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Abstract 

The multi-model ensemble approach is generally considered as the best way to explore the 

advantage and to avoid the weakness of each individual model, and ultimately to achieve the 

best climate projection. But the design of an optimal strategy and its practical implementation 

still constitutes a challenge. Here we use the Random Forest (RF) algorithm (from the category 

of Machine Learning) to explore the information offered by the multi-model ensemble 

simulations within the Coupled Model Intercomparison Project Phase 6. Our objective is to 

achieve a more reliable climate projection (mean climate and extremes) over China. RF is 

furthermore compared to two other ensemble-processing strategies of different nature, one is 

the basic arithmetic mean (AM), and another is the linear regression (LR) across the ensemble 

members. Our results indicate that RF effectively enhances the capability in capturing spatial 

climate characteristics. Regions with complex topography, such as the Tibetan Plateau and its 

periphery, show the most significant improvements. RF projects less future warming but 

enhanced wet conditions across China. It also produces larger spatial variability and more 

small-scale features. The most obvious increase of precipitation is in the northern part and the 

periphery of the Tibetan Plateau. The projected changes in RF for strong precipitation are 

almost twice higher than in AM, while in the northwestern area, weaker increases of 

precipitation are projected by RF, which indicates larger spatial inhomogeneity of its projection. 

 

Keywords: Ensemble-processing strategy, Climate extremes, Observational constraint, 

Random Forest, China regional climate. 
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1. Introduction  

Global warming has altered the mean and extreme climate in many regions of the world, and 

this warming trend will undoubtedly continue (Hulme 2016). Global Climate Models (GCMs) 

play a crucial role in generating future projections to examine the potential impacts of climate 

change. The ability of GCMs to reproduce observed features of the past and current climate 

increases our confidence to correctly make future projections (Palmer et al 2005; Semenov and 

Stratonovitch 2010). Climate projection is inevitably accompanied by uncertainties, with 

available physically-based models being imperfect (Knutti et al 2013; Hidalgo and Alfaro 2015). 

The multi-model ensemble approach is useful to explore the advantage and to avoid the 

weakness of individual models, and ultimately to achieve the best climate projection. But the 

design of an optimal ensemble-processing strategy and its practical implementation still 

constitute a challenge (Knutti et al 2010; Knutti et al 2013). The arithmetic mean (hereafter 

called AM) is the simplest and mostly-used method to deal with a multi-model ensemble (Knutti 

et al 2010; Sanderson et al 2015). Subsequently, more complex statistical methods such as the 

Bayesian methods (Robertson et al 2004; Tan et al 2016) or weighted averages, which consider 

the simulation skills and model inter-dependence, have been developed (Xu et al 2010; Jiang 

et al 2015; Knutti et al 2017; Brunner et al 2020). These methods allow tuning particular 

parameters or weights and constraining uncertainties with historical observations. Most of these 

strategies or methods, however, rely on the concept of linear regression based on some specific 

relationships or indices, potentially neglecting useful information. 

With observations as a target or a constraint, machine learning (ML) is a useful tool to 

extract more information from multi-model data. Significant advancements have been reported 

with application of heuristic machine learning for uses in weather forecast, climate prediction, 

and reconstruction of missing climate information (Ham et al 2019; Reichstein et al 2019; 

Kadow et al 2020). ML has considerable advantages in solving non-linear, high-dimensional, 

and hierarchical problems to retrieve implicit patterns in complex relationships (Alizamir et al 

2018; Guo et al 2019; Li et al 2020). With such general properties, ML can better extract 

important dynamical and physical processes within climate models and fully explore useful 

information (Wang et al 2018; Reichstein et al 2019). This would lead to a hybrid approach for 

future climate projection, which combines the strengths of physical modelling and 

mathematical algorithms of machine learning (Reichstein et al 2019; Watson-Parris 2020). 

Under the framework of the Coupled Model Intercomparison Project (CMIP), a large 

number of climate simulations have been performed and released publicly. CMIP is an 

unprecedent effort and has entered its sixth phase (CMIP6) (Eyring et al 2016), with more 

models and a larger ensemble of simulations compared to its predecessor (CMIP5) (Liang et al 

2020; Zhu, H et al 2020). It offers exciting new opportunities for expanding our knowledge of 

the Earth system through the exploration of big data with advanced ML concepts and 

algorithms. The present study uses the Random Forest (RF), a powerful ML algorithm that is 

based on the decision tree and able to extract non-linear relations and behaviors (Breiman et al 

1984; Breiman 2001). For the purpose of demonstration, RF is contrasted to the arithmetic mean 

(AM), the simplest ensemble-processing strategy, as well as the basic linear regression (LR) 

applied to the ensemble members. We want to check whether RF can effectively enhance our 

skill to mimic observed properties and to make reliable future climate projections. This work is 

a part of our general efforts of climate change mitigation and adaptation in China. It focuses on 

the recommended targets of 1.5°C, and 2°C global warming levels, following the Paris 

Agreement (UNFCCC 2015). The geographic domain of our investigation is mainland China 
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where a reliable dataset of observed climate is available. 

The rest of the paper is organized as follows. Section 2 describes the data, methodology, 

and the three algorithms involved in our study, together with the skill metrics for evaluation. 

Followed in Section 3 are the main results of the methodological assessment in present-day and 

future climate projection. Finally, conclusions and a few discussions are provided in Section 4. 

