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Abstract—Allocation and scheduling of applications affect
the timing response and system performance, particularly for
Network-on-Chip (NoC) based multicore systems executing real-
time applications. These systems with multitasking processors
provide improved opportunity for parallel application execution.
In dynamic scenarios, runtime task allocation improves the
system resource utilization and adapts to varying application
workload. In this work, we present an efficient hybrid strategy
for unified allocation and scheduling of tasks at runtime. By
considering multitasking capability of processors, communication
cost and task timing characteristics, potential allocation solutions
are obtained at design-time. These are adapted for dynamic
mapping and scheduling of computation and communication
workloads of real-time applications. Simulation results show
that the proposed approach achieves 34.2% and 26% average
reduction in network latency and communication cost of the
allocated applications. Also, the deadline satisfaction of the tasks
improves on average by 42.1% while reducing the allocation-time
overhead by 32% when compared with existing techniques.

Index Terms—Dynamic task allocation, Multicore, Scheduling

I. INTRODUCTION

Network-on-Chip (NoC) characterized by concurrent com-
munication and improved scalability, has emerged as the de
facto choice of on-chip interconnects in multicore systems.
In NoC paradigm, an on-chip network communicates data
packets between the PEs using network interface (NI), routers
and links. A PE is interfaced to a router through an NI
module, while the point to point links connect the routers with
each other. Task allocation and scheduling is a challenging
problem as it impacts the system performance, especially
for NoC based multicore systems. The complexity further
magnifies when such systems host PEs with multitasking
operating systems. Such platforms offer increased opportunity
of parallelism at task and/or application level with multiple
allocation configurations. This necessitates design of focus on
multi-application deployment to achieve high performance.

In Real-Time Dynamic Systems (RTDS) [1] executing real-
time applications, the computation and communication work-
loads often vary on a given system. Offline allocation methods
are insufficient in such scenarios as they consider prede-
fined set of applications. Thus, dynamic resource allocation
strategies which account for variation in runtime workload
are essential for allocating tasks and their communication

transactions. Typically resource allocation at runtime can be
performed with or without any precomputed result. Several
efficient heuristics exist for on-the-fly assignment of tasks
of applications i.e. without using design-time results at run-
time [2] [3] [4]. However, tasks schedulability and high-
quality mapping may not be ensured by these heuristics due to
limited online processing. Hybrid resource allocation strategies
overcome these bottlenecks. By selecting a predetermined al-
location solution and applying at runtime based on the system
state, it achieves an efficient dynamic allocation/scheduling.
Further, these approaches aid in design of light-weight plat-
form manager for runtime resource assignment. However,
most of the existing hybrid task allocation approaches [5] [6]
explore allocations considering single task per PE mapping.
Such strategies are inadequate for high performance multicore
systems which support multiple tasks based on its memory [4].
The solution space in such scenarios is larger compared to
multicore systems with single task allocation per processor.
Few of the hybrid strategies for dynamic task assignment target
multitasking platform but only solve task mapping [7] prob-
lem. The challenges of task and communication scheduling
are not addressed with renders them unsuitable for dynamic
allocation of tasks of real-time applications. Such applications
often have dependent task-sets. Once a task completes, it
communicates its output data (indicating communication load)
to other dependent task(s) for their execution.

In this work, we present an improved hybrid strategy
for adaptive task allocation and performance optimization of
real-time applications on NoC based multicore systems with
multitasking PEs while considering application dynamism
at runtime. We address the joint issue of runtime alloca-
tion/scheduling of tasks and communication transactions. The
salient features of our work are as follows:

• Propose an improved technique for allocation solution ex-
ploration at design-time for NoC based multicore systems
with multitasking processors.

• Propose an efficient strategy to rapidly identify and adapt
the predetermined allocation configurations for satisfying
task deadline and reducing communication cost.

• Present an online heuristic for dynamic allocation of task
and communication transactions of real-time applications



with link-contention awareness.

