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1   |   INTRODUCTION

Cancer is among the most common causes of morbidity 
and mortality worldwide, and the vast majority of cancer-
related death is due to metastasis rather than primary 

tumors.1 Thus, the limitations of anti-metastasic treat-
ments require a deeper understanding of the complex 
stepwise process of tumor cell dissemination toward 
target organs in order to design innovative therapies.2 
Metastasis is a highly inefficient process as only a very 
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Abstract
Among a plethora of functions, extracellular vesicles released by primary tumors 
spread in the organism and reach distant organs where they can induce the for-
mation of a premetastatic niche. This constitutes a favorable microenvironment 
for circulating tumor cells which facilitates their seeding and colonization. In this 
review, we describe the journey of extracellular vesicles (EVs) from the primary 
tumor to the future metastatic organ, with a focus on the mechanisms used by 
EVs to target organs with a specific tropism (i.e., organotropism). We then high-
light important tumor EV cargos in the context of premetastatic niche formation 
and summarize their known effects on extracellular matrix remodeling, angio-
genesis, vessel permeabilization, resident cell activation, recruitment of foreign 
cells, and ultimately the formation of a pro-inflammatory and immuno-tolerant 
microenvironment. Finally, we discuss current experimental limitations and re-
maining opened questions in light of metastatic diagnosis and potential therapies 
targeting PMN formation.
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small proportion of tumor cells escaping primary tumors 
are able to successfully form micrometastatic foci in dis-
tant organs.3,4 As they leave the primary tumor, tumor 
cells face hostile environments with specific and distinct 
properties: they need to resist harsh forces of blood or 
lymph shear stress, cross endothelial barriers, evade im-
mune surveillance, settle, and finally proliferate in ter-
ritories where micro-environmental properties are often 
distinct from their site of origin.2,5 It is now well estab-
lished that metastatic success relies on the capacity of 
tumor cells to adapt to these variations through cellular 
and metabolic plasticity. Over the past decade, however, 
this paradigm evolved with the identification of tumor-
released factors able to modify the microenvironment at 
future metastatic sites before tumor cell arrival. These 
novel tumor-induced microenvironments are referred 
to as premetastatic niches (PMNs) and defined by their 
capacity to facilitate metastasis of circulating tumor cells 
(CTCs) arriving subsequently.6 The discovery of PMNs re-
freshed the “seed and soil” theory established by Stephen 
Paget in 1889, who proposed that metastasis succeeds in 
organs where the local microenvironment (the soil) is 
favorable for tumor cells seeding and colonization (the 
seed).7 It appears now that the soil can be fertilized by 
various types of tumor-secreted factors (reviewed in Refs 
[6,8]), such as growth factors,9 cytokines,10 and extracel-
lular vesicles (EVs), which constitute the focus of this 
review.

Over the past 10  years, several studies demonstrated 
that tumor EVs have the capacity to spread away from the 
primary tumor though body fluids and reach distant or-
gans where they can induce the formation of PMNs. EVs 
regroup a heterogenous collection of secreted vesicles 
with diameters ranging from a few nm to several μm, con-
taining various cargos (RNAs, lipids, and proteins) and 
responding to a plethora of names (exosomes, microve-
sicles, oncosomes, and much more).11–13 Conceptually, 
EVs present the advantage of harboring combinations of 
molecules with potential signaling properties protected 
or inserted within a resistant lipid bilayer.14 Multiple evi-
dences now show that EVs can carry functional cargo and 
modify the microenvironment by affecting the phenotype 
of their receiving cells or by altering the organization of 
the extracellular matrix (ECM).14–17 Importantly, recent 
studies reported the capacity of EVs to mediate the com-
munication between distant organs in several physiologic 
and pathologic contexts.18–21 This raises an exciting func-
tional potential for the high amounts of EVs present in all 
body fluids (average concentration 109 EVs/ml in human 
blood with important variations22). However, it is import-
ant to acknowledge that at this stage, the fate and function 
of most EVs naturally present in body fluids are far from 
being understood.

It is now firmly established that tumor-secreted EVs 
can impact multiple aspects of tumor progression such 
as proliferation, invasion, drug resistance, endothelial 
permeability, or immune response.17,23,24 Their high het-
erogeneity is likely to explain the diversity of their func-
tion, their range of action (local or distant), and ultimately 
their impact on tumor progression (pro- or anti-tumoral). 
In this review, we will describe the common features of 
PMNs and explain how tumor EVs, and their cargo, con-
tribute to their formation. We will discuss the diagnostic 
and therapeutic consequences of EVs function in PMN 
formation and highlight the important remaining ques-
tions (see Table 1, outstanding questions).

2   |   GLOBAL FEATURES OF 
PREMETASTATIC NICHES

PMNs are characterized by a number of key modifica-
tions of the tissue architecture, composition, and metabo-
lism, which facilitate CTCs arrival and expansion. So far, 
PMNs have been essentially described in rodent models 
and direct evidences of the PMNs existence in human 
are rare and mostly observed in sentinel lymph nodes 
and lungs.6,25–27 This can be explained by the difficulty 
to obtain patients tissue samples from future metastatic 
sites. Nevertheless, PMNs have been observed in future 
metastatic organs of mice bearing orthotopic primary 

T A B L E  1   Outstanding questions

Do tumor EV subtypes and EV content evolve as tumor grows?

