
HAL Id: hal-03451936
https://hal.science/hal-03451936

Submitted on 26 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of the exciton valley dynamics in atomically
thin semiconductors by tailoring the environment

A. Prazdnichnykh, M. Glazov, L. Ren, C. Robert, B. Urbaszek, X. Marie

To cite this version:
A. Prazdnichnykh, M. Glazov, L. Ren, C. Robert, B. Urbaszek, et al.. Control of the exciton valley
dynamics in atomically thin semiconductors by tailoring the environment. Physical Review B, 2021,
103 (8), �10.1103/PhysRevB.103.085302�. �hal-03451936�

https://hal.science/hal-03451936
https://hal.archives-ouvertes.fr


Control of the exciton valley dynamics in van der Waals heterostructures

A. I. Prazdnichnykh,1, 2 M. M. Glazov,1 L. Ren,3 C. Robert,3 B. Urbaszek,3 and X. Marie3
1Ioffe Institute, 26 Polytechnicheskaya, 194021 St. Petersburg, Russia

2National Research University Higher School of Economics, Saint Petersburg, Russia,
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The exciton valley dynamics in van der Waals heterostructures with transition metal dichalco-
genides monolayers is driven by the long-range exchange interaction between the electron and the
hole in the exciton. It couples the states active in the opposite circular polarizations resulting
in the longitudinal-transverse splitting of excitons propagating in the monolayer plane. Here we
study theoretically the effect of the dielectric environment on the long-range exchange interac-
tion and demonstrate how the encapsulation in the hexagonal boron nitride modifies the exciton
longitudinal-transverse splitting. We calculate the exciton spin/valley polarization relaxation due to
the long-range exchange interaction and demonstrate that the variation of the monolayer environ-
ment results in significant, up to five-fold, enhancement of the exciton valley polarization lifetime.

I. INTRODUCTION

Two-dimensional (2D) materials combined into van der
Waals heterostructures offer a versatile platform with
unusual optical and transport properties [1, 2]. In the
family of the monolayer semiconductors based on tran-
sition metal dichalcogenides the optical properties are
controlled by robust excitons, Coulomb bound electron-
hole pairs [3–11]. Tailoring the environment of the mono-
layer, e.g., by encapsulation into hexagonal boron nitride
(hBN), affects excitonic states [12, 13], optical spectra of
atomically-thin semiconductors [14], and makes it pos-
sible to control radiative lifetime of excitons [15–18]. It
opens wide prospects for nanophotonic applications [19–
23].

The direct optical transitions in transition-metal
dichalcogenide monolayers involve the electronic states
at the edges of the Brillouin zone. The symmetry and
spin-orbit interaction enable the so-called chiral selection
rules: The band-edge optical transitions at theK+ (K−)
valley are induced by the photon of the σ+ (σ−) circu-
lar polarization, since valley and spin are locked [24–30].
Accordingly, the optically active excitons possess a valley
or pseudospin degree of freedom [7, 9, 31].

The valley dynamics of excitons in transition metal
dichalcogenides monolayers is in focus of the experi-
mental and theoretical research nowadays [32–36]. It
has been established [31, 38–40] that similarly to the
case of conventional quasi-two-dimensional semiconduc-
tors where the pseudospin is associated with the spins of
electron and hole forming an exciton [41–43], the bright
exciton valley dynamics is controlled by the long-range
exchange interaction between the electron and the hole.
The process of valley depolarization of the exciton can
be considered as a virtual recombination of the electron-
hole pair in one valley and its emergence in the opposite
valley [38, 39].

Since the radiative properties of the excitons can be
manipulated in van der Waals heterostructures [15–17],
it is natural to ask the question whether the dielectric en-

vironment affects the valley dynamics of excitons in two-
dimensional semiconductors. Here we address this ques-
tion theoretically. We demonstrate that the presence of
surrounding hBN layers screens the long-range exchange
interaction and slows-down valley depolarization of exci-
tons. We develop a microscopic theory of the effect based
on the electrodynamical approach for calculating the ex-
change interaction in the exciton. We use the density
matrix method to study the valley polarization dynam-
ics in transition metal dichalcogenide monolayers. We
demonstrate significant, up to a five-fold, increase of the
valley polarization lifetime in van der Waals heterostruc-
tures depending on the hBN layer thickness. To the best
of our knowledge, this control of the exciton spin dynam-
ics by the environment was never demonstrated before in
semiconductors.

The paper is organized as follows: Section II presents
the calculations of the exciton fine structure due to the
long-range exchange interaction in van der Waals het-
erostructures. Next, in Sec. III the valley dynamics of
the excitons is calculated and analyzed. Various regimes
of valley polarization decoherence depending on the sys-
tems’ parameters are identified and analyzed. The con-
cluding remarks are presented in Sec. IV.

