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Abstract

Background: The gut microbiome and iron status are known to play a role in the pathophysiology of non-
alcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear.
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Results: Here, we applied an integrative systems medicine approach (faecal metagenomics, plasma and urine
metabolomics, hepatic transcriptomics) in 2 well-characterised human cohorts of subjects with obesity (discovery n
= 49 and validation n = 628) and an independent cohort formed by both individuals with and without obesity (n =
130), combined with in vitro and animal models. Serum ferritin levels, as a markers of liver iron stores, were
positively associated with liver fat accumulation in parallel with lower gut microbial gene richness, composition and
functionality. Specifically, ferritin had strong negative associations with the Pasteurellaceae, Leuconostocaceae and
Micrococcaea families. It also had consistent negative associations with several Veillonella, Bifidobacterium and
Lactobacillus species, but positive associations with Bacteroides and Prevotella spp. Notably, the ferritin-associated
bacterial families had a strong correlation with iron-related liver genes. In addition, several bacterial functions
related to iron metabolism (transport, chelation, heme and siderophore biosynthesis) and NAFLD (fatty acid and
glutathione biosynthesis) were also associated with the host serum ferritin levels. This iron-related microbiome
signature was linked to a transcriptomic and metabolomic signature associated to the degree of liver fat
accumulation through hepatic glucose metabolism. In particular, we found a consistent association among serum
ferritin, Pasteurellaceae and Micrococcacea families, bacterial functions involved in histidine transport, the host
circulating histidine levels and the liver expression of GYS2 and SEC24B. Serum ferritin was also related to bacterial
glycine transporters, the host glycine serum levels and the liver expression of glycine transporters. The
transcriptomic findings were replicated in human primary hepatocytes, where iron supplementation also led to
triglycerides accumulation and induced the expression of lipid and iron metabolism genes in synergy with palmitic
acid. We further explored the direct impact of the microbiome on iron metabolism and liver fact accumulation
through transplantation of faecal microbiota into recipient’s mice. In line with the results in humans, transplantation
from ‘high ferritin donors’ resulted in alterations in several genes related to iron metabolism and fatty acid
accumulation in recipient’s mice.

Conclusions: Altogether, a significant interplay among the gut microbiome, iron status and liver fat accumulation is
revealed, with potential significance for target therapies.

Keywords: Systems medicine, Ferritin, Iron status, Gut microbiome, Non-alcoholic fatty liver disease, Shotgun
sequencing, Metagenomics, Obesity

Background
Non-alcoholic fatty liver disease (NAFLD) is a highly
prevalent metabolic disease (the worldwide prevalence of
NAFLD is 25.2% and increasing [1]) that can progress to
cirrhosis and hepatocellular carcinoma, being a risk fac-
tor for the development of type 2 diabetes and cardio-
vascular disease. NAFLD is complex and multifactorial,
with iron interacting with the development of NAFLD
[2] through gluconeogenic signals [3]. In the liver, iron
induces the synthesis and release of ferritin (an intracel-
lular protein which stores iron), with its serum concen-
tration proportional to body iron stores, and frequently
increased in patients with NAFLD [4].
As the gut microbiome causally impacts the host phe-

nome in hepatic liver fat accumulation [5], the compos-
ition of the gut microbiota could influence the impact of
dietary iron on the development of NAFLD because this
transition metal is a critical nutrient for both mammals
and microorganisms [6]. Only ~ 5–15% of iron is absorbed
and the remainder passes into the colon, where it is avail-
able to the gut microbiota [7]. The microbiota is also
known to affect the absorption of key minerals, with iron
being an important micronutrient in terms of its interac-
tions with bacteria and the immune system [8].

Despite this emerging evidence suggesting a role of
both the gut microbiome and iron in the pathogenesis of
NAFLD, their complex cross-talk remains unclear.
Therefore, in the present study, we applied an integrative
systems medicine approach (faecal metagenomics,
plasma and urine metabolomics, hepatic transcripto-
mics) in 3 well-characterised human cohorts, combined
with in vitro and animal models, to characterize mecha-
nisms responsible for the interaction between the gut
microbiome and iron metabolism in NAFLD.

Results
An overview of the study human cohorts and omics ana-
lyses pipeline can be found in Figure S1. Serum ferritin
was measured in three cohorts: (a) a discovery cohort of
subjects with obesity (n = 49); (b) a validation cohort of
subjects with obesity from Italy and Spain (n = 628); and
(c) an independent cohort of subjects with and without
obesity from Spain (n = 130). Plasma and urine metabo-
lomics were acquired in a subsample of both the discov-
ery and the replication cohorts (plasma (n=48 and n=
328) and urine (n=47 and n=322, respectively). The
transcriptome was analysed in a subsample of the dis-
covery and replication cohorts (n = 86). Finally, faecal
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samples from 56 women with obesity from the replica-
tion and validation cohort, and 130 subjects with and
without obesity from the independent cohort were used
to perform shotgun metagenomics sequencing.

Increased serum ferritin is associated with liver fat
accumulation and the gut microbiome composition and
functionality
In both discovery and replication cohorts, serum ferritin in-
creased with the severity of liver fat accumulation (Fig. 1a,
b). No significant associations were found between high-
sensitivity C-reactive protein (hs-CRP) and serum ferritin
(Fig. 1c, Figure S2a,b) in any of the three cohorts. We also
performed shotgun metagenomics, 1H NMR spectroscopy
and transcriptomics to characterize the faecal microbiome,
the biofluid metabolome and the liver transcriptome. Hav-
ing processed > 5 Gb of metagenomic sequence data per in-
dividual, we derived taxonomy and gene richness as well as
mapping and annotation of gene functions on the inte-
grated gene catalog for a subsample (n = 56) of women
with obesity from Italy and Spain [5]. Subjects within the
highest ferritin quartiles (Q3 and Q4) had decreased gene
richness compared with those in the lower ferritin quartile
(Q1) (Fig. 1d). Consistently, multivariate penalized regres-
sion models adjusted for age, BMI, country and hs-CRP re-
vealed a significant association between serum ferritin and
the gut microbiome with significant decreases in families
from the Firmicutes, Actinobacteria and Proteobacteria
phyla, particularly Pasteurellaceae, Leuconostocaceae and
Micrococcaceae (Fig. 1e,f). Similar results were obtained
from multivariate orthogonal partial least squares (O-PLS)
regression and posterior validation by univariate partial
Spearman’s correlation (pSC) analyses adjusted by age,
BMI, country and hs-CRP (Figure S3a–f). Notably, all iden-
tified ferritin-associated bacterial families (with the excep-
tion of Leuconostocaceae) had a strong correlation with
iron-related genes such as TFRC, HAMP, MitoNEET, IRP1
and ferroportin (SLC40A1), measured by quantitative qRT-
PCR (Figure S4). We replicated these findings using
DESeq2 analysis in an independent cohort of 130 subjects
with and without obesity (Additional file 1: Table S1), in
whom the majority of the associations between serum fer-
ritin and bacterial families and genera were confirmed after
adjustment for age, BMI, sex and hs-CRP (Fig. 1g, Figure
S3g, h, Additional file 2: Table S2). The most consistent re-
sults were the negative associations of several Veillonella,
Bifidobacterium and Lactobacillus species (from phyla Fir-
micutes and Actinobacteria) with serum ferritin levels, and
positive associations with Bacteroides and Prevotella species
(from phylum Bacteroidetes). When we analysed the data
according to the obesity status, we found consistent nega-
tive associations of serum ferritin with Lactobacillales, Pas-
teurellaceae, Streptococcaceae and Mycobacteriaceae in
both individuals with and without obesity. DESeq2 analysis

