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Despite considerable study of population cycles, the striking variability of cycle periods 
in many cyclic populations has received relatively little attention. Mathematical mod-
els of cyclic population dynamics have historically exhibited much greater regularity 
in cycle periods than many real populations, even when accounting for environmental 
stochasticity. We contend, however, that the recent focus on understanding the impact 
of long, transient but recurrent epochs within population oscillations points the way 
to a previously unrecognized means by which environmental stochasticity can create 
cycle period variation. Specifically, consumer–resource cycles that bring the popula-
tions near a saddle point (a combination of population sizes toward which the popu-
lations tend, before eventually transitioning to substantially different levels) may be 
subject to a slow passage effect that has been dubbed a ‘saddle crawlby’. In this study, 
we illustrate how stochasticity that generates variability in how close predator and prey 
populations come to saddles can result in substantial variability in the durations of 
crawlbys and, as a result, in the periods of population cycles. Our work suggests a new 
mechanistic hypothesis to explain an important factor in the irregular timing of popu-
lation cycles and provides a basis for understanding when environmental stochasticity 
is, and is not, expected to generate cyclic dynamics with variability across periods.

Keywords: periodic orbits, predator–prey dynamics, Rosenzweig–MacArthur, saddle 
points

Introduction

Recurrent population cycles – eruptive increases and crashes in population size – 
are widespread (Kendall et al. 1999, Barraquand et al. 2017). Consumer–resource 
and host–enemy interactions are famously known to promote cycles (Turchin and 
Hanski 2001, Myers 2018), but models of these interactions predict a far more regu-
lar cycle period than is observed in many real cyclic populations (Dwyer et al. 2004). 
Ecological data are famously noisy, so the observation that cycle periods appear irreg-
ular may seem unsurprising and perhaps even incidental. However, our inability to 
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explain the irregularity could reflect a fundamental gap in 
our understanding of the mechanisms driving cycles. This 
possibility is troubling because we rely on our understand-
ing of population cycles in pest management, conservation 
and other important contexts (Barraquand et al. 2017). 
Proposed mechanisms acting on a population may be 
accepted or rejected based on whether they predict realistic 
cycle period variability (Dwyer et al. 2004). More broadly, 
the variability in a quantity can be as informative as its 
mean, and repeated calls have been made for improving our 
ability to extract understanding from patterns in variance 
(Benedetti-Cecchi 2003, Violle et al. 2012, Holyoak and 
Wetzel 2020, Shoemaker et al. 2020). The development of 
general theory for the origins of cycle period variation thus 
would deepen our understanding of the factors influencing 
fluctuating populations and improve our ability to manage 
and protect them.

While it is tempting to implicate environmental stochas-
ticity as a source of cycle period irregularity, the intrinsic 
period of ecological cycles appears to be surprisingly robust 
to noise. Past theoretical studies have shown that although 
white noise readily generates variance in cycle amplitudes, it 
may have little effect on the regularity of the cycle period. 
Specifically, Fig. 1a in Dwyer et al. (2004) shows the very reg-
ular outbreaks predicted by a stochastic difference equation 
model for gypsy moth dynamics, and Fig. 9 in Greenman 
and Pasour (2011) similarly shows virtually no effect of noise 
on the interepidemic period in a noisy two-strain susceptible-
infected model of dengue. As such, other mechanisms, such 
as chaos, stochastic transitions between alternative attractors, 
eco-evolutionary feedbacks and resonance between intrinsic 
cycles and seasonal forcing, have been invoked to explain 
the irregular timing of some population cycles (Dwyer et al. 
2004, Nguyen and Rohani 2007, Ives et al. 2008, Greenman 
and Pasour 2011, Benincà et al. 2015, Bengfort et al. 2017). 
These alternative ideas are convincing and no doubt play an 
important role in some ecological systems. Still, the ubiquity 
of environmental stochasticity makes it appealing as a par-
simonious and perhaps more general explanation for other, 
unexplained instances of cycle period variability. Though we 
know from counter-examples (i.e. the aforementioned cases 
shown in Dwyer et al. 2004, Greenman and Pasour 2011) 
that environmental stochasticity does not necessarily cause 
significant variance in cycle period, we do not know that it 
cannot cause such variance, so we contend that it deserves a 
closer look.

In this paper, we reconsider the possibility that the 
irregular timing of population cycles can originate from the 
interaction between density-dependent consumer–resource 
interactions and certain forms of parametric noise. In addi-
tion to being prone to limit cycles, consumer–resource 
models generally share another feature: the presence of 
saddle points at the origin and at other states, such as at 
the resource carrying capacity in the absence of consum-
ers (Murdoch et al. 2003). The term ‘saddle point’ in this 
context refers to a population equilibrium that exists but 
is unstable in a specific way: from certain starting values, 

population levels will tend to approach the saddle point, 
but eventually they will deviate away from these equilibrium 
values. If the consumer–resource cycle brings the popula-
tion trajectory close enough to these saddle points, then a 
long but ultimately transient epoch within each cycle during 
which the populations remain near the saddle will result (for 
an introduction to this role of saddle points, Abbott 2020); 
this effect has been termed a saddle crawlby (Hastings et al. 
2018). The duration of the crawlby scales with the inverse of 
the distance from the saddle (Cushing et al. 1998, Jäger et al. 
2008, Morozov et al. 2020). Therefore, we conjecture that 
stochasticity that results in more variability from cycle to 
cycle in how close the populations get to these saddles will 
produce higher variability in cycle timing. To explore this 
possibility, we will partition variance in the total duration 
of a cycle into variances in the durations of its constituent 
parts, with particular interest in the times spent passing by 
and moving between the saddles.

Our contributions come from acknowledging two impor-
tant features of ecological dynamics. The first is the potential 
role of saddle crawlbys in cycle period variation. Second, a 
frustrating problem in population ecology is that there are 
many different aspects of an underlying ecological process 
that may be influenced by stochasticity, but different sto-
chastic models can lead to very different dynamics (Allen 
and Allen 2003, Nisbet and Gurney 2003, Coulson et al. 
2004, Vadillo 2019). In this work, we use a comparison of 
two parameters to highlight the fact that environmental sto-
chasticity in different demographic parameters causes differ-
ent levels of cycle period variability, and we discuss how these 
parameters’ effects on certain features of the cycling dynamics 
leads to their impacts on variability.

This paper presents our analysis of the roles of saddle 
crawlbys and different sources of environmental noise in gen-
erating variably timed population cycles, based on a series 
of complementary approaches. We begin with a brief char-
acterization of cycle period variation in a large collection 
of ecological time series and assess the plausibility of saddle 
crawlbys as a source of variability in some of these instances. 
We then present the general theory that links saddle crawlbys 
to variation in cycle duration in the presence of environmen-
tal stochasticity. Specifically, the mechanism involved is that 
stochastic parameter variation causes variation across succes-
sive population cycles in the population densities that arise 
at stages where saddle crawlbys occur, which in turn induces 
variation in crawlby durations and overall cycle lengths. The 
bulk of our paper is devoted to a detailed numerical study of 
the stochastic Rosenzweig–MacArthur predator–prey model 
(Rosenzweig and MacArthur 1963), through which we can 
understand how these theoretical effects manifest in a eco-
logical setting. We close by zooming back out to consider 
what our numerical study reveals more generally. Our study 
of the effect of saddle crawlbys on cycle period leads both to 
a new proposed explanation for some of the irregularly timed 
cycles observed in nature and to new insights about why past 
work has seen little effect of environmental stochasticity on 
cycle period variability.
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Data and analysis