II. EXCITON FINE STRUCTURE

This section presents the microscopic theory of the ex-
citon fine structure induced by the long-range exchange
interaction between the electron and the hole. The long-
range exchange interaction is the driving force for the
pseudospin or valley dynamics of excitons in semicon-
ductors [38, 41, 43–46]. It can be calculated either
quantum-mechanically by evaluating the matrix elements
of the Coulomb potential over properly symmetrized two-
particle Bloch functions or electrodynamically, taking
into account the self-consistent action of the electric field
induced by the exciton. The equivalence of these ap-
proaches has been established for two-dimensional semi-
conductors in Ref. [38]. The electrodynamical approach
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has an advantage of being easily adapted for treatment of
inhomogeneous structures such as the one studied here.
Thus, we resort to the electrodynamical approach in this
work.

Figure 1. Schematics of investigated van-der-Waals
heterostructures. (a) Structure without a cap hBN layer:
TMD monolayer–hexagonal boron nitride (hBN)–silicon diox-
ide (SiO2); (b) Structure with a cap hBN layer: hBN–TMD
monolayer–bottom hBN layer–SiO2.

A. Structure and modes of electromagnetic field

We consider the van der Waals heterostructures based
on transition metal dichalcogenides (TMD) monolayers
(MLs) schematically depicted in Fig. 1. This corre-
sponds to the typical stacking of the the encapuslated
TMD monolayers investigated in most of the experi-
ments [47, 48]. Two types of structures are analysed:
without and with cap hBN layer shown in Fig. 1 (a) and
(b), respectively.

Within the framework of the electrodynamical ap-
proach the optically active exciton in TMD monolayer
is considered as an in-plane electric dipole or current,
oscillating at the optical transition frequency ω0, where

~ω0 = Eg − EB +
~2K2

2m
. (1)

Here Eg is the band gap of the monolayer, EB is the
exciton binding energy, K is the in-plane wavevector of
the 2D exciton andm is its effective mass. In the relevant
range of the wavevectors the dependence of ω0 on K can
be disregarded. We also note that the variation of the
environment, i.e., the thicknesses of the hBN layers, does
not strongly affect the difference Eg − EB , the spectral
position of the exciton, while both band gap and exciton
binding energy strongly depend on the screening [49, 50].
The induced current density can be written as [38]

j(z) = Jδ(z), J =
cω0

2πω

iΓ0

ω − ω0 + iΓ
E‖(z), (2)

where J is the 2D (surface) current density, Γ0 and Γ
are the radiative (into vacuum) and non-radiative decay
rates of the exciton, the monolayer is assumed to be in
the z = 0 plane, subscript parallel (‖) denotes the in-
plane components of the field. In Eq. (2) E is the elec-
tric field acting on the exciton, which includes both the
external field an the field induced by the exciton, ω is
the frequency of the field. The thickness of the mono-
layer is negligble as compared with the wavelength of
light emitted by the exciton, that is why it is sufficient
to use strictly two-dimensional model for the current den-
sity, Eq. (2).

In what follows we apply the uniaxial approximation
for description of the excitonic states. In such a case the
eigenmodes of the system, being the coupled modes of the
exciton and electromagnetic field, can be described by the
wavevector K in the monolayer plane and polarization:
the s-polarization corresponds to the j(z) ⊥ K‖, this
state is denoted as the transversal (T) exciton and the
p-polarization corresponds to the j(z) ‖K‖, this state is
denoted as the longitudinal (L) exciton.

The current j(z) in Eq. (2) is associated with the ex-
citon induced electromagnetic field, which can propagate
away from the monolayer or decay with the distance from
the monolayer depending on the exciton wave vector.
These regimes of field propagation are shown in Fig. 2.
Top panel shows the light cones, i.e., the dispersion of free
electromagnetic waves in the vacuum, SiO2, and hBN. In
the case where the wavevector of the exciton lies in areas
I or II,

K 6
ω0

c
nSiO2

,

the exciton emits propagating waves, which cause its ra-
diative decay. Interestingly, for K 6 ω0/c the waves are
propagating both to the vacuum and to the substrate (re-
gion I), while for ω0/c 6 K 6 ω0nSiO2

/c the field decays
into vacuum but propagates into SiO2. A self-consistent
interaction of such exciton with the induced field leads to
the difference of the decay rates for the longitudinal and
transverse excitons [38]. The exciton with the wavevec-
tor outside the SiO2 light cone, areas III and IV in Fig. 2,
induces exponentially decaying waves (both into the vac-
uum and substrate). Here, its interaction with the self-
consistent field results in the renormalization of the longi-
tudinal and transverse excitons energies. We will mainly
focus on the latter case where K > ω0nSiO2

/c, as for typ-
ical experimental parameters the states outside the light
cones are mostly populated.

