov-Gorkov fits are shown on figure 2 of
the main text. The fits obtained using the other two models are almost indistinguishable from the Abrikosov-Gorkov
one.
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