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Separable neural signatures of confidence
during perceptual decisions
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'Laboratoire des Systémes Perceptifs (CNRS UMR 8248), DEC, ENS, PSL University,
Paris, France; *Laboratoire de Neurosciences Cognitives et Computationnelles
(Inserm U960), DEC, ENS, PSL University, Paris, France

Abstract Perceptual confidence is an evaluation of the validity of perceptual decisions. While
there is behavioural evidence that confidence evaluation differs from perceptual decision-making,
disentangling these two processes remains a challenge at the neural level. Here, we examined the
electrical brain activity of human participants in a protracted perceptual decision-making task
where observers tend to commit to perceptual decisions early whilst continuing to monitor sensory
evidence for evaluating confidence. Premature decision commitments were revealed by patterns of
spectral power overlying motor cortex, followed by an attenuation of the neural representation of
perceptual decision evidence. A distinct neural representation was associated with the computation
of confidence, with sources localised in the superior parietal and orbitofrontal cortices. In
agreement with a dissociation between perception and confidence, these neural resources were
recruited even after observers committed to their perceptual decisions, and thus delineate an
integral neural circuit for evaluating perceptual decision confidence.

Introduction

Whilst perception typically feels effortless and automatic, it requires probabilistic inference to
resolve the uncertain causes of essentially ambiguous sensory input (Helmholtz, 1856). Human
observers are capable of discriminating which perceptual decisions are more likely to be correct
using subjective feelings of confidence (Pollack and Decker, 1958). These feelings of perceptual
confidence have been associated with metacognitive processes (Fleming and Daw, 2017) that
enable self-monitoring for learning (Veenman et al., 2004) and communication (Bahrami et al.,
2012; Frith, 2012). We are only just beginning to uncover the complex functional role of metacogni-
tion in human behaviour, and outline the computational and neural processes that enable metacog-
nition. The study of perceptual confidence offers promising insight into metacognition, because one
can use our detailed knowledge of perceptual processes to isolate factors which affect the computa-
tion of perceptual confidence.

At the computational level, perceptual decisions are described by sequential sampling processes
(Ratcliff, 1978; Vickers, 1970), in which noisy samples of evidence are accumulated over time, until
there is sufficient evidence to commit to a decision. The most relevant information for evaluating
perceptual confidence is the quantity and quality of evidence used to make the perceptual decision
(Kepecs et al., 2008; Moreno-Bote, 2010; Vickers, 1979). At the neural level, perceptual confi-
dence could therefore follow a strictly serial circuit: Relying only on information computed by per-
ceptual processes, with any additional processes contributing only to transform this information for
building the confidence response required by the task. Indeed, confidence (or a non-human primate
proxy for confidence) can be reliably predicted from the firing rates of neurons coding the percep-
tual decision itself (Kiani and Shadlen, 2009), suggesting that confidence may be a direct by-prod-
uct of perceptual processing. However, a large body of behavioural studies suggest that the
computation of confidence is not strictly serial. Confidence can integrate additional evidence after

Balsdon et al. eLife 2021;10:€68491. DOI: https://doi.org/10.7554/eLife.68491 1 of 39


https://doi.org/10.1101/2021.04.08.439033
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.68491
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access

eLife

Neuroscience

the observer commits to their perceptual decision (Pleskac and Busemeyer, 2010; Baranski and
Petrusic, 1994), and while this continued evidence accumulation could incorporate only perceptual
information, it implies that confidence evaluation does not directly follow from perceptual decision
commitment (and therefore involves at least partially dissociable neural processes).

There is also evidence that perceptual confidence can rely on separate (non-perceptual) sources
of information, such as decision time (Kiani et al., 2014) and attentional cues (Denison et al., 2018).
This suggests that the processes involved in the computation of perceptual confidence may not be
reduced to the same processes as for the perceptual decision. Higher order theories of metacogni-
tion propose a framework in which specialised metacognitive resources could be recruited for com-
puting confidence across all forms of decision-making (a general metacognitive mechanism). Indeed,
there is some evidence that confidence precision is correlated across different cognitive tasks (such
as memory and perception; Mazancieux et al., 2020), suggesting a common source of noise affect-
ing the computation of confidence across tasks (on top of the sensory noise; Bang et al., 2019;
Shekhar and Rahnev, 2021).

It is reasonable to expect that a general metacognitive mechanism relies on processing in higher
order brain regions. Several experiments have linked modulations in confidence with activity in a
variety of subregions of the prefrontal cortex (including the orbitofrontal cortex, Lak et al., 2014,
Masset et al., 2020; right frontopolar cortex, Yokoyama et al., 2010; rostro-lateral prefrontal cor-
tex, Fleming et al., 2012; Geurts et al., 2021; Cortese et al., 2016; see also Vaccaro and Fleming,
2018, for a meta-analysis). Moreover, disrupting the processing in subregions of the prefrontal cor-
tex (Fleming et al., 2014; Lak et al., 2014; Rounis et al., 2010) tends to impair (though not obliter-
ate) the ability to appropriately adjust behavioural confidence responses, whilst leaving perceptual
decision accuracy largely unaffected (although these results can be difficult to replicate, Bor et al.,
2017, Lapate et al., 2020, and may not generalise to metacognition for memory; Fleming et al.,
2014). A challenge in this literature is in specifically relating the neural processing to the computa-
tion of confidence, as opposed to transforming confidence into a behavioural response, or a down-
stream effect of confidence, such as the positive valence (and sometimes reward expectation)
accompanying correct decisions. Moreover, identifying how these neural mechanisms could be sepa-
rable from the underlying perceptual processes is important for understanding the computational
architecture of metacognition.

One promising avenue of research for separating the mechanisms of metacognition from percep-
tual processes has been to utilise tasks where the observer may integrate additional evidence for
confidence after they have committed to their perceptual decision (Fleming et al., 2018,
Murphy et al., 2015), which presumably relies on processing independent of the perceptual deci-
sion. These studies show that post-decisional changes in confidence magnitude correlate with signals
from the posterior medial frontal cortex. However, these signals could reflect processes occurring
downstream of confidence, such as an emotional response to the error signal, which has been shown
to drive medial frontal activity more strongly than decision accuracy (Gehring and Willoughby,
2002). Further research is therefore required to link neural processes specifically with the computa-
tion of perceptual confidence.

In this experiment, we aim to identify the neural processes specifically contributing to the compu-
tation of confidence, in a paradigm in which these processes can be delineated from those of per-
ceptual decision-making. We exploit a protracted decision-making task in which the evidence
presented to the observer can be carefully controlled. On each trial, the observer is presented with
a sequence of visual stimuli, oriented Gabor patches, which offer a specific amount of evidence
towards the perceptual decision. The orientations are sampled from one of two overlapping circular
Gaussian distributions, and the observer is asked to categorise which distribution the orientations
were sampled from. We manipulate the amount of evidence presented such that the observer tends
to covertly commit to their perceptual decision before evidence presentation has finished, whilst
continuing to monitor ongoing evidence for assessing their confidence (Balsdon et al., 2020). These
covert decisions are evident from behaviour and computational modelling, and we show similarities
between the neural processes of decision-making across conditions of immediate and delayed
response execution.

To examine the computation of confidence, we compare human behaviour to an optimal observer
who perfectly accumulates all the presented evidence for perceptual decisions and confidence evalu-
ation. The optimal observer must accurately encode the stimulus orientation, the decision update
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relevant for the categorisation, and add this to the accumulated evidence for making the perceptual
decision. We uncover dynamic neural representations of these variables using model-based electro-
encephalography (EEG), and examine how the precision of these representations fluctuate with
behavioural precision. We find two distinct representations of the accumulated evidence. The first
one reflects the internal evidence used to make perceptual decisions. The second representation
reflects the internal evidence used to make confidence evaluations (separably from the perceptual
evidence), and is localised to the superior parietal and orbitofrontal cortices. Whilst the perceptual
representation is attenuated following covert decisions, the confidence representation continues to
reflect evidence accumulation. This is consistent with a neural circuit that can be recruited for confi-
dence evaluation independently of perceptual processes, providing empirical evidence for the theo-
retical dissociation between perception and confidence.

Results

Preview

We present analyses to address two key hypotheses in this experiment: First, that observers are pre-
maturely committing to their perceptual decisions whilst continuing to monitor additional evidence
for evaluating their confidence. And second, that there are separable neural signatures of the evalua-
tion of confidence during perceptual decision-making. To address the first hypothesis, we use a
combination of behavioural analyses and computational modelling, and in addition, show that the
EEG signatures of response preparation are triggered from the time of decision commitment, even
when this occurs seconds prior to the response cue. To address the second hypothesis, we use the
stimulus evoked responses in EEG to trace the representation of the presented evidence throughout
each trial. We show that these neural representations of the optimal accumulated decision evidence
are less precise when the observers’ behavioural responses were also less precise relative to optimal.
We use this to isolate clusters of activity that specifically reflect the internal evidence used for
observers’ confidence evaluations beyond the presented evidence. We then localise the sources of
this activity, and relate these processes back to observers’ eventual confidence ratings.

The computational architecture of perceptual confidence
Human observers (N = 20) performed two versions of the task whilst EEG was recorded. Across the
two tasks, 100 predefined sequences of oriented Gabors were repeated for each observer, with
stimuli presented as described in Figure 1a. In the Free task, the sequence continued until observers
entered their perceptual decision (Figure 1b), indicating which category (Figure 1d) they thought
the orientations were sampled from. Observers were instructed to enter their response as soon as
they ‘felt ready’, on three repeats of each predefined sequence (300 trials in total). In the Replay
task (Figure 1c), observers were shown a specific number of samples and could only enter their
response after the response cue. After entering their perceptual decision, they made a confidence
evaluation, how confident they were that their perceptual decision was correct, on a four-point scale.
Importantly, the number of samples shown in the Replay task was manipulated relative to the Free
task, in three intermixed conditions: in the Less condition, they were shown two fewer than the mini-
mum they had chosen to respond to over the three repeats of that predefined sequence in the Free
task; in the Same condition, they were shown the median number of samples; and in the More condi-
tion, four more than the maximum. The variability across repeats in the Free task means that in the
More condition, observers were show at least four additional stimuli, but often more than that. There
is an optimal way to perform this task, in the sense of maximising perceptual decision accuracy
across trials. The optimal computation takes as decision evidence the log probability of each orienta-
tion given the category distributions (Figure 1d) and accumulates the difference in this evidence for
each category (Figure 1e, Drugowitsch et al., 2016). We refer to the accumulated difference in log
probabilities as the optimal presented evidence, L. Human observers may have a suboptimal repre-
sentation of this evidence, L*, and we estimate the contribution of different types of suboptimalites
(specifically, inference noise, and a temporal integration bias) with the help of a computational
model (full details in Materials and methods and Appendix 1).