at the species level also revealed consistent associations
with Veillonella sp. AS16, Veillonella sp. 6_1_27, Lactoba-
cillales, Streptococcus pneumoniae, Lachnospiraceae bacter-
ium TF01-11, Bacteroides sp. GAC:633, Bacteroides
coprophilus, Mediterranea massiliensis, Millionella massi-
liensis and Prevotella sp. CAG:487 in both subjects with
and without obesity. Notably, the microbiome associated
with hs-CRP was markedly different to that linked to serum
ferritin (Figure S5a,b). In addition to the microbiome com-
position, their functionality was also evaluated by shotgun
sequencing in this cohort. Remarkably, analysis of bacterial
metagenomes based on KEGG functional annotation iden-
tified several bacterial functions related to iron and amino
acids transport, glutathione metabolism, heme and sidero-
phore biosynthesis, fatty acid biosynthesis and DNA repli-
cation and repair, associated with serum ferritin
concentrations (Fig. 1h, Additional file 3: Table S3). Add-
itional O-PLS regression analyses based on EggNOG func-
tional annotations revealed similar results (Figure S5c, d
and Additional file 4: Table S4).

An iron-associated transcriptome signature is linked to
the gut microbiome and liver fat accumulation
We then explored the associations of serum ferritin with
the liver transcriptome in a subsample (n = 86) of the
discovery and replication cohorts from Italy and Spain.
Out of the 48 mRNAs identified from an O-PLS model
(Fig. 2a), transferrin receptor (TFRC, pFDR < 1.0 ×
10−10), hepcidin antimicrobial peptide (HAMP, pFDR =
1.95 × 10−5), NCOA4 (pFDR = 0.05) and ferritin heavy
chain (FTH1, pFDR = 0.003), all involved in iron status
[9], were the mRNAs most associated with serum ferritin
after further individual validation by pSC (Fig. 2b). En-
richment analyses highlighted a significant over-
representation of pathways associated with iron and glu-
cose metabolism (Fig. 2c). We further investigated the
association between the expression of several solute car-
rier transporters (SLCs) and the serum ferritin concen-
tration (Fig. 2d, e). SLC51A, SLC11A1 and SLC6A9 had
the strongest associations with serum ferritin. After-
wards, integrating metagenomic and transcriptomic re-
sults, we identified iron-associated transcriptome
signatures linked to the microbiome and the degree of
liver fat accumulation (Fig. 2f–k, Figure S6). From O2-
PLS multivariate integration between ferritin-associated
bacterial families and transcripts, hierarchical clustering
analysis and univariate pSC, we identified a clear cluster
comprising NUDT10, NNMT, MTUS1, SOCS2 and
SBNO2, downregulated with increased ferritin levels
(Fig. 2h) and correlated to variation in different bacterial
families that were themselves linked to serum ferritin
(Fig. 2g, k). In a second cluster, the expression of
SEC24B, GYS2, SLC51A, TFRC, RPSX5, LOC100130078
and ACSM5 was also mirrored by these families. A third
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cluster of genes positively associated with ferritin (USP3,
SIX1, PDE7A and SNAPC2) also anti-correlated with
those bacterial families. Remarkably, the expression of
most of these bacterial-associated genes, changed in pro-
portion to both serum ferritin levels and liver fat accu-
mulation (Figure S6).

The transcriptome signature was replicated in human
primary hepatocytes
We then sought to validate the transcriptome findings
by studying the effects of iron and palmitic acid (PA), a
trigger of hepatic fat accumulation [10], in human pri-
mary hepatocytes. We found that iron, PA and PA sup-
plementation in cells pretreated with iron led to
triglyceride accumulation in primary human hepatocytes
(Figure S7a, b). Notably, iron induced a striking increase
in the expression of lipid metabolism genes (FABP4,
FABP5, FATP5) and of the fatty acid transporter CD36
in synergy with PA (Figure S7c–f) in parallel to upregu-
lated iron-related genes (FTL and FTH) (Figure S7g, h).
Strikingly, PA supplementation in cells pretreated with

iron downregulated the expression of most of the identi-
fied genes associated negatively with serum ferritin
(GY2, SEC24B, MTUS1, SOCS2, SLC51A) compared to
PA or iron alone (Fig. 2l–s) in parallel to fat accumula-
tion, confirming the associations observed in subjects
with different degrees of hepatic fat accumulation. The
exception was SBNO2, known to be increased in proin-
flammatory responses. Conversely, genes associated
positively with serum ferritin (PDE7A) and also with
liver steatosis increased significantly after iron exposure.

Metabolomics identifies gluconeogenic substrates and
ketone bodies connected with the iron-related
microbiome and transcriptomic signatures
We then performed discovery and replication
metabolome-wide association studies (MWAS) for fer-
ritin in serum (Fig. 3a–d) and urine (Fig. 3e–h) using O-
PLS multivariate regressions confirmed by pSC. We

identified several metabolites, such as ketone bodies and
gluconeogenic substrates, in both discovery (n = 48 for
plasma; n = 47 for urine) and replication (n = 328 for
plasma; n = 322 for urine) cohorts associated to the
identified hepatic transcriptome signatures (Fig. 2i, j)
linked to the microbiome and severity of NAFLD. Inte-
gration of ferritin-associated metabolites and bacterial
families by O2-PLS regression (Fig. 3i, j) revealed strong
positive associations between histidine, tyrosine, citrul-
line and glutamine and bacterial families negatively asso-
ciated with serum ferritin (Fig. 3j–l). These families also
had strong negative associations with ketone bodies (3-
hydroxybutyrate (3-OHB) and acetoacetate).

Iron influences the gut microbiome composition
To validate the cross-talk between iron status and the
microbiome uncovered in humans, we first tested
whether the dietary iron content impacts the micro-
biome in vivo in the mouse (Fig. 4a). Using 16S rRNA
gene amplicon sequencing, we showed that variation in
dietary iron dramatically reshapes the composition of
the gut microbiota (Fig. 4b, c). Then, we characterised
the impact of a high-fat diet vs. control diet with differ-
ent iron contents in mice using metagenomics (Fig. 4d).
Bacterial biodiversity and observed species changed dra-
matically according to fat and iron content of the diet
(Fig. 4e–g). While a high-fat diet decreased bacterial bio-
diversity under a low iron diet, the opposite as found in
diets with high iron content. Principal coordinate ana-
lyses revealed different microbial community composi-
tions depending on the iron content in each diet (Fig.
4h, i). Interestingly, the differences in the microbial com-
position between the high-fat and control diets de-
creased with iron content, becoming non-significant at
high iron levels (Figure S8a–d). Several families and gen-
era in the phylum Firmicutes inversely associated with
serum ferritin in patients were confirmed to be influ-
enced accordingly by the iron content of the mice diet
in O-PLS models (Fig. 4j–m).