Data show evidence of cycle period variability and 
putative saddle crawlbys

While a complete meta-analysis of cycle period variation is 
well beyond the scope of this study, we do need a reasonable 
expectation for what levels of variation are realistic. Following 
Dwyer et al. (2004), we measure cycle period variability by its 
coefficient of variation (CV), or standard deviation divided 
by mean. Dwyer et al. (2004) report cycle period CVs rang-
ing from 0.16 to 0.67 for various outbreaking forest insects. 
We supplement these data with our own analysis of ecological 
time series from the Global Population Dynamics Database 
(GPDD; Prendergast et al. 2010). We defined the duration 
of a cycle as the time from one local maximum of the popula-
tion time series to the next, and we used wavelet analysis to 
assess the periodicity of these cycles. Wavelet analysis decom-
poses a time series into a set of periodic oscillations of differ-
ent frequencies in order to, among other things, identify the 
dominant frequencies in the data (see Cazelles et al. 2008, for 
further information). Beginning with the 664 GPDD time 
series analyzed by Sibly et al. (2007), we found that 459 had 
at least 2 cycles and showed some evidence of periodicity (the 
peak in the true wavelet power spectrum – indicating the 
strength of the dominant frequency – exceeded the average 
observed in 100 bootstrap trials). Of these 459, 47 (10.2%) 
showed perfectly regular cycle periods (CV = 0). The remain-
ing cycle period CVs ranged from 0.10 to 0.98. Overall, the 
cyclic GPDD data had a mean cycle period CV of 0.30. This 
analysis confirms that the cycle period CVs reported for for-
est insects in Dwyer et al. (2004) are representative of other 
taxa as well.

Identifying a saddle crawlby in data with reasonable 
certainty requires a carefully validated dynamical model 
(Hastings et al. 2018) and while this is infeasible in bulk, 
we can survey the GPDD time series for dynamics that are 
consistent with our hypothesized crawlby effect. Because 
the saddle points in common ecological models often occur 
where at least one species is extinct, we focus on dynamics 
at low abundances. Populations that become small and stay 
small for an extended period of time may be crawling by a 
saddle that lies at zero abundance. Defining ‘low abundance’ 
as ≤ 5% of the maximum observed abundance (though note 
that the patterns we show are not sensitive to the exact per-
centage used; see the Supporting information), we recorded 
the longest continuous stretch of time that each GPDD time 
series dropped to low abundance and found this to be posi-
tively related to cycle period CV (Fig. 1A, B). Time series 
with only short (or no) time at low density showed examples 
of both high and low CVs (blue histogram in Fig. 1B; exam-
ples in C and D), suggesting that cycle period variability in 
these cases is due to a range of mechanisms not necessarily 
related to saddle crawlbys. (The fact that the relationship in 
Fig. 1A, though significant, explains only a small amount 
of the variance in cycle period CV likewise suggests that 
other mechanisms are represented in these data.) However, 

for cases in which durations at low abundance exceeded a 
threshold (three time series time steps), CVs were relatively 
large (Fig. 1B), consistent with what we would predict if 
these populations were influenced by saddle crawlbys at their 
troughs. Some of these putative crawlbys are almost certainly 
long transients caused by other phenomena (e.g. human 
impacts on the fisher (Aubry and Lewis 2003), Fig. 1E), 
while others are conceivably due to the type of tightly-
coupled consumer–resource interactions we study here (e.g. 
larch budmoth cycles (Turchin et al. 2003), Fig. 1F). In sum, 
this coarse analysis of 459 ecological time series supports the 
plausibility of the crawlby mechanism as one among several 
reasons that real cycle periods vary, and provides a bench-
mark against which to compare our theoretical results.

Saddle crawlbys convert variable population levels 
at specific cycle phases into variable cycle periods

Mathematically, a saddle point is an unstable equilib-
rium state (e.g. combination of population densities) that, 
though ultimately repelling, is approached from some states. 
Ecologically, the influence of a saddle can be seen in the 
approach toward joint extinction before eventual resource 
recovery during consumer–resource cycles. Such behav-
ior also appears in the approach from jointly low densities 
toward the carrying capacity of a resource or fast-growing 
competitor species, before the successful recovery or reinva-
sion of a predator or second competitor. A saddle crawlby 
is dominated by a phase of ‘lingering’ near the saddle point 
during relatively slow passage toward and then away from it 
(Hastings et al. 2018), within each population cycle.

In a dynamical system without added noise, the amount 
of time the system spends near a saddle – that is, the duration 
of the saddle crawlby – is well understood (Morozov et al. 
2020). Using a predator–prey system as an example, we can 
characterize the crawlby associated with the joint extinction 
state by considering how the populations enter and exit the 
proximity of the extinction saddle point at (0, 0). Using x to 
denote the prey population density and y the predator popu-
lation density, we can consider the crawlby to start once pred-
ator density drops below some threshold, y0,in, as illustrated in 
Fig. 2A. Use x0,in to denote the prey density when the y = y0,in 
threshold is crossed. In Fig. 2A, we show the crawlby trajec-
tories for two different choices of x0,in, one in blue and one in 
red. We will say that the (0, 0) crawlby is complete once prey 
density grows from x0,in to a prey threshold value, x0,out, also 
shown in Fig. 2A.

During the crawlby, the populations are sufficiently close 
to (0, 0) that typical consumer–resource dynamics will be 
well approximated by a linear system of equations, such as

dx
dt

rx

dy
dt

my

=

= -

  (1)
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with r, m > 0. System (1) has solutions x(t) = x(0)ert, 
y(t) = y(0)e−mt. Taking the initial conditions as the entry point 
to the crawlby, (x(0), y(0)) = (x0,in, y0,in), and defining a stop-
ping time tpass by the condition (x(tpass), y(tpass)) = (x0,out, y0,out), 
we obtain x x e

rt
0, 0,=out in

pass . This expression yields tpass = (1/r)
ln(x0,out/x0,in) = (1/r)[ln(x0,out) − ln(x0,in)], which is positive 
because x0,out > x0,in. That is, the crawlby duration tpass depends 
linearly on ln(x0,in). Similarly, if we substitute this result into 

the equation y y e
mt

0, 0,=out in
pass-

, then we find that the loga-
rithm of the predator density at the end of the crawlby also 
depends linearly on ln(x0,in).

Although we use the (0, 0) crawlby as an illustrative 
example in making these arguments, the same mathematical 
features arise for a crawlby past any other saddle point with 
exponential growth and decay rates in any two-dimensional 
system. That is, in any such two-dimensional crawlby, there 

Figure 1. Summary of Global Population Dynamics Database (GPDD) time series. (A) Relationship between the longest consecutive times-
pan spent at low (≤ 5% maximum) abundance and the coefficient of variation (CV) in cycle period, with regression line. Each dot is one 
of the 459 examples analyzed; colored and labeled dots denote examples shown in panels (C)–(F). (B) Histograms of cycle period CV for 
time series with short (0–3 time step) visits to low abundance (blue bars, summarized by blue boxplot above) versus those with longer 
intervals at low abundance (red). (C–F) Examples of time series from the GPDD spanning the range shown in (A). The extended time at 
low abundance in (E)–(F) is consistent with a crawlby of a saddle point at zero abundance.
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is contraction in the deviation of one variable, say y, from its 
value at the saddle point while there is growth in the devia-
tion of the other variable, say x; moreover, both the crawlby 
duration and the deviation of the logarithm of y at the end 
of the crawlby depend logarithmically on the deviation of x. 
A similar scaling of passage time and population sizes results 
from any crawlby near a saddle point in a system with more 
than two variables as well.