In order to find the exciton energy spectrum fine struc-
ture we have to self-consistently solve the Maxwell’s
equations

rotE = −1

c

∂B

∂t
, (3a)

rotB =
1

c

∂D

∂t
+

4π

c
j(z), (3b)

together with the Eq. (2) for the exciton-induced cur-
rent and explicit expression for the electric induction
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Figure 2. Exciton dispersion and induced electromagnetic field. Top panel: schematic illustration of longitudinal (L,
solid curve) and transverse (T, dashed line) exciton energy spectra. K = 0 point corresponds to center of the exciton Brillouin
zone. Dispersion is shown not to scale. Four bottom panels (I) . . . (IV) show schematics of the electromagnetic field distribution
depending on area where the exciton wavevector lies. Wavy lines correspond to propagating waves ∝ exp(ikz|z|) induced by
the exciton, decreasing curves correspond to decaying waves ∝ exp(−κz|z|).

D = ε(z)E with ε(z) being the high-frequency (back-
ground) dielectric constant of the structure found disre-
garding excitonic effects. In this way, both the damp-
ing of the exciton and its energy renormalization due to
the long-range exchange interaction can be derived au-
tomatically accounting for the screening and retardation
effects [38, 51, 52]. To that end, it is convenient to in-
clude the current j(z) into the boundary condition for
the in-plane components of magnetic field, namely,

B‖ (z → 0+)−B‖ (z → 0−) =
4π

c
[J × ez], (4)

with ez being the unit vector along the normal to the
ML. The remaining boundary conditions are the stan-
dard ones implying continuity of the in-plane components
of E and normal components of D and B at the inter-
faces. Below we present the results of solution of the
Maxwell’s equations and the analysis of the exciton fine
structure.

B. Structure without a cap layer

It is instructive to analyze in detail the eigenstates of
the exciton coupled with electromagnetic field in the sim-
plest structure without a hBN cap layer, Fig. 1(a). Let
us enumerate the layers of the structure: i = 0 is the vac-
uum (z < 0), i = 1 is the substrate hBN layer (0 < z < d)
and i = 2 is the substrate SiO2 (z > d). Inside each bulk
layer we can write combining Eqs. (3):

rot rotE = − εi
c2
∂2E

∂t2
, (5)

where εi is the dielectric permittivity of the ith layer. We
seek the solution of Eq. (5) in the form of a plane wave
in each layer

E(r) = E(i)eiki·r−iωt, (6)

with E(i) being its complex amplitude, ki is the light
wavevector at the frequency of ω in the ith layer. Nat-
urally, we find the absolute value of the wavevector
ki =

√
εiω/c. Without loss of generality, we set ki =

(0, ki,y, ki,z) and take into account that its y-component,
ki,y ≡ ky remains constant in each dielectric layer be-
cause of the translational invariance of the system in the
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(xy) plane. The z-component of the wavevector reads
ki,z =

√
εik2

z + (εi − 1)k2
y, with kz being the wavevector

component in the vacuum.
There are two eigenmodes of the electromagnetic field

in each layer, namely, TE (or T-) mode and TM (or L-)
mode, whose eigenvectors read

E
(i)
TE =

 E
(i)
x

0
0

 , and E
(i)
TM =

 0

E
(i)
y

− ky
ki,z

E
(i)
y

 . (7)

Correspondingly, the TE-mode couples with the
transversal exciton and the TM-mode couples with the
longitudinal exciton.

Further we have to construct the solution that satisfies
the boundary conditions at the interfaces. Let us start
with the TE-mode. We seek a solution for the electric
field in a form (we assume the amplitude of the wave at
z → −0 wave equals to unity):

Ex = eikyy

 eκ0,zz, z < 0,
E1e

−κ1,zz + E2e
κ1,zz, 0 < z < d,

E3e
−κ2,z(z−d), z > d.