2. Data and Methods 

2.1 Study area and data used  

This work focuses on mainland China, a territory highly susceptible to climate change due to 

its complex topography and strongly-pronounced monsoonal characteristics (Fu et al 2008; 

Piao et al 2010). A high-quality in-situ dataset (CN05.1), including conventional surface 

climatic variables, is employed for the calibration of all our approaches to develop a reliable 

multi-model ensemble-processing strategy. The daily gridded dataset covers 1961–2014, with 

a spatial resolution of 0.25° × 0.25° over whole China. Wu and Gao (2013) provide detailed 

information about this dataset.  

On the other hand, 24 CMIP6 models’ historical simulations and future projections from 

Shared Socioeconomic Pathway (SSP5-8.5) are used to construct the multi-model ensemble 

and to generate 1.5, 2°C and 3°C warming projection. These models were selected on the sole 

criterion of data availability for our purpose of determining warming targets at 1.5, 2°C and 

3°C. All CMIP6 data were retrieved through the data portals of the Earth System Grid 

Federation, which can be obtained from https://esgf-node.llnl.gov/search/cmip6/. Some 

essential characteristics of the used models are listed in Table S1. Only their first realization 

(r1i1p1f1) was used in this work. 

2.2 Methods 

2.2.1 Climate indices 

The present study employed six quantitative indices, including mean temperature (TAS), annual 

maximum (hottest daytime) temperature (TXx), annual minimum (coldest nighttime) 

temperature (TNn), total precipitation in wet days (PRCPTOT), annual maximum consecutive 

5-day precipitation amount (RX5DAY) and annual total precipitation for events exceeding the 

95th percentile (R95P, an indication of strong precipitation). These indices are useful in 

capturing climate change information and have been widely used to identify and monitor 

extreme climate (Zhang et al 2011; Zhu, H et al 2020). They are derived from daily precipitation 

and temperature CMIP6 datasets following the recommendation by the Expert Team on Climate 

Change Detection and Indices (ETCCDI) (http://etccdi.pacificclimate.org/). Indices from 

different models and observation were first calculated at their original grid and then interpolated, 

using bilinear interpolation, onto a common 1° × 1° grid comprising 928 geographic locations 

across China. The three ensemble-processing strategies, AM, LR and RF, were then practiced 

on this common grid to ensure fairness and to facilitate their inter-comparison.  

The study adopted the criteria used by Shi et al (2018) in defining the calendar year for 

models to reach 1.5°C and 2°C global warming thresholds. A time window of 21 years, 

including the ten years before and after the nominative year, is used to deduce the climate 

https://esgf-node.llnl.gov/search/cmip6/
http://etccdi.pacificclimate.org/
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statistics. A similar approach has been utilized in a few recent studies (e.g., Sun et al (2019); 

Guo et al (2020)).  

2.2.2 Strategies in processing multi-model ensemble 

Figure 1 shows an overall flow chart of our designed processing. Historical simulations, 

together with observation, are divided into the training period 1961–1994 (34 years) and the 

testing period 1995–2014 (20 years). The testing period also serves as the historical reference 

for future warming projection. Our procedure is separately applied to each of the six climate 

indices with the general goal to explore, as much as possible, the properties of observation. The 

basic principle is to minimize the loss function (here the Mean Squared Error) representing the 

deviation between the multi-model ensemble output and the observation. Once the training 

procedure is accomplished, the optimized multi-model ensemble-processing scheme can then 

be used to produce results for the testing period. Finally, future projections under the 1.5°C, 

2°C and 3°C global warming were conducted.   

 

Figure 1. Schematic showing the design and operating process to deal with multi-model ensemble simulations. 

Historical simulations, together with observation, are used to train different multi-model ensemble-processing 

strategies, and to assess their performance. The validated strategy is then used to make projections of future climate. 

The arithmetic mean is the simplest and widely-used ensemble-processing strategy. There 

is no parameter to optimize and it is incapable of learning from training data, which would 

constitute a biased reference to fairly evaluate other ensemble-processing strategies. To ensure 

a fair comparison with LR or RF, a linear scaling is used in AM to remove biases of climate 

models with their domain-mean deviation from observation (Lenderink et al 2007; Teutschbein 

and Seibert 2012). The temperature (T) is corrected with an additive term on original value and 

precipitation (P) with a multiplier.  

( ) ( )cor ori obs oriT T T T = + −                       (1) 
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where subscripts denote corrected (cor), raw (ori), and observed (obs) values, and µ 

represents averaging over the domain. 

The result of AM after bias correction is included here as a comparison baseline. It is worth 

mentioning that this linear scaling bias correction has no impact on the projections. This is due 

to the fact that methods measuring future changes are absolute change for temperature and 

relative change for precipitation. 

LR is a basic linear algorithm, suitable for resolving regression problems across multiple 

models or members in an ensemble. It fits a linear model to minimize the sum of squared errors. 

Its general form can be written as: Y = a0 + A·X, where X(i, k) is the input spatial field (i = 

1, …, 928) from the 24 models (k=1, …, 24) and Y(i) is the output spatial field (i = 1, …, 928). 

The regression coefficients a0 and Ak, (k=1, …, 24) were fitted with data in the training period 

comprising 34 years from 1961 to 1994. 