(See figure on previous page.)
Fig. 1 Association of serum ferritin with liver fat accumulation, gene richness and the gut microbiome composition. Association of serum ferritin
with degree of liver fat accumulation in a the discovery and b replication cohorts (Mann-Kendall trend test and Wilcoxon tests). c Association of
hs-CRP with serum ferritin quartiles in the replication cohort (Mann-Kendall trend test and Wilcoxon tests). d Association of microbial gene
richness with ferritin quartiles in a subsample of obese women from the discovery and replication cohorts (generalized linear model GLM). e
Bacterial families and f genera associated with serum ferritin in a subsample of obese women from the discovery and replication cohorts. Mnet
penalized regression models were built on bacterial data including age, BMI, country and hs-CRP as covariates. g Volcano plot of differential
bacterial abundance and h metagenome KEGG functions associated with ferritin as calculated from shotgun metagenomic sequencing in an
independent cohort of obese and non-obese subjects, adjusting for age, BMI, sex and hs-CRP. Significantly different taxa are coloured according
to phylum. adaB, methylated-DNA-[protein]-cysteine S-methyltransferase; cpg; glutamate carboxypeptidase; cycA; D-serine/D-alanine/glycine
transporter; fabA, 3-hydroxyacyl-[acyl-carrier protein] dehydratase/trans-2-decenoyl-[acyl-carrier protein] isomerase; fabM; trans-2-decenoyl-[acyl-
carrier protein] isomerase; gshA, glutamate-cysteine ligase; nei endonuclease VIII; entF, enterobactin synthetase component F; FTR, FTH1, efeU,
high-affinity iron transporter; hemG; menaquinone-dependent protoporphyrinogen oxidase; hutM, histidine permease; mtsC; iron/zinc/
manganese/copper transport system permease protein; mtsA; iron/zinc/manganese/copper transport system substrate-binding protein; PARP, poly
[ADP-ribose] polymerase; seqA; negative modulator of initiation of replication; yqjH, ferric-chelate reductase (NADPH)
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The gut microbiome affects iron metabolism
After showing that iron availability greatly influences the
gut bacterial ecosystem, we evaluated whether the
microbiota on its own might affect iron status. We lever-
aged our previous mouse study showing that faecal
microbiota transplantation (FMT) triggered hepatic fat
accumulation [5] to evaluate the relationship between
human donor ferritin levels and iron-related genes in re-
cipient mice (Fig. 4n). O-PLS-discriminant analysis re-
vealed that microbiota from the ‘high ferritin donors’
group resulted in alterations in genes related to iron me-
tabolism, with increases in ftl1, fth1 and slc40a1, in par-
allel to decreased tfrc (Fig. 4o–r), which is in line with
the transcriptomic results in humans and the in vitro re-
sults from human primary hepatocytes. Also, in agree-
ment with the in vitro results, the microbiota from ‘high
ferritin donors’ also increased the expression of fabp4 in
recipient’s mice livers, showing the effect ferritin-
associated microbiota on liver lipid accumulation.

Discussion
In the current study, we evaluated the contribution of
the gut microbiota in iron status and liver fat accumula-
tion in a discovery and validation cohort of patients with
obesity and an additional independent cohort of individ-
uals with and without. We further identified a potential
role of the microbiome as a regulator of iron status con-
trolling hepatic fat deposition in animal models. Serum
ferritin levels were positively associated with liver fat ac-
cumulation in parallel to a decrease in several bacterial
families. At the same time, these ferritin-related families
were associated with liver genes involved in iron metab-
olism. The Pasteurellaceae family had the strongest
negative association with the serum ferritin levels, which

is consistent with their reliance on utilizing iron from
host transferrin for growth and survival [11]. Recently,
hepatic lipid levels, including bile acids, have been re-
cently negatively correlated with Micrococcaceae in dia-
betic mice [12], and the Desulfovibrionaceae family has
been associated to overfeeding-induced fatty liver [13].
Consistent with our results, increases in the caecal con-
tents of Coprococcus were identified in rats supple-
mented with iron, which were suggested to mediate
oxidative stress and histopathological alterations ob-
served in the liver of these animals [14]. Also in agree-
ment with our results, low serum ferritin concentrations
coexisted with decreased abundance of Veillonella spe-
cies in ulcerative colitis patients receiving FMT from
healthy donors [15], while Veillonella genus abundance
was dose-dependently enriched after improvement of
steatosis in NASH patients [16]. In addition, those with
> 70% reduction in liver fat had a trend towards reduc-
tion of Methanobrevibacter, which we also found nega-
tively associated with serum ferritin levels. Significant
and drastic increases in Bacteroides and Prevotella have
been observed in obese and NASH individuals, while a
progressive decrease in the abundance of Bifidobacter-
ium was observed from healthy to NASH groups [17].
Finally, lack of iron requirements in lactic acid bacteria
is in agreement with the negative associations observed
among several Lactobacillus species and the serum fer-
ritin levels.
Although we used ferritin as a marker of iron store,

we must take into account that it is also an acute-phase
reactant which is increased under inflammatory condi-
tions [18]. Given that our study subjects were all obese,
and low-grade chronic inflammation is a hallmark of
obesity [19], inflammation could have an influence on

(See figure on previous page.)
Fig. 2 Association of transcriptomic data with serum ferritin. a Permutation test for the goodness-of-fit (R2Y) and goodness of prediction (Q2Y)
obtained from the O-PLS model between serum ferritin and hepatic transcriptome in a subsample of the discovery and replication cohorts from
Italy and Spain (n = 86). b Significant transcripts associated with serum ferritin after further validation of the O-PLS significant variables by pSC
adjusting for age, sex, BMI and country. c Pathways significantly associated with serum ferritin based on mapping associated transcripts by over-
representation analysis with hypergeometric test. d Permutation tests for the O-PLS model between serum ferritin and SLCs (n = 86). e Significant
SLCs associated with serum ferritin after further validation of the O-PLS results by pSC adjusting for age, sex, BMI, and country. f O2-PLS scores for
the joint variation between microbial families and genes associated with serum ferritin. A model with 2 predictive components, and 1 orthogonal
component for the genes and bacterial families blocks, was constructed based on 7-fold cross-validation. g O2-PLS joint loadings plots, where
pcorr represents the correlation-scaled loadings from the gene block and qcorr represents the correlation-scaled loadings from the bacterial
families block. h Heatmap displaying z-scores of the ferritin-associated transcripts for each subject. Clustering was based on Euclidean distances
and Ward linkage. Genes associated with liver fat accumulation from O-PLS modelling are highlighted in bold, whereas those associated with
bacterial families from O2-PLS modelling are highlighted in colour boxes. i Heatmap for the pSC adjusted by age, BMI, sex, and country between
ferritin-associated plasma and j urine metabolites with ferritin-associated transcripts (n = 86). k Significant (p < 0.05) pSC adjusted for age, BMI
and country, between ferritin-associated families and transcripts (n = 56). Only significant associations (p < 0.05) are displayed. Significant
associations after a pFDR correction (pFDR < 0.05) are highlighted with a black box. l–n Expression of upregulated (GSK3B, PDE7A, SBNO2) and o–
s downregulated genes (GYS2, SEC24B, SOCS2, MTUS1 and SLC51A) in human primary hepatocytes after treatment with iron and palmitic acid.
Data are mean ± SEM. Comparisons by one-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001 compared to control group based on t test. #p < 0.05,
##p < 0.01, ###p < 0.001 compared to PA group based on t test. Ctrl, control group; PA, palmitic acid; Fe48h, pre-treatment iron 50 μM for 48h;
Fe72h, pre-treatment iron 50 μM for 72h; Fe48h + PA, pre-treatment iron 50 μM for 48h + palmitic acid 200 μM for 24 h; Fe72h + PA, pre-
treatment iron 50 μM for 72 h + palmitic acid 200 μM for 24 h
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ferritin levels. Importantly, we did not find any signifi-
cant association between inflammatory markers (hs-
CRP) and serum ferritin, suggesting that serum ferritin
was measuring iron stores in our cohorts. To further
rule out the effect of inflammation in the identified asso-
ciations, we adjusted our analysis by hs-CRP. Notably,
the microbiome associated with hs-CRP was markedly
different to that linked to serum ferritin, confirming that
the observed microbiome-ferritin associations were inde-
pendent of inflammation.
In addition to identifying an iron-associated micro-

