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CNRS UMR 8001, Paris, France

5Case Western Reserve University, Cleveland, Ohio, USA

November 26, 2021

1



Abstract1

Despite considerable study of population cycles, the striking variability of cycle periods in many2

cyclic populations remains largely unexplained. Mathematical models of cyclic population3

dynamics seem to exhibit much greater regularity in cycle periods than many real populations,4

even when accounting for environmental stochasticity. We contend, however, that recent5

advances in understanding the origins of long transient dynamics point the way to a previously6

unrecognized means by which environmental stochasticity can create cycle period variation.7

Specifically, consumer-resource cycles that bring the populations near a saddle point (a8

combination of population sizes toward which the populations tend, before eventually9

recovering away) may be subject to a slow passage effect that has been dubbed a saddle crawlby.10

In this study, we illustrate how stochasticity that generates variability in how close predator and11

prey populations come to saddles can result in substantial variability in the durations of12

crawlbys and, as a result, in the periods of population cycles. Our work suggests a new13

mechanistic hypothesis to explain a significant factor in the irregular timing of population14

cycles and provides a basis for understanding when environmental stochasticity is, and is not,15

expected to generate cyclic dynamics with variability across periods.16
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Introduction17

Recurrent population cycles – eruptive increases and crashes in population size – are18

widespread (Kendall et al. 1999, Barraquand et al. 2017). Consumer-resource and host-enemy19

interactions are famously known to promote cycles (Turchin and Hanski 2001, Myers 2018), but20

models of these interactions predict a far more regular cycle period than is observed in many21

real cyclic populations (Dwyer et al. 2004). The more irregular timing of some cycles is difficult22

to explain. While it is tempting to implicate environmental stochasticity, the intrinsic period of23

ecological cycles appears to be surprisingly robust to noise. Past theoretical studies have shown24

that although white noise readily generates variance in cycle amplitudes, it has little effect on25

the regularity of the cycle period (Dwyer et al. 2004, Greenman and Pasour 2011). As such,26

other mechanisms, such as chaos, stochastic transitions between alternative attractors, and27

resonance between intrinsic cycles and seasonal forcing, have been invoked to explain the28

irregular timing of some population cycles (Dwyer et al. 2004, Nguyen and Rohani 2007, Ives29

et al. 2008, Greenman and Pasour 2011, Benincà et al. 2015). These alternative ideas are30

convincing and no doubt play an important role in some ecological systems. Still, the ubiquity31

of environmental stochasticity makes it appealing as a parsimonious and perhaps more general32

explanation for other, unexplained instances of cycle period variability. Though we know from33

counter-examples (e.g. Dwyer et al. 2004, Greenman and Pasour 2011) that environmental34

stochasticity may not cause significant variance in cycle period, we do not know that it cannot35

cause such variance, so we contend that it deserves a closer look.36

In this paper, we reconsider the possibility that the irregular timing of population cycles can37

originate from the interaction between density-dependent consumer-resource interactions and38

certain forms of parametric noise, motivated by recent advances in the understanding of39

ecological transient dynamics (Hastings et al. 2018), which suggest a particular mechanism that40

may strongly influence cycle timing. In addition to being prone to limit cycles,41

consumer-resource models generally share another feature: the presence of saddle points at the42

origin and at the resource carrying capacity in the absence of consumers (Murdoch et al. 2003).43
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If the consumer-resource cycle brings the population trajectory close enough to these saddle44

points, then a long transient during which the populations remain near the saddle will result45

(for an introduction to this role of saddle points, see e.g. Abbott 2020); this effect has been46

termed a saddle crawlby (Hastings et al. 2018). The duration of the crawlby scales with the47

distance from the saddle (Cushing et al. 1998, Jäger et al. 2008, Morozov et al. 2020). Therefore,48

we conjecture that stochasticity that results in more variability from cycle to cycle in how close49

the populations get to these saddles will produce higher variability in cycle timing. To explore50

this possibility, we partition variance in the total duration of a cycle into variance in the51

duration of its constituent parts, with particular interest in the times spent passing by and52

moving between the saddles.53

Our contributions come from acknowledging two important features of ecological dynamics.54

The first is the potential role of saddle crawlbys in cycle period variation. Second, a frustrating55

problem in population ecology is that there are many different aspects of an underlying56

ecological process that may be influenced by stochasticity, but different stochastic models can57

lead to very different dynamics (Allen and Allen 2003, Nisbet and Gurney 2003, Coulson et al.58

2004, Vadillo 2019). With this in mind, we seek to understand whether environmental59

stochasticity in different demographic parameters causes different levels of cycle period60

variability, and whether any approach the degree of variability seen in real cyclic populations.61

In this paper, we study the stochastic Rosenzweig-MacArthur predator-prey model62

(Rosenzweig and MacArthur 1963) to understand the roles of saddle crawlbys and different63

sources of environmental noise in generating variably timed population cycles. We find that64

when stochasticity enters via a parameter that affects how close the cycle passes to saddle points65

(e.g., the half saturation constant of the predator’s functional response), the result is substantial66

variation in how close the populations come to the saddle points in each cycle, leading to67

variation in the duration of saddle crawlbys and thus variation in overall cycle period. In68

contrast, stochasticity in parameters with no direct bearing on the proximity to saddles (e.g., the69

prey’s intrinsic population growth rate) tends to yield much more regular cycles. Our detailed70

study of the effect of saddle crawlbys on cycle period leads both to a new proposed explanation71
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for irregularly timed cycles observed in nature and to an understanding of why past work has72

seen little effect of stochasticity on cycle period variability.73

Methods74

Basic properties of cyclic populations75

While a complete meta-analysis of cycle period variation is well beyond the scope of this study,76

we do need a reasonable expectation for what levels of variation are realistic. Following Dwyer77

et al. (2004), we measure cycle period variability by its coefficient of variation (CV). Dwyer et al.78

(2004) report cycle period CVs ranging from 0.16 to 0.67 for a range of outbreaking forest79

insects. We supplement these data with our own analysis of ecological time series from the80

Global Population Dynamics Database (GPDD; NERC Centre for Population Biology 1999).81

Beginning with the 664 GPDD time series analyzed by Sibly et al. (2007), we found that 459 had82

at least 2 local maxima and showed some evidence of periodicity (the peak in true wavelet83

power spectrum exceeded the average observed in 100 bootstrap trials). Of these 459, 47 (10.284