All of this is true regardless of whether the saddle crawlby 
is part of a larger, repeating cycle, but if the populations are 
cycling (Fig. 2B), then we can carry these arguments fur-
ther. The linear dependence of the crawlby duration tpass on 
ln(x0,in) implies that if there is variability in the x0,in values 
from cycle to cycle (as illustrated in the black x0,in distribu-
tion curve in Fig. 2A, for example), then there will also be 
variability in crawlby durations. Intuitively, the most inten-
sive variability in durations will result from an x0,in distribu-
tion that features close approaches to the saddle (low x0,in) 
and correspondingly long passage times, along with enough 
variance to yield some more distant approaches and short 
passage times. As an example, if the values of x0,in are log-
normally distributed with parameters µ and σ2, then the 
crawlby times from y = y0,in to x = x0,out are normally distrib-
uted. Explicitly, if we choose the same fixed value, call it 
c, as both y0,in and x0,out for convenience, so that the grey 
shaded crawlby region in Fig. 2A is a square, then by apply-
ing the formula for tpass to the whole distribution of x0,in 
values, we find that tpass is distributed normally; specifically, 
tpass~ N(ln(c)/r − µ/r, (σ/r)2) (we use N(µ, σ2) to denote the 
normal distribution with mean µ and variance σ2), with 
larger values in the x0,in distribution leading on average to 
smaller passage times tpass. Similarly, the distribution of 
predator densities at the end of the crawlby is log-normal, 
ln(y0,out)~ N((1 − m/r)ln(c) + mµ/r, (mσ/r)2), with smaller 

x0,in leading on average to smaller y0,out. (Note that because c 
is constant, the way that it shows up in these distributions 
is not important for understanding how population size 
variance at the start of the crawlby generates variance in 
crawlby duration.) After completing a saddle crawlby (i.e. 
crossing the x = x0,out boundary), the populations continue 
around the cycle, during which various features, including 
other crawlbys (Fig. 2B, region C), may occur en route to 
the next entry through the y = y0,in boundary. Importantly, 
parameters that do not explicitly affect the saddle crawlby 
itself can still impact the variability in passage times by 
impacting the trajectory around the cycle and hence the 
distribution of entry positions (here, x0,in values) into the 
saddle crawlby.

In summary, with log-normally distributed prey densities 
upon entry, the passage times past the saddle at the origin will 
be normally distributed, the exit predator density will be log-
normally distributed, and the variance of both of these dis-
tributions will grow with that of the prey distribution upon 
entry to the neighborhood of the origin. Other types of prey 
density entry distributions will also translate into predator 
density exit distributions of the same type. Understanding 
the stochastic processes that shape the distribution of prey 
densities at the start of each crawlby is therefore an important 
goal of our detailed numerical study below.

Numerical case study: saddle crawlbys generate 
variable cycle periods in a consumer–resource 
model

Formulation and behavior of the underlying deterministic 
model
To explore the implications of this theory in an ecological 
context, we analyze the cycles in a stochastic version of the 
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Figure 2. (A) Illustration of a crawlby past a saddle at (0, 0). We define the vicinity of the saddle (gray region) by an entry condition, y = y0,in, 
and an exit condition, x = x0,out. The crawlby begins when predator density y crosses the y0,in threshold. Prey density at this point (x0,in) is 
expected to be variable, according to some distribution (black overlain curve). When prey density upon entry is lower (red trajectory, com-
pared to teal), the saddle crawlby will be slower, with a longer duration, because the trajectory passes closer to the saddle. (B) Components 
of a typical predator–prey cycle, A: passage by the origin when both species are rare, B: recovery of the prey population, C: passage by the 
prey’s carrying capacity, K, D: predator recovery and prey decline, E: initiation of predator decline and finally F: sharp predator decline back 
toward the origin. Segments A and C involve saddle crawlbys. Panel (A) is general, but can be thought of as a zoom-in of region A (where 
the crawlby near the origin occurs) in panel (B).
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Rosenzweig–MacArthur predator–prey model. The underly-
ing deterministic model is

dx
dt

rx x
K

axy
x h

dy
dt

abxy
x h

my

= -
æ

è
ç

ö

ø
÷ - +

=
+

-

1
  (2)

where x is prey population density and y is predator popula-
tion density. The prey population grows at maximum rate r 
and would equilibrate to carrying capacity K in the absence 
of predation. Predation occurs according to a type 2 func-
tional response (Holling 1965) with maximum attack rate a 
and half-saturation constant h. Predator population growth 
occurs at a rate proportional (described by b) to its prey con-
sumption rate, and predator death is density independent 
with rate m.

Our baseline parameter values are listed in Table 1. These 
values were selected to provide certain dynamical features and 
do not represent a specific biological scenario. Similar results 
hold for a wide range of other parameter choices that give rise 
to similar dynamical features, as discussed below. The implied 
time unit is most easily interpreted via the mean predator life-
time, which is 1/m = 1.67 time units. These values result in 
a limit cycle featuring close, but not too close, passage to the 
x = 0 and y = 0 axes and thus to the saddle points of system 
(2) at (x, y) = (0, 0) and (K, 0). Close passage sets the stage for 
saddle crawlbys, but passage too close to the axes results in 
unrealistic dynamics, since models such as (2) allow recovery 
from infinitesimally small population densities at which real 
populations would almost certainly go extinct. We used 10⁻5 
times the prey carrying capacity as the extinction threshold, 
and chose our baseline parameter set so that this threshold 
was not crossed by the deterministic model with reasonable 
initial conditions, and crossed only rarely in stochastic simu-
lations unless the noise amplitude was quite high. We omit 
from our analyses any simulated cycles in which prey and/or 
predator dropped below the extinction threshold. Imposing 
this threshold ensures that crawlby effects that we observe in 
the model are not merely artifacts of letting the system drop 
to unrealistically low population sizes.

For stochastic r or h, the values listed refer to r  or h ,  
respectively in the Cox–Ingersoll–Ross (CIR) process (3).

To study saddle crawlbys, we should first characterize 
when system (2) generates oscillations and how parameters 
impact the paths of oscillations, when present, past saddle 
points. Depending on the parameter values, the determin-
istic Rosenzweig–MacArthur model can exhibit a stable 
equilibrium corresponding to co-existence of the two species 
or a stable limit cycle. The system undergoes a supercritical 
Andronov–Hopf (AH) bifurcation at h = K(ab − m)/(ab + m), 
and cycles arise for h below the bifurcation value; note that 
we only consider parameter values such that ab > m. As long 
as we restrict to parameter values with h below the bifur-
cation value and ab > m, whether we choose our baseline 
parameter set or some other values, system (2) will exhibit 
periodic orbits, and varying any parameter value individually 
will affect the amplitudes of these orbits and their proximity 
to the x- and y-axes, as shown for the parameter h in Fig. 3A 
and B.

The interaction of oscillations with saddle points can 
be studied by focusing on the parameters r and h. Because 
the bifurcation condition does not involve the parameter r, 
changing r cannot induce or eliminate cycles in system (2). 
Nevertheless, when cycles exist, lowering r lengthens the 
oscillation period by slowing the recovery of the prey popula-
tion; the periods arising for a range of r values are displayed 
as the solid black curve in Fig. 3C. This effect prolongs the 
crawlbys past both the extinction point (0, 0) and the car-
rying capacity (K, 0) (Supporting information provides the 
boundary conditions used to define the regions, while the 
actual crawlby durations appear as the red dashed and blue 
dotted lines, respectively, in Fig. 3C). However, as r decreases, 
the slowing of the crawlbys is matched by comparable slow-
ing of other parts of the cycle, so the fraction of time the 
system spends in crawlbys does not increase significantly 
(Fig. 3E, solid black line).

As a contrasting example, we see that reducing h can 
induce an AH bifurcation and subsequently drive the sys-
tem deeper into the cyclic regime. Decreasing the value of h 
pushes trajectories closer to both axes (Fig. 3A, B). This pro-
longs the two saddle crawlbys (Fig. 3D, red and blue lines) 
by placing the populations closer to the saddles. The saddle 

Table 1. Baseline parameters of the model defined by Eq. 2 and 3. For stochastic r or h, the values listed for r and h are used as the values 

for r  and h , respectively, in the Cox-Ingersoll-Ross (CIR) process (3).