II. SYSTEM MODEL

We consider a tile based multicore architecture where each
tile consists of PEs, routers and links. It is assumed that each
tile in the system is homogeneous and consists of general-
purpose processors. The tiles are interconnected to each other
using on-chip network in 2D mesh topology. The system
model is shown in Fig. 1. Each PE consist of a processor
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Fig. 1: System model of NoC based multicore platform.

control unit, data-path and memory unit having task and data
memory. We have considered a dataflow computation model
where PEs communicate by message passing. Each PE can
support a maximum of PEcap number of tasks based on its
memory. The platform resources are managed by a special-
purpose Manager Tile (MT) hosting the real-time operating
system (RTOS) supporting non-preemptive, multitasking and
event-based environment. The task allocation/scheduling al-
gorithm is executed by the Task Allocation and Scheduling
Unit (TASU) which decides the PE for task execution. The
occupancy status of each PE and link are updated in Resource
Manager (RM). The allocation configurations obtained at
design-time are stored in offline repository present in memory
of MT and fetched by TASU. We have assumed that services
for loading task codes onto PEs and status monitoring of PEs
and links already exists on the given platform which use a
small part of NoC bandwidth or another NoC similar to [2].

The routers use wormhole packet switching to transmit
the packets in a pipeline fashion. We have considered that
deterministic routing (XY or YX routing) is used owing to
its low cost of online implementation. In this work, we have
assumed virtual channels (VC) based routers, where each
input port consists of two VC. Class0 VC is dedicated for
communication using XY policy whereas class1 VC is used
by packets routed by YX policy. We have considered each
packet has 8 flits with 32 bits/flit. The size of input buffer is
32 bits with buffer depth of 4.

III. PROBLEM FORMULATION

An application task graph, A = (T, E) is denoting as a
directed acyclic graph (DAG), where each entity τi ∈ T
denotes the set of tasks and ek,l ∈ E is the set of directed
edges, representing communication between tasks. Each task
τi is characterized by worst-case execution time exi and
deadline dli. sli is the slack-time which is the time-margin

between the time at which τi would complete if it started
now, and its deadline time. For an edge ek,l, δk,l indicates
the edge-weight and represents the communication volume in
number of packets to be transferred.The NoC topology graph
is a directed graph N = (ψ,L) where PEi ∈ ψ represents
a PE in the topology. Each li,j ∈ L represents physical link
connecting the routers for processors PEi and PEj .

A set of consecutive links connecting a pair of PEs as per a
given routing policy is called a communication route, R. The
time delay in transferring a packet through a link is termed as
a time slot. The set of time slots during which ei,j occupies
the kth link lkm,n on its route is called link occupation win-

dow LOW
lkm,n
ei,j = { p | ν + (k − 1) ≤ p ≤ ν + (δ + k − 1)}

where ν is the time slot when the first packet is communicated.
The link utilization factor, LUF lm,n

ei,j , gives the time slots over
which contention occurs for a link lm,n for transmitting on
edge ei,j . it is computed as the overlapping time-slots between

LOW
lkm,n
ei,j and the set of all time-slots over which lm,n is

occupied. Using this information, the route utilization factor
(RUF) of route R is defined as:

RUF (R) = 1

|R|
∑

lm,n∈R

LUF lm,n
ei,j (1)

A route with low RUF is desirable as it indicates less
contention. The assignment of the task graph on a bounded
set of processors ψ is denoted by map : T 7−→ ψ such that
map(τi) = PEj indicates allocation of τi on PEj . The quality
of the mapping is defined in terms of the communication cost
(CC) given by Eq. 2:

CC =
∑
∀ei,j∈E

δi,j ∗Hop Count(map(τi),map(τj)) (2)

A schedule S is regarded as the start-time decision of the
tasks and communication transaction and defined by function
pair (φt, φe). φt(τi, PEj) and φe(ei,j , lx,y) give the start-
time of execution of τi mapped on PEj and start-time of
transmission of ei,j on link lx,y . For an application A, we
define its operating configuration CA =

〈
ρsize, Sρ, CC,A

ft
〉
.

ρsize is the number of PEs used for executing the tasks of A.
For a multicore platform with processors having multitasking
capability, PEcap, ρsize = [ |T |/PEcap , |T | ]. The spatial
distribution of the allocated PEs results in various shapes of
the allocation region indicated by Sρ. Aft represents the finish-
time of execution of application A.