%) showed perfectly regular cycle periods (CV = 0). The remaining cycle period CVs ranged85

from 0.10 to 0.98. Overall, the cyclic GPDD data had a mean cycle period CV of 0.30. This86

analysis confirms that the cycle period CVs reported for forest insects in Dwyer et al. (2004) are87

representative of other taxa as well.88

Model formulation89

We study cycles in a stochastic version of the Rosenzweig-MacArthur predator-prey model. The90

underlying deterministic model is91

dx
dt = rx

(
1− x

K

)
− axy

x + h

dy
dt =

abxy
x + h −my,

(1)

where x is prey population density and y is predator population density. The prey population92

grows at maximum rate r and would equilibrate to carrying capacity K in the absence of93
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predation. Predation occurs according to a Type 2 functional response (Holling 1965) with94

maximum attack rate a and handling time whose effect is described by the half-saturation95

constant, h. Predator population growth occurs at a rate proportional (described by b) to its96

prey consumption rate, and predator death is density independent with rate m.97

Our baseline parameter values are listed in Table 1. The implied time unit is most easily98

interpreted via the mean predator lifetime, which is 1/m ' 1.67 time units. These values result99

in a limit cycle featuring close, but not too close, passage to the x = 0 and y = 0 axes and thus100

to the saddle points of system (1) at (x, y) = (0, 0) and (K, 0). Close passage sets the stage for101

saddle crawlbys. To enforce a degree of biological realism, though, we omit from our analyses102

any simulated cycles in which prey and/or predator dropped to very low densities. Although103

models such as (1) allow recovery from infinitesimally small population densities, we recognize104

that real populations below a certain size will almost certainly go extinct before recovering. We105

used 10−5 times the prey carrying capacity as the extinction threshold, and chose our baseline106

parameter set to achieve a low rate of crossing of this threshold unless the noise amplitude was107

quite high. Imposing this extinction threshold ensures that crawlby effects that we observe in the108

model are not merely artifacts of letting the system drop to unrealistically low population sizes.109

To model different possible ways for environmental stochasticity to affect this interaction,110

we replace individual parameters with a Cox-Ingersoll-Ross stochastic processes. That is, we111

make any parameter p (where p is a stand-in for r, h, . . .) stochastic by modeling it as112

dp = γ( p̄− p)dt + σ
√

p dW, (2)

where W is a Wiener process and p̄ is the mean (i.e. baseline) value for the parameter. This113

formulation prevents parameters from becoming negative and has been shown in past work to114

have various mathematically desirable and biologically reasonable properties: it is115

mean-reverting and has a positive temporal autocorrelation that decays exponentially (Allen116

2016).117

Although we have explored effects of noise in each of the parameters (results not shown),118

we focus here on contrasting the effects of a noisy prey growth rate, r, versus a noisy predator119
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handling time, reflected by noise in h. This pair of parameters spans many interesting contrasts120

(i.e. appearance in a linear versus only in a nonlinear term, a multiplier versus a denominator, a121

rate in one species’ equation versus both) and thus serves well to illustrate the impacts of122

different sources of noise. We recognize that natural species interactions are not characterized123

by a single stochastic demographic parameter, but modeling one parameter at a time as124

stochastic allows us to isolate different putative effects of noise. Modeling noise only in r125

approximates the situation where the prey’s intrinsic growth rate is more sensitive to126

environmental perturbations (e.g., fluctuations in temperature) than other processes. Noise in h127

represents a situation where predator behavior or physiology (e.g., digestion rate) is the system128

feature most sensitive to perturbations.129

Analyses130

We study our model numerically to answer a series of questions about the genesis of cycle131

period variation. First, we study the deterministic model (equation (1)) to characterize the132

impact of different model parameters on the cycle period. We do this by starting with the133

baseline parameter set and varying one parameter at a time, focusing on each of r and h, to134

isolate its effect. Although the deterministic model inevitably produces a constant cycle period135

and we are of course interested in period variability, these results are useful for considering the136

mechanisms through which noise in specific parameters may impact cycles.137

Next, we study the stochastic model (equation (1) in which either r or h varies stochastically138

according to equation (2)). Specifically, we compute the temporal CV in the simulated cycle139

periods for different intensities of noise in each of the two parameters. We also partition the140

cycle into a sequence of six segments (figure 1), A: passage by (0, 0); B: prey growth from near 0141

to near K; C: passage by (K, 0); D: predator growth and prey decline (that is, movement from142

near (K, 0) toward the y-axis); E: the transition from predator growth to predator decline (i.e.143

passage across the predator’s nullcline); and F: finally, sharp predator decline to again approach144

(0, 0). Our hypothesis that saddle crawlbys drive cycle period variability leads us to predict that145

significant variance should be observed in the passage times near (0, 0) and (K, 0). We calculate146
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times spent transitioning through each of the six segments as the populations undergo a cycle,147

based on times when trajectories cross partition entrance and exit boundaries at locations that148

we specify in the (x, y) plane. The locations used for these boundaries for most of our149

simulations are listed in Table B1 in Appendix B; for a few special cases with altered cycle paths150

(cases 6-9 in Table 2), we used other boundaries. The boundary locations ensure that151

fluctuations rarely cause spurious crossings, while even those orbits with relatively large152

fluctuations do not miss any boundaries. Passage times through partition segments are153

computed sequentially, with the exit boundary from one region also serving as the entrance154

boundary for the next region (see figure 1). For example, once a trajectory exits a region155

through its exit boundary, re-entry through the exit boundary due to stochasticity does not156

count as another passage through the original region; rather, it is ignored, and the calculation of157

the time of passage through the next region continues until that region’s exit boundary is158

crossed. This subdivision allows us to decompose the variance in the full cycle period based on159

the variance in the time needed to complete each step.160

All of our numerical results on stochastic dynamics represent averages derived from161

simulations run for 20,000 time units. For each run, we discard an initial period extending from162

time 0 up until the time of the first crossing of a boundary into any of our defined cycle163

segments (figure 1). Each sample on which averaging is performed includes at least 400 cycles164

during which population sizes stay above the extinction threshold.165

Two additional analyses supplement our numerical results. First, we used small-noise166

approximations to derive analytical relationships between certain model features and passage167

times along the axes and near the saddle points. Due both to their extent and to the innovative168

mathematics involved, we plan to publish these analytical results elsewhere, but we provide a169

summary in Appendix A.170

Second, in addition to simulations that subjected the deterministic skeleton (1) to171

environmental noise (2), we investigated the influence of demographic noise. We used the172

standard Gillespie algorithm (Gillespie 1976, 1977) to recast the system (1),(2) as a173

continuous-time Markov jump process, whereby exponential holding times alternate with174
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Markov events (each term in the differential equations (1) is treated as an event rate for changes175

in the numbers of predators and prey). The degree of demographic stochasticity in the Gillespie176

simulations is determined by the prey carrying capacity K, which we set to 8000 in all our177

simulations. To avoid extinctions, we included an additional, small, constant immigration rate178