biome signature, we also evaluated the microbiome
functionality. Different bacterial pathways were associ-
ated with iron stores in the host, including heme and
siderophore (iron binding molecules) biosynthesis, iron
transport, glutathione metabolism and DNA replication
and repair (known to be iron-dependent). Of note, the
bacterial cytochrome b561 function was strongly nega-
tively associated with serum ferritin levels. As cyto-
chrome b561 is known to be involved in iron absorption
[20], this finding suggests that the bacterial cytochrome
b561 competes with the enzyme present in the intestine
influencing iron uptake. In line, the expression of several
bacterial iron transport and chelation functions (FTR,
FTH1, efeU; yqjH; mtsC; and mtsA) was reduced in sub-
jects with high serum ferritin levels. Similarly, bacterial
enzymes involved in heme biosynthesis (uroporphyrino-
gen decarboxylase; and hemG, menaquinone-dependent
protoporphyrinogen oxidase) and siderophore biosyn-
thesis (entF, enterobactin synthetase component F) were
also strongly negatively associated with serum ferritin. It
is also worth noting the strong associations of host
serum ferritin levels with bacterial functions involved in
glutathione biosynthesis (gshA, glutamate-cysteine ligase)
and glutathione precursors (cpg, glutamate carboxypepti-
dase). Interestingly, the plasma and liver levels of gluta-
thione are depleted in NAFLD patients and altered
glutathione metabolism has been identified as a prevail-
ing feature in NAFLD [21].
We also evaluated the associations of serum ferritin

with the liver transcriptome and the serum and urine
metabolome. Remarkably, we identified iron-associated
transcriptome signatures linked to the microbiome and

the degree of liver fat accumulation, which we confirmed
by supplementing human primary hepatocytes with iron
and PA, a trigger of hepatic fat accumulation [10]. Im-
portantly, excessive gluconeogenesis has been previously
associated with NAFLD in humans [22] and iron has
been also shown to influence gluconeogenic signals [3].
In line with these previous results, we found alterations
of genes involved in glucose metabolism. Thus, from
those mRNAs involved in the microbiome-associated
transcriptomic signature of iron (also linked to liver fat
accumulation), GYS2 (which catalyses the rate-limiting
step in the synthesis of glycogen) showed the strongest
negative association with NAFLD (Figure S6). Disruption
of GYS2 is known to result in impaired glucose depos-
ition and hepatic insulin resistance and liver fat accumu-
lation in mice by changing de novo lipogenesis through
increased expression of SREBP1c [23]. Insulin also sig-
nals to SREBP1 through inhibition of GSK3, which we
found positively correlated with ferritin levels. In line
with these results, we found an upregulation of GSK3B
after treating human primary hepatocytes with iron or
palmitic acid, which was exacerbated after co-treatment.
Interestingly, we found a negative correlation between
ferritin and insulin action measured through euglycemic
hyperinsulinemic clamp (r = − 0.31, p = 8.9e-4). GYS2
clustered with SEC24B, which is responsible for the ER-
to-Golgi transport of proteins, and disrupted ER-to-
Golgi trafficking has shown to contribute to ER stress,
hepatic injury and NAFLD [24, 25]. These transcripto-
mics findings were supported by metabolomics results.
Therefore, we identified some ferritin-associated metab-
olites (sarcosine, citrulline, glutamate) that have been
previously linked to iron-induced impairment of glucose
metabolism [26]. In agreement, we found that subjects
with higher ferritin concentrations had lower serum
levels of glutamine, alanine and glycerol, the main sub-
strates used for liver gluconeogenesis, which is docu-
mented by liver transcriptomics (Fig. 2b and Figure S6).
Notably, glutamine had a strong positive association
with Leuconostocaceae, one of the bacterial families most
negatively associated with serum ferritin levels. However,
the most consistent effect was the negative association
of serum ferritin with histidine levels in both the

(See figure on previous page.)
Fig. 3 Associations of metabolomic data with serum ferritin. Permutation tests for the goodness-of-fit (R2Y) and goodness of prediction (Q2Y)
obtained from the O-PLS model between serum ferritin and a the serum (n = 48) and e urine metabolome (n = 47) in the discovery cohort, and
b the serum (n = 328) and f urine metabolome (n = 322) in the replication cohort. Significant c, d serum and g, h urine metabolites associated
with serum ferritin after further validation of O-PLS identified metabolites by pSC adjusting for age, sex, BMI and country. i O2-PLS scores for the
joint variation between plasma and urine metabolites and microbial families associated with serum ferritin. A model with 2 predictive
components, and 0 and 1 orthogonal component for the metabolites and bacterial families blocks, was constructed based on 7-fold cross-
validation. j O2-PLS joint loadings plots, where pcorr represents the correlation-scaled loadings from the gene block and qcorr represents the
correlation-scaled loadings from the bacterial families block. k Heatmap for the pSC adjusted by age, BMI and country between ferritin-associated
urine and l plasma metabolites with ferritin-associated bacterial families (n = 56). Only significant associations (p < 0.05) are displayed. Significant
associations after a pFDR correction (pFDR < 0.05) are highlighted with a black box
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discovery and replication cohorts. Histidine has shown
to supress hepatic gluconeogenesis by activation of
STAT3 independent of central insulin action [27]. No-
ticeably, the host serum ferritin levels were strongly as-
sociated with the bacterial function histidine permease
(hutM), and the Pasteurellaceae and Micrococcaceae
families, both also positively associated with the liver ex-
pression of GYS2. These families were also strongly asso-
ciated with the SLC51A expression. This gene is
involved in bile acid transport and has recently been as-
sociated with NASH [28]. Importantly, the gut micro-
biota can regulate the pool size and composition of bile
acids [29], which play an important role in NAFLD
pathogenesis and progression [30]. Interestingly, most
bile acids are conjugated to glycine and we identified
glycine as negatively associated with serum ferritin (Fig.
3c, d). In addition, glycine is a key rate-limiting compo-
nent of heme biosynthesis, mainly supplied by the gly-
cine transporter 1 (GLYT1) encoded by SLC6A9, which
was positively associated with serum ferritin (Fig. 2d, e).
This increased glycine demand may account for the
lower serum levels associated with high ferritin concen-
trations. In addition, glycine is the limiting substrate in
glutathione synthesis from glutamate in subjects with
NAFLD [21]. Remarkably, we found a strong negative
association between serum ferritin levels and the expres-
sion of the bacterial glycine transporter (cycA) and
glutamate-cysteine ligase (gshA), the first enzyme in the
glutathione biosynthetic pathway. Finally, serum acetone
and 3-OHB were also positively and consistently associ-
ated with serum ferritin concentration, in line with
hyperinsulinemia resulting in shifted energy supply from
glucose to ketone bodies in NAFLD in parallel with in-
creased circulating levels of the latter [31]. The serum 3-
OHB levels also had a strong negative correlation with
the liver expression of SLC51A and SBNO2, both posi-
tively associated with Pasteurellaceae and Micrococca-
ceae families. Consistently, SBNO2 expression increased
markedly following LPS-induced systemic endotoxemia