What is the frequency of EV release from primary tumors 
during tumor progression and what is the proportion of 
secreted EVs able to reach PMN?

Are intratumoral regions/clones identical in secreting EVs 
(levels and cargo)?

What is the dynamic of EVs and CTCs arrival on metastatic sites?

What is the relative contribution of EVs and other tumor-
derived secreted factors to PMN?

What are the tissue-specific ligands driving EV organotropism 
and how can we identify them?

Once metastasis has formed, is there a permanent bi-directional 
exchange of EVs between primary, secondary, or tertiary 
tumor sites?

To what extent, do the stromal/non-tumor EVs contribute to the 
formation of PMN and eventually metastasis?

Are the tumor EV-induced re-programming of stromal cells a 
transient feature in the PMN or stable over time?

What is the balance between pro- and anti-metastatic EVs 
secreted by tumor cells and how can it be tuned?

What is the best strategy to target blood-borne EVs when 
treating metastasis?
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tumors.28–31 For instance, bone marrow lesions were ob-
served in mice bearing mammary breast tumors, before 
the arrival of tumor cells.28 However, most of our knowl-
edge on PMN formation emerged from mouse models 
where PMN is induced by injection of tumor-secreted 
factors. Such experimental approaches provide direct 
evidence for the function of PMN promoting factors and 
opportunities to dissect the first steps of PMN formation. 
However, these approaches also contain inherent limits 
when compared to the real pathophysiologic situation, 
since they often rely on the repeated bolus injection of 
high amounts of tumor-derived factors, which unlikely 
mimic their natural release.

PMNs have been described in different organs such as 
lungs, liver, brain, lymph nodes, and bone marrow, with 
various associated primary tumor types (breast, pancreatic, 
colorectal cancer, and melanoma…).6 The initial alteration 
of PMNs is believed to take place at the entry gates of the 
target organ, the blood vessels, which is the most efficient 
route for long distance communication. Several studies re-
port the disruption of endothelial junctions, breakdown of 
vascular basement membranes, and ultimately permeabi-
lization of the endothelium before the arrival of CTCs.32,33 
It is tempting to speculate that initial permeabilization of 
the endothelium by tumor-secreted factors triggers a posi-
tive feedback loop promoting the increased accumulation 
of such factors in the target organ and finally facilitating 
CTC extravasation. Other key features of the PMN are the 
activation of resident stromal cells, (such as fibroblasts or 
myeloid cells) and the recruitment of new cells (such as 
bone marrow-derived cells (BMDCs) or neutrophils) from 
other organs, by tumor-secreted factors.6,34 These changes 
in cell phenotypes and populations will alter the homeo-
stasis of the tissue on multiple levels: promotion of ECM 
remodeling, alteration of cell metabolism,29 and trigger-
ing of a pro-inflammatory33,35,36 and immunosuppressive 
environment.33,37 ECM remodeling can be orchestrated by 
resident cells as fibroblasts or macrophages or by newly 
recruited myeloid cells.9,31,38,39 It occurs either through 
the deposition of new ECM components or through the 
alteration of pre-existing ones (such as fibronectin, peri-
ostin, or versican among others).9,30,31,40,41 Altered ECM 
composition and organization can then promote the re-
cruitment of BMDCs as well as the homing of CTCs to 
the PMN.33,34,38,42 These events are likely to constitute a 
second positive feedback loop contributing to the rein-
forcement of PMNs, as recruited BMDCs will contribute 
to ECM remodeling which will further promote BMDC 
recruitment. Finally, the activation of resident cells and 
recruitment of novel cells will induce the formation of a 
pro-inflammatory and immunosuppressive microenvi-
ronment, which will actively contribute to efficient PMN 
formation.35,38,43–47

Formation of this complex pre-metastatic environ-
ment results from the interplay between various types 
of tumor-secreted soluble molecules and heterogenous 
tumor-derived EVs. Importantly, additional external fac-
tors, such as aging, infection, cancer treatment, or surgery 
could directly contribute to PMN evolution. Our review 
is focused on the role of tumor EVs in PMN formation, 
but they likely function in close relationship with tumor-
derived and tumor-independent factors. The journey of 
EVs toward the PMN is a multistep process, involving their 
secretion from tumor cells, their travel in blood and lym-
phatic circulation, their accumulation in distant organs, 
usually following a non-random pattern (organotropism), 
their exit from circulation, and their uptake by recipient 
cells where they prime the PMN formation (Figure 1).