(8)

Here we have selected the form of the fields relevant for
the states outside the light cone (ky > max

i

√
εi(ω/c),

region IV in Fig. 2) where κi,z = [k2
y − εi(ω/c)2]1/2 >

0, which decay to the both sides of the structure. The
boundary conditions of the continuity of the tangential
components of the electric field read

E1 + E2 = 1, (9a)

E3 = E1e
−κ1,zd + E2e

κ1,zd. (9b)

Expressing the tangential components of the magnetic
field from Eq. (3a) and making use of the boundary con-
dition (4) at z = 0 and the continuity condition at z = d
we have

κ1,z(E1 − E2) + κ0,z =
(ω/c)

2

ω0/c

2Γ0

ω0 − ω − iΓ
, (10a)

κ2,zE3 = κ1,zE1e
−κ1zd − κ1,zE2e

κ1,zd. (10b)

The boundary conditions Eqs. (9) and (10) represent the
set of four equations for three amplitudes E1, E2, E3. Its
compatibility condition allows us to find the renormalized
energies of excitons due to the light-matter interaction,
i.e., taking into account the long-range exchange interac-
tion. As we are looking for the relatively small renormal-
izations of the exciton energy, where |~ω − ~ω0| � ~ω0,
it is accurate to replace ω with ω0 everywhere except
for the denominator in the right side of Eq. (10a). As
a result, combining Eqs. (9) and (10), we find for the
eigenfrequency ωT ≡ ω of the transversal exciton:

ωT − ω0

Γ0
= − 2ζ

s0 − s1 + 2s1(s1+s2)
s1+s2+(s1−s2)e−2as1

. (11a)

Here the following notations are introduced

ζ =
1

K

ω0

c
, si =

√
1− εiζ2, a = Kd. (11b)

Analogous calculation for the TM-polarized mode
yields the eigenfrequency ωL of the longitudinal exciton:

ωL − ω0

Γ0

=
2

ζ
s0

+ ε1ζ
s1

(
2(ε2s1+ε1s2)

ε1s2+ε2s1+(ε1s2−ε2s1)e−2as1
− 1
) . (11c)

Equations (11a) and (11c) describe the dispersion of
the transveral and longitudinal excitons in the van der
Waals heterostructure without a cap layer, Fig. 1(a).

C. Effect of the cap hBN layer

Now we consider a van der Waals heterostructure
capped with a hBN layer as the ones used in most of the
experiments, Fig. 1(b). Explicit expression for exciton
energies with account for the exchange interaction can be
found by solving the set of Maxwell’s equations (3) with
appropriate boundary conditions. As the solution is com-
pletely analogous to that presented above in Sec. II B for
an uncapped structure and quite lengthy, we just give
here the results for the radiative doublet eigenfrequen-
cies:

ωT − ω0

Γ0
= − ζ√

1− ε1ζ2

(1− r1,sξ0) (1 + rb,sξ1)

1 + r1,srb,sξ0ξ1
, (12a)

ωL − ω0

Γ0
=

√
1− ε1ζ2

ε1ζ

(1− r1,pξ0) (1 + rb,pξ1)

1 + r1,prb,pξ0ξ1
. (12b)

Here

ξi = exp

[
−2di

ω0

c

√
1− ε1ζ2

ζ

]
, (13)

di are the thicknesses of the cap, i = 0, and the sub-
strate, i = 1, hBN layers; r1,α is the reflection coefficient
of α = s, p-polarized light from vacuum–hBN interface,
expressed using Fresnel’s equations [53]:

r1,s =
1−

√
1−ε1ζ2
1−ζ2

1 +
√

1−ε1ζ2
1−ζ2

, r1,p =
ε1 −

√
1−ε1ζ2
1−ζ2

ε1 +
√

1−ε1ζ2
1−ζ2

; (14)

and rb,α is the reflection coefficient from the hBN–SiO2

interface:

rb,s =
1−

√
1−ε2ζ2
1−ε1ζ2

1 +
√

1−ε2ζ2
1−ε1ζ2

, rb,p =

ε2
ε1
−
√

1−ε2ζ2
1−ε1ζ2

ε2
ε1

+
√

1−ε2ζ2
1−ε1ζ2

. (15)

As expected, at d0 = 0 Eqs. (12) are identical to
Eqs. (11).
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Figure 3. Exciton fine structure splitting. LT-splitting as a function of the exciton wavevector in the structure without a
cap hBN layer (d0 = 0) in linear scale (a), log–log scale (b); and in the structures without a substrate hBN layer (d1 = 0) (c),
and with the substrate hBN layer of finite thickness (d1 = 99.2 Å) (d), while the cap hBN layer thickness being varied. Dashed
lines illustrate asymptotics, Eq. (17): blue dashed line corresponds to dhBN 6= 0 asymptotics, red dashed line corresponds to
dhBN = 0. Parameters of the calculation are: εhBN = 4.84 is the hBN permittivity, εSiO2 = 2.13 is the SiO2 permittivity,
ω0/c = 981745 cm−1 (which roughly corresponds to MoS2 ML), ~Γ0 = 0.3 meV.