Parameter Meaning Value Unit

r Prey intrinsic growth rate 1 time⁻1 per capita
K Prey carrying capacity 1 Prey biomass
a Maximum prey consumption rate 2 time⁻1 per predator
h Prey density at half maximum consumption rate 0.15 Prey
b Prey to predator conversion efficiency 0.5 —
m Predator death rate 0.6 time⁻1 per capita
p Parameter subject to CIR process (r or h)
γ Speed of adjustment to mean p 1 time⁻1

σ s
g
p

2
 is standard deviation of the CIR process 0–0.3 units of p
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crawlbys are not only slower with lower h, but they also take 
up proportionately more of the time needed to complete a 
cycle (compare the solid black curve showing overall cycle 
periods to the dashed purple curves in Fig. 3D).

In sum, slowing the overall dynamics (by decreasing the 
prey’s population growth rate, r) and pushing trajectories 
closer to the two saddle points (by decreasing the predator’s 
half-saturation constant, h) will each extend the cycle period, 
but they do so through different mechanisms. Decreasing the 
prey’s growth rate extends the duration of saddle crawlbys, 
but only by slowing the dynamics as a whole and prolonging 

the entire cycle period. Decreasing the half-saturation con-
stant enhances the degree to which predators can overexploit 
their prey, leading to more pronounced population crashes. 
These crashes exaggerate the crawlby effect by placing the 
populations closer to the two saddle points at joint extinction 
and at the prey carrying capacity. The result is longer cycles 
that are made up of relatively more time spent for prey recov-
ery (passage near (0, 0)) and then predator recovery (passage 
near (K, 0)). These deterministic results hint at how environ-
mental stochasticity that causes variability in specific model 
parameters could modulate the influence of saddle crawlbys 

Figure 3. Oscillations in system (2) without noise. (A) The system exhibits stable oscillations for h ≲ 0.25 and baseline values of the other 
parameters. For smaller values of h, periodic orbits pass closer to the coordinate axes. Shapes denote points 1 time unit apart on each orbit 
and thus show the rates of passage through different parts of the cycle. (B) As h is reduced from 0.4 toward its baseline value (0.15), system 
(2) undergoes an Andronov–Hopf (AH, black circle) bifurcation at which the coexistence equilibrium switches from stable (solid black) to 
unstable (dashed black) and a family of stable periodic orbits emerges. The black curve with the blue side branches shows the x value at the 
equilibrium point for each h, while the blue branches show the maximal and minimal values of x along the periodic orbits. The other black 
curve and its red branches are analogous for y. (C) As r (baseline value 1.0) decreases, the oscillation period grows (solid black line), partially 
due to prolonged crawlbys past the saddles at (0, 0) (blue dotted line) and (K, 0) (red dashed line). The purple dashed line shows the total 
amount of time during each cycle that is spent in a saddle crawlby (red plus blue). (D) As h decreases, the oscillation period grows, but less 
extremely than in (C). The longer cycle duration is even more strongly influenced by saddle crawlbys; for low h, most of the time needed 
to complete a cycle is spent crawling by the saddle points. The bifurcation diagram and periods displayed in this figure were computed using 
XPPAUT (Ermentrout 2002). (E–F) The dotted (upper) and solid (lower) black lines show the time spent passing through parts of the cycle 
other than crawlbys and the proportion of the cycle spent in crawlbys, respectively, as r (E) and h (F) are varied.
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and hence, as discussed in the ‘Saddle crawlbys convert vari-
able population levels at specific cycle phases into variable 
cycle periods’ section, might impact cycle durations. With 
this insight attained, we are now ready to explore model 
behavior when stochastic effects are incorporated.

Including environmental stochasticity
To model different possible ways for environmental sto-
chasticity to affect the predator–prey interaction, we replace 
individual parameters with a Cox–Ingersoll–Ross (CIR) sto-
chastic process (Cox et al. 1985). That is, we can make any 
parameter p (where p is a stand-in for r, h, …) stochastic by 
modeling it as

dp p p dt p dW= ( )g - + s   (3)

where W(t) is a Wiener process (i.e. a continuous stochas-
tic process for which successive time increments, W(t + Δt) 
− W(t), are independently normally distributed, with mean 
0 and variance Δt) and p  is the mean (i.e. baseline) value 
for the parameter. This formulation prevents parameters from 
becoming negative and has been shown in past work to have 
various mathematically desirable and biologically reasonable 
properties: it is mean-reverting and has a positive temporal 
autocorrelation that decays exponentially (Allen 2016).

All of our numerical results on the stochastic dynamics of 
our model represent averages derived from simulations run 
for 20 000 time units. For each run, we discard an initial 
period extending from time 0 up until asymptotic cycling 
behavior has been reached (defined as the time of the first 
crossing of one of the boundaries given in the Supporting 
information). Each sample on which averaging is performed 
includes at least 400 cycles during which population sizes stay 
above the extinction threshold. We have also used small-noise 
approximations to derive analytical relationships between 
certain model features and passage times along the axes and 
near the saddle points. Although the details of these calcula-
tions are outside the scope of this article, we provide a sum-
mary of relevant results in the Supporting information.

We focus here on contrasting the effects of a noisy prey 
growth rate, r, versus a noisy predator half-saturation con-
stant, h. This pair of parameters spans many interesting con-
trasts (i.e. appearance in a linear versus only in a nonlinear 
term, a multiplier versus a denominator, a rate in one species’ 
equation versus both), represents distinct modes of influenc-
ing cycle period in the deterministic model (‘Formulation 
and behavior of the underlying deterministic model’ section), 
and thus serves well to illustrate the impacts of different 
sources of noise. We recognize that natural species interac-
tions are not characterized by a single stochastic parameter, 
but modeling one parameter at a time as stochastic allows us 
to isolate different putative effects of noise. Modeling noise 
only in r approximates the situation where the prey’s intrinsic 
growth rate is more sensitive to environmental perturbations 
(e.g. fluctuations in temperature) than are other aspects of 
the system. Noise in h represents a situation where predator 

behavior or physiology is the system feature most sensitive 
to perturbations. Simulations with noise in other param-
eters that, like r, appear linearly in Eq. 2, such as a, b, m, 
yield similar results to those with noise in r, consistent with a 
mathematical averaging argument (Supporting information).

Stochasticity can cause variance in cycle period, but not all 
stochasticity has the same impact
Adding Cox–Ingersoll–Ross parameter noise (Eq. 3) to the 
Rosenzweig–MacArthur model results in noisy cycles such as 
the ones displayed in Fig. 4. Figure 4A and B shows an exam-
ple in which noise in r causes cycles to vary in amplitude but 
maintain a nearly constant period. Figure 4C and D shows 
that for the same noise amplitude (σ value in Eq. 3), the cycle 
period is much more variable with noise in h.

Figure 4 shows just two examples, but they are repre-
sentative of the systematic differences we found when we 
explored different intensities of environmental noise acting 
on different model parameters. For the same absolute noise 
magnitudes (σ values), the cycle period becomes much more 
variable when noise affects the half-saturation constant of the 
functional response, h, than when it affects prey growth rate, 
r (Fig. 5A, B). Specifically, for noise in r, the mean cycle dura-
tion changed little with increasing σ from the deterministic 
value of 24.83 time units, and the standard deviation of these 
durations depended only weakly on σ (Fig. 5A). Conversely, 
mean cycle durations and variability increased substantially 
with σ when noise entered through h (Fig. 5B), with the dis-
tribution developing a tail of long cycle durations. For com-
parison with the biological data, note that the results plotted 
here yield CVs from 0.04 to 0.12 with noise in r and from 
0.11 to 0.33 with noise in h. Results for σ = 0.2 (red bars in 
Fig. 5) are also summarized in Table 2 (cases 2–3). Finally, if 
noise enters into both h and r simultaneously (Table 2 case 4, 
implemented via two copies of Eq. 3 that either share (cor-
related) or have independent (uncorrelated) instantiations of 
the Wiener process W), the results are similar to the case with 
noise in h alone (case 3).

