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Abstract 

Perceptual confidence is an evaluation of the validity of our perceptual decisions. We present here 

a complete generative model that describes how confidence judgments result from some 

confidence evidence. The model that generates confidence evidence has two main parameters, 

confidence noise and confidence boost. Confidence noise reduces the sensitivity to the confidence 

evidence, and confidence boost accounts for information used for confidence judgment which was 

not used for the perceptual decision. The opposite effect of these two parameters creates a 

problem of confidence parameters indeterminacy, where the confidence in a perceptual decision is 

the same in spite of differences in confidence noise and confidence boost. When confidence is 

estimated for multiple stimulus strengths, both of these parameters can be recovered, thus 

allowing us to estimate whether confidence is generated using the same primary information that 

was used for the perceptual decision or some secondary information. We also describe a novel 

measure of confidence efficiency relative to the ideal confidence observer, as well as the estimate 

of one type of confidence bias. Finally, we apply the model to the confidence forced-choice 

paradigm, a paradigm that provides objective estimates of confidence, and we discuss how each 

parameter of the model can be recovered using this paradigm. 

Keywords: meta-perception, visual confidence, modelling, efficiency, confidence forced-choice  
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1. Introduction 

Metacognition is the ability of individuals to monitor and regulate their own cognitive processes 

(Nelson & Narens, 1990). This ability is referred to as meta-perception when considering the 

monitoring and regulation of perceptual processes and decisions (Mamassian, 2020). When 

making a choice, a key expression of metacognition is the confidence associated with the decision. 

Correctly inferring our own level of performance is clearly important for an individual, as confidence 

might be used to control the amount of sensory information necessary to commit to a perceptual 

decision (Balsdon, Wyart, & Mamassian, 2020), regulate learning (e.g. Hainguerlot, Vergnaud, & 

de Gardelle, 2018), allocate resources to a particular task (e.g. van den Berg et al., 2016), 

compare different tasks (de Gardelle & Mamassian, 2014) and prioritize them (Aguilar-Lleyda, 

Lemarchand, & de Gardelle, 2020). Perceptual confidence, and more broadly metacognition, has 

been extensively reviewed elsewhere (e.g. Fleming et al., 2012; Yeung & Summerfield, 2012; 

Meyniel, Sigman, & Mainen, 2015; Mamassian, 2016; Pouget et al., 2016). In this article, we 

develop a theoretical framework to characterize how individuals make confidence judgments about 

their perceptual decisions. 

One issue of primary importance in meta-perception is whether confidence judgments are based 

on the same information as that used for the perceptual decisions. Here, to clearly separate 

perceptual decisions from confidence judgments, we formally distinguish the evidence underlying 

these two computations, calling sensory evidence the basis of our perceptual decisions and 

confidence evidence the basis of our confidence judgments. A similar distinction was made in 

meta-memory (Jang, Wallsten, & Huber, 2012) and meta-perception (Fleming & Daw, 2017). In 

addition, when considering confidence evidence, we further distinguish two components, calling 

primary confidence evidence the information that was used for the perceptual decisions, and 

secondary confidence evidence any other information (i.e. information contributing to confidence 

evidence but not to the perceptual decisions). Indeed, even though confidence is an evaluation of 

the validity of our perceptual decisions, it is plausible that the computation of confidence involves 

some information that is processed in parallel to (e.g. Fleming & Daw, 2017) or after (e.g. Pleskac 

& Busemeyer, 2010) the perceptual decision. The difficulty in establishing the extent to which 

confidence is relying on secondary evidence is that there are other factors that affect the quality of 

confidence judgments. In particular, the computation of confidence might rest on perceptual 

information that has been degraded by some form of confidence noise (e.g. Bang et al., 2019). 

Therefore, it is important to have a good theoretical framework within which the different factors 

that contribute to confidence are clearly defined. 

There are currently two main frameworks used for the study of confidence, one based on Signal 

Detection Theory (SDT), and the other based on evidence accumulation (for a review, see 

Mamassian, 2016). The SDT framework (Green & Swets, 1966) has been exceedingly successful 
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for modelling choice tasks, also referred to as Type 1 tasks, and it also formed the basis for 

discussing confidence judgments, also known as Type 2 judgments (Clarke et al., 1959; Galvin et 

al., 2003). However, this framework is not intended to be a process model that describes how 

Type 2 judgments are actually made. The primary aim of the present manuscript is to provide a 

complete generative model for perceptual confidence judgments that is grounded in SDT. With this 

generative model, we have three main objectives that we briefly introduce next. These objectives 

are respectively: the separation of primary and secondary information for the computation of 

confidence, the construction of a measure of confidence efficiency that is defined at the 

metacognitive level, and the estimation of one critical form of confidence bias. 

Our model of confidence is based on the idea that confidence judgments are derived from the 

current perceptual decision and some decision variable that we have called confidence evidence. 

The question of how this confidence evidence is formed has been central in prior research. In 

particular, confidence evidence is not necessarily identical to the sensory evidence used to make 

the Type 1 decision. This idea was supported by dissociations between confidence and decision 

accuracy documented in many studies. For instance, confidence judgments might fail to 

incorporate adequately the variance of evidence (e.g. de Gardelle & Mamassian, 2015; Spence, 

Dux, & Arnold, 2016; Boldt, de Gardelle, & Yeung, 2017), ignore sensory evidence going against 

the choice (e.g. Zylberberg, Barttfeld, & Sigman, 2012; Maniscalco, Peters, & Lau, 2016), and fail 

to properly track the fluctuations of attention (e.g. Wilimzig et al., 2008; Zizlsperger, Sauvigny, & 

Haarmeier, 2012; Recht, Mamassian, & de Gardelle, 2019). Confidence can also be influenced by 

information occurring after the Type 1 decision has been made (Resulaj et al., 2009; Pleskac & 

Busemeyer, 2010; Moran, Teodorescu, & Usher, 2015). These findings contributed to the 

appreciation that confidence evidence should be differentiated from sensory evidence, and that 

confidence evidence might be influenced by information, relevant or not, that was not used during 

the Type 1 decision. We note that one prior study investigating visibility ratings in a meta-

contrasting masking paradigm has discarded such a “dual-channel model” (Maniscalco & Lau, 

2016). However, visibility and confidence judgments are not necessarily equivalent, theoretically or 

empirically (Rausch & Zehetleitner, 2016). Besides, studies about perceptual confidence often find 

participants for whom metacognition is better than what is prescribed by performance (see e.g. 

Palmer, David, & Fleming, 2014; Hainguerlot et al., 2018; Moreira et al., 2018; see also Scott et al., 

2014 for a similar result in a non-perceptual task). These observations indicate that confidence 

incorporates sometimes more information than what is used during the perceptual decision, and 

call for an additional channel of information. 

In our model, we thus separate two streams of information, with one stream corresponding to the 

information that contributed to the Type 1 decision and another stream that provides additional 

information. We call these two streams primary and secondary. Through the primary stream, 

confidence evidence is just a duplicate of the sensory evidence that is used for the perceptual 
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decision. This stream of processing is present is all models of confidence. In contrast, through the 

secondary stream, confidence evidence has access to additional information. This additional 

information can result from some parallel processing of the stimulus properties and sensory 

information accumulated after the perceptual decision. The combined information from these two 

streams is also affected by some confidence noise, and by biases, as detailed below. The first 

objective of our modelling effort is thus to clarify the respective contributions of the primary and 

secondary streams to confidence judgments, both theoretically and empirically. 

Figure 1 illustrates our modelling approach and provides the links between the different variables 

of the model. All the notations of the model are summarized in Table 1. We highlight in particular 

two components in relation to the primary and secondary confidence evidence. The first 

component is the confidence noise which characterizes the inefficiency of the confidence evidence 

computation relative to the ideal confidence observer. The second component is the confidence 

boost which characterizes the relative contribution of the secondary confidence evidence as a 

fraction of the overall confidence evidence. The reason why this latter component is called 

confidence boost is because new evidence from the stimulus will augment the information present 

at the Type 2 level and boost metacognitive efficiency towards a super-ideal level.  

Confidence boost and confidence noise have opposite effects on Type 2 performance, and 

therefore it is difficult to properly estimate both of them in practice. Yet, it is important to have at 

our disposal an overall measure of Type 2 efficiency. Defining such a measure has been 

challenging in the past (Fleming & Lau, 2014), but a significant step forward was obtained recently 

thanks to the meta-d’ computation (Maniscalco & Lau, 2012). This methodological tool allows 

experimenters to measure metacognitive abilities without confounds from Type 1 performance. 

However, one key characteristic of this measure is that it uses the metric of the Type 1 task, rather 

than of the Type 2 task. The second objective of our modelling effort is thus to offer a measure of 

Type 2 efficiency that is really anchored to the Type 2 level of processing. 

The third objective of our modelling effort is to be able to detect and quantify some confidence 

biases. In our model, we focus on one particular type of confidence biases, where an over-

confidence represents an over-estimation of one’s perceptual sensitivity, or equivalently an under-

estimate of the sensory noise. This type of confidence biases is difficult to detect because all the 

confidence judgments for a particular task are affected. When confidence is compared across two 

distinct tasks, we can obtain an estimate of the over-confidence for one task relative to the other. 

This kind of confidence comparison forms the basis of the confidence forced-choice paradigm. In 

this procedure, participants complete two Type 1 decisions on distinct stimuli, and then indicate 

which decision was associated with the greater confidence (Barthelmé & Mamassian, 2009; de 

Gardelle & Mamassian, 2015). We apply our generative model to the confidence forced-choice 
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paradigm and discuss how reliably each parameter of the model can be estimated in this 

paradigm. 

 

 

Figure 1. Overall framework for perceptual and confidence decision making. For 

Type 1 processing (in blue), the perceptual decision is based on sensory evidence that 

is an estimate of the physical stimulus. Sensory evidence is corrupted by sensory 

noise. For Type 2 processing (in purple), the confidence judgment is based on 

confidence evidence that is a combination of primary (orange) and secondary (green) 

evidence. The primary confidence evidence duplicates the sensory evidence whereas 

the secondary confidence evidence includes benefits from another look at the physical 

stimulus and other sources of information not illustrated here but described in the text. 

Confidence evidence is corrupted by additive confidence noise. It is also normalized 

by an estimate of sensory noise that is possibly corrupted by a multiplicative 

confidence bias, and it is compared to a confidence criterion that possibly differs from 

the sensory criterion. Finally, the signed confidence evidence is the magnitude of the 

confidence evidence that acquires a negative sign if the perceptual decision is 

incompatible with confidence evidence. See text for details. 
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As we compute confidence efficiency, we will see that the same confidence efficiency level can be 

achieved as a trade-off between confidence noise and confidence boost. The trade-off between 

these two parameters is a generic problem of confidence parameters indeterminacy. 