D. Effect of the hBN layers on the exciton fine
structure

In agreement with the symmetry arguments we have
demonstrated microscopically that the exciton eigen-
states in TMD monolayers are the L- and T-polarized
states with the microscopic dipole moment of the exci-
ton (or microscopic current) oriented parallel and per-
pendicular to its in-plane wavevector. Equations (11)
and (12) are valid for arbitrary values of the exciton in-
plane wavevector K, including both the states inside and
outside of the light cone. In what follows, however, we
will mostly consider the states outside of the light cone,
region IV in Fig. 2 where the induced field decays with
the distance from the monolayer and κi,z ∈ R. Thus,
the parameters si in Eq. (11b) and ξi in Eq. (13) are
real. As a result, ωL,T are real. In this case, as expected,
the coupling with the induced electromagnetic field, i.e.,
the long-range exchange interaction between the electron
and hole, produces the splitting of the L- and T-exciton
energies. Note that for the states inside the light cone
the eigenfrequencies ωL and ωT contain imaginary parts

as well being responsible for the radiative damping of
excitons, see Refs. [15, 38] for details.

Figure 3 shows the results for the exciton LT-splitting,

∆ELT = ~ωL − ~ωT , (16)

calculated as function of the exciton wavevector K for
different thicknesses of the hBN layers. Panels (a) and
(b) show the results for the absent cap layer (d0 = 0),
while panels (c) and (d) shows the results for the struc-
ture with the cap layer. Solid lines are calculated after
Eqs. (11) and (12), while dotted lines are the analytical
asymptotics, Eqs. (17) and (19), see below.

Let us first analyze the LT-splitting as a function of the
exciton wavevector K. At small wavevectors K . ω0/c
the ∆ELT is a strongly non-linear function of K and its
real part vanishes for the states within the light cone.1
For sufficiently large exciton wave vectors,K � ω0/c, the

1 In the region II there are both real and imaginary parts of ωL,T

due to the leaky waveguide-like modes in the structure.
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parameter ζ ∼ K−1
‖ → 0. It follows then from Eqs. (11a)

and (12a) that, ωT−ω0 ∝ ζ. Thus, for large wave vectors
the energy of the transversal exciton is almost not renor-
malized. Conversely, one can see from the formulas (11c)
and (12b) that ωL − ω0 ∼ ζ−1 ∼ K‖. Therefore, the
longitudinal exciton energy renormalization and the LT-
splitting of the radiative doublet for large enough exciton
wavevectors are equal and linear in K.

The asymptotic behavior of the exciton LT-splitting at
K � ω0/c can be recast as

∆ELT =
~Γ0

εeff(K, d0, d1)

cK

ω0
, (17)

with the effective dielectric constant εeff(K, d0, d1) be-
ing a function of the exciton wavevector and the struc-
ture geometry. In the structures with negligible cap layer
thickness, Kd0 � 1

εeff(K, 0, d1) =
1

2
×

{
1 + εSiO2

, Kd1 � 1,

1 + εhBN, Kd1 � 1.
(18)

Physical sense of this expression is as follows. If there
is no substrate hBN layer at all or hBN layer thickness
is negligible, i.e, Kd1 � 1, the field decays mainly into
the vacuum and SiO2 substrate. As a result, an effec-
tive permittivity of such structure is the average of the
permittivities of vacuum and SiO2. When the hBN layer
thickness is sufficiently large, Kd1 � 1, the electric field
induced by the exciton decays into the hBN layer and
there is almost no field in SiO2. So effective permittivity
contains that of hBN instead SiO2.

This behavior is illustrated in Fig. 3(a,b). The curve
corresponding to the intermediate thickness of the hBN
substrate layer, d1 = 9.6 Å (i.e., 3 monoatomic layers of
hBN)2 for small wave vectors is close to zero thickness
asymptotics, and for large ones it goes over to the thick
hBN layer asymptotics. The behavior of the ∆ELT for
sufficiently large K is very well described by the linear
law (17) with the effective dielectric constant εeff given
by Eq. (18).

Similar results take place in the structures with the cap
layer. Assuming that its thickness is sufficiently large,
Kd0 � 1, we have Eq. (17) with the effective permittivity
in the form

εeff(K,∞, d1) =
1

2
×

{
εhBN + εSiO2

, Kd1 � 1,

2εhBN, Kd1 � 1.

(19)
This expression is analogous to Eq. (17) except that in-
stead of the vacuum permittivity, which is equal to 1, the
hBN permittivity enters εeff in Eq. (19). This is because
for large wavevectors the exciton-induced field is mostly

2 The thickness of monoatomic hexaginal boron nitride equals to
3.2 Å.

concentrated in the cap hBN layer and does not reach
vacuum. Correspoding behavior is illustrated in Fig. 3
panels (c) and (d).