(ab); at each immigration event, one predator and d1/be prey were added. The time to the next179

event is drawn from an exponential distribution with mean equal to the inverse of the total rate180

at which events of any type occur. The probability that the event is of a given type is the ratio of181

its event rate to the total event rate. The Gillespie simulations are important for confirming that182

none of our main findings are expected to disappear in the presence of demographic noise and183

that they are not due simply to specific modeling or methodological choices. We show results184

from the Gillespie simulations alongside our main numerical results for select, key findings.185

Results186

Cycle period depends on model parameters and crawlby effects187

Depending on the parameter values, the deterministic Rosenzweig-MacArthur model can188

exhibit a stable equilibrium or a stable limit cycle. Cycles arise when the system undergoes a189

supercritical Andronov-Hopf (AH) bifurcation, which occurs at190

h = hAH := K(ab−m)/(ab + m). As h decreases below this threshold, orbits grow quickly from191

zero amplitude to large cycles that approach the axes in the (x, y) plane (figure 2A-B). Passage192

along the y-axis corresponds to low levels of prey (x) and declining numbers of predators (y).193

This is followed by passage near the saddle point at extinction (0, 0), and then by passage along194

the x-axis in which there are low levels of predators and recovering prey.195

Decreasing the prey’s growth rate, r, or the predator’s half-saturation constant, h, results in196

longer-period cycles (figure 2C-D, solid black lines). Because the AH bifurcation threshold, hAH,197

does not involve the parameter r, changing r cannot induce cycles in system (1). Nevertheless,198

when cycles exist, lowering r lengthens the oscillation period by slowing the recovery of the199

prey population. This effect prolongs the crawlbys past both the extinction point (0, 0) and the200

carrying capacity (K, 0) (figure 2C, red dashed and blue dotted lines, respectively). However,201
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the crawlbys are slowed somewhat less than passage through other parts of the cycle, so the202

system spends proportionately less time in crawlbys as r decreases (figure 2C, dotted black line203

in lower panel).204

In contrast, reducing h can induce an AH bifurcation and drive the system deeper into the205

cyclic regime. Decreasing the value of h drives trajectories closer to both axes (figure 2B). This206

prolongs the two saddle crawlbys (figure 2D, red and blue lines) by placing the populations207

closer to the saddles. The saddle crawlbys are not only slower with lower h, but they also take208

up proportionately more of the time needed to complete a cycle (figure 2C, dotted black line).209

In sum, slowing the overall dynamics (by decreasing the prey’s population growth rate, r)210

and pushing trajectories closer to the two saddle points (by decreasing the predator’s211

half-saturation constant, h) will each extend the cycle period, but they do so through different212

mechanisms. Decreasing the prey’s growth rate extends the duration of saddle crawlbys, but213

only by slowing the dynamics as a whole and prolonging the entire cycle period. Decreasing the214

half-saturation constant enhances the degree to which predators can overexploit their prey,215

leading to more pronounced population crashes. These crashes exaggerate the crawlby effect by216

placing the populations closer to the two saddle points at joint extinction and the prey carrying217

capacity. The result is longer cycles that are made up of relatively more time spent for prey218

recovery (passage near (0, 0)) and then predator recovery (passage near (K, 0)).219

Stochasticity can cause variance in cycle period, but not all stochasticity is equal220

Adding Cox-Ingersoll-Ross parameter noise (equation (2)) to the Rosenzweig-MacArthur model221

results in noisy cycles such as the ones shown in figure 3. Figure 3A-B shows an example in222

which noise in r causes cycles to vary in amplitude but maintain a close to constant period.223

Figure 3C-D shows that for the same noise amplitude (σ value in equation (2)), the cycle period224

is much more variable for noise in h.225

Figure 3 shows just two examples, but they are representative of the systematic differences226

we found when we explored different intensities of environmental noise acting on different227

model parameters. For the same absolute noise magnitudes (σ values), the cycle period becomes228
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much more variable when noise affects handling time than when it affects prey growth rate229

(figure 4). Specifically, for noise in r, the mean cycle duration changed little with increasing σ230

from the deterministic value of 24.83 time units, while the standard deviation of these durations231

depended only weakly on σ (figure 4A). Conversely, mean cycle durations and variability232

increased substantially with σ when noise entered through h (figure 4B), with a distribution233

featuring a tail of long cycle durations. For comparison with the biological data (see Methods),234

note that the results plotted here yield CVs from 0.04 to 0.12 with noise in r and from 0.11 to235

0.33 with noise in h. Results for σ = 0.2 (red bars in figure 4) are also summarized in table 2236

(cases 2-3). Finally, if noise enters into both h and r simultaneously (table 2 case 4, implemented237

via two copies of equation (2) that either share (correlated) or have independent (uncorrelated)238

instantiations of the Wiener process W), the results are similar to the case with noise in h alone239

(case 3).240

There are several possible explanations for the stronger effect of noise in h than noise in r in241

generating variable cycle periods. This is the pattern we expect if cycle period variability is242

driven by variation in the time it takes to complete saddle crawlbys, because changes in h243

exaggerate the influence of crawlbys while changes in r do not (figure 2C-D). We continue this244

thread in the next subsection. Alternatively, or perhaps in addition, noise of a particular245

magnitude may have a larger impact when it enters through h simply because our baseline246

value of h is lower. In other words, a noise amplitude of, say, σ = 0.2 acting on an r̄ of 1.0 might247

reasonably have less effect than the same σ = 0.2 acting on an h̄ of 0.15. We tested this idea in248

two ways. First, we reduced r̄ to 0.15 to eliminate the difference in magnitudes between r and h.249

This results in unrealistically long cycles, but allows a straightforward comparison of standard250

deviation and CV. Again, the CV in cycle period is much higher when noise enters through h251

(table 2, cases 6-7). Second, we returned to the baseline parameter set and increased the noise252

amplitude on r (by rescaling by
√

h) to allow the prey population to become quite small at253

times, approaching the x-axis and now allowing the exaggerated crawlby effect to be seen via254

noise in r. The result is a cycle period CV that is now quite comparable to the baseline case with255

noise in h (table 2, case 5 compared to case 3).256
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We thus found evidence of true differences (table 2, cases 2-3 and 6-7) in how noise in the257

prey growth rate and noise in the handling time affect variability in the cycle period. We258

attribute these differences to the way changes in h affect the relative speed of the crawlbys and259

investigate this hypothesis in more detail below. We also found evidence that at some260

sufficiently high level, noise in either parameter can lead to exaggerated crawlbys that cause261

cycle periods to become more variable (table 2, cases 3 and 5).262

Finally, we note that the half-saturation constant, h, is not unique in its ability to drive the263

system through the AH bifurcation and produce cycles of increasingly large magnitude, as264

shown in figure 2B; in fact, all parameters except r have that property in this model. Therefore,265

we consider one more scenario before moving on: we increase m from its baseline value of 0.6 to266