3   |   LEAVING THE PRIMARY 
TUMOR

The capacity of tumor cells to secrete high levels of pro-
metastatic EVs clearly correlates with their ability to 
metastasize from a primary tumor.34,48,49 For instance, de-
pletion of genes involved in EV secretion, such as Rab27a, 
nSMase2, RalA, or RalB in aggressive tumor cells leads 
to a decrease in both the levels of secreted EVs in vitro 
and metastasis in vivo.34,50–53 Importantly, the content of 
released EVs might even be more relevant for PMN for-
mation than their actual number. Indeed, several studies 
showed that injection of an equal number of tumor EVs 
with different contents has different impact on PMN for-
mation.35,38,52 However, the heterogeneity of tumor EVs 
composition, in addition to the variety of documented 
EVs sub-populations, is far from being fully elucidated 
(see Table  1, outstanding questions). Therefore, it will 
be essential to characterize precisely the content and the 
amount of released EVs along tumor progression in order 
to define the identity of EV subtypes that directly con-
tribute to PMN formation (see Table 1, outstanding ques-
tions). The secretion of pro-metastatic EVs is likely to vary 
as tumor progresses, depending on the primary tumor 
microenvironment. For instance, EVs secreted by tumor 
cells cultured in hypoxic conditions have enhanced ca-
pacities to promote PMN formation.54,55 Importantly, the 
secretion of pro-metastatic EVs is enhanced when tumor 
cells are exposed to chemotherapeutic treatments, reveal-
ing that attempts to inhibit primary tumor can actually re-
sult in PMN priming and increased metastasis.56,57

Independently of their heterogeneity, the dynamics 
of EV release by tumors have been poorly described in 
vivo so far (see Table 1, outstanding questions), as it re-
mains technically challenging to track EVs from their 
secretion to their uptake. It is likely that tumor EVs are 
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secreted very early, akin to metastatic tumor cells,58 and 
thereby prime PMNs before tumors can be diagnosed. 
Key experiments performed in mice using the Cre-lox 
system revealed that tumor EV transfer occurs not only 
at short distance between neighboring cells within the 
primary tumor mass but also with cells located in dis-
tant organs.59,60 Release of EVs from the primary tumor 
must account for random movements in interstitial flu-
ids, interactions with the ECM, and uptake by neighbor 
cells. Indeed, EVs, which often express ECM adhesion 
and degradation proteins at their surface, were shown 
to interact with distinct types of matrix and eventually 

remodel their organization.40,61,62 Therefore, it is possible 
that only a small proportion of secreted tumor EVs reach 
the circulation and spread in the organism. The retention 
of some EVs within the primary tumors might select a 
sub-population of spreading EVs with specific adhesive 
properties. Tumor EVs can be found in blood and lym-
phatic circulation63,64 (Figure 1). How they safely reach 
circulation has not been firmly demonstrated, but it can 
be speculated that they are transported by interstitial flu-
ids to reach lymphatic vessels. Indeed, in tumors, high 
interstitial fluid pressure induces a convective flow from 
blood vessels toward the lymphatic vessels.65 Besides, 

F I G U R E  1   Tumor extracellular vesicles prime premetastatic niches. The journey of EVs from the primary tumor to the future 
metastatic organ is a multistep process initiated with the secretion of tumor-derived EVs and other tumor-derived soluble factors (TDSF) 
from the primary tumor. 1. Upon secretion, tumor-derived EVs leave the primary tumor and travel through the blood and lymphatic 
circulation, where they interact with blood components like neutrophils, endothelial cells, platelets, low-density lipoproteins (LDL), and 
other immune cells. These interactions affect blood homeostasis, enhance the uptake of tumor EVs by distinct recipient cells, and could 
induce endothelial permeabilization, thereby promoting the formation of premetastatic niche (PMN). 2. Tumor EVs are further taken 
up by patrolling monocytes and endothelial cells and some of the tumor EVs pass through the impermeable endothelial cells within the 
tissue by transcytosis. Uptake of tumor EVs by these recipient cells can directly impact the PMN formation. Inset shows a magnified tumor 
EV, that are encapsulated by a lipid bilayer, containing various biomolecules such as DNA, RNA, proteins as well glycans, specialized 
receptors at their surface (CD47, CD9, and CD63), and several adhesion proteins such as integrins and MCAM. 3. Key features of the PMN. 
Highlighted are the key features of the PMN and their associated tumor EV cargos that actively contribute to efficient PMN formation. 
Upon internalization by distinct recipient cells, tumor EVs deliver their cargo, induce phenotypic changes in them, thereby promoting ECM 
remodeling, reprogramming cell metabolism, inducing immunomodulation, angiogenesis and vascular permeability, lymphangiogenesis, 
and also triggering pro-inflammatory molecules. All these salient features eventually promote PMN formation. 4. Following the PMN 
formation, circulating tumor cells (CTCs) eventually reach the PMN and colonize in the new tissue, leading to metastasis. Highlighted in 
the far left, is the human women model demonstrating organotrophic metastasis, where primary breast tumor-secreted EVs prime PMN at 
distant organs such as lungs, brain, liver, and bone. Created with BioRe​nder.com