A linear model is not always inferior to nonlinear models, depending on the nature of the 

problem to resolve (Choubin et al 2016; Xu et al 2020). The practical realization of LR used in 

this paper was done through the function “LinearRegression” in the module 

“sklearn.linear_model” in python 3.8 (https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression). 

Random Forest solves regression problems by growing an ensemble of decision trees 

based on binary recursive partitioning (Breiman et al 1984; Breiman 2001). Although each 

individual regression (done at the level of leaves or terminal nodes) is still linear, but it is 

operated in a reduced range among the total samples. This is why RF can solve non-linear 

problems and reveal complex behaviors hidden in the data samples. Its randomness manifests 

in two particular points. Firstly, the samples used to construct each decision tree of the forest is 

a random subset of the total samples. They are generally drawn with replacement under the 

strategy of bootstrapping. Secondly, for each partitioning node, only a randomly-formed subset 

of features is used to split samples into binary branches. The size of this subset is generally 

around the square root of the number of total features. Under such conditions, RF is quite time 

consuming for its operation, but it has an excellent performance, with large tolerance to 

imperfections of samples, and good capacity to avoid overfitting. In our work, the function 

“RandomForestRegressor” from the python package “sklearn.ensemble” (Pedregosa et al. 2012) 

was used (https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor). For the 

training procedure, we have data covering 34 years, from 1961 to 1994, and 928 spatial points. 

The total number of samples into our RF training is thus 34×928=31552. Each of the 24 climate 

models is treated as a feature in our RF implementation. After RF is trained, it is used in the 

testing period from 1995 to 2014 to validate its performance. Similarly, it is used to make the 

future projection under the specific warming thresholds. 

The “Bayesian Optimization” was used to find the best hyperparameters implemented in 

the RF algorithm (Shahriari et al 2016) 

(http://rmcantin.github.io/bayesopt/html/bopttheory.html). It has a higher efficiency than other 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor
http://rmcantin.github.io/bayesopt/html/bopttheory.html
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methods, such as “Grid Search” or “Randomized Search”. We thus optimized 4 important 

parameters of the Random Forest algorithm, the number of trees in the forest (n_estimators), 

the maximum depth of the tree (max_depth), the minimum number of samples required to split 

an internal node (min_samples_split), and the number of features to consider when looking for 

the best split (max_features). Within 30 iterations, the Bayesian optimization process generally 

converges to optimal parameters for a specific climate index. The optimal parameters for the 

six indices are shown in Table S2. 

As other statistical tools, machine learning methods don’t inspire confidence if we can’t 

ensure an appropriate interpretation on their derived features, patterns, and rules. In the RF 

model which consists of establishing a set of decision trees with internal nodes and leaves, the 

importance of input features or variables (climate models in our case) can be measured by the 

variance reduction attributed to each feature (total variance before the splitting node minus the 

sum of the same variance in the two split groups). In our case of multiple decision trees, the 

final measure of importance is the sum from all trees in the forest. It is furthermore normalized 

among all features or variables to ensure that the total sum is unity. This “relative importance” 

can help understanding the importance of each climate model in the ensemble-processing 

strategy. Relevant analysis and results are shown in Supplementary Materials Text. S1 and 

Figure S1.  

2.2.3 Skill evaluation metrics 

Taylor diagram (Taylor 2001) and skill score are standard tools providing a concise 

statistical summary of spatial characteristics between the simulation and observation. The 

Taylor diagram can show three aspects of statistical information: pattern correlation coefficient, 

a ratio of the centered standard deviations, and root mean square error, any two of them being 

independent (Li et al 2021). A good simulation would be that both the pattern correlation 

coefficient and the ratio of standard deviations are close to 1, and the root mean square error is 

close to 0 (Taylor 2001; Jiang et al 2015).  

Taylor skill score (TSS), calculated as in Eq. (3), is a numerical summary of the Taylor 

diagram to express a synthetic measure. 

( )

( )

2

2

2

0

4 1
TSS

1

m

m o

o m

R

R
 

 

+
=
 

+ + 
 

                       (3) 

where Rm is the spatial correlation coefficient of climatological mean between simulation and 

observation, Ro is the maximum correlation coefficient attainable set here to 0.999, σm and σo 

are the standard deviations of the simulated and observed spatial patterns in climatological 

means, respectively. The closer the value of TSS is to 1, the better the agreement between the 

simulation and observation. This skill score has been generally used in many previous 

researches (Wang et al 2018; Zhu, H et al 2020; Ngoma et al 2021). 
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3. Results  

3.1 Performance evaluation 

To assess the ability of our three schemes dealing with the multi-model ensemble simulations, 

the spatial patterns and corresponding distribution boxplots for biases of all indices against 

observations across China during the validation period are examined (figure 2 and figure 3). 

Darker colors and far-from-zero bars represent higher deviations from observation. To facilitate 

visual inspection and interpretation of differential fields, the climatology from observation in 

the validation period from 1995 to 2014 is exhibited in figure S2. A general feature that can be 

observed in figures 2 and 3 is that the three schemes exhibit similar patterns of spatial bias 

distribution, and AM (with a bias correction included) shows the largest biases. Compared with 

AM, biases from LR and RF are reduced across almost the whole domain.  