There are several possible explanations for the stronger 
effect of noise in h than noise in r in generating variable cycle 
periods. This is the pattern we expect if cycle period variabil-
ity is driven by variation in the time it takes to complete sad-
dle crawlbys, because changes in h exaggerate the influence of 
crawlbys while changes in r do not (Fig. 3C, D). Alternatively, 
or perhaps in addition, noise of a particular magnitude may 
have a larger impact when it enters through h simply because 
our baseline value of h is lower. In other words, a noise ampli-
tude of, say, σ = 0.2 acting on an r  of 1.0 might reason-
ably have less effect than the same σ = 0.2 acting on an h  of 
0.15. We tested this idea in two ways. First, we reduced r  
to 0.15 to eliminate the difference in magnitudes between r 
and h. This results in unrealistically long cycles, but allows a 
straightforward comparison of standard deviation and CV. 
Again, the CV in cycle period is much higher when noise 
enters through h (Table 2, cases 6–7). Second, we returned to 
the baseline parameter set and increased the noise amplitude 
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on r (by rescaling by h ) to allow the prey population to 
become quite small at times, approaching the x-axis and now 
allowing the exaggerated crawlby effect to be seen via noise 
in r. The result is a cycle period CV that is now quite com-
parable to the baseline case with noise in h (Table 2, case 5 
compared to case 3).

We thus found evidence of true differences (Table 2, 
cases 2–3 and 6–7) in how noise in the prey growth rate and 
noise in the predator’s half-saturation constant affect vari-
ability in the cycle period. We attribute these differences to 
the way changes in h affect the proximity of cycles to saddle 
points and hence the relative speed of saddle crawlbys, and 
we investigate this hypothesis in more detail below (‘Cycle 
variability is driven by variable passage times near extinction 
and prey carrying capacity’ section). We also found evidence 
that at some sufficiently high level, noise in either parameter 
can lead to exaggerated crawlbys that cause cycle periods to 
become more variable (Table 2, cases 3 and 5).

Finally, we note that the half-saturation constant, h, is 
not unique in its ability to drive the system through the AH 
bifurcation and produce cycles of increasingly large magni-
tude, as shown in Fig. 3B; in fact, all parameters except r 
have that property in this model. Therefore, we consider one 

more scenario before moving on: we increase m from its base-
line value of 0.6 to 0.65. In the absence of stochasticity, this 
change moves the periodic orbit of the deterministic system 
(2) from the outer cycle in Fig. 3A to a path with a less proxi-
mal passage past the axes. That is, while the system is still 
cycling with m = 0.65, the expected (mean) trajectory does 
not pass as close to the saddle points. Unexpectedly, changing 
m in this way increases the CV of cycle periods (Supporting 
information; Table 2, cases 8–9 compared to 2–3), and the 
trend continues for m = 0.7. Once again, this effect is particu-
larly strong for noise in the half-saturation constant (Table 2). 
Although we might have expected more cycle period variabil-
ity deeper into the crawlby region (smaller m), it appears that 
being closer to the bifurcation increases the flexibility in the 
paths that orbits can take. The long durations are still associ-
ated with close crawlbys, but crawlbys now occur within a 
more variable mix of long and short cycles. Recall that CV is 
given by standard deviation divided by mean. As m increases, 
if we were to lose the long duration cycles, then the mean and 
standard deviation could both decrease in such a way that 
CV could drop. In reality, what we find is that increasing m 
does introduce some short cycles but also maintains enough 
long crawlby cycles that mean does not change much while 
standard deviation grows, and hence CV does increase. These 

Figure 4. Typical behavior of system (2)–(3) with noise amplitude σ = 0.3 and noise in r (A–B) or h (C–D). (A, C) show the dynamics over 
2000 time units in the (x, y) phase plane, during which several population cycles, each progressing counterclockwise, occur. (B, D) show 
time series of x (black) and y (red) for the first 500 of the 2000 time units shown in (A, C). Because noise is present, each cycle is defined 
from the time of crossing through the entry boundary into region D (Fig. 2B) up to the next such crossing time, under the requirement 
that all other regions are traversed between these crossings. This definition produces results that largely agree with the peak-to-peak (or 
trough-to-trough) times but avoid the issue of stochastic fluctuations that produce multiple local peaks and troughs.
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Page 10 of 17

trends persist if m is increased further, until we eventually run 
into difficulty defining distinct cycles. The trends are reversed 
if m is decreased, although as m becomes smaller, we start to 
observe more cycles on which x and y drop below our mini-
mum size cutoff of 10−5.

Demographic noise does not overwhelm environmental noise 
effects
We have included noise in model (2) as Cox–Ingersoll–Ross 
parameter noise (Eq. 3), representing environmental vari-
ability. In reality, population dynamics necessarily include 
demographic noise as well. In theory, this variability across 
individuals could induce dynamic effects that dominate the 
overall cycle paths, reducing the importance of the environ-
mental fluctuations that we have described. We tested this 
possibility by performing simulations in which all aspects 
of the population dynamics are treated as events with pre-
scribed expected rates, and events are implemented sequen-
tially at random, with event likelihoods and timings based 
on these expected rates. The details of these simulations, 

which are based on the Gillespie algorithm, are provided in 
the Supporting information. We found that these simula-
tions yielded very similar distributions of cycle durations to 
our direct simulations of system (2)–(3), matching the differ-
ences between noise in r and noise in h as well as those across 
noise amplitudes σ (Fig. 5; Supporting information). This is 
important for confirming that none of our main findings are 
expected to disappear in the presence of demographic noise, 
and that they are not due simply to specific modeling or meth-
odological choices.

Cycle variability is driven by variable passage times near 
extinction and prey carrying capacity
We have shown how parameter changes can affect the prox-
imity of cycles to the saddle points (Fig. 3) and how sto-
chastic parameter variation generates variable cycle periods 
(Table 2, Fig. 5). One step that remains is to connect these 
results and determine whether cycle period variation can 
indeed be traced to variable passage by the saddle points. To 
do this, we begin by partitioning the cycle into a sequence of 

Figure 5. Distributions of relative cycle durations for various noise amplitudes σ. (A–B) Results from simulations with model (2) and (3). 
(A) With noise in r, the mean and median duration remain nearly constant, while the distribution widens and remains symmetric, as σ 
increases. (B) With noise in h, the mean and median duration increase and the distribution widens and becomes skewed, with a tail of long 
duration cycles, as σ increases. Note that the two panels show different ranges of cycle durations. (C–D) Results from Gillespie simulations 
of model (2) with carrying capacity K = 8000 and environmental noise in r (C) or in h (D) are similar to those from the simulations with 
only environmental noise shown in (A, B). These plots were derived from equal time simulations across noise conditions, which led to the 
following numbers of cycles. For the Gillespie case: σh = 0.1, 978 cycles; σh = 0.2, 915 cycles; σh = 0.3, 839 cycles; σr = 0.1, 1018 cycles; 
σr = 0.2, 1018 cycles; σr = 0.3, 1003 cycles. For simulations of (2), (3): σh = 0.1, 775 cycles; σh = 0.2, 668 cycles; σh = 0.3, 410 cycles; 
σr = 0.1, 809 cycles; σr = 0.2, 808 cycles; σr = 0.3, 798 cycles.
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six segments (Fig. 2B), A: passage by (0, 0); B: prey growth 
from near 0 to near K; C: passage by (K, 0); D: predator 
growth and prey decline (that is, movement from near (K, 0) 
toward the y-axis); E: the transition from predator growth to 
predator decline (i.e. passage across the predator’s nullcline); 
and finally, F: sharp predator decline to again approach (0, 
0). Our hypothesis that saddle crawlbys drive cycle period 
variability leads us to predict that significant variance should 
be observed in the passage times near (0, 0) and (K, 0). We 
calculate times spent transitioning through each of the six 
segments as the populations undergo a cycle, based on times 
when trajectories cross partition entrance and exit bound-
aries at locations that we specify in the (x, y) plane. The 
locations used for these boundaries for most of our simu-
lations are listed in the Supporting information; for a few 
special cases with altered cycle paths (cases 6–9 in Table 2), 
we used other boundaries. The boundary locations ensure 
that fluctuations rarely cause spurious crossings, while even 
those orbits with relatively large fluctuations do not miss 
any boundaries. Passage times through partition segments 
are computed sequentially, with the exit boundary from one 
region also serving as the entrance boundary for the next 
region. For example, once a trajectory exits a region through 
its exit boundary, re-entry through the exit boundary due to 
stochasticity does not count as another passage through the 
original region; rather, it is ignored, and the calculation of the 
time of passage through the next region continues until that 
region’s exit boundary is crossed. This subdivision allows us to 
decompose the variability in the full cycle period based on the 
variability in the time needed to complete each step.