 

 
Notation Meaning Domain 

𝜇! Stimulus strength (−∞,+∞) 

𝑠 Sensory evidence (−∞,+∞) 

𝑤 Confidence evidence (−∞,+∞) 

𝑤′ Signed confidence evidence (−∞,+∞) 

𝜎! 
Sensory noise (standard deviation of normal distribution) that 

drives perceptual sensitivity 
[0, +∞) 

𝜃! Sensory criterion that drives bias in the perceptual decision (−∞,+∞) 

𝐷 Perceptual decision based on sensory evidence  

𝐷′ Pseudo perceptual decisions based on confidence evidence  

𝐶 
Confidence choice, i.e. interval chosen as more confident with 

respect to the self-consistency of the perceptual decision 
{1, 2} 

𝜎" Confidence noise (standard deviation) [0, +∞) 

𝜃" 
Confidence criterion against which confidence evidence is 

evaluated 
(−∞,+∞) 

𝛼 
Confidence boost, i.e. the fraction of super-ideal confidence 

performance 
[0, 1] 

𝛽 Confidence bias in over-estimating one’s sensory sensitivity (0, +∞) 

𝛾 Interval bias in favor of interval 1 in a confidence pair (−∞,+∞) 

𝐹(𝑠#, 	𝑠$) Joint distribution of sensory evidence in confidence pair  

𝐺(𝑤#, 𝑤$	|	𝑠#, 𝑠$) 
Joint distribution of confidence evidence 𝑤 conditional on 

sensory evidence 𝑠 in confidence pair 

 

𝐻(𝑠, 𝑤) 
Joint distribution of sensory and confidence evidence (its 

covariance matrix is 𝐾) 

 

𝑄(𝑠;	𝜇%, 	𝜎!) 
Mean of the distribution of confidence evidence conditional on 

a particular value of sensory evidence 𝑠 

(−∞,+∞) 

𝜏 Equivalent confidence noise (standard deviation) [0, +∞) 

𝜂 Confidence efficiency [0, +∞) 

 

Table 1. Notations used in this manuscript. 
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Our manuscript is organized as follows. In the next two sections, we define what we mean by 

confidence in this manuscript, and then review briefly the confidence forced-choice paradigm. In 

section 4, we define the confidence ideal and super-ideal observers, which will help us determining 

the different ways confidence computation can be inefficient. We then detail our generative model 

in sections 5 and 6, describing how confidence evidence is linked to sensory evidence, and in 

sections 7 and 8, we apply this model to the confidence forced-choice paradigm. Section 9 

explains the problem of confidence parameters indeterminacy and introduces how confidence 

efficiency is computed. We finish by showing the robustness of the parameter estimation (section 

10), including the confidence bias (section 11), and illustrate in section 12 how the model can be 

fitted to real data by re-analysing one of our previous studies. Finally, section 13 presents a 

discussion of our approach. 

2. Defining Confidence as Subjective Self-Consistency 

We start by formally defining confidence in a perceptual decision as the subjective estimation 

made by an observer that her decision is self-consistent. Here, self-consistency refers to an 

agreement between the current perceptual decision and the most frequent decision made by the 

observer for a given stimulus and experimental conditions. Perceptual confidence is thus an 

estimation of the probability that the same decision would be made again, given the same physical 

stimulus and experimental conditions. In terms of Signal Detection Theory (SDT), self-consistency 

relates to perceptual sensitivity, disregarding perceptual bias.  

Note that our definition slightly departs from the classic definition of confidence as an estimate of 

perceptual accuracy (i.e. probability of being correct). The difference between the two definitions is 

best illustrated by considering cases of perceptual illusions due to a sensory bias. In such cases, 

observers can be consistently incorrect in their decisions but still relatively confident in their 

perception. By focusing on self-consistency, rather than accuracy, our definition does not force us 

to call all observers overconfident in this case, which may be desirable given that the bias arises 

here at the perceptual level and not at the metacognitive level per se. If we follow the classic 

definition of confidence, however, we would have to conclude that the observer is overconfident 

because she is both incorrect and very confident. 

Our definition of confidence as an estimate of one’s own self-consistency aligns with other works. 

In meta-memory, Koriat (2012) has highlighted that confidence may reflect the consensuality of 

one’s own answer with respect to answers chosen by other individuals, rather than just whether 

one’s answer is correct or not. Our discussion of overconfidence is also reminiscent of one 
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particular type of overconfidence discussed in the literature. Three types of overconfidence are 

sometimes distinguished, namely the overestimation of one’s accuracy, the overplacement relative 

to others, and the overprecision of one’s beliefs (Moore & Healy, 2008). Our definition of 

confidence as subjective self-consistency naturally fits with overprecision. In other words, with our 

definition, an individual would be overconfident in a perceptual task if she overestimates her own 

sensitivity in this task. By contrast, the traditional definition of confidence as the subjective 

probability of being correct corresponds to overconfidence being an overestimation of one’s 

accuracy. Note that in the SDT framework, these two definitions would be equivalent if all decision 

criteria are neutral. However, as detailed below, our modelling approach will allow for any criteria, 

including criteria that differ between Type 1 and Type 2 evaluation of the evidence.  

As a final word, we note that if there is no sensory bias and if there is only one main interpretation 

for a stimulus, then self-consistency is the same as correctness. This could simplify the 

understanding of our model for readers who are not satisfied or confused with our definition of 

confidence. 

3. Confidence Forced-Choice 

In this manuscript, we focus on the confidence forced-choice paradigm. One key advantage of this 

procedure is to bypass the rating scale typically used to measure confidence, and to focus directly 

on the internal confidence, eliminating the need for participants to maintain a constant mapping 

between internal confidence and ratings. In this paradigm, participants indicate which of two 

intervals produces the highest feeling of confidence, where each interval consists of a stimulus, 

and a decision made on that stimulus. A confidence trial is thus composed of two stimuli, two 

perceptual decisions, and the confidence comparison choice between these two decisions. 

Therefore, this procedure requires participants to hold in working memory their confidence 

judgment in the first interval to be able to compare it to the one in the second interval. However, it 

is unclear whether this cost is higher than the one to set and hold in memory a set of stable 

confidence rating criteria. 

Let us consider a typical use of the confidence forced-choice paradigm around a psychophysical 

experiment. In this example, the perceptual task is to indicate whether the dots of a random-dot 

kinematogram stimulus are moving to the right or to the left relative to a reference direction. We 

code rightward motions with positive values and leftward motions negatively. Across trials, stimuli 

differ in strength, i.e. in how much the motion direction deviates from the reference. Stimulus 

strength affects how well observers can discriminate the direction of motion, as represented by the 

psychometric function (Figure 2A). The slope of the psychometric function reflects the sensitivity of 

the observer in the perceptual task.  
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To examine how confidence relates to perceptual sensitivity, we can analyze separately the 

perceptual decisions associated with higher and lower confidence in each confidence trial. We can 

then replot the psychometric function separately for these confidence-chosen and for confidence-

declined decisions (Figure 2B). In the example of the figure, these two new psychometric functions 

are distinct, the one for the confidence-chosen decisions presents a steeper slope than the one for 

the confidence-declined decisions, or than the original one estimated over all trials (Figure 2A). 

This property is a signature of meta-perception, as it indicates that participants were able to pick 

the interval that led to a better performance, at least for some trials. If the participants gave their 

metacognitive judgments at random, as if they were not able to judge the quality of their perceptual 

decisions, the psychometric functions for chosen and declined decisions would overlap completely. 

In contrast, when the observer is using all the information she can use for her confidence 

judgment, the gain in the slope of the psychometric functions is strictly larger than zero.  

 

 

Figure 2. Psychometric functions. (A) Original psychometric function. The 

psychometric function links stimulus strength to perceptual decision, here the 

proportion of dots moving rightward. The solid line is a cumulative Gaussian fit to the 

psychometric functions. The standard deviation of the best fit determines its slope 

(here 1.01 , a good approximation of the parameter 1/𝜎%  used in the simulation).  

(B) Psychometric function split by confidence. Trials judged to have higher confidence 

are sorted out and a new psychometric function is plotted for these trials only (green 

points). The remaining trials have been declined for confidence (red points). Dots size 

is proportional to the number of trials in each condition. For the psychometric function 

based on the chosen trials for confidence, the best fit gives a slope of 1.47. The gain in 

the slope of the psychometric functions from the unsorted (grey dashed curve) to the 

chosen (green curve) trials is therefore 1.47/1.01 = 1.45 . The parameters used to 

generate this and the following figures are provided in Table 2. 
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Even though it is simple and natural to use the gain in the slope of psychometric functions as an 

index of metacognitive ability (see, e.g. Barthelmé & Mamassian, 2009; De Martino et al., 2013; de 

Gardelle & Mamassian, 2014, 2015), we introduce later the confidence efficiency as an alternative 

descriptor of confidence sensitivity. Indeed, the comparison of psychometric functions actually 

discards important information about which confidence pairs were presented to participants. The 

full data set includes not only how a given perceptual trial falls into the confidence-chosen or 

confidence-declined set, but also how the confidence comparison choice depends on the two trials 

within a pair, which may have different stimulus strengths and different decisions. In the example 

of the simulated experiment shown in Figure 2, there were 7 possible stimulus strengths and two 

possible perceptual decisions (‘R’ or ‘L’) for each interval in a confidence pair, leading to 196 (7 x 7 

x 2 x 2) possible combinations. In each of these combinations, we can measure the probability that 

interval 1 is associated with a greater confidence than interval 2.  

All the confidence choice probabilities for the experiment summarized in Figure 2 are illustrated in 

Figure 3. This figure has four separate panels, one for each combination of the perceptual 

decisions in the first and second intervals (for instance, the top-left panel corresponds to the case 

where the observer saw leftward motion in the first interval and rightward in the second). The x-

axis represents the stimulus strength in the first interval, and the curves of different colors 

correspond to different stimulus strength in the second interval. The y-axis shows the probability of 

choosing the perceptual decision in interval 1 as more confident than the one in interval 2. In the 

top-left panel, because the observer’s decision was leftward in interval 1, this decision is more 

likely to be correct when the stimulus strength in interval 1 is more negative, which is why the 

probability of choosing interval 1 rises from right to left. Similarly, in that same panel, the 

perceptual decision was rightward in interval 2, so it is more likely to be correct when the stimulus 

strength in interval 2 is more positive, which is why the probability of choosing interval 1 declines 

from the top to the bottom curve. 
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Figure 3. Confidence choice probabilities for each combination of stimulus strengths. 

Each panel shows the probability of choosing the first interval as the more confident 

one, given the stimulus strength presented in the first interval (x-axis) and in the 

second interval (colored lines). The four panels correspond to the different pairs of 

perceptual decisions across the two intervals (e.g. responses 𝐷# = 'L' and 𝐷$ = 'R' in 

the top left panel). Dot size is proportional to the number of trials obtained in the 

simulation for this particular combination of stimulus strength and perceptual decision. 

Dotted lines link points that have the same stimulus strength in the second interval. 

The solid curves show the best fitted model described later in the manuscript. In this 

plot, parameters are those listed in Table 2, except 𝑛 = 100,000 for figure clarity.  

