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ILC3-derived acetylcholine promotes
protease-driven allergic lung pathology
To the Editor:
Initiation of allergic airway pathology often depends on the

protease activity of the inhaled allergen. Previous studies have
shown that IL-17–driven neutrophil and eosinophil responses can
promote allergic pathology1 and are associated with an initial
epithelial release of IL-23, which is accepted as important in pro-
moting TH17 and group 3 innate lymphoid cell (ILC3) responses.
ILC3s are a developmentally and phenotypically diverse innate
lymphoid cell (ILC) subset that includes natural killer (NK) cell
receptor (NCR)-positive and NCR-negative populations (NCR1

ILC3s and NCR– ILC3s) as well as CCR61 lymphoid tissue
inducer cells. However, all ILC3s are defined by expression of
transcript variant 2 ofRORC, encoding retinoid-related orphan re-
ceptor gt (RoRgt) and production of IL-17 and IL-22.1,2 Work
carried out in murine models has resulted in ILC3s emerging as
critical regulators of infectious2 and noninfectious1 pulmonary
diseases despite ILC3s representing only a minor lung immune
cell population in mice. In contrast, ILC3s are the major ILC pop-
ulation in the human lung.3 Importantly, ILC3-associated preclin-
ical phenotypes are reflective of observations in humans.2,4

However, our understanding of the molecular machinery enabling
ILC3s to exact their influence on lung immunity is incomplete.

In this study, we have demonstrated that expansion of lung
ILC3s occurs in response to the protease papain and that these
cells promote an IL-17–associated lung pathology. Critically, we
have shown that induction of papain-driven pathology is strongly
associated with ILC3 synthesis of acetylcholine (ACh). We have
� 2020 The Authors. Published by Elsevier Inc. on behalf of the American Academy of

Allergy, Asthma & Immunology. This is an open access article under the CC BY li-

cense (http://creativecommons.org/licenses/by/4.0/).
previously identified ACh responsiveness by immune cells in the
lung as being important for CD41 T-cell–driven adaptive immu-
nity to Nippostrongylus brasiliensis infection.5 Here, we have
extended this insight by demonstrating that ACh from lineage-
negative (Lin–) CD1271 lymphocytes expressing RoRgt is instru-
mental for promoting protease induction of allergic inflammation.
This identifies a new paradigm for how ILC3s and ACh contribute
to early promotion of allergic pathology that is distinct from our
traditional understanding of ACh-driven neuromuscular interac-
tions causing allergic pulmonary airway resistance.

We have identified association of ILC3s with protease-induced
lung pathology following acute papain challenge of wild-type
(WT) C57BL/6 mice. Papain challenge increased lung concentra-
tions of IL-13, IL-17A, IL-22, and IL-23 in comparison with the
concentrations in saline-challengedmice (Fig 1,A). IL-17– and IL-
23–promoted pathology suggests a RoRgt-driven inflammation.
Papain challenge of RoRgt–green fluorescent protein (GFP) re-
porter mice demonstrated a significant expansion of the numbers
of ILC3s (Lin–CD451CD1271ICOS–RoRgt-GFP1), group 2
ILCs (ILC2s) (Lin–CD451CD1271ICOS1RoRgt-GFP–), and
CD31CD41 RoRgt-GFP1 T cells relative to the numbers in
saline-treated controls (Fig 1, B and see Fig E1 in this article’s On-
line Repository at www.jacionline.org). Restimulation and intra-
cellular cytokine capture of lung CD41 T cells from papain-
challenged mice detected increased levels of IL-5 and IL-13 but
not IL-17 when compared with the levels in saline-treated controls
(Fig 1, C). However, in CD451CD3–Lin– cells, in addition to
increased levels of IL-5 and IL-13, a raised IL-17 level was de-
tected in papain-challenged mice when compared with the levels
in saline-treated controls (Fig 1,C).Moreover, anti-CD3 depletion
of T cells did not protect against and in fact promoted papain-
driven pathology (see Fig E2 in this article’s Online Repository
at www.jacionline.org). These findings support IL-17–driven pa-
thology as being independent of RoRgt1 TH17 T-cell IL-17
production.