0.65. In the absence of stochasticity, this change moves the periodic orbit of the deterministic267

system (1) from the outer cycle in figure 2A to one of the interior paths. That is, while the268

system is still cycling with m = 0.65, the expected (mean) trajectory does not pass as close to the269

saddle points. Interestingly, changing m in this way increases the variability in cycle periods270

(figure 5 and table 2, cases 8-9 compared to 2-3). Once again, this effect is particularly strong for271

handling time noise (table 2). Although we might have expected more cycle period variability272

deeper into the crawlby region (smaller m), it appears that being closer to the bifurcation – and273

even on the stable side of it (figure 5D) – may increase the flexibility in the paths that orbits can274

take. The long durations are still associated with close crawlbys, but crawlbys occur less275

consistently, leading to a greater mix of longer and shorter cycles. These trends persist with276

additional increases in m and are reversed by decreases in m (results not shown).277

Demographic noise does not overwhelm environmental noise effects278

Until now, we have included noise in model (1) as Cox-Ingersoll-Ross parameter noise (equation279

(2)), representing environmental variability. In reality, population dynamics necessarily include280

demographic noise as well. In theory, this variability across individuals could induce dynamic281

effects that dominate the overall cycle paths, reducing the impacts we have documented of282

environmental fluctuations. We tested this possibility by performing Gillespie simulations (see283
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Methods) in which all aspects of the population dynamics are treated as events with certain284

expected rates, and events are implemented sequentially at random, with likelihoods and285

timings based on these expected rates. These simulations emulate demographic noise effects;286

moreover, within each simulation, we also modulated either the prey growth rate (r) or the287

predator’s half-saturation constant (h) stochastically. We found that these simulations yielded288

very similar distributions of cycle durations to our direct simulations of system (1)-(2), matching289

the differences between noise in r and noise in h as well as those across noise amplitudes σ290

(figure 4).291

Cycle variability is driven by variable passage times near extinction and prey carrying capacity292

We have seen that in the deterministic case, trajectories traverse each cycle at non-uniform rates,293

spending more time near the saddles at (0, 0) and (K, 0) than in other regions of the phase plane294

(figure 2A,C,D). This observation raises the question of whether this non-uniformity manifests295

in the stochastic case and, if so, whether it is relevant for cycle variability. That is, from a naive296

perspective, longer passage times may translate into more opportunity for fluctuations,297

resulting in enhanced variability. On the other hand, we have seen (from the contrast in298

simulations with noisy r versus noisy h) that longer passage times do not inevitably result in299

variable cycle periods. Moreover, it is also possible that the strong contraction near the stable300

manifold of each saddle could constrain trajectories, and hence passage times, to be more301

similar rather than more variable, relative to what occurs in other regions of phase space.302

As the noise amplitude σ increases, trajectories continue to spend significant portions of303

each cycle near the (0, 0) and (K, 0) saddles, although the precise locations where this time is304

spent become progressively more diverse (figure 6 shows this for noise in r; the effect is similar305

but not shown for noise in h). In fact, by comparing plots with no noise to those with σ ≥ 0.2, it306

appears that with increasing σ, trajectories spend relatively less time transitioning from the307

neighborhood of (K, 0) back to the neighborhood of the y-axis, although it is not obvious by308

inspection where that time is spent instead.309

To quantify these effects, we used linear sections to partition the part of the phase plane310
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visited by the stochastic trajectories into six disjoint regions, proceeding counterclockwise as311

follows (figure 1), A: neighborhood of the origin, B: passage along the x-axis, C: neighborhood312

of the (K, 0) saddle, D: passage along the unstable manifold of (K, 0), which defines the313

direction in which trajectories depart from the neighborhood of (K, 0), E: crossing of the314

y-nullcline, which is the curve where dy/dt switches from positive to negative, and F: passage315

along the y-axis. The distributions of times spent in these regions differ significantly in their316

variability (figure 7). By a clear margin, the most variability arises in the passage times through317

regions A and C, corresponding to crawlbys near the saddles. Moreover, substantially more318

variability occurred in these regions with noise in h than with noise in r; note the differences in319

x-axis details between histograms in figure 4A,C and those in figure 4B,D. The Gillespie320

simulations shown in figure 4C,D yielded qualitatively, and in many cases quantitatively,321

similar results (tables 3, 4).322

Although the variability in the durations of the crawlbys (that is, in passage times near (0, 0)323

and (K, 0)) becomes substantial, these segments of each cycle still dominate the overall cycle324

period. For example, the positive correlation between period and these passage times, but not325

between period and passage time along the x-axis, is readily apparent in figure 8. Interestingly,326

these relationships, especially for the passage time near (0, 0), are even tighter with noise in r327

than with noise in h, although the passage times themselves are less widely distributed when328

the noise is in r.329

Loss of prey strongly influences each cycle period, with little history dependence between cycles330

So far, we have shown strong evidence that environmental noise has different impacts on the331

distribution of cycle periods, depending on the origin of the noise, and that variability in cycle332

periods is dominated by variability in the duration of the two saddle crawlbys near (0, 0) and333

(K, 0). To conclude our characterization of these effects, we ask what factors best predict these334

crawlby durations. Longer crawlbys elevate the risk of stochastic extinction by prolonging the335

time during which one or both populations are small. Longer crawlbys also delay the time until336

the next population peak, with important consequences for some cyclic species like outbreaking337
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forest insects. We therefore ask, what should we look for in a population’s history to help us338

anticipate the durations of upcoming saddle crawlbys?339

In a deterministic system, passage time near a saddle is well understood. We can consider340

the population trajectory to have started the crawlby past extinction (that is, to have entered the341

neighborhood of the (0, 0) saddle) once predator density, y, drops below some threshold, y0,in.342

Suppose the prey density when the y = y0,in threshold is crossed is x0,in. We will say the (0, 0)343

crawlby is complete once prey density grows beyond another threshold, x0,out. Near (0, 0),344

x2 ≈ 0 and xy ≈ 0, so the dynamics of the deterministic Rosenzweig-MacArthur model345