 

Figure 2. Spatial distributions (a–i) and corresponding boxplots (j–l) of the absolute biases from AM (a–c), 

LR (d–f), and RF (g–i) algorithms for mean and extreme temperature indices in the validation period (unit: °C). 

From left to right are TAS (column 1), TXx (column 2), TNn (column 3), respectively. Areas with significant 

amelioration based on AM above the 0.95 confidence level are marked with gray dots in the LR and RF panels, 

according to Student’s t-test. The upper and lower limits of box are the first and third quartile, the horizontal line 
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and the asterisk in the box are the mean and median values, respectively, and the whiskers show the 10 th and 90th 

percentile values.  

 

Figure 3. Same as figure 2, but the relative biases for mean and extreme precipitation indices (unit: %). From 

left to right are PRCPTOT (column 1), RX5DAY (column 2), R95P (column 3), respectively. Warm and cold colors 

indicate dry and wet biases respectively. 

Cold biases (ΔT < −6°C) from AM are mainly concentrated in the Tibetan Plateau and 

the middle and upper reaches of the Yangtze River for all temperature indices. They are 

significantly reduced in LR and RF (figure 2(d)–(i) vs 2(a)–(c)). The amelioration of RF is 

especially remarkable, only some scattered areas exist with bias exceeding 2°C. Higher cold 

biases (with focus on the 10th percentile biases in boxplots) depict a decrease from AM to RF, 

with values -2.62°C to -1.12°C for TAS, -2.73°C to -1.46°C for TXx, and -5.07°C to -2.58°C 

for TNn.  

Similar characteristic holds true for precipitation indices (figure 3(d)–(i) vs 3(a)–(c)). Areas 

with large biases in AM are reduced in LR and RF, especially in the Tibetan Plateau and its 

periphery where there are the largest wet biases. Higher wet biases (with focus on the 90th 

percentile in the boxplots) are reduced from 127% in AM to 25% in RF for PRCPTOT. Similarly, 
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RX5DAY shows a reduction from 74% to 28%, and R95P from 178% to 101%. RF is the best 

performing, and the biases are lower than 50% over almost the whole territory of China for 

PRCPTOT and RX5DAY. Higher wet biases for R95P exist in the Tarim Basin and the Qilian 

Mountains with complex topography. 

Taylor diagram and Taylor skill score are presented in figure 4 to show a concise statistical 

analysis of the three ensemble-processing strategies in the evaluation period. There is a general 

weak performance with AM (gray markers). The correlation coefficients of all temperature 

indices deduced from AM are between 0.94–0.97, the standardized deviations vary between 

0.96–1.05, and the Taylor skill scores are lower than 0.97. LR and RF schemes show an extra 

improvement, compared to AM. The best-performing RF gives correlation coefficient, and 

Taylor skill scores all superior to 0.98–0.99. Precipitation indices from AM show an 

unsatisfactory performance, with all spatial correlation coefficients less than 0.88, standardized 

deviations between 0.64–0.80, and the lowest value of Taylor skill scores reaching only 0.71. 

RF has the best efficiency, with precipitation indices comparable to temperature indices. In 

terms of Taylor skill scores, RF improves them from 0.82 in AM to 0.98 for PRCPTOT, from 

0.79 to 0.95 for RX5DAY and from 0.71 to 0.89 for R95P. 

   

 Figure 4. Taylor diagram (a) and Taylor skill score scatter plot (b) showing the mean and extreme 

temperature and precipitation indices under the three ensemble-processing schemes (represented with colors) 

during the validation period. Different symbols represent different indices, with hollow symbols for temperature 

indices and solid symbols for precipitation indices. 

Overall, the results provide clear evidence that LR and RF schemes effectively enhance 

the capability of reproducing the spatial climate characteristics in China, especially in western 

China where, with complex topography, most significant biases manifest in AM. RF has the 

best performance, with Taylor skill scores of all temperature indices at the level of 0.98–0.99, 

and remarkably improves the skill scores of precipitation indices to a level higher than 0.89. 

Temperature indices generally have a better performance than precipitation, but the 
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improvement for precipitation indices is more significant and substantial. 

Beyond the mean state, it is also interesting to check how well our ensemble-processing 

schemes can produce their interannual variability. We now assess the temporal standard 

deviation during the validation period from 1995 to 2014, with the interannual standard 

deviation from observation shown in figure S3. The result of evaluation is shown in figures S4, 

and expressed as a ratio of standard deviations between the simulation and observation. Only 

the mean states of TAS and PRCPTOT are exhibited as illustration. This ratio is generally 

smaller than 1.0, reflecting the fact that the ensemble-processing strategies present a reduced 

interannual variability. Such a result is expected, since any ensemble-processing strategy, due 

to its nature of mixing different simulations, reduces the interannual variability. In the case of 

AM, if all members in the ensemble are sequentially independent and possess an identical 

standard deviation, then the ensemble average from N members would reduce the standard 

deviation by a factor of 1/√𝑁. In our configuration of 24 models, this factor is about 0.20. The 

actual ratio for the mean temperature indices is larger than this expected value, but its 

counterpart for precipitation indices is smaller (all indices are not shown). We believe that this 

behavior is due to the fact that temperature indices have a consistent warm trend among models, 

but precipitation indices do not. Let us now inspect the cases of RF and LR, since a regression 

relationship is used to combine the 24 models (or a subset), the reduction of interannual 

variability is less pronounced. It is necessary to point out that when the regression is ill-fitted 

(with large negative coefficients for certain members, for example), the interannual variability 

can even be augmented. 