Based on our previous findings (Balsdon et al., 2020), we expected observers to prematurely
commit to perceptual decisions in the More condition, whilst continuing to monitor sensory evidence
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Figure 1. Procedure. (a) Stimulus presentation: stimuli were presented at an average rate of 3 Hz, but with variable onset and offset

(vs € [83,133] ms, vs; + ve,_; > 216 ms; see Materials and methods). Stimuli were presented within a circular annulus which acted as a colour guide for
the category distributions. The colour guide and the fixation point were present throughout the trial. (b) Free task: on each trial observers were
presented with a sequence of oriented Gabors, which continued until the observer entered their response (or 40 samples were shown). 100 sequences
were predefined and repeated three times. (c) Replay task: The observer was presented with a specific number of samples and could only enter their
response after the cue (fixation changing to red). The number of samples (x) was determined relative to the number the observer chose to respond to
on that same sequence in the Free task (p). There were three intermixed conditions, Less (x = pmin — 2; where pmin is the minimum p of the three
repeats), Same (X = Pmed; Where peq is the median p) and More (x = ppax + 4; where pax is the maximum p of the three repeats of that predefined
sequence). (d) Categories were defined by circular Gaussian distributions over the orientations, with means -45° (¢, blue) and 45° (,, orange), and
concentration k = 0.5. The distributions overlapped such that an orientation of 45°was most likely drawn from the orange distribution but could also be
drawn from the blue distribution with lower likelihood. (e) The optimal observer accumulates the difference in the evidence for each category, which is
defined as the log probability of the sample orientation (f) given the distributions. The perceptual decision is determined by the sign of the
accumulated evidence, where the evidence accumulated across more samples better differentiates the true categories (example evidence traces are

coloured by the true category).

for evaluating their confidence. Replicating these previous results (Balsdon et al., 2020), we found
that perceptual decision sensitivity (d') was significantly decreased with just two fewer stimuli in the
Less condition compared to those same (p,;,) trials in the Free task (Wilcoxon sign rank Z = 3.88, p
< 0.001, Bonferroni corrected for three comparisons), but four additional stimuli in the More condi-
tion resulted in only a small but not significant increase compared to the p,.x trials in the Free task
(Z=-1.53, p = 0.13, uncorrected). There was also no significant difference for the Same condition (Z
=1.21, p = 0.23, uncorrected; Figure 2a).

This lack of substantial increase in performance in the More condition could be the result of either
a performance ceiling effect or a premature commitment to the perceptual decision. The former
explanation reflects a limitation of the perceptual evidence accumulation process, whereas the latter
refers to an active mechanism that ignores the final sensory evidence. We compared these two
hypotheses using a computational modelling approach (Balsdon et al., 2020; see
Materials and methods). Specifically, we compared a model in which performance in the More condi-
tion is limited by the suboptimalities evident from the Same and the Less conditions (inference noise,
and temporal integration bias, see Materials and methods and Appendix 1), to a model in which per-
formance could be impacted by a covert bound at which point observers commit to a decision irre-
spective of additional evidence. Cross-validated model comparison provided significant evidence
that observers were implementing a covert bound (mean relative increase in model log-likelihood =
0.048, bootstrapped p = 0.001, Figure 2c). The winning model provided a good description of the
data (red open markers in Figure 2a, and individual participants in Figure 2e).

In contrast to what we found for the perceptual decision, there was no evidence that observers
were implementing a covert bound on confidence: Implementing the same bound as the perceptual
decision did not improve the fit (relative improvement with bound = —0.007, bootstrapped p =
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Figure 2. Behaviour and computational modelling. (a) Proportion correct in each condition of the Replay task, relative to the Free task (orange
horizontal lines). Individual data are shown in scattered points, error bars show 95% between- (thin) and 95% within- (thick) subject confidence intervals.
Open red markers show the model prediction. (b) Distributions of the number of samples per trial in the Free task, and Replay task conditions (over all
observers). (c) Difference in log-likelihood of the models utilising a covert bound relative to the models with no covert bound. On the left, the model
fitting perceptual decisions only. The middle bar shows the difference in log-likelihood of the fit to confidence ratings with identical perceptual and
confidence bounds. The right bar shows the difference in log-likelihood of the fit to confidence ratings of the model with an independent bound for
confidence evidence accumulation. Error bars show 95% between-subject confidence intervals. (d) The computational architecture of perceptual and
confidence decisions, based on model comparison. Perceptual and confidence decisions accumulate the same noisy perceptual evidence, but
confidence is affected by additional noise (¢.) and a separate temporal bias (). This partial dissociation allows confidence evidence accumulation to
continue after the observer has committed to a perceptual decision. (e) Predicted proportion correct compared to actual proportion correct for each
observer, based on the fitted model parameters of the final computational model. The left panel shows proportion correct split by condition, and the
right, split by confidence rating. (f) Regression coefficients from the GLM analysis showing the relationship between the optimal evidence L, and
observers’ perceptual (top) and confidence (bottom) responses for trials split by condition. The right set of bars show the same analysis but with
evidence accumulated up to four samples from the response cue.

0.11, uncorrected) and an independent bound actually significantly reduced the fit compared to con-
tinued accumulation (relative improvement = —0.014, p = 0.022, Bonferroni corrected for two com-
parisons; Figure 2c). We obtained further distinctions between perceptual and confidence processes
through computational modelling: additional noise was required to explain the confidence ratings,
along with a separate temporal bias. The best description of both perceptual and confidence
responses was provided by a partially dissociated computational architecture (full details in Appen-
dix 1), where perceptual and confidence decisions are based on the same noisy representation of
the sensory evidence, but confidence accumulation incurs additional noise and can continue after
the completion of perceptual decision processes (Figure 2d, and the predictions of this model for
individual participants are show in Figure 2e). These computational differences between perceptual
decisions and confidence evaluations suggest deviations between the internal evidence on which
observers base their perceptual and confidence decisions (see Appendix 2 for model simulations).
These modelling results are supported by an analysis using general linear models to examine the
relationship between the optimal presented evidence, L, and observers' behaviour in the perceptual
decision and confidence evaluation. As stated above, L is the evidence that which maximises the
probability of a correct response: the accumulated difference in the log probabilities of the
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presented orientations given the category distribution (Figure 1e). First, we find the presented evi-
dence accumulated over all samples does explain substantial variance in observers’ perceptual deci-
sions (average B = 0.77, t(19) = 6.48, p < 0.001), and confidence evaluations (with the evidence
signed by the perceptual response; B = 0.24, t(19) = 6.46, p < 0.001). This suggests that the internal
evidence that observers were using to make their responses, L* correlated significantly with the
optimal evidence L (as has been found previously; Drugowitsch et al., 2016). Second, the total
accumulated evidence in the More condition was not a significantly better predictor of the observ-
ers’ perceptual decisions than the evidence up to four samples prior to the response (average differ-
ence in B = 0.034, t(19) = 1.63, p = 0.12), while for the Same and Less conditions the total
accumulated evidence was a significantly better predictor (Less: t(19) = 4.99, p < 0.001; Same: t(19)
= 3.11, p = 0.006; causing a significant interaction between condition and sample accumulated to F
(2,38) = 10.348, p = 0.001, Bonferroni corrected for three comparisons, Figure 2f, top). This sup-
ports the finding from model comparison and behaviour that observers implemented a covert bound
on perceptual evidence accumulation. And finally, this interaction was not present when examining
how the presented evidence affected confidence evaluations (F(2,38) = 3.124, p = 0.09, uncorrected,
Figure 2f, bottom). Rather, the accumulated evidence up to the final sample in the More condition
was a significantly better predictor of confidence than the evidence accumulated to four samples
from the response (average difference in 8 = 0.26, t(19) = 5.33, p < 0.001), supporting the prediction
from the computational model analysis that observers integrated all the presented evidence for eval-
uating confidence.

EEG signatures of premature perceptual decision commitment

The analysis of behaviour and computational modelling so far has suggested that observers were
committing to their perceptual decisions early in the More condition and ignoring the additional evi-
dence for their perceptual decision. We questioned the extent of this covert decision commitment,
that is, whether observers were going as far as to plan their motor response before the response
cue. We examined the neural signatures of the planning and execution of motor responses using a
linear discriminant analysis of the spectral power of band-limited EEG oscillations (see
Materials and methods). Initial analysis suggested the spectral power in the 8 to 32 Hz frequency
range (the ‘alpha’ and ‘beta’ bands) could be used to classify perceptual decisions based on lateral-
ised differences over motor cortex (Appendix 5). A classifier was trained to discriminate observers’
perceptual decisions at each time-point in a four second window around the response in the Free
task (3 s prior to 1 s after). This classifier was then tested across time in each condition of the Replay
task, to trace the progression of perceptual decision-making in comparison to the Free task (where
decisions are directly followed by response execution). If covert decisions lead to early motor
response preparation, we would expect asymmetries in cross-classification performance on trials
where the observer was likely to have covertly committed to a decision (in the More condition) com-
pared to those trials in which they were unlikely to have committed to their decision (in the Less con-
dition). Indeed, there were opposite asymmetries in the cross-classification of the Less and the More
conditions (Figure 3a). Statistical comparison revealed substantial clusters of significant differences
(Figure 3b): Training around —0.78 to 0.44 s from the time of the response in the Free task led to
significantly better accuracy testing in the More condition than in the Less condition, prior to when
the response was entered (for the cluster testing at —2.5 to —1.6 s Z,,. = 2.04, pjuster = 0.002; test-
ing at —1.5to —1s, Z,e = 1.95, pcuster = 0.01; testing at —0.8 to —0.3, Z,ve = 2.32, pejuster < 0.001).
This pattern of findings suggests that observers were not only committing to their perceptual deci-
sion early, but already preparing their motor response.

As an exploratory analysis, we took the strength of the classifier prediction trained and tested at
the time of the response as a trial-wise measure of the decision variable used by the participant to
enter a response. We reasoned that the amount of evidence in favour of the decision could influence
the assiduity with which observers enter their response. We found that the optimal evidence L, accu-
mulated over all samples, could predict the strength of the classifier prediction at response time
(mean B =0.11, t(19) = 3.89, p < 0.001; Figure 3c). For the Same and Less conditions, the weight on
the accumulated evidence appeared to decrease as evidence was accumulated to samples further
prior from the response. But, in the More condition, the evidence accumulated up to four samples
prior to the response still predicted the strength of the classifier prediction (t(19) = 3.81, p = 0.001).
This difference between conditions over samples is evidenced by a significant interaction based on a
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Figure 3. EEG signatures of premature perceptual decisions. (a). Classifier AUC training at each time-point in the
Free task and testing across time in the Less (top), Same (middle), and More (bottom) conditions of the Replay
task. Black contours encircle regions where the mean is 3.1 standard deviations from chance (0.5; 99% confidence).
(b) Difference in AUC between the More and Less conditions. Cluster corrected significant differences are
highlighted. (c) The relationship between the evidence accumulated up to n samples prior to the response cue
and the strength of the neural signature of response execution in each condition. Error bars show 95% within-
(thick) and between-subject (thin) confidence intervals.

repeated measures ANOVA (F(8,152) = 2.429, p = 0.05, after Bonferroni correction for three com-
parisons). Leading up to the response, the accumulated evidence becomes increasingly predictive of
the strength of the classifier prediction, except in the More condition, where this prediction is
already accurate up to four samples prior to the response: After committing to a perceptual deci-
sion, the observer’s perceptual response is no longer influenced by additional evidence.

Representations of decision evidence in EEG signals

Our main goal was to isolate the neural signatures of the computation of confidence. Observers'
behaviour varied with the optimal evidence L presented to them, but the internal evidence on which
they based their perceptual decisions and confidence evaluations, L*, clearly deviated from L. In
other words, the observers' behavioural performance was not optimal. To identify the neural compu-
tations underlying human behaviour, we therefore began by isolating the neural signals which corre-
late with L. We then isolated where and when deviations in the neural representation of L covary
with deviations in L* - the internal evidence reflected in observers’ behaviour.

To perform this task the optimal observer must encode the orientation of the stimulus, estimate
the decision update based on the categories, and add this to the accumulated evidence for discrimi-
nating between the categories (Wyart et al., 2012; Wyart et al., 2015). We examined the neural
representation of these optimal variables using a regression analysis with the EEG signals (evoked
response, bandpass filtered between 1 and 8 Hz, see Materials and methods). At each time point,
we used the relationship between the pattern of neural activity and the encoding variables on 90%
of the data to predict the encoding variables on the remaining 10% of the data (10-fold cross valida-
tion). The precision of the neural representation was calculated as the correlation between the
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predicted encoding variable and actual encoding variable in the held-out data, across all 10 folds
(see Materials and methods). Figure 4a shows the time course of the precision of the neural repre-
sentation of stimulus orientation, momentary decision update, and accumulated evidence (L), locked
to stimulus onset. The precision of the representations of these variables showed distinct time
courses and relied on distinct patterns of EEG activity over scalp topography (Figure 4b). There was
a transient representation of stimulus orientation localised over occipital electrodes. The representa-
tion of the momentary decision update was maintained for a longer duration, initially supported by
occipital electrodes, then increasingly localised over central-parietal electrodes. The representation
of the accumulated evidence was sustained even longer and relied on both frontal and occipital
electrodes.