(equation (1)) is well approximated by dx/dt = rx, dy/dt = −my. In this approximation, the346

time needed to complete the saddle crawlby is tpass = (1/r) ln(x0,out/x0,in); that is, the crawlby347

duration depends linearly on ln(x0,in). A similar calculation implies that the log predator348

density at entry into the neighborhood of the (K, 0) saddle, yK,in, also depends linearly on349

ln(x0,in).350

If the relationships for the deterministic model still hold in the presence of environmental351

stochasticity, then we expect ln(x0,in), the log prey density when the populations first enter the352

vicinity of the extinction state (0, 0), to predict the duration of both saddle crawlbys. This is353

indeed what we find. There is a strong correlation between ln(x0,in) and the passage time by the354

(0, 0) saddle (figure 9A,B). There is also a strong correlation between log prey density, ln(x0,in),355

and log predator density upon entry into the neighborhood of the (K, 0) saddle (figure 9C,D),356

and between the time of passage near (K, 0) and this log predator density (figure 9E,F). Thus,357

even in the presence of noise, the prey’s population density at the end of the predator-decline358

portion of the cycle strongly influences the durations of both saddle crawlbys, which in turn359

strongly influence the time it will take to complete the current cycle.360

The effects of noise during the passage around the rest of the cycle eliminates the effects of361

these entry positions, so that the positions of entry into the neighborhoods of the saddles in the362

next cycle are effectively independent of past history (Appendix B, figure B1). This means that363

we expect no meaningful autocorrelation in the periods of consecutive cycles. It also validates364

our decision (see Methods) to omit individual cycles with unrealistically low population sizes365
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from our analyses. The consistency of Gillespie simulation results with those from simulating366

(1)-(2) provides additional evidence that successive cycles are effectively independent.367

Finally, referring back to Figure 9 and comparing the two columns, we notice that the368

predator and prey densities upon entry into the two saddle neighborhoods differ, depending on369

the source of noise. When noise enters through the prey’s population growth rate, r, the entry370

values seem to be symmetrically distributed on the logarithmic scale, while when noise enters371

through the handling time, they become skewed toward smaller values even on the logarithmic372

scale, corresponding to the skew toward longer passage times (figures B2-B3). Interestingly,373

both patterns of entry densities correspond well to a lognormal distribution function. This374

suggests a characteristic distribution of densities upon approach to a saddle in this model, with375

moments that depend on the source of the noise.376

Discussion377

Although real cyclic populations can display considerable variability in cycle period, previous378

authors have observed that stochastic ecological models typically predict cycles with much379

more regular periods (Dwyer et al. 2004, Greenman and Pasour 2011). Inspired by recent work380

characterising saddle crawlbys in non-equilibrium ecological dynamics (Hastings et al. 2018),381

we hypothesized that stochasticity that causes variation in how close populations come to382

saddle points during their cycles might promote variability in cycle periods. Our numerical383

study of stochastic Rosenzweig-MacArthur predator-prey cycles confirms this idea. For the384

cycles that we observe in model simulations, variability in period is dominated by deviation in385

the passage times past the saddle points (figures 7, 8); further evidence for the central impact of386

saddle crawlbys arises in the scaling of these passage times with proximity to the stable387

manifolds of the two saddles (i.e. the x- and y-axes; figure 9). Our results thus update our388

understanding of the conditions under which environmental stochasticity can contribute389

meaningfully to observed cycle period variation in nature.390

Within this qualitatively general phenomenon of crawlby-induced variability, quantitative391

differences arise depending on the source and amplitude of the stochasticity in the dynamics of392
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population interactions. Comparing deviations of similar amplitude, we find that handling time393

noise, which causes variation in the efficiency with which predators exploit their prey and394

hence in the extent of the population crashes experienced on each passage around the cycle,395

induces more variability in cycle period than does noise in the prey’s population growth rate396

(figures 3, 4, 7; Table 2, cases 2-3). Rescaling our noise sources to equalize the CV of the397

fluctuations from these sources, rather than their amplitude, seems to mitigate this difference398

(Table 2, case 3 vs. case 5). Yet, when we vary parameters to induce closer passage near the axes399

and saddles, corresponding to more extreme population losses during cycle troughs, and also to400

equalize the noise source CVs, the difference between these noise sources re-emerges (Table 2,401

case 6 vs. case 7). A heuristic idea of the cause of this distinction comes from the observation402

that for fixed predator level y, noise in r enters the dynamic equation for x in equation (1) in a403

linear manner, with small deviations in r multiplying the small term x(1− x/K) ∼ x near x = 0.404

On the other hand, noise in h enters the equations like 1/h, such that even small deviations in h405

can have an amplifying effect (Appendix A).406

Another quantitative, and perhaps initially surprising, observation emerging from our study407

is that crawlby-induced variability is strongest when the mean cycle trajectory is not too close to408

the saddle points (figures 2A, 5), such that individual cycles represent a mix of crawlbys and409

non-crawlbys. Indeed, even though crawlbys are responsible for the overall cycle duration410

variability, the most heterogeneous mixture of long and short passage times past saddles results411

when crawlbys are only influential on a subset of cycles. In these cases, the coefficient of412

variation in cycle period approaches 0.3, the mean value estimated from GPDD data. We413

therefore conclude that variance in the duration of saddle crawlbys provides a viable414

explanation for some, although not all, observed instances of variability in cycle periods. This415

result also highlights the point that even though cyclic populations do not come close to416

extinction during several consecutive cycles, their population dynamics may hold the417

ingredients to produce significant crashes under environmental fluctuations that are within the418

range of expected occurrence.419

Like any model, ours is not a complete representation of reality. Real predators may420
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disperse, change behaviors, or evolve to avoid driving their prey, and thus themselves, too close421

to extinction (van Baalen and Sabelis 1995). Alternatively, in biological systems, local422

populations with high-amplitude cycles may routinely go extinct and then undergo423

recolonization. Our results were conditioned on the populations not going extinct, and we do424

not model dispersal in or out of the local community nor do we model complex behaviors,425

alternative prey, and other such factors that are likely to influence the dynamics of real426

populations. Nevertheless, the elements of our model, like population cycles and saddle427

crawlbys, and their connections to real dynamics are well studied (Murdoch et al. 2003). Our428

contribution, therefore, is not to replicate or explain the dynamics of any specific single429

population, but to extend our understanding of cycles and crawlbys as mechanisms through430

which environmental stochasticity can emerge within predator-prey dynamics in general. In431

doing so, we reconcile a long-recognized mismatch between models and data in their view of432

how variable the periods of cycle populations may be.433

Because populations necessarily become small during the trough of each cycle, one might434

reasonably expect demographic stochasticity to be important in this setting. However, our435