3.2 Projection of future climate  

Given its good performance in dealing with multi-model ensemble simulations, RF is now used 

for the regional projection of future climate for 1.5°C, 2°C and 3°C global warming targets 

(relative to preindustrial), under the SSP5-8.5 emission scenario. The widely-used AM scheme 

is also shown as a baseline and reference. As a conventional practice, the target warming levels 

are relative to pre-industrial (1861–1900), while the projected changes are relative to 1995–

2014. For the sake of conciseness, only temperature and precipitation indices under 1.5°C and 

2°C warming targets are given in the main text, the results under 3°C warming target being 

placed in Supplementary Materials. 

3.2.1 Temperature indices 

The land fraction from whole China territory with projected changes exceeding the 

abscissa's values is plotted in figure 5(a)–(c) in the form similar to a curve of the cumulative 

probability distribution function. Results are shown for both RF and AM, for all temperature 

indices, and for the 1.5°C and 2°C warming targets, respectively. figure 5(d)–(o) show their 

corresponding spatial pattern of changes, while the difference between RF and AM under the 

2°C warming level is shown in figure 5 (p)–(r).  

Let us firstly examine the median value which is an emblematic figure since it separates 

the entire territory across China into two equal halves. Changes of mean and extreme 

temperature projected by RF are lower than those by AM (figure 5). Under the 2°C warming 

target, but relative to nowadays, RF shows a median change of TAS, TXx, and TNn at 1.35°C, 

1.37°C and 1.64°C, which are lower than the counterpart in AM, by about 0.23°C, 0.31°C and 

0.15°C. Recent studies based on CMIP6 models show higher transient climate response and 
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equilibrium climate sensitivity than what shown by previous versions of these models in CMIP5. 

Consequently, the projection of future climate in CMIP6 is also stronger than in CMIP5 

(Gettelman et al 2019; Nijsse et al 2020; Zelinka et al 2020). However, with some observational 

constraints, the projected warming is reduced compared with non-constrained projection 

(Brunner et al 2020; Liang et al 2020; Tokarska et al 2020). Our results of multi-model 

ensemble projection seem to agree with this conclusion. Observation plays important role in 

the machine learning RF ensemble-processing scheme, similar to a role of observation-based 

constraining, which lowers the projected warming compared to unconstrained AM. 

Obvious differences are detected between the land fraction curves of RF and AM. Extreme 

changes have higher probability of occurrence in more areas in RF as its curves have longer 

tails. Under the 2°C global warming target, AM does not project warmer mean temperature 

exceeding 2.6°C, but RF suggests a likelihood of 9% over China with such a warming level. In 

terms of geographic distribution of TAS, larger spatial variability is detected in RF, as the spatial 

standard deviations are almost twice larger than that in AM (figure 5(j) vs. 5(m)). Large 

magnitudes of warming projected by RF are found in the western part of Northeastern China 

and the north part of Northwestern China under 1.5°C warming. Under the 2°C warming target, 

the warming in these areas would further expand and strengthen, the northern and eastern 

periphery of the Tibetan Plateau also shows significant warming, exceeding 2.5°C. Meanwhile, 

AM projects a smoother distribution, with warming uniformly enhanced (exceeding 2.5°C 

warming) in the area north of 45°N and part of the Tibetan Plateau. From the difference between 

RF and AM (figure 5(p)), it is clear that, except a few regions with drastic increases in RF, the 

warming projected from RF is generally lower about 0.25°C–1°C than that of AM in almost the 

whole country, especially in the Tibetan Plateau, where the difference is significant under the 

0.95 confidence level.  

Regarding the spatial pattern, a similar behavior holds for extreme temperature TXx. 

Significantly enhanced warming over Northeastern China, the Tianshan Mountains, as well as 

the Loess Plateau is projected in RF, with a magnitude of 2.5°C above current world under the 

2°C warming target. Areas with larger increases from AM are evenly distributed in Northeastern 

China and the entire Northwest region. The change of TXx in different regions has large 

distinction in the projection of RF, the spatial standard deviations are more than three times 

larger than that in AM under both 1.5°C and 2°C warming targets (figure 5(e) vs. 5(h) and figure 

5(k) vs. 5(n)).  

For the minimum temperature TNn, sensitive areas from RF are distributed in Northeastern 

China, in the Yellow River Basin and in sparse areas in Northwestern China, while the warming 

projected by AM is more widely distributed in the southeast, extending to the south of the 

Yangtze River Basin.  

These results show broad similarities with those from GCMs (Shi et al 2018; Sui et al 

2018; Yang et al 2018), i.e., Northwestern China, Northeastern China, and the Tibetan Plateau 

are particularly sensitive to global warming. Compared to AM, RF shows more detailed 

information and larger inhomogeneity, and it exhibits a closer correlation with topography. 