The internal evidence on which observers base their response, L*, can differ from the optimal evi-
dence, L. When the eventual behavioural response differs from that predicted by L, L* is likely to be
more different from L. A neural representation of L that reflects L* (that is, reflecting the underlying
processing responsible for behaviour) should also be less precise for samples in these trials. For each
variable, we estimated the representation precision separately for epochs leading to behavioural
responses that differed from the optimal response (based on L), and responses that matched those
of the optimal observer (Replay task epochs only; Figure 4c; Appendix 3). For perceptual decisions,
the optimal observer responds with the correct category. For confidence evaluations, the optimal
observer gives high confidence on trials with greater than the median evidence (over all trials) for
their perceptual response. The precision of the representation of stimulus orientation did not
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significantly vary based on whether behaviour matched the optimal response. The representation
precision of the momentary decision update showed a significant effect for the perceptual decision
from 380 to 468 ms (F..g(1,19) = 7.97, Pciuster = 0.008) and a significant interaction between percep-
tual and confidence responses from 396 to 468 ms (F,,g(1,19) = 6.66, pciuster = 0.022) and from 716
to 856 ms (Fa,(1,19) = 10.75, pguster < 0.001). The largest effects were seen in the representation
precision of the accumulated evidence. Representation precision was significantly reduced in epochs
leading to non-optimal perceptual decisions from 108 ms post stimulus onset to the end of the
epoch (F,ug(1,19) = 13.65, pcjuster <0.001). In addition, there was a significant interaction with confi-
dence from 696 to 836 ms (F,,g(1,19) = 8.72, pcjuster = 0.005). The precision of the EEG representa-
tions therefore showed distinct associations with behaviour.

The presence of a covert bound implies that, after the observer commits to a decision, they no
longer incorporate additional evidence for that decision. We should therefore see significant
decreases in the precision of representations that specifically contribute to perceptual evidence
accumulation. Indeed, the precision of the early representation of accumulated evidence was signifi-
cantly attenuated for the last four samples of the More condition (in which observers were likely to
have already committed to a decision), compared to the last four samples of the Less condition
(where observers were unlikely to have committed to a decision; from the start of the epoch to 424
ms, Figure 4d; t,,4(19) = —5.19, pciuster<0.001). These differences in representation precision were
not present for the encoding of stimulus orientation, nor the decision update, suggesting that these
processes may reflect input to perceptual evidence accumulation, but not the accumulation process
itself. As a control analysis, this decreased precision was not evident in a comparison of the first four
samples (Appendix 6), suggesting this effect on the representation of accumulated evidence is spe-
cific to those samples likely to have occurred after perceptual decision commitment, as opposed to
those samples in More condition trials per se. Together, these comparisons suggest that different
aspects of these evolving EEG representations of decision variables are related to the neural pro-
cesses for perception and confidence.

Neural processes for confidence

The analysis above shows that the EEG representation of accumulated evidence reflected greater
differences from the optimal presented evidence L in trials where behaviour does not match the
optimal response. This suggests that the corresponding neural signals reflect more closely L* (the
internal evidence actually used by observers to decide) than L. To isolate the neural signals which
reflect L*, we assume that L* approximates L with normally distributed errors, and that these errors
have larger variance on trials leading to responses that do not match the optimal evidence L (a simi-
lar approach as in van Bergen et al., 2015). We used multivariate Bayesian scan statistics
(Neill, 2011; Neill, 2019) to cluster signals in space (electrode location) and time where the variance
from L in the neural representation corresponded to deviations in L* based on behaviour. The statis-
tic tested whether the variability in the neural representation was related to L* to a greater extent
than could be explained by measurement noise alone (see Appendix 7 for further details). In this
way, the statistic isolates signals more closely related to L* than can be explained by L, taking into
account the noise affecting our measurement of these neural signals.

For perceptual decision-making, signals related to L* were initially clustered over posterior elec-
trodes, becoming dispersed over more anterior electrodes late in the epoch (Figure 5a, top). For
confidence, we found two co-temporal clusters in posterior and anterior electrodes emerging from
668 ms to 824 ms from stimulus onset (Figure 5a, bottom). In Figure 5a, we highlight an early pos-
terior cluster of signals strongly related to L* for perceptual decisions, that was not diagnostic of
confidence evaluations (in fact the evidence was in favour of the null hypothesis; summed log likeli-
hood ratio = —1176). We obtained cluster-wide representations of L from the signals in this early
posterior cluster and the two confidence related clusters. The precision of these representations is
shown in Figure 5b, left. That the information from these clusters is not redundant is evident from
the fact that combining the clusters improves the representation precision (Figure 5b). For simplic-
ity, we combined the two confidence clusters for further analysis. Similar to the previous analysis
(Figure 4d), the representation precision of the early posterior cluster was attenuated for the last
four samples of the More condition. But, the representation precision of the confidence cluster was
maintained (a repeated measures ANOVA revealed a significant interaction between cluster and
condition for decoding precision in the last four samples, F(1,19) = 32.00, p = 0.001, Bonferroni
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corrected for three comparisons). These results are consistent with dissociable stages of neural proc-
essing for confidence evaluation and perceptual decision-making, and support the computational
modelling in suggesting a partial dissociation between the internal evidence used for making per-
ceptual decisions and confidence evaluations.

We used the representation from the confidence cluster as an estimate of the internal evidence
on which observers base their confidence ratings. We then took the difference from L in the estimate
of L* from the cluster representation as an estimate of the single-sample inference error. This esti-
mate of the single-sample inference error was significantly correlated with the single-sample infer-
ence error estimated from the computational model of confidence ratings (t(19) = 5.12, p < 0.001),
and this correlation was significantly greater than the correlation with the error estimated from the
model of perceptual decisions alone (t(19) = 2.62, p = 0.017; see Appendix 8). This suggests that
this cluster representation is indeed reflecting activity specific to the computation of confidence.

We asked what processes were responsible for driving variability in the internal evidence for con-
fidence beyond what could be explained by the evidence presented to the observer. We selected
‘Noise Min" and ‘Noise Max' epochs as the top and bottom quartile of epochs sorted by the esti-
mate of the inference error from the cluster representation, and examined the source-localised EEG
activity across these epochs. The presented sensory evidence was similar across Noise Min and
Noise Max epochs (see Appendix 8), but the additional variability in the Noise Max epochs pushes
the represented evidence further from the mean, and should therefore correspond to a greater
absolute normalised signal. We estimated the sources of activity in the Noise Min and Noise Max
epochs using a template brain (see Materials and methods) and tested for differences in the rectified
normalised current density in ROIs defined based on the previous literature (Figure 5c;
Graziano et al., 2015; Gherman and Philiastides, 2018; Herding et al., 2019, see Appendix 9). As
expected, Noise Max epochs showed a greater increase in current density power over time. Signifi-
cant differences first emerged in the superior parietal cortex (Figure 5d; 276 to 304 ms; t,,4(19) =
2.37, Peiuster = 0.016, re-emerging at 596 to 748 ms; t.,4(19) = 2.53, pejuster = 0.016; and 912 ms;
tavg(19) = 2.50, pejuster = 0.014), and then in the orbitofrontal cortex (OFC; 516 to 556 ms; t.,4(19) =
2.30, Pejuster = 0.022, re-emerging at 660 to 772 ms; t,,g(19) = 2.79, pciuster = 0.032, and 824 to 1000
ms; tayg(19) = 2.60, peuster = 0.022). No differences in the rostral middle frontal cortex nor lateral
occipital cortex survived cluster correction.

Whilst the activity localised to the superior parietal cortex reflected stimulus driven computations
(the consecutive peaks correspond temporally to the response to subsequent stimuli), the activity
localised to the orbitofrontal cortex was more indicative of an accumulation process across samples
(a smoother increase in signal over time). As an exploratory analysis, we tested whether the activity
localised to the orbitofrontal cortex could predict observers' confidence ratings, presumably by
accumulating evidence for evaluating confidence up to the observers’ perceptual decision response.
Indeed, the activity localised to the orbitofrontal cortex predicted observers’ confidence ratings,
based on the predictions of a generalised linear model with 90/10 cross validation: the standardised
regression coefficients increased up to and continued after the perceptual decision response
(Figure 5e, a significant cluster was located from —300 to 520 ms around the time of the response;
tave(19) = 3.46, cluster-corrected p < 0.001).

Discussion

We examined the dynamic neural signals associated with the accumulation of evidence for evaluat-
ing confidence in perceptual decisions. Observers were required to integrate evidence over multiple
samples provided by a sequence of visual stimuli. When observers were unable to control the
amount of evidence they were exposed to, they employed a covert decision bound, committing to
perceptual decisions when they had enough evidence, even if stimulus presentation continued. We
had previously shown evidence for this premature decision commitment based on behaviour and
computational modelling (Balsdon et al., 2020). We replicated these results here, and further exam-
ined the neural signatures of covert decision making. We found that the distribution of spectral
power associated with the preparation and execution of motor responses in the Free task (where the
response is entered as soon as the decision is made) could be used to accurately predict responses
in the More condition of the Replay task over 1 s prior to when the response was entered, and with
significantly greater sensitivity than in the Less condition (when observers were unlikely to have
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committed to a decision early). This suggests that covert decisions could trigger the motor prepara-
tion for pressing the response key. Moreover, the strength of the eventual motor response signal
could be predicted by earlier decision evidence in the More condition, as if observers are maintain-
ing some representation of the decision evidence whilst waiting to press the response key.

Based on the evoked representation of accumulated evidence, perceptual decision accuracy
relied on a flow of information processing from early occipital and parietal signals, which then spread
through to anterior electrodes. When observers committed to perceptual decisions prematurely,
only the early part of the representation of accumulated evidence was attenuated. This selective
dampening of the representation of accumulated evidence following premature decision commit-
ment delineates which computations are devoted solely to the perceptual decision process, and
which computations reflect the input to the decision process: The representations of stimulus orien-
tation and decision update (Wyart et al., 2012; Wyart et al., 2015; Weiss et al., 2021), which are
necessary input for the perceptual decision, did not substantially change after committing to a per-
ceptual decision. This initial perceptual processing stage likely remained important for the continued
accumulation of evidence for evaluating confidence (even after the completion of perceptual deci-
sion processes), though it could also be that these processes are automatically triggered by stimulus
onset irrespective of whether the evidence is being accumulated for decision-making.

Confidence should increase with increasing evidence for the perceptual decision. It is therefore
unsurprising that the neural correlates of confidence magnitude have found similar EEG markers as
those related to the accumulation of the underlying perceptual decision evidence: the P300
(Gherman and Philiastides, 2015; Desender et al., 2016; Desender et al., 2019,
Zakrzewski et al., 2019, Rausch et al., 2020) and Central Parietal Positivity (CPP; Boldt et al.,
2019; Herding et al., 2019, indeed we show a similar effect in Appendix 4). The analysis presented
in this manuscript targeted confidence precision rather than confidence magnitude, by assessing
confidence relative to an optimal observer who gives high confidence ratings on trials where the evi-
dence in favour of the perceptual choice is greater than the median across trials. We isolated part of
the neural representation of accumulated evidence where imprecision relative to the optimal pre-
sented evidence predicted greater deviations from optimal in the internal representation of evidence
used for confidence evaluation implied from behaviour. The internal evidence predicted from this
neural representation was also more strongly related to the evidence for confidence than the evi-
dence used for perceptual decisions based on the computational model fit to describe behaviour.