In contrast to the case of the environment effect on the
exciton radiative decay rate, where the decay rate shows
pronounced oscillations as a function of the hBN layer
thickness [15], here the hBN layer thickness enters ωL,T
through the damped exponential function. The differ-
ence is because the LT-splitting of the exciton takes place
for the states outside the light cone, where the exciton-
induced field decays exponentially to both sides of the
monolayer. It is seen from Eqs. (11), (12) and asymp-
totic expressions (17), (18), and (19) that increasing the
hBN thickness results in a reduction of the LT splitting.

One can say that the long-range exchange interaction is
screened by the presence of the hBN layers. Calculations
presented in Fig. 3 confirm this result.

III. CONTROL OF THE EXCITON
SPIN/VALLEY DYNAMICS

In this section we present the model description of the
exciton valley dynamics. We present and solve the ki-
netic equation for the exciton density matrix and ana-
lyze the impact of the environment in the van der Waals
heterostructure on the valley depolarization.

A. Kinetic equation and its solution

We describe valley dynamics of excitons in monolayer
semiconductors within the pseudospin density matrix ap-
proach [38–40, 43]. We introduce the 2×2 density matrix

%K = nK + σ · sK , (20)

where nK is the average occupancy of the orbital state
K, i.e., nK is the exciton distribution function, and
sK is the pseudospin distribution function, with sK,z

component describing the valley polarization or circular
polarization of excitons, while the in-plane components
sK,x, sK,y describe the valley coherence or exciton align-
ment/linear polarization. In Eq. (20), σ = (σx, σy, σz) is
the vector composed of the 2×2 Pauli matrices; the unit
matrix in this notation is omitted.

In the basis of circularly polarized components, the
Hamiltonian of the exciton LT-splitting takes the form

H(K) =
∆ELT

2
[σx cos (2ϕK) + σy sin (2ϕK)]

=
~
2

(ΩKσ), (21)

where the vector

ΩK = (∆ELT /~)[cos (2ϕK), sin (2ϕK), 0], (22)

plays a role of the exciton pseudospin precession fre-
quency in the effective field caused by the LT-splitting.
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Within the relaxation time approximation the kinetic
equation for the exciton pseudospin distribution takes the
form [39] [cf. Ref. [54]]

∂sK
∂t

+ sK ×ΩK +
sK − s̄K

τ
= gK . (23)

Here τ is the exciton relaxation time, s̄K =

(2π)−1
∫ 2π

0
sKdϕK is the angular average of the exciton

pseudospin, and gK is the pseudospin generation rate.
In what follows we consider the simplest and exper-

imentally relevant situation where the valley-polarized
excitons are created by a short circularly polarized light
pulse. We perform further calculations in the approxi-
mation of the fast exciton energy relaxation: we suppose
that after an ensemble of excitons is excited by optical
pulse, the Boltzmann energy distribution sets in a short
time by valley conserving processes. Thus we employ the
following initial condition for Eq. (23) and set gK = 0:

sz,K(t = 0) = s0
2π~2

mS
exp(−ε/T )

T
. (24)

Here ε = ~2K2/2m is the exciton kinetic energy, T is
the temperature measured in energy units (kB ≡ 1), S
is the normalization area, and s0 =

∑
K sz,K(t = 0) is

the average spin at t = 0. Since our aim is to study the
effect of the dielectric environment on the exciton valley
dynamics we abstain from the description and analysis of
the exciton formation processes and details of its energy
relaxation, cf. Refs. [32, 36, 55, 56]. We also stress that
the condition Tτ/~ � 1 is fulfilled, otherwise the cor-
rections to the kinetic equation related, e.g, to the weak
localization effects should be taken into account [57].

Making use of the explicit form of ΩK one arrives at
the following equation for the s̄z,K [58]:(

∂

∂t
+

1

τ

)
∂

∂t
s̄z,K + Ω2

K s̄z,K = 0, (25)

where we took into account that sz,K = s̄z,K . In agree-
ment with Refs. [59, 60] we obtain the expression for
valley polarization dynamics:

s̄z,K = e−
t
2τ

(
sinh qt

2τ

q
+ cosh

qt

2τ

)
sz,K(t = 0), (26)

where q ≡ q(ε) =

√
1− (2∆ELT τ/~)

2. Ultimately, we
arrive at the following expression for valley polarization
dynamics of excitions:

Sz(t) =
∑
K

s̄z,K

= s0e
− t

2τ

∞∫
0

e−
ε
T

T

(
sinh q(ε)t

2τ

q(ε)
+ cosh

q(ε)t

2τ

)
dε. (27)

Strictly speaking, the integral over energy in Eq. (27)
should be cut-off at small energies ε∗ ∼ ~2ω2

0/(2mc
2), i.e.,

for the states within the light cone. Estimates show that
this cut-off is unimportant at reasonable temperatures
T & 1 K.