http://BioRender.com
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tumor EVs could benefit from abnormally permeabilized 
blood vessels characteristic of tumors to reach the blood 
circulation.66 Interestingly, tumor EVs bearing PMN 
markers are more concentrated in lymph than in blood 
from melanoma patients.63,64 Besides, mice experiments 
revealed that lymphatic vessels are essential for tumor 
EVs spreading.64 Finally, adenocarcinoma, melanoma, or 
gastric cancer EVs can induce PMN formation in lymph 
nodes.67–69 These data suggest that tumor EVs could ex-
ploit different routes to reach distant organs and initiate 
PMN formation. Similarly, tumor cells can in some cases 
first reach the lymph node, form a first metastatic foci 
and then transfer to the blood circulation to seed sec-
ondary metastasis in more distant organs.70–72 Whether 
tumor EVs can follow similar routes ahead of tumor cells 
and induce a first PMN in lymph nodes and a second one 
in more distant organs remains to be properly demon-
strated. Therefore, in the future, a proper description of 
the temporal and spatial dynamics of tumor EV spread-
ing away from primary tumors will be instrumental to 
properly understand the initial steps of PMN formation 
(see Table 1, outstanding questions).

4   |   BEHAVIOR IN CIRCULATION

It is now established that tumor EVs circulate in blood 
and lymph vessels of cancer patients, alongside non-
tumor EVs.63,73,74 Regardless of their origin, an increase 
in the levels of circulating EVs or in the amount of pro-
tein per EV was reported in lymph and blood circulation 
of cancer patients.34,63,75–77 Part of this increase could be 
directly attributed to the presence of a primary tumor 
rather than an indirect systemic effect, since surgical re-
moval of the tumor tends to decrease the global levels of 
circulating EVs as shown for glioblastoma.75 However, the 
precise proportion of tumor EVs in the circulation, and 
even more importantly, the proportion of tumor EVs able 
to induce or contribute to PMN formation are unknown. 
As tumor-derived EVs are 20 times more abundant than 
CTCs in the circulation of metastatic patients78 a hunt for 
EV-associated cancer biomarkers was launched over the 
past years. It allowed the identification of tens of novel po-
tential diagnosis targets, which can either be single RNAs 
or proteins or more complex molecular signatures.48,79–81 
Even if the clinical validation of most of these findings is 
still awaited, the molecular signatures carried by circulat-
ing EVs could eventually provide identification of specific 
cancer types, progression stages, or predict therapeutic 
response. In addition, the molecular study of circulating 
EVs in patients body fluids, if correlated with metastasis 
formation could contribute to a better understanding of 
PMNs in humans.

Despite being stable for days in serum, EVs’ half-life 
in the circulation remain low.82,83 Indeed, reports in mice 
and zebrafish show that exogenous EVs have a very short 
half-life (2–10  min) in the blood circulation.82,84–86 This 
short circulating time is mostly explained by the rapid up-
take of circulating EVs by patrolling monocytes and en-
dothelial cells.83,84,87 In circulation, EVs are subjected to 
a highly dynamic environment, defined by important bio-
mechanical forces with unknown consequences on their 
biology.5 Recently, the use of zebrafish embryo, an emerg-
ing model in cancer biology,88–91 allowed the first in vivo 
description of circulating endogenous and exogenous EVs 
with high spatio-temporal resolution.21,84 The distribution 
of circulating EVs in blood vessels follow the Poiseuille 
law: they circulate faster in the center of the vessel than 
on its margins, where they can eventually be seen rolling 
on the surface of the endothelium. This reduced velocity 
at the margin of the vessel likely drives their uptake by 
endothelial cells.

5   |   INTERACTION WITH BLOOD 
COMPONENTS

Circulating tumor EVs can also interact with several 
blood components, such as circulating immune cells, lipo-
proteins, platelets, or endothelial cells, but probably not 
with circulating red blood cells84,92,93 (Figure  1). These 
interactions can have direct consequences on blood ho-
meostasis. For instance, several reports show that tumor 
EVs transport pro-coagulant factors such as tissue factor, 
PSGL-1, or podoplanin and promote thrombosis through 
interactions with platelets or with neutrophils.94–97 The 
pro-thrombotic activity of tumor EVs appears to vary de-
pending on the subtype of EV and the stage of the secret-
ing tumor cell.96,98 While platelet aggregation correlates 
with PMN formation,99 the role of tumor EVs in this pro-
cess has not yet been investigated. In addition to platelets, 
EVs from brain metastasis (originating from breast cancer 
and melanoma cells), were shown to interact with blood 
low-density lipoproteins and to trigger their aggregation.92 
This interaction enhances the uptake of EVs by monocytes 
and could, therefore, potentially affect PMN formation.