We analysed the sources of activity more closely representing the internal evidence on which the
confidence evaluation was based than the optimal presented evidence. Activity localised to the
superior parietal and orbitofrontal cortices was found to track this internal evidence for confidence
throughout decision-making. This is not at odds with the previous literature: The difference in supe-
rior parietal cortex could be linked with findings from electrophysiology that suggest that confidence
is based on information coded in parietal cortex, where the underlying perceptual decision evidence
is integrated (Kiani and Shadlen, 2009; Rutishauser et al., 2018; though at least a subset of these
neurons reflect bounded accumulation, which is in contrast with the continued confidence accumula-
tion described in this experiment; Kiani et al., 2008). Early electrophysiological investigation into
the function of the orbitofrontal cortex revealed neural coding associated with stimulus value
(Thorpe et al., 1983), which has since been linked with a confidence-modulated signal of outcome-
expectation (Kepecs et al., 2008; and in human fMRI; Rolls et al., 2010) and recently, shown to be
domain-general (single OFC neurons were associated with confidence in both olfactory and auditory
tasks; Masset et al., 2020). The source localisation analysis therefore connects previous findings,
indicating confidence feeds off an evidence accumulation process, culminating in higher order brain
areas that appear to function for guiding outcome-driven behaviour based on decision certainty.

These neural signatures of confidence evidence encoding were present throughout the process
of making a perceptual decision. This is in line with more recent evidence suggesting that confidence
could be computed online, alongside perceptual evidence accumulation (Zizlsperger et al., 2014,
Gherman and Philiastides, 2015; Balsdon et al., 2020), as opposed to assessing the evidence in
favour of the perceptual decision only after committing to that decision. Computational model com-
parison supported this interpretation, showing the best description of confidence behaviour was an
accumulation process that was partially dissociable from perceptual evidence accumulation (Appen-
dix 1; replicating our previous analysis, Balsdon et al., 2020). This partial dissociation mediates the
ongoing debate between single-channel (for example, Maniscalco and Lau, 2016) and dual-channel
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(for example, Charles et al., 2014) models, as it constrains confidence by perceptual suboptimal-
ities, at the same time as allowing additional processing to independently shape confidence. The
combination of this partial dissociation and online monitoring could allow for metacognitive control
of perceptual evidence accumulation, to flexibly balance perceptual accuracy against temporal effi-
ciency, by bounding perceptual evidence accumulation according to contemporaneous confidence.
Using this protocol, we were able to delineate two distinct representations of accumulated evi-
dence which correspond to perceptual decision-making and confidence evaluations. These neural
representations were partially dissociable in that the perceptual representation neglected additional
evidence following premature decision commitment whilst the confidence representation continued
to track the updated evidence independently of decision commitment. This partial dissociation vali-
dates the predictions of the computational model and provides a framework for the cognitive archi-
tecture underlying the distinction between perception and confidence. That the neural resources
involved in the confidence representation can be recruited independently of perceptual processes
implies a specific neural circuit for the computation of confidence, a necessary feature of a general
metacognitive mechanism flexibly employed to monitor the validity of any cognitive process.

Materials and methods

Participants

A total of 20 participants were recruited from the local cognitive science mailing list (RISC) and by
word of mouth. No participant met the pre-registered (https://osf.io/346pe/) exclusion criteria of
chance-level performance or excessive EEG noise. Written informed consent was provided prior to
commencing the experiment. Participants were required to have normal or corrected to normal
vision. Ethical approval was granted by the INSERM ethics committee (ID RCB: 2017-A01778-45 Pro-
tocol C15-98).

Materials

Stimuli were presented on a 24’ BenQ LCD monitor running at 60 Hz with resolution 1920 x 1080
pixels and mean luminance 45 cd/m?. Stimulus generation and presentation was controlled by MAT-
LAB (Mathworks) and the Psychophysics toolbox (Brainard, 1997; Pelli, 1997, Kleiner et al., 2007),
run on a Dell Precision M4800 Laptop. Observers viewed the monitor from a distance of 57 cm, with
their head supported by a chin rest. EEG data were collected using a 64-electrode BioSemi Active-
Two system, run on a dedicated mac laptop (Apple Inc), with a sample rate of 512 Hz. Data were
recorded within a shielded room.

Stimuli

Stimuli were oriented Gabor patches displayed at 70% contrast, subtending four dva and with spa-
tial frequency two cyc/deg. On each trial a sequence of stimuli was presented, at an average rate of
3 Hz, with the stimulus presented at full 70% contrast for a variable duration between 50 and 83 ms,
with a sudden onset, followed by an offset ramp over two flips, where the stimulus contrast
decreased by 50% and 75% before complete offset. Stimulus onset timing was jittered within the
stimulus presentation interval such that the timing of stimulus onset was irregular but with at least
216 ms between stimuli. These timings and stimulus examples are shown in Figure 1a.

On each trial the orientations of the presented Gabors were drawn from one of two circular
Gaussian (Von Mises) distributions centred on +/- 45° from vertical (henceforth referred to as the
‘orange’ and ‘blue’ distributions, respectively), with concentration k¥ = 0.5 (shown in Figure 1d).
Stimuli were displayed within an annular ‘colour-guide’ where the colour of the annulus corresponds
to the probability of the orientation under each distribution, using the red and blue RGB channels to
represent the probabilities of each orientation under each distribution. Stimuli were presented in the
centre of the screen, with a black central fixation point to guide observers’ gaze.

Procedure

The task was a modified version of the weather prediction task (Knowlton et al., 1996;
Drugowitsch et al., 2016). Throughout the experiment, the observer’s perceptual task was to cate-
gorise which distribution the stimulus orientations were sampled from. They were instructed to press
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the ‘d’ key with their left hand (of a standard querty keyboard) for the blue distribution and the "k’
key with their right hand for the orange distribution. There were two variants of the task: The Free
task and the Replay task. The trials were composed of three repetitions of 100 predefined sequences
of up to 40 samples (50 trials from each distribution) for each observer (300 trials per task).

In the ‘Free’ task, observers were continually shown samples (up to 40) until they entered their
response. They were instructed to enter their response as soon as they ‘feel ready’ to make a deci-
sion, with emphasis on both accuracy (they should make their decision when they feel they have a
good chance of being correct) and on time (they shouldn’t take too long to complete each trial). A
graphical description of this task is shown in Figure 1b.

After completing the Free task, observers then completed the Replay task. In this task they were
shown a specific number of samples and could only enter their response after the sequence finished,
signalled by the fixation point turning red. The number of samples was determined based on the
number observers chose to respond to in the Free task. There were three intermixed conditions: In
the Less condition observers were shown two fewer samples than the minimum they had chosen to
respond to on that predefined sequence in the Free task; In the Same condition observers were
shown the median number of samples from that predefined sequence; in the More condition observ-
ers were shown four additional samples compared to the maximum number they chose to respond
to on that sequence in the Free task. After entering their perceptual response, observers were cued
to give a confidence rating. The confidence rating was given on a four-point scale where 1 repre-
sents very low confidence that the perceptual decision was correct, and 4, certainty that the percep-
tual decision was correct. The rating was entered by pressing the ‘space bar’ when a presented dial
reached the desired rating. The dial was composed of a black line which was rotated clockwise to
each of 4 equidistant angles (marked 1-4) around a half circle, at a rate of 1.33 Hz. The dial started
at a random confidence level on each trial and continued updating until a rating was chosen. A
graphical description of this task is shown in Figure 1c.

Prior to commencing the experimental trials, participants were given the opportunity to practice
the experiment and ask questions. They first performed 20 trials of a fixed number of samples with
only the perceptual decision, with feedback after each response as to the true category. They then
practiced the Replay task with the confidence rating (and an arbitrary number of samples). Finally,
they practiced the Free task, before commencing the experiment with the Free task.

Analysis

Behaviour

Perceptual decisions were evaluated relative to the category the orientations were actually drawn
from. Performance is presented as proportion correct, whilst statistical analyses were performed on
sensitivity (d’). Sensitivity was calculated based on the proportion of hits (responding ‘Category A’
when category A was presented) and false alarms (responding ‘Category A’ when category B was
presented). Confidence was evaluated relative to an optimal observer who gives high confidence
when the log-likelihood of the chosen category, based on the presented orientations, is above the
median across trials, and low confidence on trials with less than the median log-likelihood. More
broadly, confidence should increase with increasing evidence in favour of the perceptual decision,
see Appendix 3. A General Linear Model was used to validate the influence of the optimal presented
evidence on perceptual decisions and confidence evaluations. The accumulated evidence up to the
final sample and four samples before the response was used as a regressor for the perceptual deci-
sion assuming a binomial distribution with a probit link function. A comparable analysis was per-
formed for confidence by binarizing confidence ratings into Low (ratings of 1 or 2) and High (ratings
of 3 or 4) and taking the evidence signed by the perceptual decision.

Computational modelling

Computational modelling followed the same procedure as Balsdon et al., 2020. The model para-
metrically describes suboptimalities relative to the Bayesian optimal observer. The Bayesian optimal
observer knows the category means, p; = — %, =7, and the concentration, k = 0.5, and takes the
probability of the orientation 6, (at sample n) given each category ¢ () = 1 or ¢ = 2)
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p(On]Y) =
where Iy(-) is the modified Bessel function of order 0. The optimal observer then chooses the cate-
gory 1 with the greatest posterior probability over all samples for that trial, T (T varies from trial to
trial). Given a uniform category prior, p(¢)) o1, and perfect anticorrelation in p(6,|1)) over the catego-
ries, the log posterior is proportional to the sum of the difference in the log-likelihood for each cate-
gory (by =lyy — tn2)

L=) t 2

n=1
where:
Ly =log p(0,]¢) = Kk cos(2(6, — py)) + const. (3)

Such that the Bayesian optimal decision is 1 if L>0 and 2 if L <0.

The suboptimal observer suffers inaccuracies in the representation of each evidence sample, cap-
tured by additive independent identically distributed (i.i.d) noise, ¢,. The noise is Gaussian distrib-
uted with zero mean, and the degree of variability parameterised by o, the standard deviation

e.~N(0,07) (4)

The evidence over samples is also imperfectly accumulated, incurring primacy or recency biases
parameterised by «, the weight on the current accumulated evidence compared to the new sample
(a>1 creates a primacy effect). By the end of the trial, the weight on each sample n is equal to

Vn = ann (5)

where T is the eventual total samples on that trial and n € [1,7].

In the Free task, the observer responds when accumulated evidence reaches a bound, A. The
optimal observer sets a constant bound on proportion correct over sequence length, which is an
exponential function on the average evidence over the samples accumulated. The human observer
can set the scale, b, and the rate of decline, A, of the bound suboptimally, resulting in

Apr =n X% (a+bei§) (6)
for the positive decision bound (the negative bound, A, = —A,+). The likelihood f(n) of responding

at sample n was estimated by computing the frequencies, over 1000 samples from ¢, (Monte Carlo
simulation), of first times where the following inequality is verified

N
> (tn) - va|>A, @)
n=1

The response time, relative to reaching the decision bound, is delayed by a non-decision time for
executing the motor response, which is described by a Gaussian distribution of mean, uy, and
variance, 0%,

Model fitting
Parameters were optimised to minimise the negative log-likelihood of the observer making response
r on sample n on each trial for each participant using Bayesian Adaptive Direct Search (Acerbi and
Ma, 2017). The log-likelihoods were estimated using Monte Carlo Simulation, with the sensitivity of
this approach being addressed in previous work (Balsdon et al., 2020). The full model was simplified
using a knock-out procedure based on Bayesian Model Selection (Rigoux et al., 2014) to fix the bias
(exceedance probability = 0.93) and lapse (exceedance probability >0.99) parameters (not described
above, see Appendix 1).