Gillespie simulations reveal that the effects of environmental stochasticity on cycle period436

variation are robust to the inclusion of demographic noise. It is nevertheless possible that other437

dynamic mechanisms not considered in this study may also contribute to temporal variability in438

cycle durations. Our intent is not to argue that saddle crawlbys are the only or even the439

predominant source of cycle period variability, but rather to highlight their putative role.440

The observations in this paper represent interesting topics for future mathematical analysis,441

particularly for models such as (1)-(2) to which the stochastic averaging methods of Skorokhod442

et al. (2002) cannot be applied. Previous analytical and numerical work, some done in other443

biological contexts, has discussed some of the differences in dynamics that arise from the details444

of how stochasticity appears in a dynamical system (Lande 1993, Goldwyn and Shea-Brown445

2011, Allen 2016, Vadillo 2019). In contrast to the individual-level impact of demographic noise,446

environmental noise is shared across entire populations, which is conducive to larger variability447

and can increase the likelihood of extreme events such as extinction (Lande 1993). The specific448
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representation of stochasticity that we have implemented in equation (2) features biologically449

desirable properties: it causes the stochastic parameter to remain positive, to be mean-reverting,450

and to have some history-dependence, with a temporal autocorrelation that is nonzero and451

decays exponentially (c.f. Allen 2016). To our knowledge, analytical work to date has not452

addressed how such stochasticity impacts cycle durations and other properties in systems with453

saddle crawlbys. A related direction that has been pursued analytically (Ashwin and454

Postlethwaite 2016) is how stochasticity affects the passage of trajectories along a heteroclinic455

cycle (i.e., a union of orbits that each form a connection from one saddle point to another, which456

together form a closed loop). These systems may require noise to oscillate, unlike model (1), but457

nonetheless the resulting oscillations do feature passage near saddle points. Ashwin and458

Postlethwaite (2016) analyzed residence times near equilibria and switches between459

neighborhoods of attractors (including heteroclinic cycles), while Giner-Baldó et al. (2017)460

derived analytical approaches to compute the power spectra of observables in a planar system461

with a heteroclinic cycle. Both of these analyses were done on systems with stochasticity in the462

form of additive Gaussian white noise, however, whereas the CIR noise that we consider poses a463

new challenge for future work.464

Our results update our understanding of how environmental stochasticity can contribute465

meaningfully to observed cycle period variation in nature. While our results for stochastic prey466

growth rate, r, largely confirm past results that stochasticity has little effect on cycle period, we467

have shown that some noise sources – specifically those that vary the distance from saddle468

points as part of the normal cycle – can lead to substantial cycle period variation. Interestingly,469

this effect is strongest when the mean cycle trajectory is not too close to the saddle points, such470

that individual cycles represent a mix of crawlbys and non-crawlbys. In these cases, the471

coefficient of variation in cycle period approached 0.3, the mean value estimated from time472

series data. We therefore conclude that variance in the duration of saddle crawlbys provides a473

viable explanation for some, though not all, observed instances of variability in cycle periods.474
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Tables544

Table 1. Baseline parameters of the model defined by equations (1) and (2).

parameter meaning value unit
r prey intrinsic growth rate 1 time−1 per capita
K prey carrying capacity 1 prey biomass
a maximum prey consumption rate 2 time−1 per predator
h prey density at half maximum consumption rate 0.15 prey
b prey to predator conversion efficiency 0.5 —
m predator death rate 0.6 time−1 per capita

p parameter subject to CIR process (r or h)
γ speed of adjustment to mean p̄ 1 time−1

σ σ
√

p is standard deviation of CIR process 0–0.3
√

units of p

For stochastic r or h, the values listed refer to r̄ or h̄, respectively.
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Table 2. Mean, standard deviation, and coefficient of variation of cycle periods under different
scenarios.

noise parameter noise mean standard
case site set amplitude, σ period deviation CV

1 none baseline 0 (deterministic) 24.83 0 0

2 r baseline 0.2 24.74 2.07 0.084
3 h baseline 0.2 28.88 5.59 0.19

4 (uncorr) r and h baseline σr = σh = 0.2 28.70 5.47 0.19
4 (corr) r and h baseline σr = σh = 0.2 29.76 6.01 0.20

5 r baseline 0.2/
√

h = 0.516 25.26 5.06 0.20

6 r r̄ = h̄ = 0.15 0.2 68.04 4.30 0.063
7 h r̄ = h̄ = 0.15 0.2 61.81 7.58 0.123

8 r m = 0.65 0.2 23.79 2.30 0.097
9 h m = 0.65 0.2 28.95 7.80 0.27

Our baseline parameter set given in Table 1 is used except where noted. With the exception of the deterministic case,
either r or h (or both in case 4 where uncorr refers to uncorrelated, corr to correlated; see text) is made stochastic by

applying equation (2).
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Table 3. Mean (µ) and standard deviation (sd) of passage times through regions A-F (see figure
1) from model (1)-(2) (SDE) simulations.

noise noise
site amp., σ µA sdA µB sdB µC sdC µD sdD µE sdE µF sdF

r 0.1 4.34 0.32 2.59 0.14 9.32 0.69 3.31 0.07 2.95 0.11 2.19 0.05
r 0.2 4.34 0.68 2.61 0.29 9.32 1.49 3.31 0.15 2.95 0.25 2.21 0.13
r 0.3 4.43 0.98 2.64 0.48 9.52 2.12 3.30 0.22 2.92 0.41 2.24 0.29
h 0.1 6.34 0.98 1.49 0.09 11.07 2.53 2.77 0.25 2.75 0.15 1.32 0.15
h 0.2 7.36 2.10 1.51 0.24 13.19 5.21 2.76 0.48 2.70 0.34 1.36 0.47
h 0.3 8.13 2.63 1.64 1.54 14.52 6.21 2.80 0.84 2.57 0.43 1.45 0.76

Table 4. Mean (µ) and standard deviation (sd) of passage times through regions A-F (see figure
1) from Gillespie simulations.

noise noise
site amp., σ µA sdA µB sdB µC sdC µD sdD µE sdE µF sdF

r 0.1 4.34 0.57 2.61 0.18 9.22 1.91 3.31 0.24 2.96 0.16 2.21 0.12
r 0.2 4.35 0.78 2.62 0.31 9.25 2.18 3.30 0.28 2.95 0.26 2.23 0.16
r 0.3 4.34 1.11 2.67 0.48 9.15 2.58 3.33 0.98 2.93 0.37 2.27 0.60
h 0.1 6.31 1.15 1.50 0.11 10.80 3.06 2.78 0.32 2.76 0.18 1.33 0.19
h 0.2 6.95 1.80 1.55 0.77 11.77 4.23 2.75 0.52 2.72 0.32 1.36 0.42
h 0.3 7.69 2.01 1.65 1.79 13.22 4.96 2.76 1.39 2.62 0.44 1.51 1.37
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Figure legends545