More pronounced hotspots can be observed in RF. 
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Figure 5. The land fractions (a–c) and corresponding spatial distributions (d–r) of the changes projected from 

RF (colored lines and panels d–f, j–l) and AM (black lines and panels g–i, m–o) for TAS (column 1), TXx (column 

2), TNn (column 3) at the 1.5°C and 2°C global warming relative to the reference period. The solid lines in land 

fraction plots and rows 2, 3 (panels d–i) are at 1.5°C global warming target; dash lines and rows 4, 5 (panels j–o) 

are at 2°C. Panels (p–r) are the spatial distributions of distinctions between RF and AM at the 2°C global warming. 

The spatial standard deviations (STD) over the country are given on the top of panels d–o. Areas with significant 
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changes above the 0.95 confidence level with reference period are marked with gray dots in panels (d–o), and areas 

with significant differences above the 0.95 confidence level between RF and AM are marked with gray dots in 

panels (p–r), according to Student’s t-test (unit: °C).  

3.2.2 Precipitation indices 

Mean and extreme precipitation projections are presented in figure 6, both RF and AM 

project increased precipitation over most of China in response to global warming. For the 

median value across China that separates the whole territory into two equal halves, RF shows 

an increase of 3%, 4%, and 19 % for PRCPTOT, RX5DAY, and R95P under the 2°C global 

warming, which is almost the same as the counterpart in AM (only about 0.6%, 0.1% and 1.5% 

higher). For the change of total precipitation (PRCPTOT) under the 1.5°C and 2°C global 

warming targets, the fraction of lands where increase exceeds 40% is projected to be almost 

non-existent over China in AM, while that fraction in RF is above 6%. That means a higher risk 

for intense precipitation in RF projection. 

In terms of geographic distribution, RF and AM show good consistency, but there are 

substantial differences of magnitude (figure 6(d)–(r)). Small-scale features in RF are more 

significant, and the amplitude of increase is also higher. Large-increase areas of total 

precipitation (more than 30%) in RF are concentrated in the region of the Tsaidam Basin and 

Qilian Mountains. For the case of AM, enhanced precipitation (10 to 20%) is more evenly 

distributed in the whole western area, extends from the Tibetan Plateau, northeastward, 

stretching to the Loess Plateau and its northern area. In the northwestern area, significant lower 

precipitation change is projected by RF compared with AM. In other areas, the changes of total 

precipitation projected by RF are generally more notable than that in AM. 

Changes of RX5DAY show a close resemblance to total precipitation in terms of intensity 

and main geographic patterns. But precise areas of remarkable increase have some differences, 

especially in RF. Significant enhancement is found in most part of the Tibetan Plateau and 

patchy areas in Northeastern China, where the magnitudes exceed 20% under the 2°C global 

warming. Contrasted with RF, AM suggests smaller increases of RX5DAY, but with a more 

homogeneous geographic distribution. Almost all the territory would see an increase within the 

15% threshold. As shown in figure 5(q), significant differences between AM and RF are found 

in the northwestern region.  

Changes of R95P exceeding 50% in RF concentrate in the Tibetan Plateau and the Yellow 

River Basin, where the changes are almost twice higher than in AM (higher about 20%–30%). 

Meanwhile, in the southeastern and northwestern regions, the projected increase in strong 

precipitation from RF are not noticeable, which is lower than that projected by AM. 

Further comparison of our RF projections with previous studies using high-resolution 

regional climate models (RCMs) shows some similarities, especially in complex-terrain areas. 

Zhu, X et al (2020), using WRF v3.7.1, showed that, for total precipitation and extreme events, 

the Tibetan Plateau and regions outside China's northwestern boundaries are particularly 

sensitive to climate change, conclusion very consistent with our results. Similar patterns from 

our RF projection for RX5DAY were also present in Li, H et al (2018) using five RCMs 

involved in the CORDEX-East Asia project. Our results are also comparable to Li, D et al 

(2018) using FROALS as a dynamical downscaling model, together with a statistical 

downscaling tool. It is worthy of note that our projected R95P pattern in RF is very close to 

what found with WRF v3.5.1 when it was applied to China (Bao et al 2015).  
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Figure 6. Same as figure 5, but the relative changes of precipitation indices PRCPTOT, R95P, and RX5DAY 

(unit: %).  

The machine learning RF algorithm uses the concept of multi-regression decision trees. It 

can efficiently solve nonlinear regression problems and achieve good matching to observation, 
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in both temporal and spatial domains, as well demonstrated in Crawford et al (2019) and Pang 

et al (2017). Our results shown here are consistent with its intrinsic properties and with our 

expectation on it.  

4. Conclusion and Discussion 

In this work, three different ensemble-processing strategies, AM (arithmetic mean), LR (linear 

regression), and RF (Random Forest, machine learning decision tree algorithm), are used to 

explore information offered by the multi-model ensemble climate simulations of CMIP6. The 

main idea was to find the best way of processing the ensemble simulations to mimic 

observational climatic properties and to give a more reliable projection of future climate. AM 

is the simplest and most intuitive strategy. LR advocates the vision of a linear-regression 

approach to establish the relationship between simulations and observations, but it cannot 

necessarily represent any physical rules governing the climate system. RF is one of the most 

advanced machine-learning algorithms. It can extract non-linear and complex relations among 

climate models, instead of making a simple evaluation of models’ apparent performance as in 

other ensemble-processing strategies. This leads to a hybrid approach that we advocate for 

climate change issues, which combines physical modelling and machine learning strengths, thus 

giving confidence in retrieving more valuable information. 