 

From the simulations shown in Figure 3, we see that confidence depends on the interaction 

between stimulus strength and perceptual decision, as typically found in empirical data. To better 

illustrate this pattern, let us focus on one subset where the stimulus strength in the second interval 

is 0 and the perceptual decision for this stimulus is ‘R’. This subset corresponds to the middle blue 

line in the two top panels, which are replotted on Figure 4 but in different colors. Specifically, self-

consistent perceptual decisions are shown in green, and self-inconsistent decisions in red. Here, 

self-consistent decisions in interval 1 correspond to responding ‘R’ for stimulus strengths in the first 

interval that are above the sensory criterion (0.25), and responding ‘L’ below. As expected, the 
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probability of choosing the first interval with greater confidence is always larger for self-consistent 

than for self-inconsistent decisions. In addition, as stimulus strength deviates more from the 

sensory criterion, confidence increases for self-consistent decisions, and decreases for self-

inconsistent decisions. This is expected from a participant who displays meta-perception, although 

the exact form of this X-pattern varies across experimental conditions and models of confidence 

(Sanders et al., 2016; Adler & Ma, 2018; Rausch & Zehetleitner, 2019). 

 

Figure 4. Choice probabilities for self-consistent and inconsistent decisions. The plot 

shows the same data as in Figure 3, for one particular sensory stimulus and 

perceptual decision in interval 2. Self-consistent perceptual decisions in interval 1 are 

shown in green, and self-inconsistent decisions in red. The probability of choosing the 

first interval with greater confidence is larger for self-consistent than for self-

inconsistent decisions. In addition, as stimulus strength deviates more from the 

sensory criterion, confidence increases for self-consistent decisions, and decreases 

for self-inconsistent decisions. The resulting X-pattern is symmetric about the vertical 

axis passing through the sensory criterion. 

 

We are now interested in modelling the sensitivity with which participants can estimate their 

confidence in their perceptual decisions. The model will attempt to replicate all 196 different 

probabilities that interval 1 is the winner of the confidence decision in Figure 3. In particular, we are 

interested in describing the ideal confidence observer that is using the exact same information for 

confidence judgments as the perceptual decisions, so that we can compare human meta-

perceptual sensitivity to this ideal confidence observer. Along the way, we will also define a super-

ideal confidence observer that maximizes confidence performance. Unless otherwise noted, the 

parameters in the figures take the default values shown in Table 2. 
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Parameter Meaning Figure Value Ideal Value 
{𝜇&, 	𝜇'} Examples of stimulus strengths {1.5, −0.5}  

𝜇! Stimulus strengths for a complete simulated experiment −1.5: 0.5: 1.5  

(𝑠#, 	𝑠$) 
Sensory evidence in intervals 1 and 2 of a confidence pair 

where stimulus strengths are (𝜇&, 	𝜇') 

(0.9, 0.7)  

(𝐷#, 𝐷$) 
Perceptual decisions in intervals 1 and 2 of a confidence 

pair where stimulus strengths are (𝜇&, 	𝜇') 
(R, R) (R, L) 

𝜎! Sensory noise (standard deviation) 1.0 0.0 

𝜃! 
Sensory criterion that drives bias in the perceptual 

decision 
0.25 0.0 

𝜎" Confidence noise (standard deviation) 0.5 0.0 

𝜃" Confidence criterion 0.0 0.0 

𝛼 Confidence boost 0.2 0.0 

𝛽 
Confidence bias in over-estimating one’s sensory 

sensitivity 
1.0 1.0 

𝛾 Interval bias in favor of interval 1 in a confidence pair 0.0 0.0 

𝑛 Number of confidence pairs in a simulation 10,000  

 

Table 2. Unless explicitly stated in the figure caption, the parameter values used in the 

figures are the ones in this table. In the last column are shown the values 

corresponding to the ideal observer and ideal confidence observer. 

 

4. Ideal Confidence Observer 

In this section, we present how the perceptual decision is derived from sensory evidence. By 

analogy, we introduce the confidence evidence that will be the basis for the confidence judgment. 

The approach is based on Signal Detection Theory (Green and Swets, 1966) and ideal observer 

principles (Barlow, 1962; Geisler, 1989). In the next section, we will generalize this model of 

confidence by considering several ways in which actual confidence judgments can deviate from 

optimal ones. 
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4.a. Perceptual Decisions 

We consider here a perceptual task in which a stimulus has to be categorized as ‘Right’ (‘R’) or 

‘Left’ (‘L’). In a typical psychophysical experiment, there will be a range of stimuli with different 

levels of difficulty that we represent by the stimulus strength 𝜇%. For instance, stimuli could be 

random dot kinematograms where each dot has a motion direction drawn from a circular normal 

distribution whose mean 𝜇%  is slightly clockwise (or ‘Right’) or counter-clockwise (‘Left’) of the 

vertical upward direction. For illustrative purposes in this part of the report, we first consider two 

such stimuli, A and B, that belong to categories ‘R’ and ‘L’ respectively (Figure 5). 

 

 

Figure 5. Sensory evidence in a perceptual discrimination task. Stimuli to be 

discriminated belong to two categories ‘Right’ (‘R’) and ‘Left’ (‘L’). The distribution of 

sensory evidence for two stimuli A and B is in blue and orange, respectively. On each 

trial, the participant has access to one sample of the stimulus category presented on 

that trial (a sample 𝑠  from stimulus A is shown by the blue triangle). All sensory 

evidence to the right of sensory criterion 𝜃!, represented by the blue shaded area, are 

assigned to the ‘R’ category. 

 

Because of sensory noise, the observer only has access to some noisy sensory evidence 𝑠. We 

assume that on average the observer has an unbiased estimate of the sensory strength, so the 

mean of 𝑠 is 𝜇%. For simplicity, we further assume that the sensory noise is normally distributed, 

with common variance 𝜎%$ for all stimuli, such that a sensory noise sample 𝜖% for one particular trial 

follows the distribution 𝜖! ∼ N(0, 𝜎!$). 

The sensory evidence on one trial is then 
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 𝑠 = 𝜇% + 𝜖!  , (1) 

where 𝜇% = 𝜇( if stimulus A was presented, and 𝜇% = 𝜇) if stimulus B was presented instead. A 

perceptual decision (Type 1 decision 𝐷) consists in comparing the sensory evidence against a 

sensory criterion 𝜃%, namely  

 R
𝐷 = 'R'   	if		𝑠 > 𝜃!	,

		
𝐷 = 'L'			otherwise

  . (2) 

The most frequent percept for stimulus A is ‘R’ (the blue shaded area in Figure 5 to the right of the 

sensory criterion is larger than 0.5 because 𝜇( > 𝜃%). Therefore, when stimulus A is presented, the 

perceptual decision will be self-consistent if it is ‘R’. We present other properties of self-

consistency in Appendix A. 

4.b. Ideal Confidence Observer  

Now that we have modelled perceptual decisions, we can consider confidence (Type 2) judgments. 

We start with the important case of the ideal confidence observer that will be used as a reference 

to compare human confidence judgments. The ideal confidence observer is ideal for its confidence 

judgment but suboptimal for its perceptual decision. In other words, this particular observer has the 

same sensory sensitivity and biases as the human observer, and thus is similarly subject to 

sensory noise and sensory criterion shifts as the human observer. However, it is ideal in the sense 

that it is able to judge optimally which of two perceptual decisions is more likely to be self-

consistent based on the same sensory information that has been used to reach the perceptual 

decisions. In other words, for the ideal confidence observer, the confidence evidence will be 

entirely determined by the sensory evidence.  

From Figure 5, we see that the perceptual decision is more likely to be self-consistent when the 

sensory evidence 𝑠 is further away from the sensory criterion 𝜃% (for a formal description of the 

probability of being self-consistent, see Appendix A). Therefore, from the point of view of the ideal 

confidence observer, the distance of the sensory evidence to the perceptual decision boundary is a 

good decision variable to estimate confidence (Galvin et al., 2003). We follow this tradition with 

one particular twist. To be able to estimate confidence sensitivity irrespective of the sensory 

sensitivity of the observer for the current task, we normalize the distance to the decision boundary 

by the sensory noise. As can be seen in Appendix D, this step alleviates apparent contradictions 

such that sensory noise increases metacognitive efficiency (Bang et al., 2019). In summary, we 

define the ideal confidence evidence to be 

 𝑤ideal = (𝑠 − 𝜃%) 𝜎%⁄   . (3) 
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Because confidence evidence has been normalized by sensory noise, it is a unit-free measure of 

confidence. In other words, it is not bound to the stimulus dimension that is relevant for a task (e.g. 

the angle in degrees of motion direction if the task of the observer is to estimate motion direction). 

This property is useful when comparing confidence across tasks (de Gardelle & Mamassian, 

2014). Further motivation for this choice of ideal confidence evidence is presented in Appendix A.  

4.c. Super-Ideal Confidence Observer  

In contrast to the ideal confidence observer, the super-ideal confidence observer has access to the 

original stimulus, and not just the noisy sensory evidence used to make the perceptual decision. 

This scenario can actually lead to better performance than the ideal confidence observer, hence 

the term “super-ideal” confidence observer. This extreme scenario is interesting to consider 

because confidence judgments are often performed after perceptual decisions, and thus can 

benefit from a more extensive analysis (e.g. Pleskac & Busemeyer, 2010) or second look at the 

stimulus. Confidence evidence for the super-ideal confidence observer is now 

 𝑤super_ideal = (𝜇% −	𝜃!)/𝜎!  . (4) 

In this definition, the super-ideal confidence observer is not corrupted by any sensory noise. While 

it is implausible that any human observer will ever be able to access the stimulus without some 

form of noise, it is still important to set such an upper-bound on confidence performance. We 

should also remark that any sensory noise that may corrupt the super-ideal confidence observer 

will be absorbed in the confidence noise that we will define later (see Appendix F and below for the 

definition of confidence noise). 

Note that we still normalize the stimulus strength 𝜇% relative to the sensory noise 𝜎% and sensory 

criterion 𝜃!	so as to obtain a unit-free measure of confidence that still reflects the potential 

perceptual bias of the observer. 

5. Generative Model of Confidence Evidence  

In the previous section, we have described the ideal and super-ideal confidence observers. We 

now consider four ways in which human confidence judgments can deviate from the ideal 

confidence observer. First, human observers can behave partially as the super-ideal confidence 

observer, thereby boosting their confidence sensitivity. Second, they can display some confidence 

noise that is impairing their ability to use their confidence evidence. Third, human observers can be 

inaccurate in their estimate of the sensory sensitivity, thereby generating over- or under-
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confidence. Finally, human observers can be inaccurate in their estimate of the sensory bias, 

thereby creating potential conflicts between sensory and confidence decisions. We now examine 

these four cases in turn. 

5.a. Confidence Boost 

We define confidence boost, noted 𝛼, the fraction of the super-ideal confidence observer that 

contributes to the human confidence evidence. If 𝛼 = 1, then the human observer is just like the 

super-ideal confidence observer, and if 𝛼 = 0, then the human observer behaves just like the ideal 

confidence observer. Confidence evidence now becomes a mixture of the evidence from the 

super-ideal and ideal confidence observers, namely 

 𝑤 = 	𝛼	. 𝑤super_ideal +	(1 − 𝛼)	. 𝑤ideal  . (5) 

Before we proceed further, we should clarify that this formulation of a weighted sum of the super-

ideal and ideal components is mainly a convenient mathematical way to describe all the 

information that can contribute to the confidence evidence. It is not, however, an assumption about 

the actual psychological mechanism underlying confidence judgments. In particular, we do not 

need to assume that observers have a separate and direct access to the stimulus when taking a 

second look at the stimulus. More likely, observers would refine their estimate of the validity of their 

perceptual decision by combining multiple pieces of noisy confidence evidence. In Appendix F, we 

present a more detailed generative model that distinguishes different sources of confidence 

evidence. 