In the Replay task, confidence ratings were fit using the same model described above, but with
additional criteria determining confidence ratings, described by three bounds on the confidence
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evidence, parameterised in the same manner as the decision bound. These models were then used
to simulate the internal evidence of each observer from sample to sample, and the error compared
to the optimal evidence (uncorrupted by suboptimalities, see Appendix 2).

EEG pre-processing

EEG data were pre-processed using the PREP processing pipeline (Bigdely-Shamlo et al., 2015),
implemented in EEGlab (v2019.0, Delorme and Makeig, 2004) in MATLAB (R2019a, Mathworks).
This includes line noise removal (notch filter at 50 Hz and harmonics) and re-referencing (robust aver-
age re-reference on data detrended at 1 Hz). The data were then filtered to frequencies between
0.5 and 80 Hz, and down-sampled to 256 Hz. Large epochs were taken locked to each stimulus
(=500 to 1500 ms) and each response (—5000 to 1500 ms). Independent Components Analysis was
used to remove artefacts caused by blinks and excessive muscle movement identified using labels
with a probability greater than 0.35 from the ICLabel project classifier (Swartz Centre for Computa-
tional Neuroscience).

Response classification analysis

The power spectrum across frequency tapers from 1 to 64 Hz with 25% spectral smoothing was
resolved using wavelet convolution implemented in FieldTrip (Oostenveld et al., 2011). The epochs
were then clipped at —3 to 1 s around the time of entering the perceptual response. Linear discrimi-
nant analysis was performed to classify perceptual responses, using 10-fold cross validation, sepa-
rately on each taper at each time-point. An analysis of the frequencies contributing to accurate
classification at the time of the response revealed significant contributions from 8 to 26 Hz (Appen-
dix 4). We therefore continued by using the power averaged across these frequency bands to train
and test the classifier. Classifier accuracy was assessed using the area under the receiver operating
characteristic curve (AUC). At the single-trial level, the probability of the response based on the clas-
sifier was computed from the relative normalised Euclidean distance of the trial features from the
response category means in classifier decision space.

Encoding variable regression

We used a linear regression analysis to examine the EEG correlates of different aspects of the deci-
sion evidence (encoding variables) in epochs locked to stimulus onset. Regularised ridge regression
(ridge A = 1) was used to predict the encoding variables based on EEG data, over 10-fold cross vali-
dation. The precision of the representation of each encoding variable was computed within each
observer by taking the Fisher transform of the correlation coefficient (Pearson’s r) between the
encoded variable and predicted variable. To maximise representation precision, the data were band-
pass filtered (1 - 8 Hz) and decomposed into real and imaginary parts using a Hilbert Transform
(Appendix 5). For each time point, the data from all electrodes were used to predict the encoded
variable. The temporal generalisation of decoding weights was examined by training at one time
point and testing at another. The contribution of information from signals at each electrode was
examined by training and testing on the signals at each electrode at each time point (further details
in Appendix 5).

Behaviourally relevant signals were isolated by comparing representation precision at each time
point and electrode for epochs leading to optimal perceptual and confidence responses, compared
to responses that did not match the optimal observer. Cluster modelling was used to isolate contig-
uous signals where the log posterior odds were in favour of the alternative hypothesis that the repre-
sentation systematically deviated further from the optimal presented evidence than what could be
explained by measurement noise alone (Appendix 6). New regression weights were then calculated
on signals from the entire cluster and representation errors calculated as the difference of the pre-
dicted variable from the expected value given the representation.

Source localisation

Identifying the clusters of signals associated with confidence processes offers relatively poor spatial
and temporal (given the bandpass filter; de Cheveigné and Nelken, 2019) resolution for identifying
the source of confidence computations. Source localisation was therefore performed, using Brain-
storm (Tadel et al., 2011). The forward model was computed using OpenMEEG (Gramfort et al.,
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2010; Kybic et al., 2005) and the ICBM152 anatomy (Fonov et al., 2011; Fonov et al., 2009). Two
conditions were compared, Noise Min and Noise Max, which corresponded to quartiles of epochs
sorted by representation error in the confidence clusters (see Appendix 7 for more details). Cortical
current source density was estimated from the average epochs using orientation-constrained mini-
mum norm imaging (Baillet et al., 2001). ROIs in the lateral occipital, superior parietal, rostral mid-
dle frontal (including dIPFC), medial orbitofrontal, and rostral anterior cingulate cortex, were defined
using MindBoggle coordinates (Klein et al., 2017). Statistical comparisons were performed on the
bilateral ROI time series (using cluster correction and a minimum duration of 20 ms), computed over
separate conditions on rectified normalised subject averages (low-pass filtered at 40 Hz).

To predict confidence magnitude from the activity localised to the orbitofrontal cortex, we recov-
ered to current density from 20 subregions (approximately equal parcellations) of the orbitofrontal
cortex in epochs locked to the time of the response. A general linear model (assuming a normal dis-
tribution with identity link) was used to predict the observers' confidence ratings on held-out data
(90/10 cross-fold) from the neural activity at each time-point leading to the response. The prediction
was quantified as the standardised regression weight from a new general linear model comparing
the predicted and actual confidence ratings across all folds.
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Appendix 1
Computational Model fitting

The computational model is described in full in the Materials and methods section. Briefly, the model
is based on the Bayesian optimal observer with full knowledge of the category distributions (means
w1 and pp, concentration k), and takes as evidence the difference in the log posterior probability (¢,)
of each category given the orientation (6,

Kn = E,,,l — 6,1,2 = KCOS(Z(G,, — ;42))

A1
=2ksin(p — po)sin(26, — p1 — po) =sin(26,)’ @an

where chosen values (k =0.5, u; = —m/4, and u, = 7/4) have been implemented in the last equation.
Whilst the optimal observer perfectly sums the evidence over each sample, the suboptimal human
observer accumulates evidence with some temporal integration bias, @ (where a>1 creates a primacy
effect, and a<1, a recency effect), and incurs inference error (noise in the estimate of the true evi-
dence) parameterised by o, the standard deviation of the Gaussian distribution from which each
sample of noise, ¢,, is drawn from. The human observer may also experience some response bias, ¢
(the tendency to choose one category irrespective of the evidence), and incur lapses (pressing a ran-
dom key), described by the lapse rate, I. The accumulated evidence, L*, up to sample n, is subopti-
mally accumulated by

L=aL,  +6,+¢, (EA2)

The observer then chooses category one if L* > ¢, except on a proportion of trials, I, where the
response is randomly selected.

These four parameters were used to capture the differences in the human observers’ responses
(category choice and confidence rating) from the optimal observer who perfectly integrates all evi-
dence presented.

In the Free task, the model was designed not only to describe the category choice, but at which
sample the human observer chose to respond. This was achieved via a decision boundary, the nature
of which has been addressed in previous work (Balsdon et al., 2020). The boundaries, A,. and A, _,
follow an exponential function on the average evidence over samples (which is a constant bound on
the probability of a correct response), described by three parameters: the minimum, a, the scale, b,
and the rate of decline, A

Apy=nx (a + b€7£) (A3)

There is an optimal combination of these parameters to achieve any particular proportion correct
across the experiment, but the human observer may set their bound suboptimally. In addition, non-
decision time (the time from the last sample integrated to pressing the response key) was described
by a Normal distribution with mean yuy, and variance o?,. Giving an additional five parameters for
describing when the observer enters their response.

We followed the same procedure as in Balsdon et al., 2020, involving four stages:

1. Reduce the number of free parameters with a knock-out procedure.

2. Compare (covert) Bound and No-bound models of the perceptual decision in the Replay task.

3. Identify any systematic differences in the parameters required to describe the confidence rat-
ings, compared to the perceptual decision, in order to discern the relationship between pro-
cesses for perceptual decisions and confidence.

4. Apply the same Bound vs. No-bound comparison for describing the confidence ratings.

The average parameter values and fit metrics for Stage 1. are shown in Appendix 1—table 1.
According to this analysis, the bias (c) and lapse rate () were fixed. There was some evidence the
boundary minimum (a) could be fixed in the Replay task, but the preference in the Free task was to
leave it free to vary.

Appendix 1—table 1. Average parameter values.
Table shows the average values and the sum of BIC across participants. The large difference in the
average log-likelihood (LLH) across tasks is due to the fact the Free task model was fit to both when
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and what observers responded, whereas in the Replay task only the response was fit. Red values
show the fixed parameters.

Free task

Model ¢ a« ¢ g o a b A I UH  YBC
Full 083 098 —004 425 052 010 604 193 0016 -73491 | 3042301
a=1 083 100 000 430 050 013 661 203 0014 -73497 3031159
c-0 080 092 000 452 054 011 528 201 0017 -736.86 30387.02
iy = 400 076 094 000 400 052 009 552 223 0016 -739.77 | 3050340
o =1 069 096 -002 435 100 010 634 197 0015 75418 | 3107984
=01 077 092 003 417 052 010 578 220 0016 —73548 3033175
b-55 078 094 002 410 064 013 550 179 0013 —742.18 | 30599.67
I = 0.001 082 098 001 400 048 010 477 222 0001 -730.66 30139.17
c=0;1=0001 079 094 000 397 051 010 452 226 0001 -73266 3010474

c=0;/=0001;a=01 077 094 0.00 403 052 0.10 537 213 0001 —74242 30381.13
Replay Task - no-bound

Model o a c w o oy a b A / LLH >°BIC
Full 047 090 005 -~ -~ - - - 0012 —81.13 | 3701.44

a=1 056 100 010 ~ -~ - - - 0012 9221 | 403055
c=0 048 090 000 -~ ~ -~ -~ - 0009 —8273  3651.38
I = 0.001 050 091 006 ~ ~ -~ -~ - 0001 —8205  3624.39
c=0;=0001 051 090 000 -~ ~ o~ -~ - 0001 —8364 357367

Replay task - bound

Model o a c o oy a b A | LLH > BIC
Full 044 087 010 - -~ 017 868 1171 0012 7981 | 8399109
c=0;1=0001 048 088 000 -~ ~ 013 858 1555 0001 -8222  3859.24
c=0,1=0001;a=01 048 088 000 010 891 1588 0001 -8238 3751.55

To compare the Bound and No-bound models in Stage 2. we used five-fold cross validation. The
No-bound model had two free parameters: a (temporal bias) and o (inference noise), which were fit
to the Same and Less conditions of the Replay task, but tested across all conditions. The Bound
model had three free parameters to describe the bound, with the inference noise and temporal bias
parameters fixed to those fit to the Same and Less conditions only. In this way, the no-bound model
must account for the lack of increased performance in the More condition with the suboptimalities
present in the Same and Less conditions, whilst the bound model can limit performance in the More
condition in particular by stopping further evidence accumulation. The results of this analysis are pre-
sented in the manuscript: the bound significantly improved the fit, mean relative increase in model
log-likelihood = 0.048, bootstrapped = 0.001, Figure 2c in the main text.

Of additional interest is the pattern of parameters fit to each condition separately, when the
model attempts to explain behaviour without a bound. There was little difference in parameters fit
to the Same and Less conditions (mean o5 = 0.48, o, = 0.44, Z(19) = -1.46, p = 0.15; ag = 0.86,
ar =0.78, Z(19) = 1.38, p = 0.17). The inference noise fit to the More condition significantly
increased from the Less condition (o) = 0.55, Z(19) = -2.61, pponr4 = 0.036), but there was signifi-
cantly reduced temporal integration bias (ay = 0.93, Z(19) = -2.50, pponr=4 = 0. 0496) suggesting
observers’ performance was worse than predicted by the Same and Less conditions, and they were
putting less weight on the more recent evidence. These differences in parameters are consistent
with the model trying to mimic bounded evidence accumulation without a bound, providing addi-
tional support for the comparison described above.