The distributions of times spent in these regions differ 
significantly in their variability. By a clear margin, the most 
variability arises in the passage times through regions A and 

C, corresponding to crawlbys near the saddles (Supporting 
information). Moreover, substantially more variability 
occurred in these regions with noise in h than with noise in 
r; note the differences in x-axis details between different his-
tograms in Supporting information as well as between the 
histograms in Fig. 5A and those in Fig. 5B. The Gillespie 
simulations shown in Fig. 5C and D yielded qualitatively, 
and in many cases quantitatively, similar results. Supporting 
information includes a thorough comparison of the dura-
tions and standard deviations of passage times through the 
individual regions, for various noise amplitudes, across noise 
in r and h and across the two simulation experiments.

While substantial variability in the durations of the crawl-
bys (that is, in passage times near (0, 0) and (K, 0)) occurs, the 
times spent within crawlbys remain long enough to dominate 
the overall cycle period. For example, the positive correla-
tion between period and these passage times, but not between 
period and passage time along the x-axis, is readily apparent 
in Fig. 6. These relationships, especially for the passage time 
near (0, 0), are even tighter with noise in r than with noise 
in h, although the passage times themselves are less widely 
distributed when the noise is in r.

Loss of prey strongly influences each cycle period, with little 
history dependence between cycles
We have shown strong evidence that environmental noise has 
different impacts on the distribution of cycle periods, depend-
ing on the origin of the noise, and that variability in cycle 
periods is dominated by variability in the duration of the 
two saddle crawlbys near (0, 0) and (K, 0). To conclude our 
characterization of these effects, we ask what factors best pre-
dict these crawlby durations. Longer crawlbys near origin or 
boundary saddle points elevate the risk of stochastic extinction 

Table 2. Mean, standard deviation and coefficient of variation of cycle periods under different scenarios.

Case Noisy parameter(s) Parameter set Noise amplitude, σ
Mean 
period

Standard 
deviation CV Explanation

1 None Baseline 0 24.83 0 0 Deterministic
2 r Baseline 0.2 24.74 2.07 0.084 Base stochastic case to 

compare
3 h Baseline 0.2 28.88 5.59 0.19 Base stochastic case to 

compare
4 r and h Baseline σr = σh = 0.2 28.70 5.47 0.19 Shared Wiener process
4’ r and h Baseline σr = σh = 0.2 29.76 6.01 0.20 Independent Wiener 

processes

5 r Baseline 0.2/ h = 0.516 25.26 5.06 0.20 Scaled up amplitude

6 r r h= = 0.15 0.2 68.04 4.30 0.063 Set r  equal to baseline h
7 h r h= = 0.15 0.2 61.81 7.58 0.123 Set r equal to baseline h

8 r m = 0.65 0.2 23.79 2.30 0.097 Increase m, which 
decreases baseline orbit 
amplitude

9 h m = 0.65 0.2 28.95 7.80 0.27 Increase m, which 
decreases baseline orbit 
amplitude

Results are based on simulations of (2) with our baseline parameter set given in Table 1, except where noted. In all cases except for the 
deterministic case (case 1), either r or h (or both in cases 4 and 4′) is made stochastic by applying Eq. 3; the Wiener processes in cases 4 and 
4′ appear in (3).
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Page 12 of 17

by prolonging the time during which one or both popula-
tions are small. Longer crawlbys also delay the time until the 
next population peak, with important consequences for some 
cyclic species like outbreaking forest insects. We therefore ask, 
what should we look for in a population’s history to help us 
anticipate the durations of upcoming saddle crawlbys?

For deterministic dynamics, we saw that the time to com-
plete a crawlby of the extinction state is linearly related to 
ln(x0,in), the logarithm of the prey density when the popula-
tions first enter the vicinity of the extinction saddle (‘Saddle 
crawlbys convert variable population levels at specific cycle 
phases into variable cycle periods’ section). In the presence 
of environmental stochasticity, we find that a similar relation 
still holds, with a strong correlation between ln(x0,in) and the 
passage time by the (0, 0) saddle (Fig. 7A, B). There is also a 
strong correlation between log prey density, ln(x0,in), and log 
predator density upon entry into the neighborhood of the (K, 
0) saddle (Fig. 7C, D), and between the time of passage near 
(K, 0) and this log predator density (Fig. 7E, F). Thus, even in 
the presence of noise, the prey’s population density near the 
end of the predator-decline portion of the cycle, which can be 
considered the start of a saddle crawlby, strongly influences 

the durations of both saddle crawlbys, which in turn strongly 
influence the time it will take to complete the current cycle.

The effects of noise during the passage around the rest 
of the cycle eliminates the effects of these entry positions, 
so that the positions of entry into the neighborhoods of the 
saddles in the next cycle are effectively independent of past 
history (Supporting information). This independence means 
that we expect no meaningful autocorrelation in the periods 
of consecutive cycles. It also validates our decision (Methods) 
to omit individual cycles with unrealistically low population 
sizes from our analyses. The consistency of Gillespie simula-
tion results with those from simulating Eq. 2 and 3 provides 
additional evidence that successive cycles are effectively inde-
pendent. The timescale of the CIR stochastic process, γ, likely 
plays a role in this effect and the others that we describe. 
Specifically, if γ were too large, then stochastic parameters 
would be pinned close to their mean values, reducing vari-
ability, while if γ were too small, then significant history-
dependence could emerge; for a wide range of γ between 
these extremes, the results that we report are preserved.

Finally, referring back to Fig. 7 and comparing the two 
columns, we notice that the predator and prey densities upon 

Figure 6. Correlations between the different durations for (A–B) noise in the prey growth rate (r) or (C–D) noise in the predator’s half-
saturation constant (h) for baseline parameter values and noise amplitude σ = 0.2. (A, C) The full cycle period (per) is tightly correlated with 
passage times near the (0, 0) and (K, 0) saddle points (blue triangles and red circles, respectively). In contrast, it is effectively independent 
of the time it takes to transition between the saddles (‘x-axis passage’, cyan markers). (B, D) Cycle period is highly correlated with the total 
time needed to complete both saddle crawlbys (‘sum’, black dots). It is uncorrelated with the time needed to complete all other parts of the 
cycle (‘difference’, i.e. the total cycle period minus the sum of the two saddle crawlby durations; green dots).
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Page 13 of 17

entry into the two saddle neighborhoods differ, depend-
ing on the source of noise. When noise enters through the 
prey’s population growth rate, r, the entry values seem to 
be symmetrically distributed on the logarithmic scale, while 
when noise enters through the half-saturation constant, they 
become skewed toward smaller values even on the logarith-
mic scale, corresponding to the skew toward longer passage 
times (Supporting information). A mathematical argument 
for this disparity is provided in the Supporting information.