The expression of the confidence evidence in Equation 5 can be rewritten as 

 𝑤 =	 (𝛼	. 𝜇% +	(1 − 𝛼)	. 𝑠	 −	𝜃!) 𝜎!⁄     

 𝑤 =	 (𝜇% +	(1 − 𝛼)	. 𝜖! 	− 	𝜃!) 𝜎!⁄   . (6) 

The effect of confidence boost on the psychometric function is shown in Figure 6A. This 

psychometric function should be compared to the one with the default parameters in Figure 2B. 

When confidence boost increases, we observe a steeper psychometric function for the confidence-

chosen trials. In other words, the observer is better able to discriminate correct from incorrect 

perceptual decisions. This is not surprising as the confidence boost reflects the ability of the 

observer to use more information at the metacognitive level. 
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5.b. Confidence Noise 

Just like sensory noise corrupts the sensory evidence, we introduce confidence noise that corrupts 

the confidence evidence. We model confidence noise as a zero-mean normal distribution with 

variance 𝜎"$ , such that a confidence noise sample 𝜖"  follows the distribution 𝜖" ∼ N(0, 𝜎"$). We 

assume that confidence noise is additive and independent of sensory evidence, so the new 

confidence evidence becomes  

 𝑤 =	 (𝜇% +	(1 − 𝛼)	. 𝜖! 	− 	𝜃!) 𝜎!⁄ 	+	𝜖"  . (7) 

Because confidence noise is unrelated to the sensory evidence, it is unit-less, and comparable 

across different tasks (see e.g. de Gardelle & Mamassian, 2014). The effect of confidence noise 

on the psychometric function is shown in Figure 6B. When the confidence noise increases, we 

obtain a shallower psychometric function for the confidence chosen trials. In other words, the 

observer is less able to discriminate correct from incorrect perceptual decisions. 

 

 

Figure 6. Influence of different model parameters on the psychometric functions. In 

these plots, the parameters are those listed in Table 2, except for one parameter. 
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Plotting conventions are the same as those used in Figure 2B. (A) The confidence 

boost is increased to 𝛼	 = 	0.8. (B) The confidence noise is increased to 𝜎* 	= 	2.0. (C). 

The confidence bias is increased to 𝛽	 = 	2.0 . (D). The confidence criterion is 

increased to 𝜃* = 1.0.  

 

5.c. Confidence Bias 

Sensory evidence needs to be scaled to generate the confidence evidence such that the latter is 

task-independent and unit-free. This is achieved by normalizing confidence evidence relative to the 

sensory sensitivity, and consequently, confidence evidence is a good proxy for the probability of 

being self-consistent in the perceptual decision (see again Appendix A). From the ideal confidence 

observer perspective, this scaling factor should be the inverse of the sensory noise (1 𝜎!⁄ ). We 

represent by 𝛽 the confidence bias which stands as a deviation away from this ideal scaling (this 

corresponds to replacing 1 𝜎!⁄  with 𝛽 𝜎!⁄ ). Values of 𝛽 larger than 1.0 indicate over-confidence, and 

values smaller than 1.0 under-confidence. Considering this misestimate of the sensory sensitivity 

leads to a new confidence evidence 

 𝑤 =	 (𝜇! +	(1 − 𝛼)	. 𝜖! 	− 	𝜃!)	. 𝛽/𝜎! 	+ 	𝜖"  . (8) 

The effect of confidence bias on the psychometric function is shown in Figure 6C. We observe that 

the psychometric function for the confidence chosen trials is not affected by the confidence bias 

(Figure 6C is identical to Figure 2B). This is not surprising since this parameter scales the 

confidence evidence in both intervals in the same way. Even though the effects of confidence bias 

are invisible here, we present below a condition where this confidence bias can be partially 

estimated (see section 11). 

5.d. Confidence Criterion 

Finally, human observers can use a criterion against which they measure their confidence that is 

distinct from the sensory criterion. We represent by 𝜃" the deviation of the confidence criterion 

away from the sensory criterion. Ideally this parameter is zero (𝜃" = 0), but when it is not, the 

confidence evidence becomes 

 𝑤 =	 (𝜇% +	(1 − 𝛼)	. 𝜖! 	− 	𝜃! −	𝜃")	. 𝛽/𝜎! 	+ 	𝜖"  . (9) 
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The effect of confidence criterion on the psychometric function is shown in Figure 6D. When the 

confidence criterion deviates from the sensory criterion, the point of subjective equality (PSE) for 

the confidence-chosen decisions (green curve) becomes different from the PSE for the original 

psychometric function (grey curve). The shift in PSE is coming from the inconsistency between the 

perceptual decision and what we will call the “pseudo perceptual decision” (see section 6.c), for a 

range of sensory values near the sensory criterion.  

6. Covariation of Sensory and Confidence Evidence  

Because of noise at the perceptual level or at the confidence level, sensory evidence and 

confidence evidence will vary across trials, even when the stimuli and the responses are the same. 

We will now characterize this variation, by defining the joint distribution of sensory and confidence 

evidence. This will allow us to produce summary statistics that will be useful for presenting the full 

model of the confidence comparison task. We note that previous models of confidence have 

discussed the joint distribution between sensory and confidence evidence (Fleming & Daw, 2017). 

However, it is important to appreciate that our definition is different from these previous studies 

because our joint distribution is derived from a generative model based on the introduction of 

confidence noise and confidence boost instead of being an arbitrary bivariate distribution function.  

6.a. Joint distribution for sensory and confidence evidence 

Considering all the possible deviations from the ideal confidence observer, the confidence 

evidence is following Equation 9 above. This evidence is normally distributed with mean 

 E[𝑤] = 	 (𝜇% − 𝜃! − 𝜃")	𝛽/𝜎! . (10) 

In addition, we note that confidence noise is independent of sensory evidence. This allows us to 

characterize the variance of the distribution of confidence evidence as 

 var[𝑤] = 	 (1 − 	𝛼)$𝛽$ 	+ 	𝜎"$ . (11) 
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Figure 7. Joint distribution of sensory and confidence evidence. On each trial, the 

participant has access to one sensory sample 𝑠  (blue arrow) and one confidence 

sample 𝑤 (green arrow) of the joint distribution 𝐻(𝑠, 𝑤). The blue distribution shown in 

Figure 5 is the marginal distribution of the sensory evidence. The green distribution in 

the right-hand panel is the distribution of confidence evidence for the particular 

sensory sample 𝑠 = 0.9 (it is the cross-section of the joint distribution along the blue 

line). The mean of this distribution is 𝑄(𝑠;	𝜇&, 	𝜎!) (see below, Equation 17), and its 

spread is the confidence noise 𝜎*. The strength of the confidence evidence on that 

particular trial is given by the magnitude of the sample 𝑤 (distance away from zero). 

 

Because both the sensory and confidence evidence are normally distributed, their joint distribution 

𝐻(𝑠, 𝑤) is a bivariate normal distribution. An example of this joint distribution is shown in Figure 7. 

The mean of the joint distribution 𝐻(𝑠, 𝑤) is obtained from the mean of the sensory evidence and 

the mean of the confidence evidence (see Equation 10) 

 E[	𝐻(𝑠, 𝑤)	] = [𝜇!	, (𝜇! − 𝜃! − 𝜃")	𝛽/𝜎!]  . (12) 

The covariance between 𝑠 and 𝑤 is obtained from Equation 9 

 cov(𝑠, 𝑤) = 	 (1 − 	𝛼)	𝛽	𝜎!	  , (13) 

so that the covariance matrix 𝐾 of the joint distribution 𝐻 is  
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 𝐾 = cov[	𝐻(𝑠, 𝑤)	] = 	 \
𝜎!$ (1 − 	𝛼)	𝛽	𝜎!

(1 − 	𝛼)	𝛽	𝜎! (1 − 	𝛼)$𝛽$ 	+ 	𝜎"$
]  . (14) 

It is worth noting the special case of the ideal confidence observer. In this case, 𝛼 = 0, 𝛽 = 1, 𝜎" =

0, and the covariance matrix reduces to 

 𝐾ideal =	 ^
𝜎!$ 𝜎!
𝜎! 1 _  . (15) 

The determinant of this covariance matrix is zero, indicating that there is a direct mapping between 

sensory evidence and confidence evidence: this is expected since without confidence noise, 

confidence and sensory evidence are perfectly correlated. 

One other special case of interest is the super-ideal confidence observer (𝛼 = 1) corrupted with 

some confidence noise, where the covariance matrix is 

 𝐾noisy_super_ideal =	^
𝜎!$ 0
0 𝜎"$

_  . (16) 

This covariance matrix is now diagonal, indicating that confidence and sensory evidences are 

independent. Here, the joint distribution 𝐻  has its main axes oriented along the sensory and 

confidence evidence axes. In other words, for a noisy super-ideal confidence observer, confidence 

evidence depends only on the stimulus strength and is independent from the sensory evidence for 

the current trial. 

6.b. Confidence Evidence Conditional on Sensory Evidence 

On any perceptual trial of a confidence pair, the observer first gets some sensory evidence, 

performs a perceptual decision based on this sensory evidence, and then estimates the confidence 

that this decision is self-consistent. Therefore, we need to estimate the distribution of confidence 

evidence for one particular value of sensory evidence 𝑠  (Figure 7, right-hand panel). This 

distribution of confidence evidence is P(𝑤	|	𝑠) and corresponds to a section of the joint distribution 

𝐻(𝑠, 𝑤) . This conditional distribution is normally distributed, and its mean (that we denote 

𝑄(𝑠;	𝜇!, 	𝜎!) for later use) and variance can be inferred from the mean and the covariance matrix of 

the joint distribution 𝐻 (Equations 12 and 14) 

 `	
E[𝑤	|	𝑠] = 𝑄(𝑠;	𝜇!, 	𝜎!) = [𝑠 + (𝜇! − 𝑠)	𝛼 − 𝜃! − 𝜃"]		𝛽	/	𝜎!

var[𝑤	|	𝑠] = 𝜎"$																																																																																									
    . (17) 
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As expected, we see that the variance of the confidence evidence, once the sensory evidence is 

known, is just the variance of the confidence noise. The mean is a biased and scaled version of 

the sensory evidence 𝑠. It is biased towards the representation of the original stimulus 𝜇! when the 

parameter 𝛼 is larger than zero, i.e. when the human confidence observer is behaving a bit like the 

super-ideal confidence observer. The scaling involves the parameter 𝛽 that is responsible for a 

proper calibration of confidence judgments, such that 𝛽 > 1 corresponds to over-confidence. 