Stage 3. of the model procedure was to account for the confidence ratings. We compared three
processing architectures that span the space from single-channel to dual-channel (Maniscalco and

Balsdon et al. eLife 2021;10:€68491. DOI: https://doi.org/10.7554/eLife.68491 23 of 39


https://doi.org/10.7554/eLife.68491

e Llfe Research article

Neuroscience

Lau, 2016). We took as the null hypothesis a serial processing (single-channel) architecture in which
the confidence ratings (Type-Il decisions) can be described by the exact same evidence as used to
make the perceptual (Type-l) decision. A weaker version of this null hypothesis is that the same sub-
optimal inference process is used for both perception and confidence, but that the observer can
commit to their perceptual decision whilst continuing to monitor additional evidence for evaluating
their confidence (a schematic of these processes is shown in Appendix 1—figure 1). The average
parameter values are shown in Appendix 1—table 2, labelled ‘Serial’ and 'Serial continued’ respec-
tively. Note the substantial increase in inference noise (o) and reduction in temporal bias (« is closer
to 1) when attempting to describe both the perceptual decision and the confidence rating compared
to only the perceptual decision (Appendix 1—table 1, Replay task — bound, model ¢ = 0; | = 0.001).
This is indicative of the difficulty of describing both perception and confidence with the same
suboptimalities.

At the other extreme is the parallel processing (dual-channel) architecture, in which perception
and confidence are computed by independent resources, based on the same sensory input (Appen-
dix 1—figure 1b, labelled 'Parallel’ in Appendix 1—table 2). This is the most computationally
expensive description, and provided a lack of parsimony that was only surpassed by a model that
attempted to describe confidence ratings with only the inference noise evident from the perceptual
decisions.

a

Perceptual
evidence

K

Partial dissociation

i |Perceptual
evidence

Appendix 1—figure 1. Schematic of possible relationships between perceptual (Type-l) and confi-
dence (Type-ll) evidence accumulation. (a) Same evidence accumulation processes: Type-|
(perceptual) and Type-Il (confidence) decisions are different responses to the same evidence: each
sample of perceptual evidence is disrupted by a sample of sensory noise (g;) drawn from a zero-
mean Gaussian with standard deviation ¢, and accumulated with a temporal bias described by «;.
(b) Parallel processing: Type-l and Type-Il decisions rely on entirely separate processing of the same
physical stimulus: the confidence decision also incurs noise and temporal integration bias (with
subscript ¢), but these may vary independently of the perceptual processing suboptimalities
(subscript s). (c) Partial dissociation: Type-I and Type-Il decisions rely on partially dissociable
accumulation of the same evidence.

Appendix 1—table 2. Average parameter values for perceptual and confidence behaviour.

Bound parameters with subscript ¢ describe the criteria for confidence ratings, which take the same
form as the perceptual decision bound. They have the same minimum and scale, but different rates
of decline, such that A .;determines the upper bound on a confidence rating of 1, and the lower
bound on a rating of 2. Apart from the ‘Serial’ and ‘Serial continued’ models, parameters for percep-
tual decisions were fixed to those fit in the winning perceptual decision model and the listed parame-
ters affect only the confidence evidence accumulation.

Model o a a b A ac b A Az Aes LLH >"BIC

Serial 0.73 092 010 1274 17.07 0.07 0.64 128 6.81 31.38 —428.36 1827528
Serial continued 0.67 091 0.13 9.60 1798 0.06 0.53 0.66 7.08 30.41 -—424.88 18135.83
Parallel 076 090 ~ ~ ~ 0.01 058 0.18 7.51 30.68 —437.25 18288.50

Continued on next page
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Appendix 1—table 2 continued

Model o a a b A ac b X Az A LLH >"BIC

Partial - same sigma 000 089 -~ -~  ~ 006 047 103 677 2592 —44641 18540.68
Partial - accumulation noise 0.45 0.91 ~ ~ ~ 0.03 0.58 0.50 7.71 31.03 —421.59 17662.25
Partial - read-out noise 0.12 090 ~ ~ ~ 0.02 0.52 1.85 8463 37.39 —417.94 17516.29

Partial - same alpha 0.12 0.88 0.02 052 098 822 3516 —-423.02 17605.29

1
1
1

The intermediate models in this architectural space are the partial dissociation models (Appen-
dix 1—figure 1c), which suggest that confidence inherits the same noisy perceptual evidence as the
perceptual decision, but may incur some independent suboptimalities. We compared four versions
of these models: same o (no additional inference noise); accumulation noise (additional inference
noise with each sample of evidence); read-out noise (one additional sample of noise before the con-
fidence response); and same «a (the temporal bias affecting the confidence accumulation is the same
as that affecting the perceptual accumulation).

In all cases the models were fit to minimise the negative log-likelihood of both perceptual and
confidence decisions. The model comparison overwhelmingly favoured the partial dissociation mod-
els, and of these, the best description was offered by a model with an independent temporal bias
on the confidence evidence accumulation, and additional noise at the read-out stage. We caution
against interpreting this result as meaning that there is no additional accumulation noise in the proc-
essing of confidence evidence, whilst the models are very similar, it is possible that the read-out
noise in this case can additionally capture some noise in setting and maintaining bounds for assign-
ing a rating to the confidence evidence.

The model comparison of Stage 3. just described mainly assumed continued, unbounded accu-
mulation of confidence evidence (with the exception of the strictly serial processing architecture).
Stage 4. was to formally compare bounded and unbounded accumulation for confidence evaluations
in the same manner as with the perceptual decisions. This time, two versions of the bound were
compared: the same bound as perceptual evidence accumulation (the participant could close their
eyes after committing to their perceptual decisions and their responses would not change); or an
independent bound (the participant can continue to accumulate evidence for confidence decisions
after the committing to the perceptual decision, but will eventually stop). As reported in the manu-
script, neither bound improved the fit, if anything, adding the bound decreased the log-likelihood of
the model (same bound: relative improvement with bound = —0.007, bootstrapped p = 0.11, uncor-
rected; independent bound: relative improvement = —0.014, p = 0.022, Bonferroni corrected for
two comparisons; Figure 2c, in the main text). This reflects the fact that even a very high bound
affects the shape of the accumulation trace, which will harm the fit when behaviour is not affected by
a bound.

In summary, this computational modelling procedure suggests a partial dissociation in the proc-
essing for perception and confidence. In the Replay task, perceptual decisions were best described
by bounded evidence accumulation, enabling observers to commit to decisions before the sequence
of presented samples finishes. The confidence ratings required additional noise and reduced tempo-
ral integration bias compared to the suboptimalities affected the perceptual decisions. These differ-
ences were best described by the partial dissociation architecture where confidence received the
same noise samples of evidence as the perceptual decision, though they are accumulated differently.
In addition, model comparison suggested confidence evidence accumulation continued to the end
of the sequence, even in cases of premature commitment to the perceptual decision. The results of
these comparisons replicate the results of Balsdon et al., 2020, with the exception of the confidence
noise comparison: here we find evidence in favour of read-out noise, whereas the previous analysis
found the models indistinguishable.
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Appendix 2

Model Simulation

The computational model comparison suggested a partial dissociation in the evidence used to make
perceptual decisions and confidence evaluations. We compared the evidence underlying the observ-
ers' perceptual decisions and confidence ratings by simulating the winning computational model.
For each trial, 10,000 samples of noise per decision update were randomly sampled from the Gauss-
ian distribution describing the observer’s inference noise. These were combined to give 10,000 simu-
lated evidence traces per trial. The first 1,000 simulated evidence traces that agreed with the
observer’s response on that trial were taken to measure the median evidence trace (or, the process
was repeated until 1,000 adequate simulated evidence traces were drawn, up to 100 repeats).
Appendix 2—figure 1a demonstrates this process for one example trial of one observer. For the
perceptual evidence (Appendix 2—figure 1a, left) simulated evidence traces that agreed with the
observer’s response are those that reach the respective decision bound before the opposing deci-
sion bound, or reach no bound but show evidence in favour of the response by the final sample. It
was assumed that once the evidence reaches the bound, that evidence is maintained until the
response. For the confidence evaluation (in the example, a confidence rating of 3), the final evidence
had to be between the confidence rating bounds to agree with the observer’s confidence decision
(after the final sample of additional noise — which is why a few samples in Appendix 2—figure 1a,
right, exceed the bounds). The median evidence was compared to the ideal evidence (green lines of
Appendix 2—figure 1a).

o
©

(=]

Correlation (z)
o
(o2}

Evidence (z)
o
N

o
Type-Il evidence (z)
o

o
[N

'
EN

o

2 4 6 8 10 12 2 4 6 8 10 12 -5 0 5 .
Sample Sample Type-l evidence (z) Participant

Appendix 2—figure 1. Model simulation of accumulated evidence for perceptual and confidence
decisions. (a) Example trial from one observer showing simulated evidence traces agreeing with the
observer’s response (blue) and a sample of example traces which did not agree (red). The
perceptual decision is shown on the left. An evidence trace was taken to agree with the observer's
decision if the corresponding bound was reached prior to the opposing bound, or if no bound was
reached but the final accumulated evidence was in favour of the chosen option. The median
evidence trace (thick blue line) was calculated assuming the evidence that reached the bound early
was maintained until the response was entered. For the confidence rating (right) we compared the
median evidence from traces where the final accumulator (plus one additional sample of noise)
agreed with the observer’s confidence rating. We examined the difference from the ideal
accumulated evidence (thick green line) relative to the likelihood of the observers’ rating given all
simulated evidence traces. (b) Median final simulated accumulated evidence for the perceptual
decision (abscissa), and the confidence decision (ordinate) for all trials of the example observer,
colours indicate the condition. (c) Correlation (Fisher transformed z) between perceptual and
confidence evidence for each observer. The example observer is highlighted in orange.

The estimated inference error (used in Appendix 7) scaled the difference between the median
consistent evidence and the ideal evidence by the probability of the response given all samples, to
estimate the relative deviation of the observers’ internal evidence from the optimal observer’s evi-
dence. This estimate of the error is quite imprecise: the median trace tends to be quite close to the
ideal, even though any one of the traces (which reflect much larger error) could have described the
internal evidence of the observer. Appendix 2—figure 1b shows the predicted final accumulated
evidence for the perceptual (Type-I) compared to the confidence (Type-ll) decision for the same
example observer. The evidence is strongly correlated but there are substantial deviations, because
of the additional noise, different temporal bias, and continued accumulation for the confidence
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decision, especially in the More condition (light blue). The example observer is a more extreme case
because of the relatively strong bound on perceptual evidence accumulation. The (Fisher trans-
formed) correlation for each observer is shown in Appendix 2—figure 1c. For many observers there
are substantial differences between the median simulated evidence consistent with the perceptual
and confidence responses, meaning the simulated evidence could be useful in distinguishing repre-
sentations important for perception vs. confidence.
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Appendix 3

Confidence behaviour

Proportion correct increased with increasing confidence, reflecting the observers' ability to use their
confidence ratings to discriminate correct from incorrect responses (Appendix 3—figure 1a).
Observers appeared to be monitoring the decision evidence to make their confidence ratings, as
opposed to some proxy for confidence such as the number of samples they were shown (Appen-
dix 3—figure 1b and c).