To test a requirement for any T-cell (and B-cell) contribution to
IL-23/IL-17–promoted pathology, we challenged RAG2–/– mice
with papain in the presence or absence of an IL-23–neutralizing
mAb (anti–IL-23) (Fig 1, D). Decreased lung inflammation in
IL-23–depleted RAG2–/– micewas revealed by histologic analysis
as well as by reduced detection of Evans blue (EB) leakage into
bronchoalveolar lavage fluid (BALF) (Fig 1, D) when compared
with that in isotype-treated RAG2–/– mice. BALF immune cell
infiltration was reduced in all immune cell populations, and tissue
levels of IL-17A (but not IL-13) were lower in the IL-23–depleted
RAG2–/– mice (Fig 1, D). This abrogation of papain-induced
allergic inflammation in anti–IL-23–treated RAG2–/– mice sup-
ports ILC3s as being a key contributing lymphoid cell population
driving protease-mediated lung inflammation.

To further characterize the input of ILC3s to allergic airway
pathology,we compared pulmonary responses to papain inWTand
Rorc–/– mice (Fig 1, E). Rorc–/– mice did not show significant
baseline differences from C57Bl/6 mice in terms of BALF cell
composition (see Fig E3 in this article’s Online Repository at
www.jacionline.org), but histologic analysis of lung sections re-
vealed decreased inflammation and detection of EB leakage into
the BALF in Rorc–/– mice challenged with papain versus in WT
mice (Fig 1, E). Total BALF immune cell infiltration was also
reduced for all immune cell populations (Fig 1, E). Moreover,
detection of both IL-13 and IL-17A, as well as IL-22, was reduced
in Rorc–/– mice (Fig 1, E). In agreement with findings by others6
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FIG 1. RoRgt -expressing cells drive protease-induced airway inflammation. A, Detection of pulmonary IL-

13, IL-17A, IL-22, and IL-23 by ELISA following acute papain challenge. B, ILC3s

(Lin–CD451CD1271ICOS–RoRgt-GFP1), ILC2s (Lin–CD451CD1271ICOS1RoRgt-GFP–), and TH17 T cells

(CD31CD41RoRgt-GFP1) were detected in the lung by flow cytometry by using RoRgt-GFP reporter mice

following acute papain challenge. C, Phorbol myristate acetate restimulation of lung cells potentiated pro-

duction of IL-13 but not IL-17 by CD41 T cells in papain-treated mice, as measured by flow cytometry. But

CD451CD3–Lin– cells did show IL-17 production following phorbol myristate acetate restimulation.D, Repre-

sentative hematoxylin and eosin staining of lung sections, pathology scoring, and quantification of airway

epithelial integrity by using EB following papain challenge of RAG2–/–– and IL-23–depleted RAG2–/– mice.

Airway cellular infiltration and detection of pulmonary IL-13 and IL-17A by ELISA is also shown. E, Repre-

sentative hematoxylin and eosin staining of lung sections, pathology scoring, and quantification of airway

epithelial integrity by using EB following papain challenge of C57BL/6 and Rorc–/– mice. Airway resistance to

methacholine challenge following papain challenge in Rorc–/– mice. Airway cellular infiltration in Rorc–/–

mice. Detection of pulmonary IL-13 and IL-17A by ELISA in papain-challenged Rorc–/– mice. Detection of

ILC2s (Lin–CD451CD1271ICOS1) and NCR1 ILC3s (Lin–CD451CD1271ICOS–NKp461) in the lung by flow cy-

tometry. Data are representative of 2 or 3 equivalent experiments; n5 3 to 9 mice/group. All data are a com-

parison of unchallenged and saline-treated or papain-challenged C57BL/6 background mice. Values

represent means6 SDs; *P < .05; **P < .01; ***P < .001. BAL, Bronchoalveolar lavage fluid; Eos., eosinophil;

Gra., granulocyte; Lymp, lymphocyte; Mono., monocyte.
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Rorc–/– mice had expanded numbers of ILC2s (Lin–CD451

CD1271ICOS1) when compared with the numbers in WT mice
(Fig 1, E). However, as expected, detection of ILC3 subsets such
as NCR1 ILC3s (Lin–CD451CD1271ICOS–NKp461) in Rorc–/–
mice was acutely reduced as opposed to in WT mice; the small
number of cells detected were most likely to be non-NK, non–
RoRgt-expressing group 1 ILCs (ILC1s). This body of work iden-
tifies a previously unappreciated, T-cell–independent role for
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expression driven by RoRgt-induced Cre expression) mice, pathology scoring and quantification of epithe-

lial integrity by using EB. Airway resistance tomethacholine challenge, quantification of airway cellular infil-

tration, detection of pulmonary IL-13 and IL-17A by ELISA, and detection of ILC2s (Lin–CD451CD1271ICOS1)
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ogy scoring, quantification of epithelial integrity by using EB, quantification of airway cellular infiltration,
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IL-23–responsive ILC3s in contributing to the onset of papain-
driven lung pathology.