6.c. Pseudo-Perceptual Decision 

The confidence evidence is the basis to judge whether the perceptual decision is self-consistent. 

One might be tempted to just use the absolute value of confidence evidence for this judgment, 

where larger absolute values reflect better chances to be self-consistent. However, this choice 

would disregard the actual perceptual decisions that were taken. Critically, to decide whether the 

perceptual decision is self-consistent, we need to evaluate whether the confidence evidence is 

consistent with the perceptual decision. For this purpose, we introduce the pseudo perceptual 

decision 𝐷′  that corresponds to the perceptual decision that would have been taken if the 

confidence evidence was used instead of the sensory evidence. By similarity to the definition of 

perceptual decisions in Equation 2 above, the pseudo perceptual decision is thus defined as 

 R
𝐷′ = R   	if		𝑤 > 0	,					

𝐷′ = L					otherwise   
  . (18) 

When the pseudo perceptual decision 𝐷′ is distinct from the perceptual decision 𝐷, this can be 

taken as an alert signal that the perceptual decision might be invalid. Therefore, we can define a 

new variable that reflects the diminished trust that the perceptual decision was valid when 𝐷′ is 

distinct from 𝐷. We define the signed confidence evidence as 

 𝑤+ = R
					|𝑤|   	if		𝐷 = 𝐷′	,					

−|𝑤|					otherwise   
  . (19) 

This signed confidence evidence is useful to estimate the probability that the perceptual decision is 

self-consistent given the current confidence evidence and perceptual decision, 

P(self-consistent	|	𝑤, 𝐷). Computing this probability is complex because it rests on the knowledge 

of all the parameters in our model. Whereas prior work has assumed that observers would be able 

to use this knowledge (Fleming & Daw, 2017), here we propose instead that human observers only 

have access to the current level of confidence evidence and what they decided perceptually. 

Therefore, we propose that the observer is computing the confidence probability defined as  
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 P(confident	|	𝑤, 𝐷) = 	Φ(w+)			, (20) 

where Φ is the cumulative of the standard normal distribution. In Appendix A, we show that the 

confidence probability is a reasonable proxy for the probability of being self-consistent given the 

current confidence evidence and perceptual decision. 

7. Comparing Confidence Across Two Perceptual Decisions 

In the confidence forced-choice paradigm, two intervals are presented to the observer who has to 

choose the one for which she feels more confident that her perceptual decision was self-

consistent. Therefore, we need to compare confidence across the two perceptual decisions of a 

confidence pair. 

7.a. Joint Sensory Evidence and Joint Confidence Evidence in a Confidence Pair 

Typically, the stimuli presented in the two intervals are independent from each other, so that we 

can assume that the sensory evidence in the two intervals is uncorrelated. Likewise, we assume 

that the confidence evidence in the two intervals is also uncorrelated1. It is convenient to represent 

sensory and confidence evidence across the two intervals as joint probability distributions (Figure 

8). 

 

 

1 At this stage, this is a simplifying assumption that might be invalid (for some evidence, see e.g. Rahnev et 
al., 2015; Bosch et al. 2020). However, let us consider briefly two scenarios. First, there might be some 
positive correlation coming from slow fluctuations of confidence (due for instance to fluctuations of arousal). 
We do not regard these fluctuations as a critical problem because the two intervals will be similarly affected. 
Second, there might be some negative correlation due to an exaggerated attention to one of the two 
intervals. In our model, we have a parameter that reflects part of this issue, the interval bias parameter 𝛾 
(see Appendix B and below for the definition of this parameter). 
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Figure 8. Joint distributions of sensory and confidence evidence across the two 

intervals of a confidence pair. (A) Joint distribution for the sensory evidence 𝐹(𝑠#, 𝑠$). 

In this example, stimulus 𝐴  is presented in interval 1 (𝜇# = 𝜇( ) and stimulus 𝐵  is 

presented in interval 2 (𝜇$ = 𝜇)), and are associated with the same level of sensory 

noise (𝜎#$ = 𝜎$$ = 𝜎!$). The joint distribution of the sensory evidence is shown as a 

contour plot in blue. A sample of this joint distribution is shown as a blue dot that has 

coordinates 𝑠# for interval 1 and 𝑠$ for interval 2. The perceptual decisions 𝐷# and 𝐷$ 

associated with this sample are both in favor of response 𝑅. (B) Joint distribution for 

the confidence evidence conditional on sensory evidence 𝐺(𝑤#, 𝑤$	|	𝑠#, 𝑠$). Because 

the perceptual decisions were 𝑅 for both intervals, the joint confidence distribution is 

likely to have its centre in the upper-right quadrant (contour plot in green). The pseudo 

perceptual decisions 𝐷#+  and 𝐷$+  are shown for the confidence evidence space.  

 

The joint distribution 𝐹(𝑠#, 𝑠$) for the sensory evidence across the two intervals is a bivariate 

normal distribution (Figure 8A) with mean and covariance 

 

⎩
⎨

⎧
	

E[	𝐹(𝑠#, 𝑠$)	] = [𝜇#, 𝜇$]

cov[	𝐹(𝑠#, 𝑠$)	] = p𝜎#
$ 0
0 𝜎$$

q		
    . (21) 

The joint distribution 𝐺(𝑤#, 𝑤$	|	𝑠#, 𝑠$)	 is the confidence evidence conditional on the sensory 

evidence across the two intervals (Figure 8B). It is a bivariate normal distribution with mean and 

covariance matrix 
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⎩
⎨

⎧
	

E[	𝐺(𝑤#, 𝑤$	|	𝑠#, 𝑠$)	] = [	𝑄(𝑠#; 	𝜇#, 	𝜎#), 𝑄(𝑠$; 	𝜇$, 	𝜎$)	]

cov[	𝐺(𝑤#, 𝑤$	|	𝑠#, 𝑠$)	] = ^
𝜎"$ 0
0 𝜎"$

_																																													
    .  (22) 

where the off-diagonal elements of the covariance matrix are zero because confidence evidence 

was assumed to be uncorrelated across intervals. The mean values are computed from Equation 

17. 

7.b. Confidence Decision Rule 

The final step in choosing the interval in the confidence forced-choice paradigm is to decide on a 

confidence decision rule. This decision rule uses the confidence evidence in both intervals to 

select the interval the observer believes her perceptual decision is more self-consistent than the 

other. To take into account the perceptual decision in the confidence judgment, we rely on the 

signed confidence judgment 𝑤+  described above (Equation 19). We define the choice of the 

confidence interval 𝐶 between intervals 1 and 2 as follows 

 𝐶 = arg max
,∈{#,$}

	(	𝑤,+	)  . (23) 

According to this definition, the confidence choice will be the interval for which the confidence 

evidence is the largest in magnitude, except if there is a mismatch between 𝐷 and 𝐷′, in which 

case the confidence choice will be the other interval. The impact of the inconsistency between 𝐷 

and 𝐷′ is illustrated in Figure 9A. This figure is reproduced from the previous example where the 

perceptual decisions were R in both intervals (Figure 8). Following Equation 23, interval 1 will be 

chosen if the confidence evidence lies in the contiguous half space in the lower-right. Applying the 

confidence decision rule to the other three scenarios of the perceptual decisions in intervals 1 and 

2 also leads to contiguous half-spaces that are consistent with a confidence choice in favor of one 

interval (Figure 9B). 
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Figure 9. Confidence decision rule. (A) Joint distribution for the confidence evidence 

conditional on sensory evidence 𝐺(𝑤#, 𝑤$	|	𝑠#, 𝑠$) when 𝑠# and 𝑠$ are both consistent 

with percept R. This plot is a replica of Figure 8B where eight different sectors are 

identified from the comparison of the signed confidence evidence across the two 

intervals. Sectors that lead to choosing interval 1 as more confident are shown in 

purple (𝐶 = 1), and those favoring interval 2 in cyan (𝐶 = 2). Confident choices in favor 

of interval 1 lie in a contiguous half-space located in the lower-right of the confidence 

evidence space. (B) Confidence choices for each of the four possible combinations of 

perceptual decisions across the two intervals. Labels of each panel correspond to the 

perceptual decisions in each interval (e.g. “(𝐷# = 𝐿,𝐷$ = 𝑅)” indicates that response 

category 𝐿 was chosen in interval 1 and 𝑅 in interval 2). The scenario “(𝐷# = 𝑅,𝐷$ =

𝑅)” illustrated in part (A) of the figure is shown in the upper-right panel. 

 

7.c. Interval Bias 

We have to consider one last aspect of the confidence forced-choice paradigm. It is plausible that 

participants will display some consistent bias in choosing the first or the second interval in all the 

confidence trials. This type of interval bias has been found to be significant in some individuals, 

and when it was present, it was relatively stable within individuals (de Gardelle & Mamassian, 

2015). If we denote by 𝛾 the bias in favor of interval 1, then we can rewrite Equation 23 as follows 

 R
	𝐶 = 1				if			𝑤#+ 	− 	𝑤$+ 	+ 𝛾 > 0

		
	𝐶 = 2				otherwise																					

				  . (24) 
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When there is a bias to choose interval 1 over interval 2 (𝛾 > 0), interval 1 might be preferred over 

interval 2 even when the perceptual decision in interval 2 was better than the one in interval 1. This 

leads to worse discriminability of chosen decisions in interval 1 as compared to interval 2 (Figure 

10). 

 

Figure 10. Effect of interval bias on psychometric function. In these simulations, there 

was a bias in favor of the first interval (𝛾 = 1.0). The other parameters are listed in 

Table 2. Plotting conventions are the same as those used in Figure 2B. 

 

The new division of confidence evidence space where intervals 1 and 2 are chosen should take 

into account this interval bias (Appendix B). 

8. Integrated Model for a Confidence Pair 

So far, we have considered what is happening on a single confidence pair. In order to make 

predictions from our model, we need to integrate all possible samples with their respective 

distributions. This is equivalent to simulating our model with an infinite number of trials. 

We start with the joint distribution 𝐺(𝑤#, 	𝑤$	|	𝑠#, 𝑠$)	of confidence evidence conditional on the 

sensory evidence across the two intervals. Equation 22 provides the mean and covariance of this 

joint distribution. Following the confidence decision rule, the probability of choosing interval 1 as 

more confident can be evaluated by integrating over the relevant part of the confidence space, 

which depends on the perceptual decisions (𝐷#, 𝐷$) (see Figure 9 and Appendix B). We need to 

consider separately the four cases corresponding to the 2 by 2 possible perceptual decisions 
(𝐷#, 𝐷$). As detailed above, when there is no interval bias (𝛾 = 0), this space is simply a half-space 

above or below one of the two diagonals (see Figure 9B). For instance, if both perceptual 

decisions are ‘R’ (top-right panel in Figure 9B), we have 
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 P(𝐶 = 1	|	𝑠#, 	𝑠$, 𝐷# = R, 	𝐷$ = R) = 	∫ ∫ 	𝐺(𝑥, 𝑦	|	𝑠#, 𝑠$) 𝑑𝑦 𝑑𝑥
1
23

43
23   . (25) 

Obviously, the probability of choosing interval 2 as more confident is 1 minus this probability. With 

a change of variables that rotates the confidence space by 𝜋 4⁄  counter-clockwise, the double 

integral in Equation 25 can be reduced to a single integral 

 
P(𝐶 = 1	|	𝑠#, 𝑠$, 	𝐷# = 'R', 	𝐷$ = 'R')																																																																			

= 	∫ 	𝜑~𝑣; 	~−𝑄(𝑠#; 	𝜇#, 	𝜎#) + 𝑄(𝑠$; 	𝜇$, 	𝜎$)� √2⁄ , σ*$�	𝑑𝑣
5
23

= Φ~	~𝑄(𝑠#; 	𝜇#, 	𝜎#) − 𝑄(𝑠$; 	𝜇$, 	𝜎$)� ~√2	𝜎"�� �																						
  , (26) 

where 𝜑(𝑥; 	𝜇, 	𝜎$) is the probability distribution function of the normal distribution with mean 𝜇 and 

variance 𝜎$, and Φ is again the cumulative distribution function of the standard normal distribution. 