We required a single-trial measure of confidence precision for identifying the key neural pro-
cesses underlying the computation of confidence. To do so, we compared observers’ responses to
an optimal observer. The optimal observer perfectly accumulates all presented evidence and assigns
ratings to equally partition the evidence for their perceptual decision. To simplify, we split trials by
the median evidence for the chosen category, where the optimal observer gives a high confidence
rating (3 or 4) to those trials with greater than the median evidence, and a low confidence rating (1
or 2) to those with less than the median evidence. We labelled trials as ‘suboptimal confidence’
when the observer’s confidence response disagreed with the response of this optimal observer. This
trial labelling is demonstrated for two example observers in Appendix 3—figure 1d. We reasoned
that on suboptimal confidence trials the internal evidence of the human observer was less likely to
be close to the optimal presented evidence, and the neural representation of the optimal presented
evidence should be less precise in neural circuits that actually represent this suboptimal confidence
evidence. That this measure of confidence precision does capture the suboptimalities in confidence
evaluation is confirmed by the significant increase in model estimated confidence error on subopti-
mal confidence trials (Wilcoxon sign rank test: Z(19) = 3.85, p < 0.001; Appendix 3—figure 1e).
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Appendix 3—figure 1. Confidence behaviour. (a) proportion correct (in the perceptual decision) by
confidence rating. (b) Decision evidence (based on the presented samples) by confidence rating. (c)
Number of samples presented by confidence rating. In all plots, error bars show 95% within-subject
confidence intervals. Red circles show the predictions of the best fitting confidence model
(Appendix 1). (d) Confidence responses of two observers (top and bottom panels) on all trials sorted
by the confidence evidence of the optimal observer. The median confidence evidence (shown by a
black vertical line) defines an optimal confidence observer whose confidence above this median are
rated high. Observers' high confidence ratings are shown in blue and low confidence ratings in
green. Suboptimal confidence ratings, where human and optimal confidence observers do not
match, are indicated with small vertical segments (green for Type-Il misses and blue for Type-Il false
alarms). Negative confidence evidence corresponds to incorrect perceptual decisions. The observer
shown on top clearly has fewer suboptimal responses compared with the observer below, and the
Appendix 3—figure 1 continued on next page
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Appendix 3—figure 1 continued

frequency of suboptimal responses decreases further from the median. (e) Model estimated
confidence error by confidence rating suboptimality (O = the observer’s confidence rating was the
same as the optimal observer, 1 = suboptimal confidence rating). (f) The effect of response bias on
the analysis of suboptimal confidence in the EEG representation of accumulated evidence.
Observers’ confidence ratings were compared to an unbiased optimal observer (purple), and two
biased (but otherwise optimal) observers, who respond with high confidence on 35% and 65% of
trials (making the human observers relatively more liberal and conservative with their response
strategy in comparison). Thick lines show the within-subject difference in precision (Fisher
transformed correlation) between trials where the human observers’ confidence ratings correspond
to the (un/biased) optimal observer and suboptimal confidence ratings. Shaded regions show the
95% between-subject confidence intervals on the difference.

In this way, observers’ confidence is assessed relative to a “super-ideal” observer, who has per-
fect access to the presented evidence (Mamassian and de Gardelle, 2021). Theoretically, observers'
confidence should be assessed relative to the internal evidence for their perceptual decision, that is,
relative to the evidence based on suboptimal inference (afflicted by noise and temporal integration
biases). However, the single-trial estimates of the internal evidence for perceptual decisions, based
on model simulations, were relatively imprecise (see Appendix 2), and could also introduce system-
atic errors from the model assumptions, making this estimate of the internal evidence unappealing
for the purpose of assessing confidence. Moreover, the goal of this measure was to compare observ-
ers’ confidence ratings to the neural representation of the accumulated evidence, which was also
assessed relative to the optimal evidence. We therefore chose to assess confidence ratings relative
to the optimal observer in the same way that neural responses were assessed relative to optimal,
though this ignores the fact that some suboptimality is actually inherited from perceptual decision
processes.

A second important consideration with this measure is that it is affected by confidence bias. There
are three types of biases that could affect confidence ratings: first, a response bias to enter a certain
response irrespective of the evidence; second, a miscalibration bias such that ratings mean different
things to different observers (the same value of evidence will be given a rating of 4 for one observer
and 3 for another, for example); third, a miscalling bias such that perceptual evidence is relatively
exaggerated or diminished in the assessment of confidence. All these biases mean that the same
internal perceptual evidence could result in systematically different confidence ratings across observ-
ers, and observers could report on average higher or lower confidence despite similar perceptual
performance and precision in representing the internal evidence for evaluating their confidence.

Taking an average proportion of suboptimal confidence ratings and comparing across observers
would result in observers of similar ability having different scores simply because of biases in how
they implement the confidence rating responses: greater biases will increase average proportion
suboptimal. Importantly, this single-trial measure of confidence was not used for this purpose.
Rather, it was compared to neural activity during the process of accumulating evidence for the per-
ceptual decision and confidence evaluation. We expect that biases that are not of interest for the
computation of confidence (in particular, response bias and miscalibration bias) are incorporated at
a later stage, when the confidence evaluation is converted into a rating for executing the response.
The biases will only reduce the sensitivity with which a trial labelled as suboptimal truly reflects inter-
nal evidence that differs from optimal, reducing our ability to identify neural processes underlying
confidence computation. This is simulated in Appendix 3—figure 1f, where a relative bias is intro-
duced by assessing human confidence ratings to a biased optimal observer (who responds on 65%
of trials with high confidence — making the human observers relatively more liberal, or 35% high con-
fidence — making the human observers more conservative). The general trend for the difference
between confidence ratings that match the (biased) optimal observer and those that are suboptimal
remains the same, though the bias reduces the difference.
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Appendix 4

Classical EEG analyses

To link back with the previous literature, we present here two more classical EEG analysis
approaches, examining the modulations of EEG amplitude around the time of the response. In
Appendix 4—figure 1a, we show the Lateralised Readiness Potential (LRP; difference in microvolts
between the average of electrodes [C1, C3], and [C2, C4], signed by response hand; Deecke et al.,
1976). The data are unfiltered with the exception of the pre-processing, and baselined using the
100 ms before the onset of the first stimulus of each trial. There was a significant difference in the
LRP between the Less and More conditions of the Replay task from just after the response (the first
cluster from 32 to 196 ms; tae(19) = —3.57, peiuster < 0.002, Appendix 4—figure 1a, top). There
were also differences based on perceptual decision accuracy (from —84 ms to 652 ms around the
response, with the largest difference just after the response, t,(19) = 2.81, pejuster < 0.002; Appen-
dix 4—figure 1a, middle). There was no significant difference in the LRP between trials with high
confidence (ratings of 3 and 4) and low confidence (ratings of 1 and 2; Appendix 4—figure 1a,
bottom).
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Appendix 4—figure 1. Amplitude modulations with task variables. (a) The Laterised readiness
potential by condition (top), perceptual decision accuracy (middle) and reported confidence
(bottom). Horizontal red lines mark significant differences in amplitude. (b) Central Parietal Positivity,
with the same comparisons. Shaded regions show 95% within subject confidence intervals, and the
region of slope comparison for the CPP is highlighted in grey.

We also computed the Central Parietal Positivity (CPP; O’Connell et al., 2012) which has previ-
ously been shown to reflect perceptual evidence accumulation. We followed the methods presented
in Kelly and O’Connell, 2013: data were lowpass filtered at 45 Hz with no highpass filter, and con-
verted to current source density (Kayser and Tenke, 2006). As with the LRP, a baseline was taken
from the 100 ms before the onset of the first stimulus of each trial. The slopes of the CPP (a linear fit
from —500 to —50 ms) showed no significant differences across all conditions (F(1,19) = 2.15, p =
0.14). We observed a significantly greater slope for correct compared to incorrect decisions ((19) =
—2.86, p = 0.01), and an even greater difference between high and low confidence trials (t(19) =
—3.24, p = 0.004). This is consistent with the literature suggesting the CPP traces the internal evi-
dence for the perceptual decision, however it is difficult to disambiguate how this signal may differ-
entially contribute to perceptual decisions and confidence evaluations.
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Appendix 5

Response classification

A linear discriminant analysis was used to classify the perceptual decision response based on the
spectral power of band-limited EEG signals in epochs locked to the time of the response. The spec-
tral power across frequency tapers from 1 to 64 Hz with 25% spectral smoothing was resolved using
wavelet convolution implemented in FieldTrip (Oostenveld et al., 2011). The epochs were then
clipped at —3 to 1 s around the time of entering the perceptual decision response. We first trained
and tested at each frequency taper at each time point in the Free task (Appendix 5—figure 1a).
Classifier performance was measured as the area under the curve (AUC). The power in frequency
bands between 8 and 32 Hz yielded the most accurate classification performance. The difference in
the average power across these frequency bands between —0.5 and 0.5 s around the time of the
response for right- and left-handed responses showed a clear lateralisation over central and parietal
electrodes (Appendix 5—figure 1b). Training and testing at each time point in each condition of
the Replay task showed a similar pattern to the Free task, with reliable classifier performance from
around —0.5 to 0.5 s around the response (Appendix 5—figure 1c). Training and testing within each
condition of the Replay task resulted in a larger between-subject error, likely because there are only
100 trials per condition. In the main text, we present a cross-classification analysis where the classi-
fier is trained on the Free task, and tested on each condition in the Replay task, which more directly
examines when the signals relevant for entering a response (based on the Free task) emerge during
the lead up to the response in each condition of the Replay task.
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Appendix 5—figure 1. Response Classification analysis. (a) Classifier AUC training and testing at
each time point (abscissa) based on the power (dB) in each frequency band (ordinate). Clusters
where average performance is greater than 3.1 standard deviations (99% confidence) from baseline
(0.5) are circled in black. (b) Scalp map of the difference in power for right- compared to left-handed
responses averaged over 8 to 32 Hz and —0.5 to 05 s around the response. (c) Classifier
performance (AUC) training and testing at each time point, in each condition of the Replay task and
in the Free task.
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Appendix 6

Encoding variable regression
Linear regression was used to examine the representation of encoding variables in the EEG signals.

First, regression weights (W) were computed using ridge regression of the encoding variables (C, an
n x 1 matrix) on the EEG signals (D, an n x m matrix, where m is the number of EEG signals, and n,
the number of epochs)

W=(D"D+A1)"'D'C (A4)

The regularisation parameter, A, was set to 1, where [ is the identity matrix. Weights were com-
puted on 90% of the epochs, and used to predict the encoding variables on the other 10% (10-fold
cross validation) simply as: C =D« W. The precision of the prediction was calculated as the correla-
tion between C and C, standardised using a Fisher transformation.

Three different encoding variables, Cy, C;, and C., were examined (Appendix 6—figure 1a): the

stimulus orientation (Cy =7 —16,]), the momentary decision update

(Ce = |y = |kcos(2(8, — 1)) — kcos(2(0, — 112))]), and the accumulated evidence (C, =1z, = > ,
N=1

signed by the response). These variables are not entirely independent: There is a weak correlation
between the stimulus orientation and the momentary decision update (r = 0.03), and a weak correla-
tion between the momentary decision update and the accumulated evidence (r = 0.09). In addition,
the accumulated evidence is strongly correlated over samples (r = 0.92 at n+1, and r = 0.85 at n+2).
The cross-correlations are shown in Appendix 6—figure 1c.
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Appendix 6—figure 1. Encoding variable regression. (a) Encoded variables used to regress EEG
signals. The encoded orientation (Cy, left) and encoded momentary decision update (C;, middle)
were dependent on the orientation presented to the observer. The encoded accumulated evidence
(C;) varied over all presented orientations in a trial, the figure on the right shows only one example.
(b) Representation precision of encoding variables using different low-pass filters. (c) Cross
correlation between encoding variables over consecutive samples. (d) Temporal generalisation of
representations: the regression weights were calculated on EEG signals at each time point and
precision was tested across time. Colour scales are relative to the maximal precision, with zero
Appendix 6—figure 1 continued on next page
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Appendix é—figure 1 continued

precision in white and negative in grey (a sign flip of the regression weights). (e) Representation
precision of the accumulated evidence for the first (left) and last (right) four stimuli of the Less and
More conditions. Shaded error bars show the 95% within subject confidence intervals, red horizontal
bars mark cluster corrected significant differences between conditions. (f) Representation precision
of the previous (n-1), current (n) and future (n+1) accumulated evidence, based on the EEG signals
locked to the current epoch. (g) Representation precision of the momentary decision update (top)
and the accumulated evidence (bottom) for epochs separated by the timing of the subsequent
stimulus, shown in coloured bars (317 ms, red, left; 333 ms, green, middle; and 350 ms blue, right).