An additional striking feature of these results was protection
from cholinergic-promoted airway resistance during papain
challenge in the absence of Rorc expression (Fig 1, E). Lympho-
cytes are important responders to, and sources of, neurotransmit-
ters. For example, the ILC2 response to the neurotransmitter
neuromedin U is critical for inducing type 2 immunity,7 and pro-
duction of ACh by immune cells following type 2 immune chal-
lenge can promote host type 2 immune responses.8 Moreover,
ACh-producing T cells can contribute to control of chronic viral
infection,9 and CD41 T-cell responses to ACh via the M3
muscarinic receptor are required for optimal adaptive immunity
to helminth and bacterial infections.5 In the spleen, lymphocytes
are major effectors of the cholinergic anti-inflammatory pathway
through their synthesis and release of ACh, which downregulates
inflammation. ILC3 responses to cholinergic stimulation can also
contribute to the cholinergic anti-inflammatory pathway by regu-
latingneutrophilia in sepsismodels.However,whether ILC3s them-
selves may be an immune cell–derived source of ACh capable of
regulating immunity has not previously been investigated.

To identify whether lung ILC3s may produce ACh
during acute protease-induced inflammation, we challenged
ChAT(BAC)-eGFP reporter mice with papain. In addition to
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increased choline acetyltransferase (ChAT) production by
CD31CD41 cells (and a trend toward increased production by
Lin–CD451CD1271ICOS1 ILC2s), we identified an increase in
the ChAT-expressing ILC3-enriched (Lin–CD451CD1271

ICOS–) population, but with no effect on the number of NK
(CD3–DX51) cells in the lungs of papain-challenged mice (Fig
2, A). Therefore, RoRgt-expressing ILC3s increase synthesis of
ACh following papain challenge.

To test whether ILC3 synthesis of ACh contributes to papain-
driven pathology, we generated RoRgtCreChATloxp mice. These
mice lack the ability to generate ACh following deletion of ChAT
in RoRgt-expressing cells. Papain challenge of RoRgtCreChATloxp

mice resulted in decreased histologic detection of inflammation and
vascular leakage of EB in BALF compared with in the BALF of
ChATloxp mice (Fig 2, B), along with reduced methacholine-
induced airway resistance and reduced numbers of neutrophils
and eosinophils in the BALF (Fig 2, B). Detection of cytokines in
lung homogenates identified reduced IL-13 and IL-17A levels
as well as reduced IL-22 levels, in RoRgtCreChATloxp mice as
compared with in the controls (Fig 2, B). Therefore, disruption of
ChAT inRoRgt1 cells was sufficient to recapitulate the reduced pa-
thology seen in papain-challengedRorc–/– mice (Fig 1). Quantifica-
tion of ILCs revealed equivalent ILC2 (Lin–CD451CD1271

ICOS1) numbers but decreasedNCR1 ILC3 (Lin–CD451CD1271

ICOS–NKp461) numbers between papain-challenged WT and
RoRgtCreChATloxp mice (Fig 2, B).

An equivalent phenotype was demonstrated following Alterna-
ria alternata extract–driven acute allergic inflammation
(Fig 2, C). As with papain, A alternata extract challenge of
RoRgtCreChATloxp mice resulted in decreased histologic detec-
tion of inflammation and vascular leakage of EB in BALF along
with reduced methacholine-induced airway resistance, reduced
numbers of neutrophils and eosinophils in the BALF, and reduced
detection of IL-13 and IL-17A in lung homogenates compared
with in ChATloxp mice (Fig 2, C).

In summary, following acute protease challenge, we found
raised IL-13, IL-23, IL-22, and IL-17A expression in the lung and
increased numbers of ILC3s. Papain challenge did not induce
elevated CD41 T-cell IL-17 levels irrespective of raised
RoRgt1CD41 T-cell numbers. Moreover, in the absence of T
cells, papain-induced lung inflammation was maintained but
abrogated when IL-23 or RoRgt function was disrupted. This
strongly supports ILC3 expansion in the lung as a driving factor
in IL-17–associated inflammation following an acute protease
lung challenge. Reduction in airway cholinergic responsiveness
led us to investigate whether ILC3s were a physiologically rele-
vant source of ACh following papain challenge. We tested this
by generating RoRgtCreChATloxp mice that lack the ability to
generate ACh in RoRgt-expressing cells. Remarkably, this
ILC3-biased disruption of ChATexpression protected against pa-
thology to an extent equivalent to that seen in Rorc–/– mice. This
identifies RoRgt1 cell expression of ChAT as an important
component in the promotion of protease-mediated allergic lung
pathology. Indeed, these data support ILC3s expressing ACh as
playing a central role in initiation of the IL-17–promoted allergic
inflammatory cascade. These findings place ILC3 synthesis of
ACh as a central requirement for allergic lung inflammation, add-
ing a critical new paradigm to our understanding of cholinergic
responses in driving allergic lung inflammation and pathology.
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METHODS