We can proceed similarly, for the three other cases to cover all possible pairs of perceptual 

decisions in intervals 1 and 2, 

 	

P(𝐶 = 1	|	𝑠#, 𝑠$, 	𝐷#, 	𝐷$) =																																																																																																							

⎩
⎪
⎨

⎪
⎧Φ~	~𝑄(𝑠#; 	𝜇#, 	𝜎#) − 𝑄(𝑠$; 	𝜇$, 	𝜎$)� ~√2	𝜎*�� �							if		𝐷# = 'R'	&		𝐷$ = 'R'
Φ~	~𝑄(𝑠#; 	𝜇#, 	𝜎#) + 𝑄(𝑠$; 	𝜇$, 	𝜎$)� ~√2	𝜎*�� �							if		𝐷# = 'R'	&		𝐷$ = 'L'

				

Φ~	~−𝑄(𝑠#; 	𝜇#, 	𝜎#) − 𝑄(𝑠$; 	𝜇$, 	𝜎$)� ~√2	𝜎*�� �				if		𝐷# = 'L'	&		𝐷$ = 'R'			
Φ~	~−𝑄(𝑠#; 	𝜇#, 	𝜎#) + 𝑄(𝑠$; 	𝜇$, 	𝜎$)� ~√2	𝜎*�� �				if		𝐷# = 'L'	&		𝐷$ = 'L'			

  . (27) 

When there is an interval bias (𝛾 ≠ 0), these conditional probabilities are still cumulative normal 

functions, but over a larger or smaller domain (see Appendix B). 

When we consider all the possible pairs of sensory evidence presented in the two intervals, we see 

that the sensory criteria divide the sensory space into four quadrants (see again Equation 2). 

Applying Equations 27 to the relevant quadrants produces the confidence choice map shown in 

Figure 11B.  
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Figure 11. Joint distribution of sensory evidence and confidence choice map. (A) Joint 

distribution of sensory evidence (replica of Figure 8A reproduced here for 

convenience). The dashed grey lines indicate the location of the sensory criterion. The 

dashed blue lines indicate the stimulus strengths in intervals 1 and 2. (B) Confidence 

choice map. The probability of choosing interval 1 as more confident is plotted for each 

pair of sensory evidence values in intervals 1 and 2. Parameters for this example are 

listed in Table 2.  

 

The final step to compute the integrated model is to combine the probability of getting a particular 

pair of sensory evidence values (𝑠#, 	𝑠$) with its associated probability of choosing interval 1 as 

more confident. The former is the joint distribution of sensory evidences across the two intervals 

(Figure 11A) and the latter is the confidence choice map (Figure 11B). In layman’s terms, we need 

to multiply point by point Figure 11A with Figure 11B, and then integrate over the whole space. 

In formal terms, the probability of choosing interval 1 as more confident is 

   P(𝐶 = 1	|	𝐷#, 	𝐷$) =
∬ P7𝐶 = 1	8	𝑠#, 𝑠$, 	𝐷#, 	𝐷$9	.	P(%!,	%")	>%!	>%"#  

∬ P(%!,	%")	# 	>%!	>%"
     , (28) 

where Ω  is the quadrant of the space of sensory evidence across the two intervals that is 

compatible with the pair of perceptual decisions (𝐷#, 	𝐷$). For instance, when (𝐷#, 	𝐷$) = (R,	R), 

Ω = [𝜃%, +∞) × [𝜃%, +∞). We can easily compute a numerical approximation for this equation. The 

result for the different perceptual decisions forms a quadruplet of probabilities as shown in Figure 

12A. 
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Figure 12. Interval choice probabilities. (A) Quadruplet of confidence choice 

probabilities for a particular pair of stimuli in the two intervals. The probability of 

choosing interval 1 as more confidence is plotted for each pair of perceptual decisions 

in intervals 1 and 2. Labels for the bars correspond to the perceptual decisions in each 

interval (e.g. “LR” indicates that response category L was chosen in interval 1 and R in 

interval 2). (B) Effect of confidence boost on interval choice probability. (C) Effect of 

confidence noise on interval choice probability when the confidence boost is 𝛼 = 0. (D) 

Effect of confidence noise on interval choice probability when the confidence boost is 

𝛼 = 1. The four colored dots in panels (C) and (D) have the same set of four values of 

interval choice probabilities, therefore the corresponding pairs of confidence boost and 

confidence noise are equivalent confidence parameters. All parameters, other than the 

confidence boost in panels (B), (C) and (D), and the confidence noise in panels (C) 

and (D), are listed in Table 2. 
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9. Confidence Parameters Indeterminacy and Confidence Efficiency 

9.a. Confidence Parameters Indeterminacy 

It is instructive to look at the effects of the two main parameters of the model, namely the 

confidence boost and the confidence noise while keeping the other parameters of the model 

constant (see Appendix C). Figure 12B illustrates how increasing confidence boost makes the 

probability of choosing interval 1 deviate from chance level (0.5), for each pair of perceptual 

decisions. Whether each of these probabilities tends towards 0 or 1 depends on the sign of 
|𝜇# − 𝜃%| − |𝜇$ − 𝜃%| (Appendix C). 

Figures 12C and 12D illustrate the effect of confidence noise. As expected, increasing confidence 

noise makes confidence choices converge towards chance level. This convergence to chance 

level can be observed both when the confidence boost is small (Figure 12C) and large (Figure 

12D). 

Comparing Figures 12C and 12D, we can see that confidence boost and confidence noise have 

opposite effects on interval choice probability. In other words, different pairs of confidence boost 

and confidence noise trade off and can produce similar outcomes in terms of confidence choice 

probabilities. One such example is shown with dashed lines in Figures 12C and 12D. These lines 

indicate that for an arbitrary choice of confidence boost and confidence noise (𝛼 = 0, 𝜎* = 0.1), 

one can find other pairs of confidence boost and confidence noise (for instance, 𝛼 = 1, 𝜎* = 1.71) 

that give rise to similar quadruplets of choice probabilities. In other words, estimating both 

confidence boost and confidence noise is an underdetermined problem that we call confidence 

parameters indeterminacy, and we call equivalent confidence parameters the pairs of confidence 

boost and confidence noise that lead to the same confidence judgments. 

We note that confidence parameters indeterminacy is a generic problem for any confidence 

measurement method, not just the confidence forced-choice paradigm discussed here. In 

particular, a confidence rating task with a single stimulus strength and a single confidence rating 

criterion (high vs. low confidence judgments) leads to perfect ambiguity between confidence boost 

and confidence noise parameters (see Appendix G). One way to beat the curse of confidence 

parameters indeterminacy is to use multiple stimulus strengths. Increasing the range of stimulus 

difficulties reduces the uncertainty in the estimation of the confidence boost and confidence noise 

parameters, and transforms an underdetermined problem into an overdetermined one (see Figure 

D6 in Appendix D). 
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Confidence parameters indeterminacy highlights the difficulty in separating out the contribution of 

confidence boost and confidence noise in confidence judgments. However, in the next section we 

will see that one can define another metric of confidence performance that combines the 

contributions of confidence boost and confidence noise. 

9.b. Confidence Efficiency 

Given quadruplets of confidence choices, sets of equivalent confidence parameters are obtained 

by choosing the value of confidence boost and searching for the confidence noise that best 

approximates the confidence choices. Three examples of different sets of equivalent confidence 

parameters are shown in Figure 13A depicting the trade-off between confidence boost and 

confidence noise. The set of equivalent confidence parameters corresponding to the ideal 

confidence observer (blue curve in Figure 13A) is particularly important because it divides the 

(confidence noise, confidence boost) space into two parts. On its right are all the sets of equivalent 

confidence parameters that are worse than the ideal confidence observer (green shaded region in 

Figure 13A), and on its left, the ones that are better (red shaded region). We will come back to this 

distinction shortly, after defining confidence efficiency. 

Sets of equivalent confidence parameters that are better than the ideal confidence observer (e.g. 

the red curve in Figure 13A) are special because, for these, there exists no confidence noise that 

can lead to an equivalent confidence performance when the confidence boost is zero. In contrast, 

note that all sets of equivalent confidence parameters do cross the top horizontal line 

corresponding to the maximal confidence boost (𝛼 = 1; horizontal dashed line in Figure 13A). This 

property allows us to define the equivalent confidence noise 𝜏 which is the confidence noise of the 

equivalent confidence parameters that corresponds to (𝛼 = 1).  These equivalent confidence 

noises are shown as dots at the top of Figure 13A. The blue dot is the equivalent confidence noise 

𝜏ideal for the ideal observer. 

The equivalent confidence noise can help us summarize the sensitivity of the confidence 

judgments for a given set of equivalent confidence parameters, for instance the one shown in 

green in Figure 13A. We call this summary the confidence efficiency 𝜂 that we define from the 

inverse of the equivalent confidence noise variance 

 𝜂 = 	 𝜏ideal
$ 	 	𝜏human

$�   . (29) 

In this definition, we have normalized the equivalent confidence noise of the human observer by 

that of the ideal confidence observer, so that the confidence efficiency is exactly 1 for the ideal 

confidence observer. The ratio of equivalent confidence noises is squared to make confidence 
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efficiency analogous with the definition of efficiency for perceptual decisions (e.g. Kersten & 

Mamassian, 2009). Coming back to the two regions of Figure 13A defined by the ideal confidence 

observer, all sets of equivalent confidence parameters to the right of the curve traced by the ideal 

confidence observer have a confidence efficiency smaller than 1, and those to its left have a 

confidence efficiency greater than 1. 