Generalization
We have demonstrated a range of phenomena related to 
cycle duration variability associated with saddle crawlbys in 
the Rosenzweig–MacArthur model (2) with environmental 
stochasticity of the form (3). There are two natural ways to 
think about generalization from this specific case study. First, 
from a mathematical perspective, we have already identified 
key elements that can give rise to cycle period variability: 1) 
the presence of a saddle point; 2) an underlying, deterministic 

Figure 7. Strong dependence of passage times through saddle neighborhoods on entry positions into those neighborhoods. In (A, C, E) the 
prey growth rate, r, is the stochastic parameter and in (B, D, F) the predator’s half-saturation constant, h, is stochastic. In all cases, the 
quantity on the horizontal axis is shown on a logarithmic scale; a logarithmic scale is also used on the vertical axis in (C, D). (A–B) show 
the linear dependence of the (0, 0) saddle crawlby duration on the log of the prey’s density upon entry into that neighborhood, (ln(x0,in)). 
(C–D) show linear dependence of log predator density upon entry into the neighborhood of (K, 0), ln(yK,in), on ln(x0,in). Finally, (E–F) show 
the linear dependence of the duration of the (K, 0) saddle crawlby on ln(yK,in). Results for noise amplitude σ = 0.1, 0.2 and 0.3 are shown 
in (A, B, E, F), while (C, D) show σ = 0.2.
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limit cycle that allows the system to repeatedly pass near the 
saddle, creating the opportunity for crawlbys; and 3) a source 
of environmental noise that combines with the determinis-
tic cycle to induce a distribution of entry positions into the 
neighborhood of the saddle, to generate both close and more 
distant passages. In any two-dimensional system, near any 
saddle equilibrium point featuring exponential approaches 
of population levels toward the equilibrium and growth of 
population levels away from the equilibrium, the dynamics 
is qualitatively similar to system (1), with natural general-
izations to higher dimensions. As an additional test of this 
mechanism, we took the set of x0,in values observed in our 
previous simulations of the Rosenzweig–MacArthur model 
with σ = 0.2 and used these in the initial conditions of the 
more general, deterministic system (1). We simulated (1) and 
recorded the time needed to reach x = 0.1 from points (x, 
y) = (x0,in, 0.1), then calculated the CV in these passage times 
across the different x0,in values. When we obtained our x0,in val-
ues from Rosenzweig–MacArthur simulations with noise in h, 
the resulting CV in passage time was 0.62. In contrast, when 
our x0,in values came from simulations with noise in r, the CV 
was only 0.19. This provides additional confirmation of the 
central role of the population distribution upon approach to 
a saddle crawlby in producing variability in cycle durations. 
An interesting challenge for future work is to determine how 
different noise processes (i.e. other than Eq. 3) affect the shape 
of this pre-crawlby population distribution.

A second perspective on generalization from system (2) 
is that this model represents certain biological features such 
as logistic resource population growth in the absence of 
consumption that are present in a wide range of consumer–
resource interactions, but also neglects some other features. 
Thus, we can ask what happens if we incorporate alternative 
or additional biological effects. We consider this question in 
the Supporting information. In brief, we find that our results 
on the link between saddle crawlbys and cycle duration vari-
ability do generalize, with other dynamical features making 
secondary contributions to this variability.

Discussion

Although real cyclic populations can display considerable vari-
ability in cycle period, previous authors have observed that 
stochastic models of cycling populations typically predict 
much more regular periods (Dwyer et al. 2004). Inspired by 
recent work emphasizing the contribution of saddle crawl-
bys to non-equilibrium ecological dynamics (Hastings et al. 
2018), we hypothesized that stochasticity that causes varia-
tion in how close populations come to saddle points during 
their cycles might promote variability in cycle periods. Our 
numerical study of stochastic Rosenzweig–MacArthur preda-
tor–prey cycles confirms this idea. For the cycles that we 
observe in model simulations, variability in period is domi-
nated by deviation in the passage times past the saddle points 
(Supporting information); further evidence for the central 
impact of saddle crawlbys arises in the relation of these passage 

times to the proximity of trajectories to the stable manifolds 
of the two saddles (i.e. the x- and y-axes; Fig. 7). Our simula-
tion results reflect averages over many more cycles than will be 
present in empirical time series. However, the independence 
of crawlby durations from one cycle to the next suggests that 
although there will be a drop in precision with smaller sam-
ples, there should not be any systematic bias that would pre-
vent the effects we illustrate here from appearing in empirical 
data. Our results thus update our understanding of the condi-
tions under which environmental stochasticity can contribute 
meaningfully to observed cycle period variation in nature.

Our work was motivated by the paradox posed by 
Dwyer et al.’s (2004) observation that forest insect cycle dura-
tions are much more variable than predicted by standard mod-
els, and our specific focus on consumer–resource interactions 
reflects the long history of understanding forest insect dynam-
ics through consumer–resource models (Anderson and May 
1980). However, the theoretical basis for our result is general: 
processes that generate variability in the conditions present 
when a saddle crawlby begins will generate variability in the 
duration of whatever dynamic pattern that crawlby is a part 
of, whether cyclic or otherwise. For example, variable times 
to invasion by a novel competitor could be due to variability 
in the initial state of the community or in its state following 
management activities, if the native community’s equilibrium 
is a saddle (as in standard Lotka–Volterra competition; see 
Francis et al. (2021)). In short, the situation we chose to study 
here is just one example of how saddle crawlbys might mean-
ingfully impact the ecological patterns we observe.

The crawlby-induced mechanism that we present has 
important features in common with some previously-pro-
posed explanations for variable cycle periods. In the gypsy 
moth outbreaks studied by Dwyer et al. (2004) and the midge 
outbreaks studied by Ives et al. (2008), for example, variable 
timing of fluctuations arises from the effect of stochasticity 
on multiple coexisting attractors, separated by saddle dynam-
ics, in the underlying deterministic ‘skeleton’, or model of 
density-dependent interactions on top of which stochastic-
ity introduces randomness. In both these models and ours, 
the saddles are a feature of the deterministic skeleton, and 
stochasticity allows for movement past the saddles to require 
variable passage times. However, the important distinction 
is that in the attractor-switching mechanism, the transit 
past the saddle itself is relatively fast (Boettiger and Hastings 
2013) and not the source of variability, which instead arises 
from variable residence times at one attractor or the other. 
Nevertheless, these examples and ours jointly demonstrate 
that a broader consideration of the role of saddles and other 
non-equilibrium phenomena, and of how they interact with 
stochasticity, is likely to continue deepening our ecological 
understanding (Hastings et al. 2018, 2021, Abbott 2020). 
For any particular system with variably timed cycles, fitting 
models to data and using dynamical systems techniques to 
study the resulting models for evidence of saddle crawl-
bys, multiple stable attractors, resonance or other dynamic 
features would provide the clearest view of which putative 
mechanism may be acting to induce variability; for example, 
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models derived from data may have saddles at states where 
the system tends to linger, suggesting a crawlby mechanism, 
whereas those from other data may instead have attractors at 
such states, supporting the attractor-switching mechanism.