The EEG signals in D were low-pass filtered and decomposed into real and imaginary parts using
a Hilbert transform. Regression precision was first calculated using the signals from all electrodes (m
= 128) separately for each time-point in the stimulus-locked epochs. Initial analysis showed a low-
pass cut-off of 8 Hz was appropriate to decrease noise whilst maintaining precision (Appendix 6—
figure 1b). The previous literature has shown similar results (Salvador et al., 2020).

Temporal generalisation of the representation of encoding variables was tested by computing
weights at each time point and testing the predicted encoding variables across time (Appendix 6—
figure 1d). Though the representation of the momentary decision update is maintained for a rela-
tively longer duration than the representation of stimulus orientation, there is little temporal general-
isation, suggesting the representation in the EEG signals evolves over time. This is also the case for
the representation of accumulated evidence, however, there are also strong off-diagonals in the
temporal generalisation matrix. This is likely because of the strong correlation across consecutive
samples (Appendix 6—figure 1c).

The precision of the representation of accumulated evidence was compared across the Less and
More conditions for the first four and the last four stimuli (Appendix 6—figure 1e). As reported in
the main text, representation precision was substantially attenuated for the last four stimuli of the
More condition. This was not the case for the first four samples, where decoding precision in the
More condition was briefly (from 132 to 244 ms) greater than in the Less condition (t,,e(19) = 3.67,
Peiuster < 0.001).

Given the sustained precision of decoding accumulated evidence over time, and the strong corre-
lation between consecutive samples, it is curious that the measured precision does drop to baseline
at the start of the epoch. That the same pattern is found when decoding sample n-1 and sample n
+1 based on the epoch at sample n (Appendix 6—figure 1f) suggests that the onset of the stimulus
is disrupting the ongoing representation (or at least, our ability to measure it). Furthermore, this
decrease in performance is not seen in the temporal generalisation matrix, where the off-diagonal is
not aligned with the onset of successive samples (due to the jitter in stimulus presentation timing).
Comparing precision between groups of epochs where the timing of the subsequent sample is
aligned (Appendix 6—figure 1g; red 317 ms, green 333 ms, blue 350 ms) suggests there could be
an interaction between the timing of ongoing updates and the precision of the representation of the
accumulated evidence (but not the momentary decision update). This could be of interest for future
research.
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Appendix 7

Cluster modelling

Cluster modelling was used to isolate contiguous signals in space (electrode location) and time,
where the precision of the representation of optimal accumulated evidence systematically varied
how closely the internal representation of evidence matched optimal, based on whether behavioural
responses matched the optimal observer. We assume that responses that do not match the optimal
observer are based on evidence that deviates further from the optimal evidence. Neural signals that
reflect the internal evidence of the observer should also deviate further from the optimal evidence
used in the regression on these trials, and be closer to the optimal evidence on trials where the
observers response matched the optimal observer. Clusters were isolated using a multivariate Bayes-
ian scan statistic (Neill, 2011; Neill, 2019). This statistic was calculated based on the log-likelihood
ratio of the alternative hypothesis (that representation precision depends on the internal evidence of
the observer) against the null hypothesis (that any difference in representation precision is due to
measurement noise alone, which is independent across epochs). It is assumed that the neural signals
reflect the input (cumulative presented evidence) with added measurement noise (N,,) and, when the
neural signals are relevant for behaviour, inference noise (N;) that reflects the deviations from the
optimal evidence in the internal representation of the observer

Your = Yin +Ni + Ny, (A5)

Where the two sources of noise are assumed to be gaussian distributed (N(0,5?)). The total mea-
sured correlation (rr) between Y, and Y,, is a function of the additional noise (where Y;, is
normalised)

I (A6)

rr
V2+07+02
When the observer’s decision does not match the optimal decision their internal representation
of the accumulated evidence is likely to be further from the optimal value, resulting in a weaker cor-
relation between the internal representation and the presented evidence. Therefore, when we split

based on behaviour, we expect that on average there is greater inference noise on incorrect trials
than correct trials. The correlation over all samples can be described as

1
V24 p()o +p(C)o% + 07,

(A7)

rr

where p(l) is the observed probability of a decision that does not match the optimal observer, and p
(C), a decision that corresponds to that of the optimal observer. The null hypothesis is that the neural
signal is not relevant for behaviour, specifically, signals on suboptimal trials do not reflect additional
inference noise. Any difference in the correlation is due to variance in the measurement noise,

H()ZO',]:U','C:O (A8)

The alternative hypothesis is that the neural signals are relevant for behaviour, reflecting the
greater variance from optimal on trials where the observer makes a decision that does not match
the optimal decision,

Hi:oy>0c,or 0',21 = (O'fc - x) where x>0 (A9)
The difference in the inference noise is limited by the total variance

p(I)(o3) +p(C) (o7 +x) :riz—z—afn (A10)
T

Solving for o7 (since p(C) +p(I) = 1):

1
i =—5=2=0,—p(C)x (A11)
T
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If we consider the correlation between the neural representation and the presented evidence on
trials with optimal and non-optimal responses separately (for simplicity, let R =),
7

1
= A12
rr R—p(O)x ( )
1
= A13
e R—p(C)x—x A13)

Setting a uniform prior on the ratio of inference and measurement noise, results in a linearly
descending prior on x

R—2—p(I)x
féRiz)/p(l) R—2—p(I)xdx

p(x) = (A14)

We actually measure the difference in the Fischer transform of the correlation

Ze—2=051log (%) (A15)

Since r. and r; are independent of the assumed measurement noise, there is one x that corre-
sponds to a measured difference z¢c — z;, given the overall correlation rr.

For each participant, for each electrode, at each time-point, the prior on o2 for Hj is calculated
by permuting the data labels (accurate vs inaccurate behavioural responses). The probability of the
data given Hy and H; are calculated as above and used to compute the loglikelihood ratio

LLR = log cgg:z;;) (A16)

The clusters are identified using the Fast Subset Sums procedure: The loglikelihood ratios are
summed across participants, for each electrode and time-point. We then find small clusters by
thresholding the log posterior odds ratio

POR = LLR + log CEZ‘ ;) (A17)
0

where the prior p(H,) is set to 0.05. The cluster with the largest LLR (summed across electrodes and
time points) is then expanded by continuing to add the largest neighbour and the new log prior (p
(H,) = 0.05/n), where n is the size of the cluster, whilst the POR remains in favour of H;. This is
repeated until all clusters with evidence in favour of H; have been identified.
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Estimating single-sample confidence inference error

We aimed to examine the neural processes that are important for the representation of the decision
evidence for computing confidence. To do so, we explored the source(s) of the activity reflecting the
neural representation of the accumulated evidence in the clusters of signals identified as relevant for
confidence evaluations. We use the representation from the cluster as an estimate of the internal evi-
dence the observer uses to make their confidence evaluations. The cluster inference error is the
absolute difference between the predicted value (on each sample) and the optimal value given the
presented evidence. We take this as an estimate of the inference error of the observer at the sample
level. This estimate is likely substantially affected by measurement noise, however, we do not expect
measurement noise to be systematically driven by a specific source, especially not across subjects.
Noise Min and Noise Max epochs were selected by taking the top and bottom quartiles of epochs
sorted by this estimate of inference error.

A separate estimate of the inference error was obtained by simulating the computational model
(Appendix 8—figure 1a shows the process of obtaining these estimates and their mutual reliance
on the input stimulus variables and the behavioural output). This computational model estimate also
has its drawbacks: It is relatively imprecise, given the large range of errors that are consistent with
the observers’ behavioural responses (see Appendix 2); and is based on the assumptions of the
model. By examining these two estimates, we avoid relying on the same set of assumptions through-
out the analysis. As reported in the Results section, the estimate of the single-sample inference error
from the cluster representation was significantly correlated with the single-sample inference error
estimated from the computational model of confidence ratings (t(19) = 5.12, p < 0.001), and this cor-
relation was significantly greater than the error estimated from the model of perceptual decisions
alone (t(19) = 2.62, p = 0.017). This correlation between these estimates suggests that they do tap
into the suboptimal inference of the observer.
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Appendix 8—figure 1. Estimating inference error. (a) Two approaches to estimate inference error.
It is assumed the observer’s behaviour is based on a suboptimal inference over the physical stimulus.
We do not have access to the single-sample inference error, but can estimate it using the measured
variables: the physical stimulus properties, the behaviour, and the EEG signals. Two approaches are
outlined: The EEG inference error estimate, which relies on the error of the representation of the
accumulated evidence, in clusters where the precision of the representation is related to suboptimal
behaviour; and the model error, which relies on simulating the processing of the evidence based on
the fitted model parameters, and taking the median of simulated traces which concur with the
observer’s response. (b) Correlation between variables measured from behaviour, the stimulus input,
and the estimated inference error. (c) Effect size on the difference between Noise Min and Noise
Max epochs.
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Appendix 8—figure 1b shows the correlation of these estimates of the inference error and differ-
ent variables related to the stimulus presentation and behaviour, averaged across subjects. We also
examined the average absolute effect size of the within subject difference between different varia-
bles dividing trials by Noise Min and Noise Max epochs is shown in Appendix 8—figure 1c. There
was a larger effect on confidence inference error (d = 0.06) than perceptual inference error (d =
0.02), from the model estimate. There were some effects on stimulus variables: a small effect of con-
dition (More vs Less, d = 0.03), a large effect on sample position in the sequence (Noise Min epochs
tended to correspond to earlier samples, d = 0.2), and an effect on decision update (Noise Min
epochs tended to correspond to smaller momentary decision updates, d = 0.08). The effects on
behaviour were largest for confidence accuracy (d = 0.06), with limited effect on perceptual accuracy
(d = 0.02) and confidence rating (Noise Min epochs were somewhat more associated with high confi-
dence ratings, d = 0.03).
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Appendix 9

Regions of interest

Regions of interest were selected based on the previous literature. Specifically, Herding et al., 2019
found subjective evidence to modulate activity in the superior parietal cortex; Gherman and Philias-
tides, 2018 found correlates of confidence encoding in the ventro-medial prefrontal cortex (overlap-
ping with the MindBoggle orbitofrontal cortex coordinates), whilst Graziano et al., 2015 examined
ROls in the anterior cingulate cortex, orbitofrontal cortex, temporal lobe, posterior parietal cortex,
and occipital cortex. We chose to use ROIs defined by MindBoggle (Klein et al., 2017) that corre-
sponded to similar regions: lateral occipital cortex, superior parietal cortex, orbitofrontal cortex
(combining medial and lateral partitions), rostral middle frontal cortex, and initially the anterior cin-
gulate cortex (combining rostral and caudal partitions; Appendix 9—figure 1b). These regions do
not necessarily map on to regions of the greatest current density (Appendix 9—figure 1a shows the
current density over time for the Noise Min epochs). The results of the anterior cingulate cortex
were similar to the neighbouring orbitofrontal region, so we decided not to present this in the manu-
script for simplicity. We show the results in Appendix 9—figure 1c, for left and right hemispheres
separately (statistical analyses were performed on the average).
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Appendix 9—figure 1. Regions of interest and corresponding current density. (a) Average rectified
normalised current density in Noise Min epochs for the corresponding time windows, filtered above
the half-maximum amplitude (b) Regions of interest based on Mindboggle coordinates. (c) Average
normalised rectified current density in the right (top) and left (bottom) hemispheres. Noise Min
Appendix 9—figure 1 continued on next page
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Appendix 9—figure 1 continued

epochs are shown coloured, Noise Max in black, with shaded regions showing the 95% within-
subject confidence interval.

Balsdon et al. eLife 2021;10:€68491. DOI: https://doi.org/10.7554/eLife.68491 39 of 39


https://doi.org/10.7554/eLife.68491