Figure 4. Exciton spin/valley dynamics in limiting
cases. Blue curve illustrates characteristic valley polariza-
tion dynamics in collision-dominated regime (ΩT τ � 1), red
one corresponds to the rare scattering regime (ΩT τ � 1).

B. Exciton spin/valley dynamics in limiting cases

Before turning to the numerical results, let us deduce
analytical asymptotics of the integral (27) for important
limiting cases. Characteristic – average – energy of the
exciton ensemble is the temperature T , which determines
a typical value of the thermal wavevectorKT =

√
2mT/~

and, accordingly, the typical pseudospin precession fre-
quency ΩT ≡ ΩKT . We consider the behaviour of the
integral (27) and spin dynamics in the two important
cases, where the pseudospin precession frequency is ei-
ther much smaller than the scattering rate τ−1

ΩT τ � 1, (28a)

or much larger than τ−1:

ΩT τ � 1. (28b)

In both cases simple analytical expressions describing the
spin dynamics are derived.

In the first situation where the scattering acts are fre-
quent, Eq. (28a), we use the asymptotics q(ε) ≈ 1 −
2 (∆ELT τ/~)

2, and obtain:

Sz(t) = s0

∞∫
0

e−
ε
T

T
exp

[
−(∆ELT /~)2τt

]
dε. (29)

The energy dependence of the subintegral expression re-
sults from both the Boltzmann exponent exp(−ε/T ) and
the wavevector dependence on the ∆ELT . The latter can
be written, in accordance with Eq. (17), as

∆ELT = ~β
√
ε, β =

√
2mc2

ω2
0

Γ0

εeff(KT , d0, d1)
. (30)

In derivation of Eq. (30) we disregarded K-dependence
of the effective permittivity assuming that relevant
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Figure 5. Valley polarization dynamics for different structure parameters. Panels (a) and (b) correspond to the
absent substrate hBN layer (d1 = 0) and two temperatures T = 10 K and 100 K, respectively. Panels (c) and (d) correspond
to the structure with sufficiently thick substrate hBN layer (d1 = 99.2 Å) and two temperatures T = 10 K and 100 K. Different
curves show the valley polarization dynamics for different top hBN layer thicknesses. Parameters of the calculations are the
same as in Fig. 3 and the scattering time τ = 0.1 ps is assumed to be temperature and energy independent.

wavevectors are sufficiently large. The resulting integral
is readily evaluated as

Sz(t) =
s0

1 + Tβ2τt
. (31)

The exciton valley depolarization rate is given by

1

τv
≡ β2Tτ ∼ Ω2

T τ, (32)

in accordance with the general result in the collision-
dominated regime [38, 54, 61]. Interestingly, the decay is
slow with Sz(t) ∝ t−1 at t� τv. This 1/t ‘tail’ is a result
of neglected energy relaxation processes. If the exciton
energy relaxation time τε is sufficiently short as compared
with the valley depolarization time, τε � τv, but simul-
taneously sufficiently long compared to the momentum
relaxation time, τε � τ , then the exciton ensemble is
characterized by a single relaxation rate τ−1

v in Eq. (32)

and, instead of Eqs. (29) and (31) we obtain

Sz(t) = s0 exp

− ∞∫
0

e−
ε
T

T
(∆ELT /~)2τtdε


= s0 exp(−t/τv). (33)

In this situation standard exponential decay law of the
valley polarization is recovered.

Now we turn to the limit of rare scattering events [60,
62], Eq. (28b) we have q(ε) ≈ 2i∆ELT τ/~, and it follows
from Eqs. (27) and (30) that [cf. Ref. [39]]

Sz(t) = s0e
− t

2τ

∞∫
0

e−
ε
T

T
cos
(
β
√
εt
)

dε

= s0e
− t

2τ

[
1−
√
TβtF

(√
Tβt

2

)]
, (34)

where F(x) = exp
(
−x2

) ∫ x
0

exp
(
t2
)
dt is the Dawson func-

tion. In this regime the valley polarization decays mainly
due to the spread of the pseudospin precession frequen-
cies with the characteristic rate β

√
T ∼ ΩT . The scat-
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tering breaks phase of the pseudospin precession and re-
sults in the additional exponential decay with the rate
1/(2τ) [60].

From asymptotics (31) and (34) one can see, that in
the case ΩT τ � 1 we expect slow monotonous relaxation
of the exciton valley polarization as shown in Fig. 4. If,
by contrast, ΩT τ � 1, we expect fast decoherence with
a characteristic minima, see Fig. 4.