The uptake of circulating tumor EVs by endothelial 
cells and patrolling monocytes can directly impact PMN 
formation (Figure  1). Indeed, several studies report that 
tumor EVs induce permeabilization of the endothe-
lium,93,100,101 which could constitute a first step in PMN 
formation.32,33 Patrolling monocytes are mostly consid-
ered anti-metastatic through their capacity to take up 
tumor-derived material and promote the recruitment 
and activation of natural killer cells.102 Indeed, the up-
take of EVs from non-metastatic tumor cells by patrolling 
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monocytes prevents the establishment of a PMN in the 
lung.103 Similarly, in lymph nodes, sub-capsular macro-
phages block tumor EVs dissemination and limit tumor 
progression.104 Accordingly, anti-tumor EVs induced 
the accumulation of patrolling monocytes to the lungs, 
thereby inhibiting metastasis.105 Therefore, while the up-
take of circulating tumor EVs by endothelial cells seems to 
mostly promote PMN formation, their uptake by patrolling 
monocytes prevents it. Along this line, EVs which are the 
most efficient at inducing PMN formation could have the 
capacity to escape patrolling monocytes surveillance. This 
could be achieved by specialized receptors at the surface 
of EVs, as for instance, the glycoprotein CD47 limits their 
uptake by patrolling monocytes.87 Alternatively, PMN-
efficient EVs could be taken up by patrolling monocyte 
and modify their phenotype to the benefit of PMN forma-
tion, for instance, by promoting TNF-α expression and in-
ducing a pro-inflammatory environment.84

Altogether, these studies suggest that the interactions 
of tumor EVs with various circulating factors have direct 
consequences on PMN formation.

6   |   ORGAN TARGETING

Deciphering the mechanisms controlling the biodistri-
bution of tumor EVs is essential to understand the early 
steps of PMN formation. To date, this question has been 
mostly tackled by tracking pre-labeled exogenous EVs 
injected as a bolus in mouse circulation. This approach 
has some limitations since the injection site and the labe-
ling method of EVs can impact their biodistribution.106,107 
Nevertheless, a recent study showed that prostate cancer 
EVs injected in the circulation reach the bone marrow 
similar to CD63-GFP EVs secreted by orthotopic grafted 
tumor cells.108 Importantly, EVs from different cell types 
tend to accumulate in different organs and in general 
injected EVs do not arrest at the first capillary bed they 
encounter, suggesting the existence of specific targeting 
or retention mechanisms.106 Indeed, an increasing num-
ber of studies demonstrated the existence of tumor EVs 
organotropism by showing that they accumulate prefer-
entially in the organs where their secreting cells mostly 
form metastasis.35,46,52,109,110 Similar to tumor cell or-
ganotropism, tumor EV organotropism could be dictated 
by a balance between hemodynamics, vascular patterns, 
and intrinsic adhesive properties.5,111 Accordingly, cir-
culating EVs were shown to accumulate mostly in vas-
cular regions with a low blood flow speed in zebrafish 
embryo.21,84 However, the precise contribution of hemo-
dynamics in EVs biodistribution has not been elucidated 
yet. In contrast, several adhesion proteins, such as integ-
rins, MCAM/CD146, and tetraspanins Tspan8 and CD151 

were shown to mediate EV biodistribution and PMN fo
rmation.35,52,110,112–114 Depletion of these receptors or in-
hibition of their adhesive properties alters EVs biodistri-
bution and their capacity to form PMNs in mice models. 
For example, the presence of integrin β4 on breast tumor 
EVs is necessary for their lung accumulation.35 Strikingly, 
forced expression of integrin β4 on tumor EVs which nor-
mally accumulate in bones is sufficient to promote their 
lung tropism.35 In addition to the identity of these adhe-
sion proteins, their posttranslational modifications could 
contribute to EV organotropism, since the global levels of 
glycosylation on EVs were recently shown to impact their 
biodistribution.115 Although this has not been formally 
demonstrated yet, the combination of adhesion mol-
ecules present at the surface of tumor EVs may define a 
zip-code for EV organotropism. Supporting this hypoth-
esis, it was shown that the co-expression of a tetraspanin 
(Tspan8) with an integrin (ITGα4) defines the novel bio-
distribution of pancreatic adenocarcinoma EVs in rats.116 
Importantly, although ligands of integrins, tetraspanins, 
or CD146  have been characterized in various contexts, 
their identity in EV organotropism and PMN formation 
has not been revealed. This is a crucial question since the 
receptor-mediated EV organotropism hypothesis implies 
the existence of organ-specific differentially enriched li-
gands (see Table 1, outstanding questions). Finally, while 
CTCs and immune cells often exploit low and high affinity 
receptors to engage and subsequently stabilize their adhe-
sion,117,118 more work is needed to identify whether such 
scenario is at play for EVs.

7   |   MECHANISMS OF PMN 
PRIMING BY TUMOR EVS

Once they have reached their target organ, tumor EVs ini-
tiate most of the microenvironmental changes observed 
in PMNs and described earlier (Figure 1). In this section, 
we will review the mechanisms triggered by tumor EVs, 
identify the major EV cargos, and describe the subsequent 
chain of events leading to PMN formation.