 

 

Figure 13. Sets of equivalent confidence parameters and confidence efficiency. (A) 

Construction of the equivalent confidence noise. Each of the three colored curves 

shows one set of equivalent confidence parameters, namely the pairs of confidence 

noise and confidence boost that produce similar quadruplets of choice probabilities 

across all four possible perceptual decisions of a confidence pair. The blue curve 

corresponds to the ideal confidence observer (𝛼 = 0, 𝜎* = 0). It intersects the line of 

maximal confidence boost (𝛼 = 1; horizontal dashed line at the top) at a point called 

the equivalent confidence noise for the ideal confidence observer (τideal). For each set 

of equivalent confidence parameters, we can similarly find the equivalent confidence 

noise (e.g. the value τhuman  for the green curve that corresponds to a noisy ideal 

confidence observer (𝛼 = 0, 𝜎* = 1) ). (B) Confidence efficiency. The equivalent 

confidence noise can be used to compute the confidence efficiency (for the green set 

of equivalent confidence parameters in panel (A), the efficiency is 𝜂 = 0.285 ). By 

definition, confidence efficiency is 1 when both confidence boost and confidence noise 

are null. Confidence efficiency increases with confidence boost and decreases with 

confidence noise. Any pair of confidence noise and confidence boost that are to the 

right and below of the blue curve in panel (A) have a confidence efficiency smaller 

than 1, and those to the left and above have a confidence efficiency greater than 1. 
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Using our definition of confidence efficiency, we can assign a confidence efficiency for each pair of 

confidence noise and confidence boost (Figure 13B). Confidence efficiency runs from zero (no 

metacognition, obtained when confidence noise is very large) to infinity (super-ideal confidence 

observer, obtained when confidence boost is 1 and there is no confidence noise). By definition, 

confidence efficiency is 1 for all the pairs of confidence noise and confidence boost that are 

equivalent confidence parameters of the ideal confidence observer. 

10. Full Model and Parameters Estimation 

When we introduced the problem of confidence parameters indeterminacy in the previous section, 

we highlighted that confidence boost and confidence noise were difficult to estimate 

simultaneously. There are however small differences in the quadruplets of choice probabilities for 

different pairs of these parameters (compare again Figure 12A with Figure 12B) as long as the 

dataset contains comparisons across different stimulus strengths (see Figure D6 in Appendix D). 

In that case, there will be a pair of confidence boost and confidence noise that best explains all the 

choice probabilities. 

 

 

Figure 14. Parameter recovery of the model. The distributions of parameters were 

estimated from 500 simulated experiments. The estimated parameters were the 

sensory noise 𝜎% and the sensory criterion 𝜃% (first column), the gain in the slope of the 

psychometric functions between chosen and unsorted trials and the confidence 
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efficiency (second column). The full confidence model also attempted to infer the 

confidence boost 𝛼 and the confidence noise 𝜎*  (right panel). Estimated confidence 

boost and confidence noise are correlated, and this correlation is at the origin of the 

problem of confidence parameters indeterminacy. The original parameter values that 

were used in the simulations are shown as green lines. Two different confidence 

boosts were simulated, 𝛼 = 0.2 in blue and 𝛼 = 0.8 in orange. The other parameters 

are listed in Table 2. 

 

Assuming that the confidence pairs are independent from each other, we can obtain the set of best 

model parameters by summing the log likelihood of each confidence pair. An example of best fitted 

estimate is shown superimposed on the simulated data in Figure 3. In that figure, simulated 

parameters were 𝜎% = 1.0 , 𝜎* = 0.5 , 𝜃% = 0.25 , and 𝛼 = 0.2 . Estimated parameters were 𝜎�% =

0.999, 𝜎�* = 0.326, 𝜃�% = 0.245, 𝛼� = 0.122, and 𝜂̂ = 0.789 (𝜃* , 𝛽, and 𝛾 were fixed to their default 

values). We see that estimated parameters are near their theoretical values, but there are small 

deviations. 

To appreciate the faithfulness of our model parameters, we simulated 500 experiments with the 

same original parameters, and collected the distributions of the estimated parameters. Figure 14 

shows these distributions for two different values of confidence boost (𝛼 = 0.2 vs. 𝛼 = 0.8). We 

observe that these two values of confidence boost can be distinguished since their distributions do 

not overlap. In addition, both the gain in the slope of the psychometric functions and the efficiency 

measures are able to distinguish these two conditions, since the distributions are clearly 

segregated (middle column of Figure 14). 

The next figure shows simulations of the model with varying levels of confidence noise or varying 

levels of confidence boost (Figure 15). Critically, the estimated confidence noise follows very well 

the actual confidence noise for the two levels of confidence boost simulated (Figure 15A, top), and 

these levels of confidence boost are well-recovered independently of the confidence noise (Figure 

15A middle). The opposite holds when varying the confidence boost: the estimated boost tracks 

the simulated boost, both for simulations with high confidence noise and low confidence noise 

(Figure 15B middle), with a possible exception when confidence efficiency is extremely high 

(combination of high confidence boost and low confidence noise). In addition, the two simulated 

levels of confidence boost are well-recovered for any value of the confidence noise (Figure 15A 

middle) and the two simulated levels of confidence noise are well-recovered for any value of the 

confidence boost (Figure 15B top). In short, both confidence noise and confidence boosts can be 

recovered very well, at least within a reasonable range of values.  
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In Appendix D, we present parameter recovery for the remaining parameters of the model. The 

confidence noise and boost parameters are quite stable for different values of sensory noise. This 

is not surprising since, in the model, confidence evidence is normalized by sensory sensitivity, so 

the confidence noise and boost parameters should not depend on sensory noise. The confidence 

noise and boost parameters are also quite stable for different values of sensory and confidence 

criteria, at least as long as these criteria are within reasonable limits of the range of the presented 

sensory stimuli. Importantly, the confidence noise and boost parameters are very stable for 

different values of biases in favor of responding either the first or second interval. In this latter case 

though, confidence efficiency decreases as the interval response bias increases, because favoring 

one interval over the other necessarily impairs the accuracy of choosing the interval that was more 

likely to be self-consistent. Finally, the confidence noise and boost parameters are better 

recovered as more confidence pairs are tested in an experiment. If the number of confidence pairs 

is less than about 1,000, the confidence noise and boost parameters are estimated too 

imprecisely, but importantly the confidence efficiency remains a robust measure of meta-

perception. 
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Figure 15. Model recovery for a range of confidence noise and confidence boost. (A) 

The plots show estimated parameters for two different values of confidence boost, 𝛼 =

0.2 in blue and 𝛼 = 0.8 in red. The estimated parameters are confidence noise (top 

panel), confidence boost (middle), and efficiency (bottom). (B) The plots show 

estimated parameters for two different values of confidence noise, 𝜎* = 0.5 in blue and 

𝜎* = 2.0 in red. The thick lines are median estimated values across 𝑁 = 100 repeated 

simulations, and the shaded areas cover the 25th to the 75th interquartile range.  

 

At this stage, we have not presented the model recovery for the last parameter of the model, the 

confidence bias 𝛽. This is because this scaling factor affects both intervals equally, so its effects 

cancel out in the confidence forced-choice paradigm (see section 5.c). In a sense, the confidence 

forced-choice paradigm was designed to be immune to possible confidence biases, so it was 
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expected that this bias would be difficult to estimate. However, there is one scenario where the 

confidence bias can be recovered, at least up to a scaling factor, and this is what we explore next. 

11. Effects of Confidence Bias 

So far, we have considered that participants were performing the same perceptual task in both 

intervals of a confidence pair. However, it is interesting to consider the condition where the 

participant is asked to perform different tasks across the two intervals. This condition allowed us to 

claim that confidence was computed in a common currency, rather than in some metric that is 

tightly constrained by the dimension along which the task is performed (de Gardelle & Mamassian, 

2014; de Gardelle, Le Corre, & Mamassian, 2016).  

 

 

Figure 16. Effect of confidence bias on the psychometric functions. In these 

simulations, the first task was properly scaled (𝛽 = 1.0) but the observer was over-

confident in the second task (𝛽 = 2.0). As a result, whenever task 1 is competing with 

task 2 in a confidence pair, confidence choice is biased in favor of task 2 (indicated by 

larger green dots for task 2 than for task 1). All parameters except 𝛽 are identical 

across the two tasks and listed in Table 2. Plotting conventions are the same as those 

used in Figure 2B. 

 

A between-task confidence judgment also allows us to tackle an issue that we had to leave out 

when participants were performing the same task in both intervals of a confidence pair. This issue 

is whether participants are properly estimating their perceptual sensitivity in a task and correctly 

using this estimate to normalize their confidence evidence. In the model we described above, we 

assumed that this normalizing parameter 𝛽 was indeed 1.0 (no confidence bias). If only one task is 
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used, the effects of this parameter are invisible (Figure 6C is identical to Figure 2B), because the 

same scaling is applied to both confidence evidences of the two intervals. When two tasks are 

competing in the two intervals, the psychometric functions for the two tasks sorted by confidence 

judgments are now different (Figure 16). In general, though, comparing psychometric functions 

across tasks makes little sense because the units of stimulus strengths will be different. However, 

we will be able to run our model and try to best predict the probabilities of choosing with 

confidence one task over the other across all stimulus strengths and perceptual decisions. When 

two tasks are run, we cannot estimate both corresponding 𝛽 parameters, but we can estimate their 

ratios (see Appendix E). This allows us to estimate whether one task shows over- or under-

confidence relative to the other task. 

12. Re-Analysis of De Gardelle & Mamassian (2015) 

So far, we have looked at the ability of the model to simulate a confidence forced-choice 

experiment, and the faithfulness of the recovered parameters. We now apply this framework to the 

re-analysis of one of our previous studies. We choose the study of confidence for motion direction 

discrimination that was published in de Gardelle & Mamassian (2015). In that experiment, 

observers had to discriminate the mean direction of motion above or below a reference for a 

stimulus composed of multiple random dot motion. The strength of the stimulus was manipulated 

by varying the mean motion direction, where larger mean motion directions away from the 

reference are easier stimuli. In addition, there were two stimulus uncertainty levels, represented by 

the different ranges of motion directions of the dots within a stimulus. Given that these ranges are 

very different, we can apply the analysis of confidence biases that we discussed in section 11, 

where the two tasks correspond here to the two stimulus uncertainty levels. 

We present here parameter estimates based on the group data. This group data set corresponds 

to the data collected across all participants, after normalizing each participant to her own sensory 

noise and criterion. The analysis thus assumes that there is single set of model parameters shared 

across all participants. In this sense, this analysis can be seen as complementary to the one 

presented in the original paper (de Gardelle & Mamassian, 2015), where individual differences 

were emphasized. 

Parameter estimates for this experiment are shown in Figure 17. Confidence efficiency was about 

0.5, indicating that participants were clearly able to make meta-perceptual judgments (efficiency 

larger than 0) but less efficient than the ideal confidence observer (efficiency less than 1). 

Separating confidence efficiency into confidence noise and confidence boost, we found evidence 

that confidence in this task and for this stimulus was relying more on primary than secondary 

confidence evidence (confidence boost closer to zero than to one). We used likelihood ratio tests 



42 

 

for nested models (Mood, Graybill, & Boes, 1974) to test whether confidence boost was either zero 

or one. We computed the test statistic 𝜆DE = −2(𝜆5 − 𝜆#), where 𝜆5  is the log-likelihood of the 

constrained model where confidence boost is fixed to 0 (or 1), and 𝜆# is the log-likelihood of the 

unconstrained model where confidence boost is free to vary. If the model where confidence boost 

is fixed is correct, then this test statistic is asymptotically distributed as a 𝜒#$ random variable (the 

degrees of freedom is 1 because the two models differ by only one parameter). For the pooled 

participant, we could not reject the hypothesis that confidence boost was 0 (𝜒#$ = 1.69,	p = 0.194), 

but we could reject the hypothesis that confidence boost was 1 (𝜒#$ = 13.4,	p < 0.001). 