The performance of the three schemes was assessed in the validation period (20 years, 

from 1995 to 2014). Compared with AM, LR and RF effectively enhance the capability of 

capturing spatial climate characteristics over China. Improvement in areas with complex terrain 

is the most significant such as in the periphery of the Tibetan Plateau. RF performs well, with 

the Taylor skill score of temperature indices being of 0.98–0.99, and that of precipitation indices 

higher than 0.89. It was also revealed that the internal variability, such as the interannual-scale 

standard deviation, can not be correctly reproduced by any of our ensemble-processing 

strategies which were designed, after all, to calculate the mean state of our expectation. 

After an inter-comparison of performance, RF was selected as the optimal scheme and 

used to investigate climate changes in the 1.5°C, 2°C and 3°C warmer worlds under the SSP5-

8.5 emission scenario. Compared with AM, RF shows less warming and enhanced wet 

conditions at the national scale of China. In terms of median changes across China, mean 

temperature (TAS), annual maximum (hottest daytime) temperature (TXx), and annual 

minimum (coldest nighttime) temperature (TNn) show 1.35°C, 1.37°C and 1.64°C warming 

relative to 1995–2014 period, respectively, under the 2°C global warming level, when RF is 

used. They are lower than their counterpart in AM, especially for TXx, lower about 0.31°C. The 

median changes of total precipitation in wet days (PRCPTOT), annual maximum consecutive 

5-day precipitation amount (RX5DAY), and annual total precipitation for events exceeding the 

95th percentile (R95P) projected in RF are 3%, 4%, and 19%, respectively, similar with the 

counterpart in AM.  

Regarding the geographic distribution, RF would see larger warming in Northeastern 

China and the northern part of Northwestern China. Tianshan Mountain, Loess Plateau area for 

TXx, and the Yellow River Basin for TNn are also regions of hotspots. Meanwhile except the 

regions with intensified warming, the warming projected from RF is generally lower than that 

of AM. That indicates a larger spatial variability and more pronounced local-scale 

characteristics of RF. For the projection of TXx, the spatial standard deviation can be three 

times larger compared with that in AM. 
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RF also projects more intense precipitation in most part of China. For example, in the 

region of the Tsaidam Basin and the Qilian Mountains, the projected changes in RF for the 

strong precipitation (partly exceeding 50% under the 2°C warming) are almost twice higher 

than in AM. Meanwhile in the northwestern area, for all precipitation indices, weaker increases 

of precipitation compared with AM are projected by RF. AM shows however much more 

homogeneous features.  

It is interesting to point out that the geographic structure of climate projection in RF shows a 

resemblance to that from dynamical downscaling with high-resolution models or from 

statistical downscaling (Li, D et al 2018; Zhu, X et al 2020). This indicates that the machine-

learning algorithm RF could capture detailed information at local scale, certainly due to its 

ability to behave as do those dynamic models with higher spatial resolution. This is quite 

reasonable since the high-resolution observation seems to play its role in constraining the 

ensemble-processing strategy RF which is able to manipulate complex nonlinear processes 

across multiple models. We believe that using advanced machine-learning techniques can 

provide a new perspective to retrieve more information from large amounts of data and make 

more reliable climate projections. 
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Table. S1. Model number, model name, modeling center and country, and atmospheric 

resolution of 24 CMIP6 global climate models (Expansions of acronyms are available at 

http://www.ametsoc.org/PubsAcronymList) 

 

  

Model 

Number 

Model 

Name 

Modeling Center/ Country 

Resolution 

(lat×lon) 

1 

2 

ACCESS-CM2 

ACCESS-ESM1-5 

Commonwealth Scientific and Industrial Research 

Organisation /Australia 

1.25°×1.875° 

1.25°×1.875° 

3 BCC-CSM2-MR 
Beijing Climate Center China Meteorological 

Administration /China 
1.125°×1.125° 

4 CanESM5 
Canadian Centre for Climate Modelling and Analysis 

/Canada 
2.8°×2.8° 

5 

6 

CNRM-CM6-1 

CNRM-ESM2-1 

Centre National de Recherches Météorologiques–

Centre Européen de Recherche et de Formation 

Avancée en Calcul Scientifique /France 

1.4°×1.4° 

1.4°×1.4° 

7 

8 

EC-Earth3 

EC-Earth3-Veg 

EC-EARTH consortium 

0.7°×0.7° 

0.7°×0.7° 

9 FGOALS-g3 Chinese Academy of Sciences /China 2.25°×2° 

10 

11 

GFDL-CM4 

GFDL-ESM4 

NOAA Geophysical Fluid Dynamics Laboratory /USA 

1°×1.25° 

1°×1.25° 

12 HadGEM3-GC31-LL Met Office Hadley Centre /UK 1.25°×1.875° 

13 

14 

INM-CM4-8 

INM-CM5-0 

Institute for Numerical Mathematics, Russian Academy 

of Science /Russia 

1.5°×2° 

1.5°×2° 

15 IPSL-CM6A-LR Institut Pierre-Simon Laplace /France 1.26°×2.5° 

16 

17 

MIROC6 

MIROC-ES2L 

Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research Institute, 

The University of Tokyo, National Institute for 

Environmental Studies, and RIKEN Center for 

Computational Science /Japan 

1.4°×1.4° 

2.8°×2.8° 

18 

19 

MPI-ESM-1-2-HR 

MPI-ESM-1-2-LR 

Max Planck Institute for Meteorology /Germany 

0.9375°×0.9375° 

1.875°×1.875° 

20 MRI-ESM2-0 Meteorological Research Institute /Japan 1.125°×1.125° 

21 NESM3 
Nanjing University of Information Science and 

Technology /China 
1.875°×1.875° 

22 

23 

NorESM2-LM 

NorESM2-MM 

Norwegian Climate Centre /Norway 

1.875°×2.5° 

0.9375°×1.25° 

24 UKESM1-0-LL Met Office Hadley Centre /UK 1.25°×1.875° 

http://www.ametsoc.org/PubsAcronymList
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Table. S2. Optimal parameters for RF models in reproducing the six observed climate 