7.1  |  Vascular permeability and 
angiogenesis

Tumor EVs internalized by endothelial cells were re-
ported to promote endothelial permeability through dif-
ferent molecular pathways triggered by their miRNAs or 
protein cargos. For instance, miRNAs miR-105 and miR-
25-3p, respectively, present in EVs from breast or colo-
rectal cancer cells, induce a direct or indirect decrease 
in the expression of tight junction components, which 
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leads to endothelial permeability, PMN formation, and 
ultimately to increased metastasis in the liver, lung, and 
brain of mice.101,119 Another miRNA, miR-181c, present 
in EVs from breast cancer metastatic cells, downregulates 
the actin regulator PDPK1 and disrupts endothelial cell–
cell junctions in the blood–brain barrier, thereby leading 
to an increased brain metastatic.93 Besides, several tumor 
EV protein cargos, such as semaphorin3A, epiregulin, or 
VEGF-A are responsible for blood vessel permeability in 
distant organs.100,120,121

In addition, tumor-derived EVs facilitate PMN forma-
tion by promoting angiogenesis in distant organs in the 
absence of tumor cells.121–123 For instance, several EV 
cargos, such as CEMIP, epiregulin, or VEGF-A have the 
capacity to induce vascular remodeling in brain or lung 
PMNs.120,121,123 CEMIP-induced angiogenesis leads to 
the formation of pro-inflammatory peri-vascular niches 
where colonizing tumor cells accumulate.123 Similar to 
their action on blood vessels, tumor EVs can affect lym-
phatic vessels and promote lymphangiogenesis in lymph 
nodes.124–126 For instance, miR-221-3p enriched in EVs 
derived from cervical squamous carcinoma cells, induces 
the downregulation of the lymphangiogenesis inhibitor 
vasohibin-1 in lymphatic endothelial cells, thereby pro-
moting lymph PMN and metastasis.125 A more indirect 
role was described for EVs from colorectal cancer cells, 
which can induce the expression of VEGF-C by macro-
phages in an IRF-2-dependent manner. In turn VEGF-C 
promotes remodeling of the lymphatic network and sub-
sequently facilitates lymph node metastasis.124 Wnt5a 
present in EVs from gastric cancer activates the YAP tran-
scription factor in bone marrow-derived mesenchymal 
stem cells, leading to enhanced lymphangiogenesis and 
PMN formation.126 Altogether, these studies show that 
various cargos present in EVs from different tumor ori-
gins tune the vascular and lymphatic systems at multiple 
future metastatic sites.

7.2  |  Matrix remodeling

Increased endothelial permeability would allow circulat-
ing EVs to cross more easily the endothelial barrier and 
accumulate in the target organ. In addition, tumor EVs 
can be transported throughout impermeable endothelial 
vessels by transcytosis and be released within the tissue.127 
Tumor EVs contain multiple adhesion receptors and ma-
trix metalloproteases which allow them to bind different 
types of ECMs and directly alter their composition and 
their organization in PMNs.40,112 In addition, tumor EVs 
indirectly induce matrix remodeling by activating resident 
cells. For instance, breast cancer or pancreatic ductal ad-
enocarcinoma EVs activate lung fibroblasts and promote 

fibronectin secretion and reorganization.31,35 Similarly, 
tumor EVs RNA cargos promote Toll-like receptor3 
(TLR3)-dependent secretion of fibronectin by lung alveo-
lar epithelial cells.43 Costa-Silva and colleagues described 
a complete cascade of events starting with pancreatic can-
cer EVs and ending in the reorganization of three ECM 
components (vitronectin, Tenascin C, and fibronectin) and 
the formation of a pro-inflammatory microenvironment.38 
In brief, macrophage migration inhibitory factor (MIF) 
contained in tumor EVs induces the secretion of TGF-β 
by Kupffer cells, which in turn promotes the production 
of fibronectin by hepatic stellate cells and ultimately the 
recruitment of bone marrow-derived macrophages to the 
liver.38 Moreover, osteosarcoma EVs-associated TGFβ1, 
upon internalization by lung fibroblasts-induced pulmo-
nary fibroblast differentiation and upregulated variety of 
ECM components that promoted invasive competence 
of these cells and tumor progression in distant PMN.128 
Interestingly, depending on the tumor subtype they come 
from, breast cancer EVs can induce different composi-
tions of ECM in lung PMNs.30 Therefore, tumor EVs are 
clear regulators of ECM remodeling in PMNs. This can di-
rectly affect the cell composition of PMNs by contributing 
to the recruitment of various immune cells42 and favoring 
tumor cell colonization.

7.3  |  Activation of tissue-resident cells

As described above, activation of fibroblasts or macrophages 
by tumor EVs can lead to ECM modification remodeling. In 
addition, tumor EVs can modify the cytokine and growth 
factor secretion pattern of resident stromal cells. EVs from 
hepatocellular carcinoma, for instance, can induce the ac-
tivation of cancer-associated fibroblasts (CAFs) in the lung 
PMN through two different mechanisms: via miR-1247-3p 
and the activation of NF-κB signaling pathway129 or by 
Nidogen 1 and TNFR1 secretion.130 CAF activation results 
in the secretion of pro-inflammatory cytokines which con-
tribute to PMN establishment.129,131 Activation of resident 
fibroblasts by tumor EVs could induce a positive feedback 
loop, as CAFs EVs can further promote PMN formation in 
lungs.132 Other resident cells can be activated by tumor EVs, 
depending on the organ. In bone marrow, for instance, the 
transfer of pyruvate kinase M2 from prostate cancer EVs to 
bone marrow stromal cells leads to an increased secretion 
of CXCL12, which sustains prostate cancer cell growth and 
metastasis.108 Likewise, the transfer of miR-21 from breast 
cancer EVs to osteoclasts triggers their differentiation and 
activation, favoring the establishment of bone metastasis 
in breast cancer model.133 In the liver, EGFR-loaded EVs 
drive the expression of hepatocyte growth factor (HGF) in 
stromal cells, which further promotes liver metastasis.134 
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In addition, recent studies showed that tumor EVs con-
tain regulators of metabolism and have the capacity to 
modulate the metabolism in PMNs.29 For instance, miR-
122 downregulates the glycolytic enzyme pyruvate kinase 
in lung stromal cells during breast cancer metastasis. The 
decrease of glucose uptake by stromal cells results in an 
increase in nutrient availability for tumor cells, thereby 
promoting metastasis.29