[32]. Conversely, the control of LPS signalling by SOCS2,
another negative inflammation regular, is minimal [33],
which is also consistent with the lack of associations that
we observed among bacterial families and the liver ex-
pression of this gene.
We sought to validate these results by treating human

primary hepatocytes with iron and palmitic acid. For
those gene transcripts that were positively associated
with serum ferritin in the discovery cohort (GSK3B,
PDE7A) including subjects with different degrees of liver
fat accumulation, we found a consistent upregulation of
these genes after treatment with either palmitic acid or
iron. Co-treatment with palmitic acid and iron exacer-
bated these effects. Some genes negatively associated
with serum ferritin and steatosis degree, were consist-
ently downregulated after treatment with iron or iron +
palmitic acid (SLC51A, MTUS1). However, the results
obtained for other genes negatively associated with
serum ferritin in this cohort with steatosis seemed coun-
terintuitive (GYS2, SEC24B, SOCS2). Hence, contrary to
what we expected, treatment with iron and/or pal-
mitic acid led to an upregulation of these genes in
human primary hepatocytes. However, co-treatment
with both iron and palmitic downregulated the ex-
pression of these genes, which is in line with the re-
sults observed in the discovery cohort. We
hypothesize that this downregulation could arise from
an ‘hormesis effect’, i.e., an adaptative compensatory
process following an initial disruption of homeostasis,
to compensate the initial disruptions in gene expres-
sion induced by palmitic acid or iron alone.
Our results, based on the identification several bacter-

ial species and metagenome functions involved in iron
metabolism and NAFLD, suggested a direct impact of
the microbiome on iron metabolism. Hence, we further
explored the potential causative role of the gut micro-
biome on iron metabolism and liver fact accumulation
using a mouse FMT experiment. Faecal microbiome
transplantation from ‘high ferritin donors’ into recipient

(See figure on previous page.)
Fig. 4 Validation studies in primary hepatocytes and FMT mice. a Scheme of the experimental design for study 1. Mice were fed for 9 weeks
diets containing low- (LI), low-normal- (LNI), high-normal- (HNI), moderately high- (MHI) and high- (HI) iron doses. b Heatmap displaying genus
relative abundances for each mouse. c Principal coordinate analysis (PCoA) depicting dissimilarities between groups based on unifrac distance
metrics. d Scheme of the experimental design for study 2. Mice were fed either a high fat diet (HFD) or a no-HFD diet containing four different
iron doses (LI, LNI, HNI, MHI) for 10 weeks. e Variations in the Shannon diversity index, f Chao1 richness estimator and g observed species of mice
fed either a HFD or a no-HFD with different iron doses (LI, LNI, HNI, MHI). h PCoA based on Canberra distance metric for the no-HFD-fed mice
and i the HFD-fed mice with different iron doses. Differences in microbial composition between iron doses for each diet were assessed by PERM
ANOVA using 999 permutations. j, k Permutation tests for the O-PLS models between iron dose and bacterial families or genera in HFD-fed mice,
respectively. l Significant families and m genera identified from O-PLS regression loadings to be associated with iron dose. n Scheme of the
experimental design for study 3. Low-ferritin (n = 3) and high-ferritin (n = 3) microbiota human donors were selected and for each donor their
faecal samples were transplanted n = 6–8 mice after antibiotic treatment. After 14 days following colonization gavage mice were sacrificed and
iron and liver fat accumulation-related genes (n = 22) were measured by PCR. o Permutation test for the O-PLS-DA model between mice genes
and the human donor group (low- or high- ferritin). p Significant mouse genes associated with donor group from O-PLS-DA regression loadings.
q Ferroportin (Slc40a1) and r Tfrc expression according to the donor ferritin concentration
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mice increased the expression of several genes involved
in iron metabolism as well as that of genes that promote
fatty acid accumulation such as fabp4, which is consist-
ent with results observed after treating human primary
hepatocytes with iron. Conversely, microbiota from ‘low
ferritin donors’ increased the expression of iron-related
Tfrc. This is agreement with our findings in human sub-
jects, where we found strong positive associations among
Actinomycetaceae, Acidaminococcacea and Enterobacte-
riaceae families (both increased in the microbiota of
subjects with low serum ferritin levels) and the host liver
TFRC expression. These results are also consistent with
the negative association found among metagenome func-
tions related to fatty acid biosynthesis (fabM and fabA)
and the host serum ferritin concentrations. This could
reflect a possible use of fatty acids from the host by the
microbiota, avoiding the process of de novo synthesis.
Therefore, we showed that the microbiota itself could
recapitulate in recipient mice the phenomic hallmarks of
iron metabolism from the human donor, thereby
impacting liver fat accumulation in the long term.
The current study presents some limitations. A minor-

ity of the bacterial population might have a role in
NAFLD development but could remain undetected by
metagenomics. On the other hand, the FMT experiment
has also its limitations because some strictly anaerobic
bacterial species might have a role in NAFLD develop-
ment but are lost during sample collection, storage and
manipulation. We showed changes in the expression of
iron-related genes, but the impact of these changes on
iron levels of mice was not evaluated. Therefore, the
causal role of the microbiome as a regulator of iron sta-
tus needs to be further confirmed with the measurement
of circulating iron makers in these mice. Finally, we
showed iron supplementation impacts on the micro-
biome composition and that bacterial biodiversity and
observed species changed dramatically according to fat
and iron content of the diet (Fig. 4e–g). It needs to be
further investigated whether iron supplementation im-
pacts on fat deposition in the liver in mice under differ-
ent feeding regimes.