Figure 1. Components of a typical cycle, A: passage by the origin when both species are rare, B:546

recovery of the prey population, C: passage by the prey’s carrying capacity, K, D: predator547

recovery and prey decline, E: initiation of predator decline, and finally F: sharp predator decline548

back toward the origin. Segments A and C involve saddle crawlbys.549

Figure 2. Oscillations in system (1) without noise. A. The predator-prey coexistence equilibrium550

is unstable for h . 0.25 and baseline values of the other parameters. Periodic orbits for551

successively smaller values of h, namely h = 0.24 (diamonds), h = 0.195 (circles), and h = 0.15552

(squares; our baseline value) pass progressively closer to the coordinate axes. Shapes denote553

points 1 time unit apart on each orbit and thus show the rates of passage through different parts554

of the cycle. B. As h is reduced from 0.4 toward its baseline value (0.15), system (1) undergoes555

an Andronov-Hopf bifurcation at which the coexistence equilibrium switches from stable (solid556

black) to unstable (dashed black) and a family of stable periodic orbits emerges (blue and red557

show maximal and minimal values of x and y, respectively, along these orbits). C. As r (baseline558

value 1.0) decreases, the oscillation period grows (solid black line). This is partially explained by559

prolonged crawlbys past the saddles at (0, 0) (blue dotted line) and (K, 0) (red dashed line). The560

purple dashed line shows the total amount of time during each cycle that is spent in a saddle561

crawlby (red plus blue), and the dotted black line in the lower panel shows the remaining time562

spent passing through other parts of the cycle (solid black minus purple). D. As h decreases, the563

oscillation period grows, but less extremely than in C. The longer cycle duration is even more564

strongly influenced by saddle crawlbys; for low h, most of the time needed to complete a cycle565

is spent crawling by the saddle points.566

Figure 3. Typical behavior of system (1)-(2) with noise amplitude σ = 0.3 and noise in r (A-B) or567

h (C-D). A, C show the dynamics over 2000 time units in the (x, y) phase plane. B, D show time568

series of x (black) and y (red) for the first 500 of the 2000 time units shown in A, C.569

Figure 4. Distributions of relative cycle durations for various noise amplitudes σ. A-B. Results570
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from simulations with model (1),(2). A. With noise in r, the mean duration stays nearly constant571

while the distribution widens and remains symmetric as σ increases. B. With noise in h, the572

mean duration increases and the distribution widens and becomes skewed, with a tail of long573

duration cycles, as σ increases. Note that the two panels show different ranges of cycle574

durations. C-D. Results from Gillespie simulations of model (1) with carrying capacity K = 8000575

and environmental noise in r (C) or in h (D) are similar to those from the simulations with only576

environmental noise shown in A, B. These plots were derived from equal time simulations577

across noise conditions, which led to the following numbers of cycles. For the Gillespie case:578

σh = 0.1, 978 cycles; σh = 0.2, 915 cycles; σh = 0.3, 839 cycles; σr = 0.1, 1018 cycles; σr = 0.2, 1018579

cycles; σr = 0.3, 1003 cycles. For simulations of (1), (2): σh = 0.1, 775 cycles; σh = 0.2, 668 cycles;580

σh = 0.3, 410 cycles; σr = 0.1, 809 cycles; σr = 0.2, 808 cycles; σr = 0.3, 798 cycles.581

Figure 5. Time series for A: m = 0.6, B: m = 0.65, C: m = 0.7, and D: m = 0.75 with noise of582

amplitude σ = 0.2 in h. The system undergoes an Andronov-Hopf bifurcation at m ∈ (0.7, 0.75).583

Thus, the deterministic model would show limit cycles for the parameter values in A-C and584

stable predator-prey coexistence for the values in D.585

Figure 6. Histograms of relative times spent in bins in the (x, y) plane during simulations with586

durations of 2000 time units, with A no noise and with B-D increasing levels of noise amplitude587

σ. These results are for noise in the prey carrying capacity r, and are similar to what we see588

with noise in the predator’s half-saturation constant h.589

Figure 7. Histograms of time spent by trajectories with noise of amplitude σ in r (top plot per590

pair) or in h (bottom) in successive regions of phase space, A: near the origin, B: along the591

x-axis, C: near the (K, 0) saddle point, D: along the unstable manifold of (K, 0), E: traversing the592

y-nullcline, F: along the y-axis. For noise in h, note that the distributions in regions B and F have593

sharp minima corresponding to the passage times generated by dx/dt = rx(1− x/K) and594

dy/dt = −my, respectively, which are approached on cycles for which the stochastic xy term595

(the functional response) becomes so small that it has very limited influence over the passage596

times along the axes. The numbers of cycles incorporated in these histograms are as in Figure 4.597
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Figure 8. Correlations between the different durations for A-B: noise in the prey growth rate (r)598

or C-D: noise in the handling time (implemented as noise in the predator’s half-saturation599

constant, h) for baseline parameter values and noise amplitude σ = 0.2. A,C. The full cycle600

period (per) is tightly correlated with passage times near the (0, 0) and (K, 0) saddle points601

(blue triangles and red circles, respectively). In contrast, it is effectively independent of the time602

it takes to transition between the saddles (“x-axis passage”, cyan markers). Here, noise is603

applied with σ = 0.2 in all cases. B,D. Cycle period is highly correlated with the total time604

needed to complete both saddle crawlbys (“sum”, black dots). It is uncorrelated with the time605

needed to complete all other parts of the cycle (“difference”, i.e. the total cycle period minus the606

sum of the two saddle crawlby durations; green dots).607

Figure 9. Strong dependence of passage times through saddle neighborhoods on entry positions608

into those neighborhoods. In A,C,E the prey growth rate, r, is the stochastic parameter and in609

B,D,F the predator’s prey handling time, h, is stochastic. A-B show the dependence of the (0, 0)610

saddle crawlby duration on the log of the prey’s density upon entry into that neighborhood,611

(ln(x0,in)). C-D show dependence of log predator density upon entry into the neighborhood of612

(K, 0), (ln(yK,in)), on ln(x0,in). Finally, E-F show how ln(yK,in) determines the duration of the613

(K, 0) saddle crawlby. Results for noise amplitude σ = 0.1, 0.2 and 0.3 are shown in A,B,E,F,614

while C,D show σ = 0.2.615
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Appendix A: Boundary Layer Analysis617