7.4  |  Pro-inflammatory environment

EV-dependent activation of resident cells (and recruited 
immune cells) induces the formation of a pro-inflammatory 
microenvironment in various PMNs34,35,38,135 For exam-
ple, the arrival of melanoma EVs to the lungs favors the 
expression of pro-inflammatory molecules TNF, S100A8 
and S100A9, which lead to BMDCs recruitment to the 
lung PMNs.34 A similar increase of S100 proteins was 
observed in lung and liver PMNs.35 In addition, secre-
tion of pro-inflammatory cytokines can be induced by 
tumor EVs.131,135,136 For instance, secretion of the IL6 by 
resident macrophages is increased by miR-21 containing 
tEVs from colorectal cancer cells in liver PMNs.136 IL6 
and IL8 can also be secreted by fibroblasts activated by 
integrin beta-like 1 enriched EVs from colorectal cancer 
cells through a TNFAIP3-mediated NF-κβ signaling path-
way.131 Altogether, EVs orchestrate the formation of an 
inflammatory environment that is a hallmark of PMN.

7.5  |  Cells recruitment to PMN

Another important hallmark of PMNs consists in the re-
cruitment of cells from other organs. Originally, pioneer 
work from the group of D. Lyden demonstrated that inflam-
mation in PMNs leads to the recruitment of BMDCs.34 Since 
then, different types of immune cells were shown to be re-
cruited to PMNs. For instance, monocytes can be recruited 
to PMNs by tumor EV-induced upregulation of CCL2 in res-
ident macrophages or endothelial cells.57,137 Additionally, 
activation of alveolar epithelial cells by small nuclear RNA 
melanoma EVs leads to an enhanced secretion of cytokines 
which promotes neutrophil recruitment to the lung PMN.43 
Neutrophils can suppress anti-tumor immunity, create an 
inflammatory microenvironment, retain CTCs in the organ 
vasculature, and promote their colonization.138–141

7.6  |  Immunomodulation

Tumor EVs have antagonist effects on the immune sys-
tem, as they can both deliver tumor antigens to antigen 

presenting cells, thereby activating the immune system, 
but also suppress the anti-tumor immune response by 
targeting various immune cells.24 While most studies 
focused on primary tumors, some evidences show that 
tumor EVs modulate both innate and adaptative immu-
nity in PMN.34,46,104,142 For instance, breast cancer EVs 
promote the accumulation of BMDCs, directly inhibit T-
cell growth, and decrease Natural killer (NK) cell cytotox-
icity leading to the formation of an immunosuppressive 
environment in lung PMN.46 Interestingly, intravital im-
aging revealed that extravasating tumor cells release large 
EVs which are taken up by different myeloid cells arriving 
sequentially at the metastatic site. This EV uptake induces 
phenotypic changes in receiving immune cells and pro-
motes metastasis.143 Besides tumor EVs have the capacity 
to mediate immune suppression, notably through the PD-
1–PD-L1 axis.24 Indeed, metastatic melanoma EVs carry-
ing programmed death-ligand 1 (PD-L1) on their surface 
have the capacity to inhibit anti-tumoral CD8 T-cell func-
tion and promote tumor progression.144 A recent study 
suggests that breast cancer EVs carrying miR-503 promote 
the M1–M2 conversion of microglia, which results in en-
hanced PD-L1 expression and suppression of local immu-
nity in brain metastasis.145 Overall, the balance between 
pro- and anti-tumor roles of EVs on distant immune cell 
populations remains to be fully investigated as it could 
open novel therapeutic avenues.

8   |   CONCLUSIONS

Although the understanding of PMNs considerably pro-
gressed since their initial description in 2005, a large num-
ber of fundamental questions remain opened (see Table 1, 
outstanding questions).