Conclusions
In conclusion, combining a comprehensive systems
medicine approach with validations in independent co-
horts and causality assessment in pre-clinical models,
our findings demonstrate a significant cross-talk among
gut microbiota, iron status and liver fat accumulation. In
particular, we uncover microbiome- and iron-linked
metabolomic and transcriptomic signatures involving
imbalances in gluconeogenic metabolites, ketone bodies
and cellular transport, which altogether modulate liver
fat accumulation. This work highlights the crucial im-
portance of the interplay between micronutrients,

microbiome and host homeostasis in general [34] and
the Microbiome-Iron-Liver fat axis in particular, thereby
disclosing potential targets for therapy.

Patients and methods
Detailed methods for the animals studies, 1H-NMR
metabolomics, liver transcriptomics and faecal 16S
rRNA and metagenomics sequencing can be found in
Additional file 5: Supplementary methods.

Patient recruitment and sample processing
The discovery cohort included n = 49 obese patients
aged 24 to 63 years old at the Endocrinology Service of
the Hospital Universitari de Girona Dr Josep Trueta (Gi-
rona, Spain). The replication cohort comprised n = 628
obese patients aged 20 to 67 years old at the Endocrin-
ology Service of the Hospital Universitari de Girona Dr
Josep Trueta (n = 287) and at the Center for Athero-
sclerosis of Policlinico Tor Vergata University of Rome
(Rome, Italy; n = 341). Sample size was not determined
by statistical methods and is comparable to other studies
in the field [35–37]. All subjects gave written informed
consent, validated and approved by the ethical commit-
tee of the Hospital Universitari Dr Josep Trueta (Comitè
d’Ètica d’Investigació Clínica, approval number 2009
046) and Policlinico Tor Vergata University of Rome
(Comitato Etico Indipendente, approval number 28-05-
2009). Inclusion criteria included Caucasian origin,
stable body weight 3 months before the study, free of
any infection 1 month preceding the study and absence
of any systemic disease. Exclusion criteria were the fol-
lowing: presence of liver disease (specifically tumoural
disease and hepatitis C virus infection) and thyroid dys-
function (based on biochemical work-up), alcohol con-
sumption (> 20 g/day), hepatitis B (anti-HD virus
antibodies), drug-induced liver injury (using a drug
questionnaire).
A third independent cohort included obese (BMI ≥ 30

kg/m2) patients and age- and sex-matches non-obese
subjects (BMI 18.5–< 30 kg/m2) aged 27–67 years old,
recruited at the Endocrinology Service of the Hospital
Universitari de Girona Dr Josep Trueta (Girona, Spain).
Exclusion included type 2 diabetes mellitus, chronic in-
flammatory systemic diseases, acute or chronic infec-
tions in the previous month; use of antibiotic, antifungal,
antiviral or treatment with proton-pump inhibitors; se-
vere disorders of eating behaviour or major psychiatric
antecedents; neurological diseases, history of trauma or
injured brain, language disorders; and excessive alcohol
intake (≥ 40 g OH/day in women or 80 g OH/day in
men). All subjects gave written informed consent, vali-
dated and approved by the ethical committee of the
Hospital Universitari Dr Josep Trueta.
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Stool, plasma and urine samples from all subjects were
obtained during the week before elective gastric bypass
surgery, during which the liver biopsy was sampled. All
samples were stored at − 80 °C. Liver samples were col-
lected in RNAlater, fragmented and immediately flash
frozen in liquid nitrogen before storage at − 80 °C.

Hepatic steatosis
An ultrasound system with a 3.5 MHz convex trans-
ducer (Siemens Acuson S2000, Mochida Siemens Med-
ical System, Tokyo, Japan) was used to scan the liver.
Hepatic steatosis was defined as absent (grade 0: < 5%
steatosis), mild (grade 1: 5–33% steatosis), moderate
(grade 2: > 33–66% steatosis) or severe (grade 3: > 66%
steatosis) using the scoring system for NAFLD [38]. Im-
ages were independently evaluated by two radiologists
blinded to clinical and laboratory data [39].

Liver histology
Liver biopsies were previously obtained for n = 86 pa-
tients who underwent bariatric surgery [5]. The investi-
gators were blind to group allocations. Liver biopsies
were analysed by a single pathologist expert in hepatic
pathology. For each liver sample, haematoxylin and
eosin, reticulin and Masson’s trichrome staining were
performed. Hepatic steatosis grade was determined ac-
cording to the scoring system for NAFLD [38].

Serum ferritin
Serum ferritin in both discovery and replication cohorts
was measured by microparticle enzyme immunoassay
(AxSYMTM; Abbot Laboratories) with intra- and inter-
assay CVs < 6%.

1H nuclear magnetic resonance spectroscopy-base
metabolic profiling
Spectroscopic analysis of urine (n = 47 for discovery co-
hort, n = 322 for replication cohort) and plasma samples
(n = 48 for discovery cohort, n = 328 for replication co-
hort) was performed on a Bruker DRX600 spectrometer
equipped with either a 5-mm TXI probe operating at
600.13 MHz or a 5-mm BBI probe operating at 600.44
MHz. The 90° pulse length was determined prior to each
run and field frequency was locked using D2O as solv-
ent. Detailed procedures are included in supplementary
materials.

Transcriptomics
Transcriptomic analyses from liver biopsies have been
previously described [5] and detailed procedures are in-
cluded in supplementary materials.

Microbiome analyses
Bacterial population in mouse faeces from studies 1 and
3 was determined using next-generation high through-
put sequencing of variable regions of the 16S rRNA bac-
terial gene, whereas a shotgun metagenomic sequencing
was employed for mice study 2 and human cohorts. De-
tailed protocols are included in supplementary materials.

Primary human hepatocytes culture and treatments
Cryopreserved primary human hepatocytes (HH) were
commercially sourced (Innoprot, Bizkaia, Spain) and cul-
tured with hepatocytes medium (Innoprot) supple-
mented with 5% fetal bovine serum, 1% hepatocytes
growth supplement (mixture of growth factors, hor-
mones and proteins necessary for culture of primary he-
patocytes) and 100 U/ml penicillin and streptomycin.
HH were grown on poly-L-lysine pre-coated cell dishes
at 37 °C and 5% CO2 atmosphere following manufac-
turer’s recommendations. Cells were treated with iron
for 48 or 72 h alone, or in combination with palmitic
acid (PA) for 24 h following the iron 48/72 h treatment.
Compounds were prepared as follows: 27.84 mg of PA
(Sigma, San Luis, MO) was dissolved in 1 ml sterile
water to obtain a 100 mM stock solution. Five percent
bovine serum albumin (BSA) was prepared in serum-
free DMEM and then mixed with PA stock solution for
at least 1 h at 40 °C to obtain a 5 mM solution. Iron was
dissolved in water. Iron was used at 50 μM for 48 or 72
h, and PA 200 μM for 24 h. BSA was used in all treat-
ments as the vehicle. All experimental conditions were
performed in 4 biological replicates. After treatment,
cells were washed with PBS and collected with Qiazol
for RNA purification or fixed with paraformaldehyde 4%
for Oil Red O staining. After fixation, cells were dipped
in isopropanol 60% before completely dried and stained
with Oil Red O (Sigma, Lyon, France) for 10 min at
room temperature. Pictures were taken using an inverted
microscope.