C. Numerical results and discussion

Figure 5 shows the valley polarization dynamics cal-
culated numerically after Eq. (27) for various parame-
ters of the structure and two characteristic temperatures
T = 10 K and 100 K. Panels (a) and (b) show the dy-
namics for the structure without a substrate hBN layer,
while panels (c) and (d) demonstrate the dynamics in
the structures with the substrate layer. Overall behavior
of the valley polarization Sz(t) is intermediate between
the asymptotics shown in Fig. 4. Figure 5 demonstrates
clearly that the exciton valley relaxation time can be con-
trolled by the dielectric environment engineering.

For a fixed hBN layers thicknesses the valley depolar-
ization rate increases with increase of the temperature.
This is because at a higher temperature the characteris-
tic pseudospin precession frequency ΩT increases. It is in
agreement with experimental data [61].

An increase of the hBN layers thicknesses results, as
discussed in Sec. II, in the effective screening of the ex-
change interaction and, correspondingly, in suppression
of the exciton LT-splitting. As a result, at a fixed thick-
ness of the substrate hBN layer d1, an increase in the
cap layer thickness d0 slows-down the valley depolariza-
tion, compare red, green and blue curves in the panels.
Similarly, an increase in d1 at a fixed d0 slows down de-
polarization as well, compare Fig. 5 (a) with (c) and (b)
with (d).

Calculations show that the spin dynamics is fastest
for the structure without hBN, d0 = d1 = 0. At
T = 100 K the product ΩT τ exceeds unity and slightly
non-monotonic behavior of the red curve in Fig. 5(b) is
seen. Overall, the modulation of the valley depolariza-
tion time for different system parameters is significant,
compare red and blue lines in Fig. 5(a).

The predictions for the control of the exciton
spin/valley polarization lifetime are summarized in Fig. 6
where the dependence of the τv on the cap hBN layer
thickness is presented for the structure shown in Fig. 1(b)
for different substrate hBN thicknesses d1. We determine
the spin/valley depolarization time τv from the condition
Sz(τv)/Sz(0) = 1/e, i.e., it corresponds to the decay by
e ≈ 2.718. One can see that for a fixed d1 the depolar-
ization time increases with increasing d0 and, similarly,
for a fixed d0 the depolarization time increases with in-
creasing d1. This is because of the effective screening of
the electron-hole long-range exchange interaction. The
significant modulation of τv is seen. Note that signifi-

Figure 6. Controlling the exciton spin/valley depo-
larization. Exciton spin/valley polarization lifetime τv as
a function of the top hBN layer thickness d0 for the structure
shown in Fig. 1(b) at calculated for different values of the
substrate hBN thickness d1 (different curves). Temperature
T = 10 K, scattering time τ = 0.1 ps. The depolarization
time τv is defined as Sz(τv)/Sz(0) = 1/e.

cant variation of τv is observed for very small variations
(∼ nm) of the hBN thickness. Comparing the structures
without encapsulation d1 = d0 = 0 and structures with
sufficiently thick encapsulation, 30 MLs of hBN for both
the cap and substrate layers one can see that the varia-
tion of τv by a factor & 5 is possible.

IV. CONCLUSION

We have studied the effect of the dielectric environ-
ment of the atomically thin semiconductor on the exci-
ton fine structure and its valley depolarization in van
der Waals heterostructures based on transition metal
dichalcogenide monolayers encapsulated into hexagonal
boron nitride. The microscopic theory of the exciton fine
structure has been developed within the electrodynami-
cal approach where the long-range exchange interaction
naturally appears as a result of the exciton coupling with
the induced electromagnetic field. The valley dynamics
has been studied within the kinetic equation approach
for the pseudospin density matrix.

We have demonstrated that the encapsulation of the
monolayer into hBN effectively screens the long-range
exchange interaction and results in a slow-down of the
valley depolarization. While the radiative decay of exci-
tons in monolayer semiconductors and the electron-hole
long-range exchange interaction have the same physical
origin, related to the self-consistent interaction of the ex-
citon with its electromagnetic field, their dependence on
the boron nitride layer thickness is different. In the ra-
diative recombination process, the excitonic states within
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the light cone are involved. Those states induce propa-
gating electromagnetic field which oscillates in space. As
a result, the radiative decay rate shows oscillations as a
function of the hBN thickness [15]. In the studied case of
the long-range exchange interaction, the excitons are out-
side of the light cone and they induce decaying in space
electromagnetic field. It gives rise to a monotinic depen-
dence of the longitudinal-transverse splitting of excitonic
states as a function of the hBN thickness.

Our calculations demonstrate a significant, up to five-
fold, variation of the valley depolarization in hBN-based
van der Waals heterostructures. Our results open up the
possibilities to control the exciton valley dynamics by ap-

propriately tailoring the electrodynamical environment of
the monolayer.
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