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Allocation and scheduling of applications affect the timing response and system performance, particularly for Network-on-Chip (NoC) based multicore systems executing realtime applications. These systems with multitasking processors provide improved opportunity for parallel application execution. In dynamic scenarios, runtime task allocation improves the system resource utilization and adapts to varying application workload. In this work, we present an efficient hybrid strategy for unified allocation and scheduling of tasks at runtime. By considering multitasking capability of processors, communication cost and task timing characteristics, potential allocation solutions are obtained at design-time. These are adapted for dynamic mapping and scheduling of computation and communication workloads of real-time applications. Simulation results show that the proposed approach achieves 34.2% and 26% average reduction in network latency and communication cost of the allocated applications. Also, the deadline satisfaction of the tasks improves on average by 42.1% while reducing the allocation-time overhead by 32% when compared with existing techniques.

I. INTRODUCTION

Network-on-Chip (NoC) characterized by concurrent communication and improved scalability, has emerged as the de facto choice of on-chip interconnects in multicore systems. In NoC paradigm, an on-chip network communicates data packets between the PEs using network interface (NI), routers and links. A PE is interfaced to a router through an NI module, while the point to point links connect the routers with each other. Task allocation and scheduling is a challenging problem as it impacts the system performance, especially for NoC based multicore systems. The complexity further magnifies when such systems host PEs with multitasking operating systems. Such platforms offer increased opportunity of parallelism at task and/or application level with multiple allocation configurations. This necessitates design of focus on multi-application deployment to achieve high performance.

In Real-Time Dynamic Systems (RTDS) [START_REF] Chatterjee | Deadline and energy aware dynamic task mapping and scheduling for network-on-chip based multi-core platform[END_REF] executing realtime applications, the computation and communication workloads often vary on a given system. Offline allocation methods are insufficient in such scenarios as they consider predefined set of applications. Thus, dynamic resource allocation strategies which account for variation in runtime workload are essential for allocating tasks and their communication transactions. Typically resource allocation at runtime can be performed with or without any precomputed result. Several efficient heuristics exist for on-the-fly assignment of tasks of applications i.e. without using design-time results at runtime [START_REF] Chou | Run-time task allocation considering user behavior in embedded multiprocessor networks-on-chip[END_REF] [3] [START_REF] Maqsood | Dynamic task mapping for network-on-chip based systems[END_REF]. However, tasks schedulability and highquality mapping may not be ensured by these heuristics due to limited online processing. Hybrid resource allocation strategies overcome these bottlenecks. By selecting a predetermined allocation solution and applying at runtime based on the system state, it achieves an efficient dynamic allocation/scheduling. Further, these approaches aid in design of light-weight platform manager for runtime resource assignment. However, most of the existing hybrid task allocation approaches [START_REF] Mariani | An industrial design space exploration framework for supporting run-time resource management on multi-core systems[END_REF] [START_REF] Quan | A hybrid task mapping algorithm for heterogeneous mpsocs[END_REF] explore allocations considering single task per PE mapping. Such strategies are inadequate for high performance multicore systems which support multiple tasks based on its memory [START_REF] Maqsood | Dynamic task mapping for network-on-chip based systems[END_REF]. The solution space in such scenarios is larger compared to multicore systems with single task allocation per processor. Few of the hybrid strategies for dynamic task assignment target multitasking platform but only solve task mapping [START_REF] Ost | Power-aware dynamic mapping heuristics for noc-based mpsocs using a unified model-based approach[END_REF] problem. The challenges of task and communication scheduling are not addressed with renders them unsuitable for dynamic allocation of tasks of real-time applications. Such applications often have dependent task-sets. Once a task completes, it communicates its output data (indicating communication load) to other dependent task(s) for their execution.

In this work, we present an improved hybrid strategy for adaptive task allocation and performance optimization of real-time applications on NoC based multicore systems with multitasking PEs while considering application dynamism at runtime. We address the joint issue of runtime allocation/scheduling of tasks and communication transactions. The salient features of our work are as follows:

• Propose an improved technique for allocation solution exploration at design-time for NoC based multicore systems with multitasking processors.