Gene expression analysis using real-time PCR (cells,
mouse, human)
Total RNA was extracted and purified using RNeasy
Mini Kit (QIAGEN, Gaithersburg, MD) following manu-
facturers’ protocol. Gene expression procedures were
assessed using LightCycler 480 Real-Time PCR System
(Roche Diagnostics SL, Barcelona, Spain), using Sybr-
green technology suitable for relative genetic expression
quantification. Peptidylprolyl isomerase A was used as
housekeeping.

Mice studies
Detailed procedure for the animal studies is included in
supplementary materials. To assess the effects of dietary
iron on the gut microbiome (mice study 1), 12-week-old
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male C57BL/6J mice were fed with low- (LI: 4 mg/kg),
low-normal- (LNI: 35 mg/kg), high-normal- (HNI: 500
mg/kg), moderately high- (MHI: 2000 mg/kg) or high-
(HI: 20,000 mg/kg) carbonyl iron diets for 9 weeks be-
fore sacrifice. The impact of different diets on the effects
of dietary iron on the gut microbiome (mice study 2)
was assessed by feeding mice with either a ‘no-High Fat
Diet’ (No-HFD) or a ‘High Fat diet’ (HFD) with different
concentrations of iron representing the LI, LNI, HNI
and MHI diets. Finally, the causal role of the micro-
biome on iron status was evaluated by faecal microbiota
transplantation from low- (n = 3) and high- (n = 3) fer-
ritin donors matched for age and BMI to recipient mice
(mice study 3).

Statistical analysis
Ferritin distribution and normality was checked visually
and using the Kolmogorov-Smirnov and Shapiro-Wilk
tests and was found to be not normally distributed.
Metagenomic, transcriptomic and metabolomic data
were also not normally distributed. Therefore, all univar-
iate correlations analyses were based on partial Spear-
man’s correlation (pSC) adjusting for age, BMI, sex and
country. Multivariate analyses were performed on the
log10 transformed data. Associations between serum fer-
ritin and steatosis grade in the discovery and replication
cohorts were assessed by non-parametric Kruskal Wallis
test and steatosis grade 0 (absence) was compared to
grades 1–3 using the non-parametric Wilcoxon-Mann-
Whitney test. Associations between microbiome, tran-
scriptomic or metabolomic data with serum ferritin
quartiles were assessed by non-parametric Mann-
Kendall test to detect monotonic trends. The Wilcoxon-
Mann-Whitney test was used to individually compare
the lowest ferritin quartile (Q1 used as reference) with
the higher quartiles.

Microbiome data analysis (human)
Taxa were filtered so that only those having a relative
abundance > 20% in at least 20% of the samples were
considered for further analyses. To identify families and
genera associated with serum ferritin, we applied both
multivariate Mnet regularization regression [40] models
and DESeq2 [41] analyses including age, BMI, country
and hs-CRP as covariates using the R package ncvreg,
phyloseq and DESeq2. The Mnet uses a combination of
ridge (l2) and minimax concave penalties (MCP) to deal
efficiently with predictors ≥ n problems with highly cor-
related predictors, which is typical of omics data. Com-
bining both penalties, the Mnet performs variable
selection by forcing the regression coefficients of vari-
ables not actually associated with the response to 0 and
at the same time handles multicollinearity within the
data. In the Mnet, there are three parameters that need

to be tuned: the regularization parameter (λ ≥ 0) con-
trolling the shrinkage of the variables, the elastic net
mixing parameter (0 < α < 1) controlling the contribu-
tion of ridge (α = 0) and LASSO (α = 1) penalty to the
model, and the MCP penalty (γ). These were optimized
by 10-fold cross-validation. The relationship between
serum ferritin quartiles and MGR was assessed using a
generalized linear model (GLM) with a multinomial
probability distribution and a cumulative logit as a link
function to account for non-normality adjusting for age
and BMI using SPSS.

Microbiome data analysis (mouse)
Alpha and beta diversity indices were obtained using the
R package vegan. Trends between alpha diversity mea-
sures and iron doses for each diet were assessed by non-
parametric Mann-Kendall test, whereas differences be-
tween HFD and no-HFD for each iron dose were
assessed by non-parametric Wilcoxon-Mann-Whitney
test. To estimate the relatedness of microbial communi-
ties among groups, beta diversity distances between sam-
ples were examined using principal coordinate analysis
(PCoA). Differences in microbial composition were
assessed by PERMANOVA analyses using the Adonis
function in vegan R package with 999 permutations.
Families and genera responsible for differences in the
microbial compositions among iron doses for each diet
were identified through multivariate O-PLS modelling,
whereby the microbiome composition was used as the
descriptor matrix (X) to predict the iron dose (Y). The
predictive performance of the model (Q2Y) was calcu-
lated using a leave-one-out cross-validation approach
and model validity was established by permutation test-
ing (1000 permutations). Variable selection was based
on O-PLS regression loadings adjusted for multiple test-
ing using the Benjamini-Hochberg procedure (pFDR). A
pFDR < 0.05 was used as the reference feature selection
criterium.

Transcriptome and metabolome data analysis
For transcriptomic and metabolomic data, we used a
combination of multivariate O-PLS modelling and par-
tial Spearman’s correlation (pSC) using in-house MATL
AB scripts. First, an O-PLS model was built. Here, the
omics profiles were used as the descriptor matrix (X) to
predict serum ferritin as the response variable (Y). Then,
variable selection was achieved combining the variable
importance for projection (O-PLS-VIP) [42] and the O-
PLS regression loadings adjusted for multiple testing
using the Benjamini-Hochberg procedure (pFDR). A
pFDR < 0.05 was used as the reference feature selection
criterium. However, a less restrictive threshold (pFDR <
0.1 unless otherwise indicated) was used to include vari-
ables with high VIP (> 1). Finally, each individual
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variable identified form multivariate models was further
validated by pSC adjusting for age, BMI, sex and
country.

Clustering analysis
Unsupervised hierarchical clustering analysis (HCA) was
performed to identify general patterns of transcriptomic
variation among serum ferritin quartiles. Significant
transcripts associated with serum ferritin were used for
sample clustering. Before clustering, data were standard-
ized as z scores across samples for each transcript. This
standardized matrix was then used in unsupervised
HCA using Euclidean distances and Ward linkage. Heat-
maps and dendrograms following HCA were generated
using the heatmap.2 function from the gplots R package.
In the heatmaps, a red-blue colour scale was used
whereby shades of red and blue represent higher and
lower values, respectively, compared with the mean.