The equations (1) are unfortunately analytically intractable, but the stable limit cycle has618

segments that are approximately parallel to the x and y axes, which approach closer and closer619

to the axes as r or h decreases. This allows us to approximate the trajectory via the method of620

boundary layers, linearizing along the axes.621

To do so, we introduce a small, dimensionless parameter ε, and substitute x(t) = εξ(t) or622

y(t) = εψ(t), as appropriate, into (1). We then take the limit as ε→ 0. This is equivalent to623

focusing on the part of the orbit where the transformed variable(s) are small, and allows us to624

obtain approximate solutions along the x-axis and y-axis and at the origin. Similarly, letting625

x(t) = K + εξ(t) and y(t) = εψ(t), we can approximate the trajectory near the (K, 0) saddle.626

We illustrate the method by computing the solution along the y-axis: substituting

x(t) = εξ(t) into (1) gives

εξ̇ = εrξ

(
1− εξ

K

)
− ε

aξy
εξ + h

ẏ = ε
abξy

εξ + h
−my.

(A1)

In the limit as ε→ 0, these equations simplify to

ξ̇ =
(

r− ay
h

)
ξ

ẏ = −my,
(A2)

which may be solved to yield y(t) = y(0)e−mt and ξ(t) = ξ(0)ert− ay(0)
mh (1−e−mt), where y(0) and627

x(0) = εξ(0) are the (unspecified) point of entry into a neighborhood of the y-axis. We may also628

return to the original variables, taking x(t) = εξ(t) = x(0)ert− ay(0)
mh (1−e−mt).629

When h is allowed to vary stochastically according to equation (2), we need to modify our

solution to (A2) to account for the fact that h is a (random) function of time, giving us

x(t) = x(0)ert−ay(0)
∫ t

0
e−mu
h(u) du. (A3)

Proceeding similarly, we can obtain approximate local solutions for stochastically varying r630

38



or h, which we summarize in Table A1.631

Comparing the solutions along the y-axis for varying r vs. varying h gives some intuition for632

the greater impact of noise in the latter: in this region, the noise enters as 1
h , whereas h itself633

fluctuates about a mean of h̄ = 0.15, and thus will regularly approach values very close to 0. If634

this happens near the y-axis, x(t), which is proportional to e−
∫ t

0
e−mu
h(u) du, can become quite small.635

This can cause the perturbed trajectory to make a very close approach to the unstable node at636

the origin and the consequent slow-down of the passage. By contrast, in the same region, noise637

in r enters linearly, and only a rare, large fluctuation in r will cause the trajectory to have a638

similar excursion towards the crawlby region near the origin.639
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Table A1. Linearized solutions for the model defined by equations (1) and (2) in different regions
of the phase space.

noise site region x(t) y(t)

r origin x(0)e
∫ t

0 r(u) du y(0)e−mt

r (K, 0)

K + (x(0)− K)e−
∫ t

0 r(u) du

+
ay(0)
1 + h

∫ t

0
e−
∫ t

s r(u) du+( ab
1+h−m)s ds

y(0)e(
ab

1+h−m)t

r x-axis x(0)

x(0)+(1−x(0))e−
∫ t

0 r(u) du
y(0)e

abx(0)
∫ t

0
1

x(0)(1+h)+h(1−x(0))e−
∫ u

0 r(v) dv
du−mt

r y-axis x(0)e
∫ t

0 r(u) du− ay(0)
mh (1−e−mt) y(0)e−mt

h origin x(0)ert y(0)e−mt

h (K, 0)

K + (x(0)− K)e−rt +
y(0)

b
eab

∫ t
0

1
1+h(u) du−mt

+
y(0)(r−m)

b
e−rt

∫ t

0
eab

∫ s
0

1
1+h(u) du+(r−m)s ds

y(0)eab
∫ t

0
1

1+h(u) du−mt

h x-axis x(0)
x(0)+(1−x(0))e−rt y(0)eabx(0)

∫ t
0

1
x(0)(1+h(u))+h(u)(1−x(0))e−ru du−mt

h y-axis x(0)ert−ay(0)
∫ t

0
e−mu
h(u) du y(0)e−mt

40



Appendix B: Supplemental numerical information and figures640

A B

C D

Figure B1. Independence from one cycle to the next of the population densities upon entry into
the neighborhoods of the saddles. The stochastic parameter is prey growth rate, r, in A,C and
predator’s prey handling time, h, in B,D. A-B show the lack of a correlation between prey density
upon entry into the (0, 0) neighborhood, ln(x0,in), from the nth to the n + 1st cycle. C-D show the
same for predator density upon entry into the (K, 0) neighborhood, ln(yK,in). In all cases, σ = 0.2
and axes are on logarithmic scales. Note that results in C include some values of xn+1 below the
extinction cutoff of 10−5; these were not used in any of the duration calculations discussed in the
main text.
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Table B1. Entry and exit sections used to define our phase space regions.

noise site region entry boundary exit boundary

h origin y = 0.12 x = 0.2

h x-axis x = 0.2 x = 0.5

h (K, 0) x = 0.5 y = 0.15

h unstable manifold y = 0.15 y = x− 0.2

h y-nullcline y = x− 0.2 y = 0.23

h y-axis y = 0.23 y = 0.12

r origin y = 0.07 x = 0.12

r x-axis x = 0.12 x = 0.6

r (K, 0) x = 0.6 y = 0.13

r unstable manifold y = 0.13 y = 0.55x

r y-nullcline y = 0.55x y = 0.22

r y-axis y = 0.22 y = 0.07

These values were used for all results except cases 6-9 in Table 2, for which sections were slightly adjusted to reflect
altered orbit paths.
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A B

C D

E F

Figure B2. Distributions of prey densities, ln(x0,in), at crossing of a Poincaré section of constant
y = y0,in, which marks entry into the neighborhood of (0, 0). A,B: σ = 0.1, C,D: σ = 0.2, E,F:
σ = 0.3. The noisy parameter is r in the left panels (with y0,in = 0.07) and h in the right panels
(with y0,in = 0.12). In each panel, the red curve shows the best lognormal fit to each distribution.
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A B

C D

E F

Figure B3. Distributions of predator densities, yK,in, at crossing of a Poincaré section of constant
x = xK,in, marking entry into the neighborhood of (K, 0). A,B: σ = 0.1, C,D: σ = 0.2, E,F: σ = 0.3.
The noisy parameter is r in the left panels (with xK,in = 0.6) and h in the right panels (with
xK,in = 0.5). In each panel, the red curve shows the best lognormal fit to each distribution.
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