First of all, the existence of PMNs implies that tumor-
secreted factors, including EVs, reach distant organs be-
fore the arrival of CTCs. Although the exact timing and 
dynamics have not been solved, some experiments using 
orthotopic primary tumors show the localization of tumor 
EVs and/or distant microenvironmental changes hap-
pening before tumor cells could be detected.28,29,31,108 
However, this sequence of events has not been firmly 
proven in a relevant orthotopic spontaneous tumor model. 
This is important in particular because tumor cell spread-
ing to future metastatic sites was shown to be an early 
event in several types of cancer.146–148 While early dissem-
inating CTCs mostly enter dormancy,149 it could be specu-
lated that disseminating tumor EVs instead or in addition 
to altering the distant microenvironment before tumor 
cell arrival, are also able to help awakening rare dormant 
tumor cells already present on site. This is appealing since 
dormant cell often reside in perivascular niches,150 where 
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they would be in good position to receive circulating EVs 
and soluble factors. Interestingly, recent studies showed 
that EVs from stromal cells have the capacity to mediate 
tumor cell dormancy.151–155 Whether EVs shed by primary 
tumors can also perturb tumor cell dormancy remains to 
be explored, yet such discoveries would provide exciting 
treatment options for counteracting the major issue of 
tumor cell dormancy. More generally, determining the 
relative dynamics of EVs and cell release from primary tu-
mors is essential for the definition and the understanding 
of PMN formation, but also to design adapted therapeutic 
strategies.156

Along the same line, it will be essential to describe the 
dynamics of EVs release during tumor progression, and 
its impact on driving efficient PMNs. Notably, whether 
tumor EVs continue to land to metastatic sites once 
metastasis has started is not known, yet this is likely to 
happen. While metastatic growth surely benefits from 
permanent feeding by EVs released from the primary 
tumor, metastatic outgrowth might feedback on the pri-
mary tumor, akin to metastatic cells. Indeed, the com-
munication between primary and secondary tumor sites 
is not unidirectional as tumor cells from metastasis can 
recolonize primary tumors, in a process called tumor 
self-seeding.157 In addition, tumor cells were shown to re-
disseminate from metastatic to tertiary sites158 raising the 
possibility that EVs from metastatic foci can prime addi-
tional PMNs. Interestingly, studies report that tumor EVs, 
either injected in the circulation or co-incubated with 
tumor cells before injection, promote tumor self-seeding 
in mice.159,160 If it is not known yet whether EVs from 
metastatic sites can target primary tumors, Zomer and 
colleagues made elegant use of in vivo imaging to show 
that two distinct primary tumor sites can exchange EVs.60 
Such intravital imaging of EVs shuttling in relevant me-
tastasis models would undoubtedly help addressing these 
issues and increase our understanding of the (bio)genesis 
of PMNs.60,104,161,162

PMN formation is induced by a complex interplay of 
soluble molecules and EVs, whose precise orchestration 
remains to be understood. For this, it will be essential to 
characterize the heterogeneity of EVs released by primary 
tumors, as they have antagonist effects on PMN forma-
tion, notably by inducing differential immune responses. 
It would be particularly interesting to link EVs heteroge-
neity to intratumor heterogeneity which is a key driver of 
therapy resistance and metastasis163 and to document the 
impact of EVs released in this difficult context of therapy 
resistance. In addition, while significant progress has been 
made in understanding the identity and position of cells 
that have metastatic potential within tumors, whether 
similar regions and cellular identity correlated with EV 
secretion potential and function would be an exciting area 

of research (see Table 1, outstanding questions). It will be 
equally important to fully characterize EVs secreted by 
non-tumoral cells, which populate, react, and participate 
to tumor growth, as they also play a significant role in 
PMN formation.132,164 Additionally, exogenous EVs, such 
as bovine milk-derived EVs, could directly impact metas-
tasis.165 Finally, tumor-secreted EVs are not always suffi-
cient to induce PMN formation and require the additional 
contribution of tumor-secreted factors.128 Therefore, the 
relative contribution of tumor released soluble factors 
and EVs and their potential cooperation will have to be 
studied in detail (see Table  1, outstanding questions). 
Interestingly, the interaction between tumor EVs and cy-
tokines, in particular CCL2, was recently shown to modify 
their organotropism, the formation of PMNs, and finally 
lung metastasis.142

While several clinical trials aiming to block PMN for-
mation are already undergoing,6 a fine understanding of 
the contribution of tumor EVs to PMN formation could 
pave the way for novel therapeutic approaches. For in-
stance, it could be possible to inhibit EV secretion from 
primary tumors, since this approach decreases metas-
tasis in mice.34,50–53 Alternatively, tuning the balance 
of pro- versus anti-tumoral EVs released by tumor cells 
could improve the anti-tumoral immune response (see 
Table  1, outstanding questions). Another exciting, yet 
tricky, possibility would be to target and stop tumor EVs 
in the circulation. In a recent study, Nishida-Aoki and 
colleagues showed that intravenous injection of anti-
humanCD9 or anti-humanCD63 antibodies decreases 
lung metastasis in mice bearing orthotopic breast xe-
nografts.166 Therefore, the identification of tumor EVs-
specific surface proteins would allow to distinguish 
them from non-tumoral ones and would constitute ideal 
candidates for such therapeutic approaches. Finally, 
targeting the mechanisms of pro-metastatic tumor EVs 
uptake by resident stromal cells constitutes a promis-
ing possibility to prevent metastasis, as shown in mice 
where reserpine suppresses tumor EV uptake and dis-
rupts PMN formation.167

Altogether, tumor EVs are central players in PMN for-
mation and constitute diagnostic and therapeutic targets 
to detect and treat metastasis progression.
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