In brief, the first ingredient in the crawlby-induced vari-
ability mechanism that we describe is that consumer–resource 
dynamics sets up a log-normal distribution of population sizes 
at return times to the same neighborhood of a saddle across 
successive cycles (Supporting information). This distribution 
of population sizes results in a broad distribution of passage 
times through the saddle crawlby, and hence of overall cycle 
durations. Within this qualitatively general phenomenon, 
quantitative differences arise depending on the source and 
amplitude of the stochasticity in the dynamics of population 
interactions, which determines the shape of this log-normal 
distribution, as well as the extent to which fluctuations are 
impactful during the saddle crawlby itself (note the differences 
in passage time variability for fixed entry values in Fig. 7A, B, 
E, F). We suspect that this general framework is important in 
a variety of contexts and warrants further study. In our work, 
we find that CIR noise (Eq. 3) in the half-saturation constant, 
which causes variation in the efficiency with which predators 
exploit their prey and hence in the extent of the population 
crashes experienced on each passage around the cycle, induces 
more variability in cycle period than does noise in the prey’s 
population growth rate (Fig. 4, 5, Supporting information; 
Table 2, cases 2–3). Rescaling our noise sources to equalize the 
CV of the fluctuations from these sources, rather than their 
amplitude, seems to mitigate this difference (Table 2, case 3 
versus case 5). Yet, when we vary parameters to induce closer 
passage near the axes and saddles, corresponding to more 
extreme population losses during cycle troughs, and also to 
equalize the noise source CVs, the difference between these 
noise sources re-emerges (Table 2, case 6 versus case 7). A 
heuristic idea of the cause of this distinction comes from the 
observation that for fixed predator level y, noise in r enters the 
dynamic equation for x in Eq. 2 in a linear manner, with small 
deviations in r multiplying the small term x(1 − x/K) that 
behaves like x itself near x = 0. On the other hand, noise in h 
enters the equations like 1/h, such that even small deviations 
in h can have an amplifying effect (see the first two sections of 
the Supporting information for more details).

While we propose that saddle-crawlbys may occur in 
a range of contexts, it is important to note that the simple 
presence of a saddle point is not sufficient for our proposed 
mechanism to play out. A population, cyclic or otherwise, 
whose trajectory does not pass near the saddle will not experi-
ence the dynamical slowing that creates a crawlby. That said, 
an interesting, and perhaps initially surprising, quantitative 
observation emerging from our study is that crawlby-induced 
variability is strongest when the mean cycle trajectory is not 
too close to the saddle points (Fig. 3A, Supporting informa-
tion), such that individual cycles represent a mix of crawlbys 
and non-crawlbys. Indeed, even though crawlbys are respon-
sible for the overall cycle duration variability, the most hetero-
geneous mixture of long and short passage times past saddles 
results when crawlbys are only influential on a subset of cycles. 

This result also highlights the point that even though several 
consecutive cycles may occur in which cyclic populations do 
not come close to extinction, their population dynamics may 
nonetheless hold the ingredients to produce significant crashes 
under environmental fluctuations that are within the range of 
expected occurrence. An interesting direction for future math-
ematical analysis is to explain the observation from our simu-
lations that as a parameter moves closer to an AH bifurcation 
point and the deterministic limit cycle correspondingly moves 
away from the saddle crawlby, the distribution of cycle dura-
tions appears to expand in both directions to include both 
shorter cycles and, counterintuitively, longer cycles (e.g. Table 
2, case 2 versus case 8 and case 3 versus case 9).

As with any modeling study, the effects we consider in this 
work do not provide a complete representation of reality. Real 
predators may disperse, change behaviors or evolve in ways 
that change how closely their prey, and thus they, approach 
extinction (van Baalen and Sabelis 1995). Alternatively, in 
biological systems, local populations with high-amplitude 
cycles may routinely go extinct and then undergo recolo-
nization. Our results were conditioned on the populations 
not going extinct, and we do not model dispersal in or out 
of the local community nor do we model complex behav-
iors, alternative prey and other such factors that are likely 
to influence the dynamics of real populations. Nevertheless, 
the elements of our model, like population cycles and saddle 
crawlbys, and their connections to real dynamics are well 
studied (Murdoch et al. 2003). Our contribution, therefore, 
is not to replicate or explain the dynamics of any specific 
single population, but to extend our understanding of cycles 
and crawlbys as mechanisms through which environmental 
stochasticity can influence predator–prey dynamics. In doing 
so, we reconcile a long-recognized mismatch between models 
and data in their representation of how variable the periods 
of cyclic populations may be.

In cases in which populations become small during the 
trough of each cycle, one might reasonably expect demo-
graphic stochasticity to be an important factor in cycle dura-
tion variability. However, our Gillespie simulations reveal 
that the effects of environmental stochasticity on cycle period 
variation are robust to the inclusion of demographic noise. 
It is nevertheless possible that other dynamic mechanisms 
not considered in this study may also contribute to tempo-
ral variability in cycle durations, and of course even more 
extreme variability can arise from larger perturbations such as 
environmental collapse or human interventions. Our intent 
is not to argue that saddle crawlbys are the only or even the 
predominant source of cycle period variability, but rather to 
highlight their putative role.

The observations in this paper represent interesting topics 
for future mathematical analysis, particularly for models such 
as Eq. 2 and 3 to which the stochastic averaging methods 
of Skorokhod et al. (2002) cannot be applied. Previous ana-
lytical and numerical work, some done in other biological 
contexts, has discussed some of the differences in dynamics 
that arise from the details of how stochasticity appears in a 
dynamical system (Lande 1993, Goldwyn and Shea-Brown 
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2011, Allen 2016, Vadillo 2019). In contrast to the individ-
ual-level impact of demographic noise, environmental noise 
is shared across entire populations, which is conducive to 
larger variability and can increase the likelihood of extreme 
events such as extinction (Lande 1993). In theory, we could 
have implemented another stochastic process, such as mean-
reverting Ornstein–Uhlenbeck (OU) dynamics, as an alter-
native to Eq. 3. The specific representation of stochasticity 
that we have implemented in Eq. 3 features biologically desir-
able properties: it causes the stochastic parameter to remain 
positive, to be mean-reverting, and to have some history-
dependence, with a temporal autocorrelation that is nonzero 
and decays exponentially (cf. Allen 2016); in our simulations, 
it also yields more close passes near the saddle than does 
mean-reverting OU dynamics. Our findings reveal that cycle 
duration variability can strongly relate to what distribution of 
prey densities arises across repeated approaches into a saddle 
crawlby, and similar distributions will yield similar variability, 
irrespective of which stochastic processes generate them.

To our knowledge, analytical work to date has not addressed 
how such stochasticity impacts cycle durations and other 
properties in systems with saddle crawlbys. A related direction 
that has been pursued analytically (Ashwin and Postlethwaite 
2016) is how stochasticity affects the passage of trajectories 
along a heteroclinic cycle (i.e. a union of orbits that each 
form a connection from one saddle point to another, which 
together form a closed loop). These systems may require noise 
to oscillate, unlike model (2), but nonetheless the resulting 
oscillations do feature passage near saddle points. Ashwin and 
Postlethwaite (2016) analyzed residence times near equilibria 
and switches between neighborhoods of attractors (including 
heteroclinic cycles), while Giner-Baldó et al. (2017) derived 
analytical approaches to compute the power spectra of observ-
ables in a planar system with a heteroclinic cycle. Both of these 
analyses were done on systems with stochasticity in the form 
of additive Gaussian white noise, however, whereas the CIR 
noise that we consider poses a new challenge for future work.

Our results update our understanding of how environmen-
tal stochasticity can contribute meaningfully to observed cycle 
period variation in nature. While our results for stochastic 
prey growth rate, r, largely confirm past results that stochastic-
ity has little effect on cycle period, we have shown that some 
noise sources – specifically those that induce significant vari-
ability in the distance from saddle points as part of the normal 
cycle – can lead to substantial cycle period variation. We find 
that this effect is strongest when the mean cycle trajectory is 
not too close to the saddle points, such that individual cycles 
represent a mix of crawlbys and non-crawlbys. In these cases, 
the coefficient of variation in cycle period approaches 0.3, 
the mean value estimated from time series data. We therefore 
conclude that variance in the duration of saddle crawlbys pro-
vides a viable explanation for some, though not all, observed 
instances of variability in cycle periods.
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