A. Problem Statement
Design-time sub-problem: Given a finite set G of known ap-

plications each of which is represented by a DAG A = (T, E)
and a topology graph N = (ψ,L), our objective is to deter-
mine the operating configuration CA =

〈
ρsize, Sρ, CC,A

ft
〉

for each application such that tasks satisfy their deadline and
communication cost of allocated application is reduced.

Runtime resource allocation subproblem: For the set of
arrived applications F = A1, A2...An where F ⊆ G, our
objective is to determine an adaptive resource allocation



for each application to find the operating configuration Q =
〈CA1 , CA2 ...CAn〉 and schedule S = (φt, φe) with intra-
application PE sharing and inter-application link sharing such
that the finish-time of applications is reduced and increase in
communication cost at runtime is low while mitigating link-
contention during communication transactions of applications.

IV. PROPOSED APPROACH

Algorithm 1: Adaptive Resource Allocation for Tasks
and Communications (ARA− TC)

Input : Application G(T,E), Topology Graph N(ψ,L)
Output : Runtime allocation/scheduling of tasks and communication

1 ρmax
size = |T |; ρmin

size = |T |/PEcap;
2 Proc sel← ∅; Link sel← ∅; RegionShape list← ∅;
/* Design-time Preparation stage */

3 for i= ρmin
size to ρmax

size do
4 RegionShape list =

Selective Region Shape Generation(ρsize, ψ);
5 end
6 for each shape Si ∈ RegionShape list do
7 AT j = Discrete Particle Swarm Optimization(T, Si)
8 end
/* Online Customization of Allocation */

9 Proc Avl=get available PE();
10 Avail size=size of Proc Avl;
11 for ρs = Avail size downto ρmin

size do
12 for each allocation template AT j with size ρs do
13 (Proc sel, Link sel, STATUS) =

Online Allocation Adapt(AT j , Proc Avl);
14 if STATUS==TRUE then
15 goto line 19;
16 end
17 end
18 end
19 assign start-time of tasks on PE allocated from set Proc sel;
20 assign start-time of edges on links allocated from set Link sel;

Algorithm 1 presents the proposed adaptive resource allo-
cation strategy for tasks and communications (ARA − TC).
In the offline stage, we determine a set of operating configura-
tions consisting of allocation templates and different schemes
of task execution times. Each template contains various as-
signment/scheduling decisions of tasks, resulting in different
communication cost and finish-time of each application. It in-
volves spatial allocation configuration and allocation template
formation using the identified PEs. First, the algorithm invokes
Selective Region Shape Generation() in line 4 to find
various spatial allocation configurations. It first enumerates
the allocation region size (ρsize) for task execution for an
application. The allocation region shape is grown selectively
in an incremental manner by considering the neighbouring
tiles during each intermediate level of region growth. The
identical region shapes having the same pattern of PEs but
with different orientations are excluded from further growth to
generate unique region shapes. Next, the allocation templates
(AT ) are synthesized (line 7), wherein the allocation and
scheduling of tasks to PEs present in each generated region is
determined. In this work, this is accomplished by employing
well-known discrete particle swarm optimization (DPSO) [8].
We have modified the basic DPSO to solve task allocation
and scheduling for multitasking PEs. An array of integers
indicating id of PEs present in allocation region is used to
represent a particle pi. In particle formulation, we allow PE

ids to be repeated in an array based on the task capacity of
processors. For pi its fitness function, ff [pi] is considered as
ff [pi] = CC[pi] ∗Bi where binary variable Bi = 1 indicates
the task allocation given by the pi is schedulable i.e. satisfies
its deadline, else Bi = 0. The particles with small non-zero
fitness value are preferable. In this stage, table-based routing
is used to confine the packets to routers present within the
allocation region.