Confidence noise was estimated to be about 1 (this value does not have any unit and thus could 

potentially be compared to other confidence noise in other experiments). Finally, we also found a 

small but significant confidence bias, revealing an overconfidence for the high stimulus uncertainty 

relative to low stimulus uncertainty. In other words, on average, participants did not fully appreciate 

the effect of the stimulus noise on their sensory sensitivity. 

 

Figure 17. Model parameter estimates in a real study. Individual dots are estimates 

from 100 bootstrapped trials on the data collected over 15 observers. Data are from de 

Gardelle & Mamassian (2015).  

 

Our reported confidence efficiency is smaller than what is typically reported in the literature. At this 

stage, it would be hazardous to compare our confidence efficiency measure to the meta-d’/d’ 

approach (Maniscalco & Lau, 2012) given that we reported confidence efficiency for a single 

experiment. And before making this comparison, we should first note that our efficiency is based 

on a ratio of variances, whereas meta-d’/d’ involves a ratio of standard deviations. When this is 

taken into account, the meta-d’/d’ value of 0.77 reported initially by Maniscalco & Lau (2012) would 

amount to a ratio of variance of 0.59, which is not very different from our estimate of 0.5 reported 

here. Residual differences between our confidence efficiency measure and the meta-d’/d’ 
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approach can have different origins. These include different experimental procedures for the 

perceptual judgment, different experimental procedures for the confidence judgment, and different 

populations of participants. It will be worth computing this new efficiency measure over a large 

range of studies to better compare the two efficiency measures. 

13. Discussion 

In summary, we have presented here a generative model for the estimation of confidence in 

perceptual decisions. Our model considers confidence to be the evaluation that one’s perceptual 

decision is self-consistent, thereby highlighting that confidence is about a decision, not about the 

stimulus itself, its sensory uncertainty, contrast, duration or visibility. The self-consistency aspect of 

the definition emphasizes that the perceiver evaluates her own percept, rather than whether her 

percept is consistent with the true state of the world. Using this definition, we have proposed a 

model of perceptual confidence where the perceptual decision follows classical Signal Detection 

Theory (Green & Swets, 1966). We then assumed that confidence evidence scales with the 

distance between sensory evidence and the sensory criterion, where the scaling factor is inversely 

proportional to sensory noise. This confidence evidence is corrupted by confidence noise but can 

benefit from some confidence boost that corresponds to the possibility that confidence may rely on 

additional information compared to the sensory evidence. We identify three keys aspects by which 

our approach goes beyond previous work. 

First, we can theoretically differentiate between primary and secondary sources of information for 

the computation of confidence. To obtain this result, we described the behavior of an ideal agent 

that uses the same information as that used for the perceptual decision. This ideal confidence 

observer was contrasted to a super-ideal agent that uses a novel and perfect estimation of the 

stimulus for the purpose of the confidence judgment. An observer that relies exclusively on primary 

confidence evidence mimics the ideal confidence observer, albeit not optimally (see also Bang et 

al., 2019), whereas an observer that relies only on secondary evidence mimics the super-ideal 

confidence observer. The fraction of ideal and super-ideal observers in the confidence judgments 

is represented by the confidence boost parameter in our model. To be precise, this parameter 

reflects the fraction of all information used in confidence processing that was not used for the 

perceptual decision (see also Barrett, Dienes & Seth, 2013; Maniscalco & Lau, 2016; Fleming & 

Daw, 2017). As such, it may aggregate information from multiple sources, including non-sensory 

information such as motor signals (see e.g. Fleming et al., 2015; Wokke et al., 2020), or 

fluctuations of attention (see e.g. Recht et al., 2019), or sensory information that was processed 

after the perceptual decision took place (Baranski & Petrusic, 1998; Pleskac & Busemeyer, 2010). 

Similarly, we should emphasize that the noise corrupting the confidence evidence, although 
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quantified with a single parameter in our model, may aggregate multiple sources of inefficiencies, 

including noisy read-out of the perceptual evidence, but also influences from previous confidence 

judgments (Rahnev et al., 2015), or influences from other features that are not related to 

perceptual performance. Importantly, the confidence boost parameter was well recovered in our 

simulations that contained a large number of trials. We anticipate that the ability to distinguish 

between primary and secondary sources of confidence evidence will be an important asset of our 

model. 

Second, we propose a measure of efficiency that is genuinely anchored to the metacognitive level 

of computation. Our efficiency measure is obtained by comparing human confidence performance 

to that of the ideal confidence observer. The introduction of our confidence efficiency is motivated 

by a problem of confidence parameters indeterminacy between two parameters of our model, 

confidence noise and confidence boost. Both of these parameters are hard to differentiate in an 

experiment that contains only a limited range of stimulus strengths or a limited number of trials, but 

can be estimated when confidence is measured for multiple stimulus strengths. Our metric of 

confidence efficiency captures the trade-off between confidence boost and confidence noise, and 

importantly, it can be reliably estimated even when confidence is measured for a single stimulus 

strength. Our definition of confidence efficiency deviates from previous ones. For instance, in the 

now popular meta-d’ framework for analyzing confidence judgments (Maniscalco & Lau, 2012), no 

generative model is specified for confidence judgments. Under that framework, meta-d’ quantifies 

the sensitivity at the metacognitive level by estimating the first-order sensitivity that would be 

needed to observe the data if the metacognitive system were perfect. The M-ratio, that is the ratio 

of meta-d’ over d’, has been put forward as a measure of efficiency, but although it makes some 

intuitive sense, it does not correspond to a clear process. Other theoretical approaches to 

metacognition have described potential generative models for confidence judgments (e.g. Pleskac 

& Busemeyer, 2010; Sanders et al., 2016; Fleming & Daw, 2017), but they did not offer an 

efficiency measure based on these models.  

Third, our model can sometimes recover the confidence bias that corresponds to the mis-

estimation of one’s perceptual sensitivity. In our model, perceptual sensitivity is used to normalize 

confidence so that this latter can be compared across tasks and sensory modalities (de Gardelle & 

Mamassian, 2014; de Gardelle et al., 2016). As a consequence, overconfidence corresponds here 

to an over-estimation of one’s perceptual sensitivity. While the effects of confidence bias are 

invisible when one considers only one task, the ratio of confidence biases can be estimated when 

two tasks are compared. 

Confidence comparison between two tasks is particularly easy within the confidence forced-choice 

paradigm. In this paradigm, a confidence choice is taken between two perceptual decisions. Using 

our modelling framework, we have described the probabilities with which one perceptual decision 
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is associated with a larger confidence than the other decision, for different stimulus strengths and 

different commitments to perceptual decisions. Previous analyses of metacognitive abilities have 

had troubles to take into account varying difficulty levels. For instance, the classic measure of 

confidence resolution simply compares confidence in correct responses and errors, and ignores 

task difficulty. In the meta-d’ approach, one major limitation is that it is designed to analyze data 

where perceptual sensitivity is constant across trials (only one stimulus strength is used in the 

experiment). Failure to meet this assumption leads to overestimations of metacognitive sensitivity 

(see e.g. Rahnev & Fleming, 2019), because participants could be using variations of performance 

that cannot be used in the meta-d’ estimation procedure. Our confidence forced-choice method 

may allow researchers to overcome this obstacle.  

Our model involves a number of parameters and assumptions, which deserve scrutiny. We argue 

however that most assumptions of our model are relatively standard and supported in part by 

empirical evidence. Besides, the parameters we have introduced all have a clear interpretation, 

and can be recovered quite well (see section 10 and Appendices D and E). The output of our 

model is a signed confidence evidence that approximates the probability that the perceptual 

decision is self-consistent. When applied to the confidence forced-choice paradigm, the decision 

rule for confidence is a simple comparison of the signed confidence evidence between two trials, 

and does not involve any complex inference. In this respect, our approach appears less 

demanding than the actor-critic model of Fleming & Daw (2017). The reason is that, in our model, 

confidence evidence is obtained from sensory evidence in a simple processing step that involves 

some scaling and some additive noise. In contrast, in the model of Fleming & Daw (2017), 

confidence evidence is used to infer the full distribution of sensory evidence that would be 

compatible with this confidence evidence. This inferred sensory evidence does not necessarily 

match the actual sensory evidence, and this could explain potentially interesting paradoxical 

effects of action on confidence (e.g. Pereira et al., 2020). However, this inference has a cost, that 

of knowing the covariance between confidence evidence and sensory evidence. It is arguably 

unrealistic to assume that human participants have access to this latter knowledge, and it becomes 

computationally intense when multiple levels of difficulty are involved.  

We believe that our model could also be pertinent for the interpretation of data obtained with a 

more traditional confidence rating paradigm. In Appendix G, we show the initial steps to use the 

model with confidence rating data. The Appendix shows that for a single stimulus strength, we are 

faced with the problem of confidence parameters indeterminacy so that the confidence boost and 

confidence noise parameters cannot be jointly estimated. Presumably, these parameters can be 

estimated when multiple stimulus strengths are presented to the observer, but where to place 

optimally the confidence criteria becomes a serious issue. Further work is clearly necessary here. 
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One aspect of our model that appears non-trivial is the possibility that participants would use 

distinct decision criteria for the Type 1 response and for the Type 2 evaluation. This possibility was 

explicitly excluded in the meta-d’ framework. Our framework allows for it, although we anticipate 

that a reduced model without this additional criterion should suffice in most case. However, this 

parameter might be interesting to researchers in some situations, where participants have to 

combine sensory and non-sensory information about a stimulus. The non-sensory information can 

be a probabilistic cue, as in many decision-making studies (e.g. Locke et al., 2020), or an advice 

given by another observer, as for instance in Asch’s conformity experiment (Asch 1956). Here, as 

they face a tradeoff between optimality and accuracy, participants might use a Type 1 criterion that 

takes into account all the cues to make their own decision, but a Type 2 criterion that only 

considers their own sensory information when evaluating their confidence. Future research, both 

theoretical and empirical, may aim at understanding how metacognition unfolds in these situations 

of decision under influence. 

To conclude, our effort has focused on specifying a formal generative model where confidence can 

be both corrupted and boosted relative to the sensory evidence, and the application of this model 

to the confidence forced choice paradigm. Obviously, this generative model could be used to 

derive confidence ratings on a scale, which are most commonly used in experiments. Doing so 

would require introducing additional parameters for the mapping between internal and reported 

confidence (Aitchison et al., 2015), which the confidence forced choice paradigm naturally avoids. 

One other direction for future work is to extend the present model to other perceptual tasks, 

including detection tasks (see e.g. García-Pérez et al., 2011). Finally, since the simultaneous 

estimation of all parameters in our model require a large amount of data, the development of a 

Bayesian hierarchical estimation would be important to be able to collapse data across participants 

(Fleming, 2017). Ultimately, it will be interesting to compare the parameters of the generative 

model across tasks, sensory modalities, and participant populations. 
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