• Propose an efficient strategy to rapidly identify and adapt the predetermined allocation configurations for satisfying task deadline and reducing communication cost. • Present an online heuristic for dynamic allocation of task and communication transactions of real-time applications with link-contention awareness.

II. SYSTEM MODEL

We consider a tile based multicore architecture where each tile consists of PEs, routers and links. It is assumed that each tile in the system is homogeneous and consists of generalpurpose processors. The tiles are interconnected to each other using on-chip network in 2D mesh topology. The system model is shown in Fig. 1. Each PE consist of a processor The routers use wormhole packet switching to transmit the packets in a pipeline fashion. We have considered that deterministic routing (XY or YX routing) is used owing to its low cost of online implementation. In this work, we have assumed virtual channels (VC) based routers, where each input port consists of two VC. Class0 VC is dedicated for communication using XY policy whereas class1 VC is used by packets routed by YX policy. We have considered each packet has 8 flits with 32 bits/flit. The size of input buffer is 32 bits with buffer depth of 4.

III. PROBLEM FORMULATION

An application task graph, A = (T, E) is denoting as a directed acyclic graph (DAG), where each entity τ i ∈ T denotes the set of tasks and e k,l ∈ E is the set of directed edges, representing communication between tasks. Each task τ i is characterized by worst-case execution time ex i and deadline dl i . sl i is the slack-time which is the time-margin between the time at which τ i would complete if it started now, and its deadline time. For an edge e k,l , δ k,l indicates the edge-weight and represents the communication volume in number of packets to be transferred.The NoC topology graph is a directed graph N = (ψ, L) where P E i ∈ ψ represents a PE in the topology. Each l i,j ∈ L represents physical link connecting the routers for processors P E i and P E j .

A set of consecutive links connecting a pair of PEs as per a given routing policy is called a communication route, R. The time delay in transferring a packet through a link is termed as a time slot. The set of time slots during which e i,j occupies the k th link l k m,n on its route is called link occupation window LOW

l k m,n ei,j = { p | ν + (k -1) ≤ p ≤ ν + (δ + k -1)}
where ν is the time slot when the first packet is communicated. The link utilization factor, LU F lm,n ei,j , gives the time slots over which contention occurs for a link l m,n for transmitting on edge e i,j . it is computed as the overlapping time-slots between LOW l k m,n ei,j and the set of all time-slots over which l m,n is occupied. Using this information, the route utilization factor (RUF) of route R is defined as:

RU F (R) = 1 |R| lm,n∈R LU F lm,n ei,j (1) 
A route with low RUF is desirable as it indicates less contention. The assignment of the task graph on a bounded set of processors ψ is denoted by map : T -→ ψ such that map(τ i ) = P E j indicates allocation of τ i on P E j . The quality of the mapping is defined in terms of the communication cost (CC) given by Eq. 2:

CC = ∀ei,j ∈E δ i,j * Hop Count(map(τ i ), map(τ j )) (2)
A schedule S is regarded as the start-time decision of the tasks and communication transaction and defined by function pair (φ t , φ e ). φ t (τ i , P E j ) and φ e (e i,j , l x,y ) give the starttime of execution of τ i mapped on P E j and start-time of transmission of e i,j on link l x,y . For an application A, we define its operating configuration C A = ρ size , S ρ , CC, A f t . ρ size is the number of PEs used for executing the tasks of A. For a multicore platform with processors having multitasking capability,

P E cap , ρ size = [ |T |/P E cap , |T | ].
The spatial distribution of the allocated PEs results in various shapes of the allocation region indicated by S ρ . A f t represents the finishtime of execution of application A.

A. Problem Statement

Design-time sub-problem: Given a finite set G of known applications each of which is represented by a DAG A = (T, E) and a topology graph N = (ψ, L), our objective is to determine the operating configuration C A = ρ size , S ρ , CC, A f t for each application such that tasks satisfy their deadline and communication cost of allocated application is reduced.