Integration of datasets
To explore the functional associations among the micro-
biome changes and metabolic and transcriptomic pertur-
bations associated with serum ferritin, were used two
approaches. First, datasets were integrated using an O2-
PLS approach. It is a bidirectional multivariate regres-
sion method that allows separate joint covariance be-
tween two blocks from systemic variation specific
(orthogonal) to each block (X and Y) [43]. The number
of components for the predictive and orthogonal blocks
was selected based on a 7-fold cross-validation using the
R package OmicsPLS [44]. Variable loadings for each
block were scaled as correlation coefficient (pcorr and
qcorr for X and Y, respectively) and represented in a
correlation circle plot. Scaling was performed by calcu-
lating the correlation between each variable and its asso-
ciated component. The longer the distance to the origin,
the stronger the relationship between variables. Strongly
positively associated variables or groups of variables are
projected closely to each other on the correlation circle
(~ 0° angle). The variables or groups of variables strongly
negatively associated are projected diametrically opposite
(~ 180° angle) on the correlation circle. Variables not
correlated are situated ~ 90° one from the other. Add-
itionally, univariate partial Spearman’s correlations ad-
justed for age, BMI, sex and country were calculated and
represented as correlation heatmaps. Only significant
correlations (p < 0.05) are displayed. A pFDR correction
was used to adjust P values for multiple testing. Signifi-
cant associations after a pFDR correction (< 0.05) are
highlighted with a black box.

Pathway analysis
Differentially expressed genes associated with serum fer-
ritin were annotated via over-representation analysis

using the Consensus Pathway database (CPDB) [45].
Pathway significance was assessed using a hypergeo-
metric test and a Bonferroni procedure was applied for
multiple testing correction.
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shotgun metagenomics sequencing.

Additional file 6: Figure S1. Flow chart of the study human cohorts
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Additional file 7: Figure S2. Associations of serum ferritin with hs-CRP.
a) Association of hs-CRP with serum ferritin quartiles in the discovery co-
hort and b) an independent cohort of obese and non-obese patients
(Mann-Kendall trend test and Wilcoxon tests).

Additional file 8: Figure S3. Associations of serum ferritin with the gut
microbiome in the human cohorts. Permutation tests for the goodness-
of-fit (R2Y) and goodness of prediction (Q2Y) obtained from the O-PLS
model between serum ferritin and a) bacterial families or b) bacterial gen-
era in a subsample of obese women from the discovery and replication
cohorts from Italy and Spain (n = 56). c) Significant families and d) genera
associated with serum ferritin from O-PLS regression loadings. Families
and genera associated positively and negatively associated with serum
ferritin from Mnet regression models are highlighted in dark red and
blue, respectively. e) Significant families and f) genera associated with
serum ferritin after further validation of the O-PLS significant variables by
pSC adjusting for age, BMI, country, and hs-CRP. g) Associations of bacter-
ial families and h) genera associated with serum ferritin by DESeq2 ana-
lysis from shotgun metagenomic sequencing data in the independent
cohort of obese and non-obese patients (n = 130), adjusting for age, BMI,
sex, and hs-CRP. Families and genera also associated with serum ferritin
in the discovery and replication cohorts based on Mnet regression
models are highlighted in dark red, whereas those also identified from O-
PLS modelling are highlighted in dark pink.

Additional file 9: Figure S4. Associations of bacterial families with iron-
related genes (discovery cohort, n = 35). Only significant correlations are
coloured. Genes were measured by real time-PCR. Bacterial families with
a significant positive association with serum ferritin concentrations are
highlighted in dark red, whereas those with a significant negative associ-
ation are highlighted in dark blue. ChREBP, carbohydrate response elem-
ent binding protein; LCN2, Lipocailin 2; MitoNEET, Mitochondrial Inner
NEET Protein; TFRC, Transferrin Receptor; SLC40A1, Solute Carrier Family
40 Member 1 (Ferroportin); TF, Transferrin; FTH1, Ferritin Heavy Chain 1;
HAMP, Hepcidin Antimicrobial Peptide; FTL, Ferritin Light Chain; IRP1, Iron
Regulatory Protein 1.
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Additional file 10: Figure S5. Associations the gut microbiome
composition with hs-CRP and the gut microbiome functionality with
serum ferritin. a) Volcano plot of differential bacterial genera and b) taxa
associated with hs-CRP as calculated by DESeq2 from shotgun metage-
nomic sequencing in the independent cohort of obese and non-obese
patients, adjusting for age, BMI, and sex. Fold change associated with a
unit change in hs-CRP and adjusted p-values are plotted for each genus
or taxon, respectively. Significantly different taxa are coloured according
to phylum. c) Permutation test for the goodness-of-fit (R2Y) and goodness
of prediction (Q2Y) obtained from the O-PLS model between serum fer-
ritin and metagenome functions in the independent cohort (n = 130
obese and non-obese patients). d) Significant metagenome functions
based on EggNOG functional annotations associated with serum ferritin
in the independent cohort (n = 130 obese and non-obese patients). Ini-
tially, a significant O-PLS model between serum ferritin and metagenome
functions was obtained for the independent cohort of obese and non-
obese patients (R2Y=0.69, Q2Y=0.36, p<0.001). Then, significant O-PLS vari-
ables were further validated by pSC adjusting for age, sex, and BMI.

Additional file 11: Figure S6. Associations of ferritin-related transcripts
with liver fat accumulation. a) Permutation tests for the goodness-of-fit
(R2Y) and goodness of prediction (Q2Y) obtained from the O-PLS model
between the liver fat accumulation degree and transcripts that were sig-
nificantly associated with serum ferritin. b) Significant transcripts associ-
ated with liver fat accumulation from O-PLS regression loadings. Hepatic
genes belonging to the transcriptomic signature associated with serum
ferritin and the gut microbiome are highlighted in dark red and blue. c)
Further validation of O-PLS identified transcripts by pSC adjusting for age,
BMI, sex, and country. d-g) Boxplots showing four hepatic genes identi-
fied in the transcriptomic signature associated with serum ferritin and the
microbiome according to the serum ferritin quartiles (Q1-Q4).

Additional file 12: Figure S7. Iron supplementation leads to
triglyceride accumulation and induces the expression of lipid and iron
metabolism genes in primary human hepatocytes. a) Micrographs of
primary human hepatocytes stained with Oil Red-O (representative im-
ages are from n = 4 independent batches). b) Quantification of lipid accu-
mulation. O.D., Optical Density. c-h) FABP4, FABP5, FATP5, CD36, FTH, and
FTL expression in hepatocytes. Data are mean ± SEM. Comparisons by
one-way ANOVA. *p<0.05, **p<0.01, ***p<0.001 compared to control
group based on t-test. #p<0.05, ##p<0.01, ###p<0.001 compared to PA
group based on t-test. Ctrl, control group; PA, palmitic acid; Fe48h, pre-
treatment iron 50μM for 48h; Fe72h, pre-treatment iron 50μM for 72h;
Fe48h + PA, pre-treatment iron 50μM for 48h + palmitic acid 200μM for
24h; Fe72h + PA, pre-treatment iron 50μM for 72h + palmitic acid 200μM
for 24h.

Additional file 13: Figure S8. PcoA based on Canberra beta diversity
comparing high fat diet (HFD) and non-high fat diet (No-HFD) for differ-
ent iron doses. a) low-iron (LI) fed mice, b) low-normal-iron (LNI) fed
mice, c) the high-normal iron (HNI) fed mice, d) moderately-high (MHI)
iron fed mice. Differences in microbial composition were assessed by
PERMANOVA analyses using the Adonis function in vegan R package with
999 permutations.
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