Mice used and animal procedures
All mice used in this study were 6- to 12-week-old C57BL/6 background

mice. The mouse strains used were C57BL/6, RAG2–/–, ChAT(BAC)-eGFP,E1

RoRgt-eGFP,E2 RoRgt-KO (Rorc–/–),E3,E4 RoRgtCre,E3 and ChATloxp.E5

Rorc–/– mice are deficient in expression of transcript variant 2 of

RORC, encodingRoRgt. RoRgt is necessary for the development of lymph no-

des and Peyer patches, which fail to develop in Rorc–/– mice.E4 RoRgt is ex-

pressed by many cells, including immature double-positive (CD41CD81) ab

thymocytes, RoRgt1 TH17 T cells, and ILC3s, which comprise NCR1

ILC3s and NCR– ILC3s, as well as CCR61 lymphoid tissue inducer cells.

RoRgtCre and ChATloxp mice were crossed over 5 generations to generate

RoRgtCreChATfl mice. The ChAT(BAC)-eGFP mouse has been demonstrated

to faithfully report ChATexpression andACh synthesis capacity across a num-

ber of hematopoietic immune cell types.E1 As the major rate-limiting enzyme

of crucial significance for ACh synthesis, demonstration of ChAT expression

by a specific cell type is widely considered to reflect the cholinergic-

synthesizing nature of the cell.

The mice were anesthetized by isoflurane followed by intranasal admin-

istration of 25 mg of papain (Calbiochem, Darmstadt, Germany) in 40 mL of

saline solution per mouse once per day on days 1, 2, and 3. On day 4 mice,

were humanely killed by CO2 inhalation 24 hours after the final administration

of papain. A alternata extract was administered daily for 3 days at a dose of 25

mg per mouse by the endotracheal route under light isoflurane anaesthesia,

before the mice were humanely killed on day 4 by CO2 inhalation. Anti–IL-

23 antibody or isotype control (Bio X cell, Lebanon, NH; BR0313 or rat

IgG1) was given daily 1 hour before papain challenge at a dose of 200 mg

per mouse via the endotracheal route. Anti-CD3 (Biolegend, San Diego, Calif;

catalog no. BL100208) antibody or isotype controls was given via intraperito-

neal injection daily 1 hour before papain challenge at a rate of 50 mg per

mouse. After the mice were humanely killed, BALF was collected before car-

diac perfusion with ISOTON II (acid-free balanced electrolyte solution, Beck-

man Coulter, Krefeld, Germany), after which the lungs were collected and

sampled for analyses.

All of the animal experimental protocols complied with French ethical

and animal experiments regulations (see Charte Nationale, Code Rural R

214-122, 214-124 and European Union Directive 86/609/EEC) and were

approved by the Ethics Committee for Animal Experimentation of CNRS

Campus Orleans, registered (No. 3) by the French National Committee of

Ethical Reflexion for Animal Experimentation (CLE CNRS Campus

Orleans 2013-1006). All of the South African experiments were carried

out in accordance with South African Veterinary Council regulations and

were approved by the University of Cape Town Faculty of Health Sciences

Animal Ethics Committee.

Histology
The left lobe of lung was fixed in 4% buffered formaldehyde and paraffin

embedded under standard conditions. Tissue sections (3-mm) were stained

with standard hematoxylin and eosin and periodic acid–Schiff. The histologic

score of the pathology was determined by a semiquantitative assessment on a

scale of 0 to 5 for cell infiltration (with increasing extent). The slides were

blindly examined by 2 investigators with a Leica microscope (Leica, Solms,

Germany).

Quantification of protein, EB, and cellular

infiltration in BALF
Bronchoalveolar lavagewas performed by 4 lavages of lungwith 500mL of

saline solutionvia a cannula introduced into themouse trachea. BALF samples

were centrifuged at 400 g for 10minutes at 48C, the supernatants were stored at
–208C for analysis, and pellets were recovered to prepare Cytospin (Thermo

Scientific, Waltham, Mass) on glass slides followed by staining with Diff-

Quik stain (Merz & Dade AG, Dudingen, Switzerland). Differential cell

counts were performedwith at least 300 cells. Vascular leakagewas quantified

by protein and EB concentration in the BALF. EB in BALF was measured 45

minutes after intravenous injection of 0.3% EB; the measurement was per-

formed by absorbance at 460 nm, as described elsewhere.E6 Extravasation

was expressed as micrograms of EB per milliliter (mg of EB/mL) of BALF

supernatant.