Runtime resource allocation subproblem: For the set of arrived applications F = A 1 , A 2 ...A n where F ⊆ G, our objective is to determine an adaptive resource allocation for each application to find the operating configuration Q = C A1 , C A2 ...C An and schedule S = (φ t , φ e ) with intraapplication PE sharing and inter-application link sharing such that the finish-time of applications is reduced and increase in communication cost at runtime is low while mitigating linkcontention during communication transactions of applications. Algorithm 1 presents the proposed adaptive resource allocation strategy for tasks and communications (ARA -T C). In the offline stage, we determine a set of operating configurations consisting of allocation templates and different schemes of task execution times. Each template contains various assignment/scheduling decisions of tasks, resulting in different communication cost and finish-time of each application. It involves spatial allocation configuration and allocation template formation using the identified PEs. First, the algorithm invokes Selective Region Shape Generation() in line 4 to find various spatial allocation configurations. It first enumerates the allocation region size (ρ size ) for task execution for an application. The allocation region shape is grown selectively in an incremental manner by considering the neighbouring tiles during each intermediate level of region growth. The identical region shapes having the same pattern of PEs but with different orientations are excluded from further growth to generate unique region shapes. Next, the allocation templates (AT ) are synthesized (line 7), wherein the allocation and scheduling of tasks to PEs present in each generated region is determined. In this work, this is accomplished by employing well-known discrete particle swarm optimization (DPSO) [START_REF] Sahu | Application mapping onto mesh-based network-onchip using discrete particle swarm optimization[END_REF]. We have modified the basic DPSO to solve task allocation and scheduling for multitasking PEs. An array of integers indicating id of PEs present in allocation region is used to represent a particle p i . In particle formulation, we allow PE ids to be repeated in an array based on the task capacity of processors. For p i its fitness function, f f

IV. PROPOSED APPROACH

[p i ] is considered as f f [p i ] = CC[p i ] * B i
where binary variable B i = 1 indicates the task allocation given by the p i is schedulable i.e. satisfies its deadline, else B i = 0. The particles with small non-zero fitness value are preferable. In this stage, table-based routing is used to confine the packets to routers present within the allocation region.

To address the varying availability of PEs and different execution time of arrived tasks, we propose an improved online scheme shown in lines 9-20 of Algorithm 1, which customizes the design-time decisions. First, the function get available P E() prepares the set of available PEs, P roc Avl as shown in line 9. Then, the precomputed allocation regions are explored in descending order of their sizes (lines [START_REF] Chatterjee | Fault-tolerant dynamic task mapping and scheduling for network-on-chip-based multicore platform[END_REF][START_REF] Dick | TGFF: Task graphs for free[END_REF]. This is iterated until a suitable region size is found which fits into the available set of PEs. Such a runtime policy prefers allocation templates which results in the least value of finish-time. Among the tasks ready for execution, EDF strategy is used for selecting tasks for assigning on PEs. The PEs having available task capacity and located in the close vicinity of PE hosting the most communicating parent task are considered. Such a PE is chosen if its earliest available time is less than slack-time margin of the task to be allocated. The start-time of task execution is then assigned to the identified PE. This process of online selection and adaptation of design-time results is effected by function Online Allocation Adapt() using a heuristic strategy (line 13). It involves fitting the precomputed allocation templates to the PE distribution by reorienting the allocation regions or customizing the allocation region most similar to the available set of PEs. However, during the above runtime reconfiguration approach, the network links associated with the selected PEs may be already occupied by data packets of other communicating tasks leading to traffic contention where multiple real-time applications can be concurrently active. To mitigate link contention, the online strategy first evaluates the RUF of route R (refer Eq.1) determined using XY routing policy between the source and destination PEs. If the route has zero RUF, then the R is assigned for data packets. Else, the RUF for the route obtained by YX routing is evaluated. The proposed runtime approach selects a candidate PE in close vicinity which has RUF zero or least non-zero value. This ensures that links with low/no contention are selected for communication traffic at runtime.