To address the varying availability of PEs and differ-
ent execution time of arrived tasks, we propose an im-
proved online scheme shown in lines 9-20 of Algorithm
1, which customizes the design-time decisions. First, the
function get available PE() prepares the set of available
PEs, Proc Avl as shown in line 9. Then, the precomputed
allocation regions are explored in descending order of their
sizes (lines 10-11). This is iterated until a suitable region
size is found which fits into the available set of PEs. Such
a runtime policy prefers allocation templates which results
in the least value of finish-time. Among the tasks ready
for execution, EDF strategy is used for selecting tasks for
assigning on PEs. The PEs having available task capacity and
located in the close vicinity of PE hosting the most commu-
nicating parent task are considered. Such a PE is chosen if
its earliest available time is less than slack-time margin of
the task to be allocated. The start-time of task execution is
then assigned to the identified PE. This process of online
selection and adaptation of design-time results is effected
by function Online Allocation Adapt() using a heuristic
strategy (line 13). It involves fitting the precomputed allocation
templates to the PE distribution by reorienting the allocation
regions or customizing the allocation region most similar to
the available set of PEs. However, during the above runtime
reconfiguration approach, the network links associated with
the selected PEs may be already occupied by data packets of
other communicating tasks leading to traffic contention where
multiple real-time applications can be concurrently active. To
mitigate link contention, the online strategy first evaluates the
RUF of route R (refer Eq.1) determined using XY routing
policy between the source and destination PEs. If the route
has zero RUF, then the R is assigned for data packets. Else,
the RUF for the route obtained by YX routing is evaluated.
The proposed runtime approach selects a candidate PE in
close vicinity which has RUF zero or least non-zero value.
This ensures that links with low/no contention are selected for
communication traffic at runtime.

V. RESULTS AND DISCUSSIONS

To evaluate the effectiveness of the proposed approach,
a C++ based simulator is used, which is based on [9] [1]
and modified to implement the proposed adaptive task allo-
cation strategy. We have considered a NoC platform of 8×8
size in simulations considering both real-time and synthetic
applications. Real-time applications such as 263enc, 263dec,
MPEG and PIP [10]. Synthetic graphs are generated using
TGFF [11] tool, such as TGFF(1-4) consisting of 25, 35, 45
and 55 tasks respectively. Simulations have been conducted



on 1000 test scenarios generated randomly by combination
of 100 applications each consisting of [20 100] tasks and
[50 150] edges. For the tasks, the execution time requirement
is uniformly distributed between 50 to 500 clock cycles and
their deadlines are assigned. Next, we discuss the experimental
results on the comparison of the performance of the proposed
runtime allocation/scheduling approach with other competitor
algorithms for contention-aware dynamic allocation.

Fig. 2 compares the communication cost of the task al-
locations resulting from various runtime approaches. The
results are normalized with respect to CA-NN [3] method
considered as baseline. The applications allocated by the
proposed approach achieves 23.6% and 35.3% improvement
in communication cost on an average when compared with
the allocations given by PL [12] and DTMCS [13] strategies
respectively. This is because the proposed dynamic resource
allocation strategy exploits better mapping decisions taken at
design-time for applying in runtime. This results in contiguous
task allocation with reduced sharing of on-chip links.
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Fig. 2: Comparison of communication cost.
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Fig. 3: Deadline performance of various algorithms.
Fig. 3 shows the results of deadline performance. On an

average, 31.2% more tasks satisfy their deadline using the
proposed runtime allocation algorithm when compared with
the allocations obtained by DTMCS. When compared with PL
and CA-NN algorithms, the proposed runtime approach results
in 45.2% and 51.7% more tasks completing execution within
their deadline, respectively. A comparison of the average
communication latency is shown in Fig. 4. The cycle accurate
simulator Noxim [9] is used with settings as described in
Section 3 to evaluate the network performance. It is observed
that, on an average, the proposed algorithm reduces the
communication latency of the mapped applications by 26.8%,

34.1% and 41.6% when compared with DTMCS, PL and CA-
NN algorithms respectively.
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Experimental results also demonstrate that the proposed
online allocation customization algorithm has low run-time
overhead compared to the state-of-the-art contention-aware
approaches. The results could not be presented here due to
the paucity of space.

VI. CONCLUSION

In this work, we have presented a contention-aware hybrid
allocation and scheduling strategy for NoC based multicore
platform with multitasking processors. Compared with recent
communication-ware dynamic allocation algorithms, the pro-
posed runtime resource allocation strategy shows improved
performance in latency, task deadline satisfaction and com-
munication cost.
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