Flow cytometry
Lungs were digested in RPMI 1640 medium containing 100 U/mL of

penicillin, 100 U/mL of streptomycin, 1 mg/mL of DNase I (Sigma, St Louis,

Mo), and 125 mg of liberase (Roche, Basel, Switzerland) for 1 hour at 378C
under rotation. After digestion, RPMI 1640 medium supplemented with 10%

FCS was added. Cells were dissociated by passage through a 70-mm cell

strainer and centrifuged at 400 g for 5 minutes at 48C. Pellets were resus-

pended in red blood cell lysis buffer (Stem Cell Technologies, Vancouver,

British Columbia, Canada) and incubated for 10 minutes on ice. Lysis was

stopped by addition of RPMI 1640 medium and centrifuged again at 400 g

for 5 minutes at 48C. Pellets were resuspended in RPMI 1640 medium supple-

mented with 10% FCS and passed through a 40-mm cell strainer. ILC2s were

identified by using a Lin cocktail, CD45, CD127, and ICOS panel. ILC3s were

identified by using a panel containing a Lin cocktail, CD45, CD127, ICOS,

and NKp46 or RoRgt, as indicated. Cytokine-expressing T cells were identi-

fied by using a panel containing CD3, CD4, IL-5, IL-13, or IL-17, as indicated.

NK cells were identified by using a panel containing CD3 and DX5. All FACS

antibodies were from Biolegend.

ELISA
Homogenized lungs were tested for IL-13 and IL-17 by using commercial

ELISA kits (eBiosciences, San Diego, Calif) according to the manufacturer’s

instructions.

Determination of bronchial hyperresponsiveness
For invasive measurement of dynamic resistance, mice were anesthetized

by intraperitoneal injection of solution containing ketamine (100 mg/kg,

Merial, Duluth, Ga) and xylazine (10 mg/kg, Bayer, Leverkusen, Germany),

paralyzed by using D-tubocuranine (0.125%, Sigma), and intubated with an

18-gauge catheter. Respiratory frequency was set at 140 breaths per minute

with a tidal volume of 0.2 mL and a positive end-expiratory pressure of 2 mL

of H2O. Increasing concentrations of aerosolized methacholine (9.375, 18.75,

37.5, 75, and 150 mg/mL) were administered. Resistance was recorded by us-

ing an invasive plethysmograph (Buxco, London, United Kingdom). Baseline

resistance was restored before administration of the subsequent doses of

methacholine.E7

Statistical analysis
Data were analyzed by using Prism software, version 5 or 6 (GraphPad

Software, San Diego, Calif). Either a Mann-Whitney t test or the parametric

1-way ANOVA test with Bonferroni multiple-comparison was used to assess

significance. Values are expressed as means 6 SDs.
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FIG E1. RoRgt-GFP show increased ILC3s and RoRgt1 T cells. ILC3s (Lin–CD451CD1271ICOS–RoRgt-GFP1)

and TH17 T cells (CD31CD41RoRgt-GFP1) were detected in the lung by flow cytometry using RoRgt-GFP re-

porter mice following papain challenge. SSC, Side scatter.
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FIG E2. CD3-depleted ChAT-GFP mice do not show reduced inflammation to papain. Mice were treated

daily with anti-CD3 antibody administered intraperitoneally 1 hour before papain challenge at a dose of 50

mg/mouse. BALF cellular infiltration was assessed 24 hours after final administration of papain. BAL, Bron-

choalveolar lavage fluid; Eos., eosinophil; Gra., granulocyte; Lymp, lymphocyte; Mono., monocyte.
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FIG E3. Rorc–/– mice do not show significant baseline differences from C57Bl/6 mice in terms of BALF cell

composition. BALF immune cell infiltration and levels of lung ILC2s (Lin–CD451CD1271ICOS1) and NCR1

ILC3s (Lin–CD451CD1271ICOS–NKp461) in saline-treated C57Bl/6 and Rorc–/–mice were analyzed by flow cy-

tometry. BAL, Bronchoalveolar lavage fluid; Eos., eosinophil; Gra., granulocyte; Lymp, lymphocyte;Mono.,
monocyte.
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