V. RESULTS AND DISCUSSIONS

To evaluate the effectiveness of the proposed approach, a C++ based simulator is used, which is based on [START_REF] Catania | Noxim: An open, extensible and cycle-accurate network on chip simulator[END_REF] [1] and modified to implement the proposed adaptive task allocation strategy. We have considered a NoC platform of 8×8 size in simulations considering both real-time and synthetic applications. Real-time applications such as 263enc, 263dec, MPEG and PIP [START_REF] Chatterjee | Fault-tolerant dynamic task mapping and scheduling for network-on-chip-based multicore platform[END_REF]. Synthetic graphs are generated using TGFF [START_REF] Dick | TGFF: Task graphs for free[END_REF] tool, such as TGFF(1-4) consisting of 25, 35, 45 and 55 tasks respectively. Simulations have been conducted on 1000 test scenarios generated randomly by combination of 100 applications each consisting of [20 100] tasks and [50 150] edges. For the tasks, the execution time requirement is uniformly distributed between 50 to 500 clock cycles and their deadlines are assigned. Next, we discuss the experimental results on the comparison of the performance of the proposed runtime allocation/scheduling approach with other competitor algorithms for contention-aware dynamic allocation.

Fig. 2 compares the communication cost of the task allocations resulting from various runtime approaches. The results are normalized with respect to CA-NN [START_REF] Singh | Communication-aware heuristics for run-time task mapping on noc-based mpsoc platforms[END_REF] method considered as baseline. The applications allocated by the proposed approach achieves 23.6% and 35.3% improvement in communication cost on an average when compared with the allocations given by PL [START_REF] Carvalho | Congestion-aware task mapping in heterogeneous mpsocs[END_REF] and DTMCS [START_REF] Chao | Dynamic task mapping with congestion speculation for reconfigurable network-on-chip[END_REF] strategies respectively. This is because the proposed dynamic resource allocation strategy exploits better mapping decisions taken at design-time for applying in runtime. This results in contiguous task allocation with reduced sharing of on-chip links. Fig. 3: Deadline performance of various algorithms. Fig. 3 shows the results of deadline performance. On an average, 31.2% more tasks satisfy their deadline using the proposed runtime allocation algorithm when compared with the allocations obtained by DTMCS. When compared with PL and CA-NN algorithms, the proposed runtime approach results in 45.2% and 51.7% more tasks completing execution within their deadline, respectively. A comparison of the average communication latency is shown in Fig. 4. The cycle accurate simulator Noxim [START_REF] Catania | Noxim: An open, extensible and cycle-accurate network on chip simulator[END_REF] is used with settings as described in Section 3 to evaluate the network performance. It is observed that, on an average, the proposed algorithm reduces the communication latency of the mapped applications by 26.8%, 34.1% and 41.6% when compared with DTMCS, PL and CA-NN algorithms respectively. Experimental results also demonstrate that the proposed online allocation customization algorithm has low run-time overhead compared to the state-of-the-art contention-aware approaches. The results could not be presented here due to the paucity of space.

VI. CONCLUSION

In this work, we have presented a contention-aware hybrid allocation and scheduling strategy for NoC based multicore platform with multitasking processors. Compared with recent communication-ware dynamic allocation algorithms, the proposed runtime resource allocation strategy shows improved performance in latency, task deadline satisfaction and communication cost.
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  -time of tasks on PE allocated from set P roc sel; 20 assign start-time of edges on links allocated from set Link sel;

	Algorithm 1: Adaptive Resource Allocation f or T asks
	and Communications (ARA -T C)
	Input	: Application G(T, E), Topology Graph N (ψ, L)
	Output	: Runtime allocation/scheduling of tasks and communication
	1 ρ max size = |T |; ρ min size = |T |/P Ecap;
	2 P roc sel ← ∅; Link sel ← ∅; RegionShape list ← ∅;
	/ * Design-time Preparation stage	* /
	3 for i= ρ min size to ρ max size do 4 RegionShape list =
		Selective Region Shape Generation(ρsize, ψ);
	5 end	
	6 for each shape Si ∈ RegionShape list do
	7	AT j = Discrete P article Swarm Optimization(T, Si)
	8 end	
	/ * Online Customization of Allocation	* /
	9 P roc Avl=get available P E();
	10 Avail size=size of P roc Avl;
	11 for ρs = Avail size downto ρ min size do
	14	if STATUS==TRUE then
	15		goto line 19;
	16	end
	17	end
	18 end	
	19 assign start

12

for each allocation template AT j with size ρs do 13 (P roc sel, Link sel, ST AT U S) = Online Allocation Adapt(AT j , P roc Avl);