indices. The four tunable hyperparameters used in sklearn.ensemble.RandomForestRegressor 

are: “n_estimators”, the number of trees in the forest; “max_depth”, the maximum depth of the 

tree; “min_samples_split”, the minimum number of samples required to split an internal node; 

and “max_features”, the number of features (expressed as a fraction of the number of total 

features) to consider when looking for the best split. 

  

Climate 

Index 
n_estimators max_depth min_samples_split max_features 

TAS 697 31 5 0.52 

TXx 909 18 5 0.32 

TNn 1697 29 9 0.25 

PRCPTOT 1470 20 5 0.27 

RX5DAY 1528 45 13 0.16 

R95P 1628 30 9 0.12 
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Text. S1. Analysis of the “relative importance” in RF algorithm 

In this study, our goal is to use multi-model climate simulations (from 24 CMIP6 models) 

as input to make the best combination possible. Figure S1 shows the “relative importance” of 

each model when RF is applied to each of the indices. This helps to further understand which 

of the CMIP6 models are more suitable for climate simulations in China. It can be seen that the 

importance for different indices is variable, and there are only some similarities among the three 

precipitation indices. TAS shows larger disparity with obviously big and small contributions. 

EC-Earth3-Veg reaches 0.35, while some other models manifest almost no contribution. In the 

contrary, R95P shows all models’ importance between 0.01 and 0.08, indicating a quite uniform 

distribution. Considering the nature and properties of the “relative importance” as presented in 

the main text, we need to note that this measure does reveal the performance of climate models, 

but it is also very dependent on hyper-parameters and precise implementation of the RF 

algorithm. 

Nevertheless, what shown in Figure S1, if interpreted as a kind of performance of climate 

models, is roughly consistent with results from previous studies that were recently reported 

(Dong and Dong 2021; Yang et al 2021). The two models from EC-EARTH (EC-Earth3-Veg 

and EC-Earth3) are generally well ranked for all indices except TNn, especially for their mean 

climate state (TAS and PRCPTOT). HadGEM3-GC31-LL has a good performance for all the 

precipitation indices but a mediocre one for the temperature indices. INM-CM4-8 and INM-

CM5-0, with a strong relationship and from a same institution, have similar relative importances 

for all climate indices.  
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Text. S2. Projection under the 3°C warming target 

Under the 3°C global warming threshold, projected temperature and precipitation indices 

(figure S5) show consistent behaviors with what shown in the main text for the case of 1.5°C 

and 2°C warming targets, but there are more significant changes relative to nowadays. 

Corresponding to the global warming threshold of 3°C, the mean temperature TAS over 

China projected by RF increases by 2.91°C. TXx and TNn increase about 2.95°C and 3.60°C, 

respectively. These temperature changes are all greater than their global averages. In terms of 

geographic distribution, stronger changes are generally observed in high latitudes than in mid-

low latitudes. 

For precipitation indices, PRCPTOT, RX5DAY and R95P all tend to increase in RF and 

AM. RF shows more detailed local features in terms of geographic distribution, consistent with 

the 1.5 and 2°C global warming. In terms of intensity of changes projected from RF, PRCPTOT 

increases by 18%, RX5DAY by 17%, and R95P by 47%. For all precipitation indices, the 

greatest projected changes appear in the north part of the Tibetan Plateau, with extension to 

northeast regions.  
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Figure S1. Relative importance of input features (24 CMIP6 models) deduced with the 

RF ensemble-processing strategy for the mean and extreme temperature and precipitation 

indices. 
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Figure S2. Spatial distributions of observed climatology for the mean and extreme 

temperature and precipitation indices in the validation period from 1995 to 2014 (unit: °C for 

temperature indices in panels a to c, and mm for precipitation indices in panels d to f).  
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Figure S3. Similar as figure S2, but for the spatial distributions of observed interannual 

standard deviation (unit: °C for temperature indices in panels a to c, and mm for precipitation 

indices in panels d to f).  
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Figure S4. Spatial distributions of the ratio between simulated and observed temporal 

standard deviations in the validation period for AM (upper panels), LR (middle panels), and RF 

(lower panels). Left panels are for mean temperature TAS and right panels total precipitation 

PRCPTOT. The areal average in the domain is given on the top-right corner of each panel. 
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Figure S5. Spatial distribution of changes of 6 climate indices (STD is the spatial standard 

deviation) obtained from RF and AM under the 3°C warming target. Similar to the cases of 

1.5°C and 2°C presented in the main text. Units are °C for the temperature indices, and % for 

the precipitation indices. 
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