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Abstract 

We explored here the hypothesis that temporary chronic water restriction in mice affects 

social behavior, via its action on the density of 5-HT neurons in dorsal and median raphe 

nuclei (DRN and MRN). For that, we submitted adult C57BL/6J mice to mild and controlled 

temporary dehydration, i.e., 6h of water access every 48h for 15 days. We investigated their 

social behavior in a social interaction task known to allow free and reciprocal social contact 

and to rely on prefrontal cortex activity and monoaminergic prefrontal input. Results showed 

that temporary dehydration increases significantly time spent in social contact and social 

dominance. It also expands 5-HT neuron density within both DRN and MRN and the 

behavioral and neuronal plasticity were positively correlated. Our findings suggest that 

disturbance in 5-HT innervation caused by temporary dehydratation stress unbalances choice 

processes of animals in social context. 
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Introduction 

In the wild, rodents are able to survive on relatively dry diets and may go into temporary 

dehydration states for various periods (Tirado et al., 2008). Temporary dehydration alters 

serotonergic innervation in multiple mammal species such as rats (Chatoui et al., 2012), 

merions (Elgot et al., 2009; 2012a, b), and gerbils (Boukersi et al., 2018). A temporary 

controlled dehydration in the laboratory is thus an ecological modulator of serotonin activity 

that mimics what happens in real life context. Serotonin (5-hydroxytryptamin or 5-HT) is the 

most widely distributed transmitter in the brain (Dahlstrom and Fuxe, 1964) and is well 

known for its role in mood regulation (David and Gardier, 2016) since abnormalities in its 

neurotransmission are associated with neuropathologies like depression and anxiety (Cowen, 

2008; Quesseveur et al., 2013) and other neurological or psychiatric disorders (Jayamohanan 

et al., 2019). However, it is still unclear how various environmental factors such as temporary 

dehydration can physiologically control brainstem neuromodulatory systems, including the 

dorsal and medial raphe (DRN and MRN) serotonergic nuclei, the main sources of 5-HT 

(Michelsen et al., 2008; Steinbusch, 1981). It is well established that 5-HT containing neurons 

of DRN and MRN project to forebrain areas (Kosofsky and Molliver, 1987; O’Hearn and 

Molliver, 1984; Steinbusch and de Vente, 1997) and receive descending projections from 

forebrain regions (Celada et al., 2001; Peyron et al., 1998).The MRN innervates several 

subcortical areas such as the hippocampus and the nucleus accumbens, and sends axons to 

dopaminergic (DA) neurons of the ventral tegmental area which in turn innervates the 

prefrontal cortex (PFC). The DRN innervates the PFC, the amygdala, the nucleus accumbens 

and the hippocampus and sends axons to DA neurons of the substantia nigra that innervate the 

amygdala and the dorsal striatum. Both DRN and MRN innervate several hypothalamic 

nuclei, therefore triggering endocrine release (Lechin et al., 2006). The 5-HT system is thus 

ideally placed to support integration of emotional, motivational and cognitive behaviours 

(Muzerelle et al., 2014; Suri et al., 2015). For example, in animal models, 5-HT in limbic 

forebrain areas was altered by multiple environmental stressful conditions, such as 

temperature variation (Linthorst et al., 2008), swim stress (Kelly et al., 2011), or social defeat 

(Paul et al., 2011). In humans, patients with anxiety and affective disorders show an increase 

of brain 5-HT turnover compared to healthy subjects (Esler et al. 2007; Barton et al. 2008). 

However, there are little studies reporting alteration of serotonergic innervation in 5-HT main 

source of production, namely DRN and MRN. 



Social interactions are important components of healthy behaviours (Monica et al., 2017) 

since they enable animals to communicate with and learn from one another, and can increase 

the likelihood of survival and reproduction (Ferri et al., 2016). We previously showed that 

social interaction relies on PFC integrity and triggers its activation (Avale et al., 2011; 

Nosjean et al., 2018), and that both cholinergic integrity (de Chaumont et al., 2012; Nosjean 

et al., 2015) and the PFC monoaminergic input are necessary for displaying adapted and non 

aggressive reciprocal social interaction (Coura et al., 2013). A recent study provides 

proteomic evidences that serotonergic and dopaminergic activities were increased by social 

play in rats (Alugubelly et al., 2019). In addition, dorsal raphé activation was specifically 

associated with social dominance (Kim et al., 2015) while optogenetic stimulation of dorsal 

raphé nuclei elevated prefrontal 5-HT levels along with social behavior frequency (Balazsfi et 

al., 2018). Despite these recent data, the precise role of serotonergic activity on social 

behavior remains largely unknown. 

In this study, we tested the behavioral and neurobiological consequences of dehydration on 

social behavior and on DRN and MRN neuronal reactivity. 

Materials and methods 

Animals 

20 adult male C57BL/6J mice obtained from Charles Rivers Laboratories (L’Arbresle Cedex, 

France) were used in our study. We randomly divided them into three groups: the first group 

(n=5) served as a control with water access ad libitum, the second group (n=5) was submitted 

to a controlled dehydration protocol by allowing them water access only for 6 hours per 48 

hours for15 consecutive days, the third group (n=10) was used as social partner (see below) 

and had access to water and food ad libitum. All animals had food access ad libitum.  

Animals of groups 1 & 2 were socially isolated for 4 weeks prior to social tests (transparent 

plexiglas cage, 50x20 cm, covered with clean sawdust) while animals of group 3 were 

maintained 3 to 5 per cage under constant room temperature (23±2°C), humidity and 12/12 h 

light-dark cycle. 

Behavioural procedures were carried out in accordance with European Commission 

guidelines. All efforts were made to minimize animal suffering and reduce the number of 

animals used. 

Social interaction task (SIT) 

At the end of the dehydration procedure, we followed the experimental protocol previously 

described for social interactions (Avale et al., 2011; Nosjean et al., 2015). Briefly, each 



isolated mouse (thereafter called host mouse) was put in a novel transparent open field (50 

x20 cm) containing a handful of clean sawdust, where it stayed alone exploring this novel 

environment for 30 minutes. This procedure promotes the development of limited dominance 

from the host mouse (De Chaumont et al., 2012; Faure et al., 2017; Nosjean et al., 2015). 

After that, a visitor male mouse of the same strain and age and not isolated before (maintained 

in social cages of 3 to 5 animals), was introduced into the open field for a 8-min social 

interaction test that was recorded by a camera connected to a computer for offline analysis. 

We scored the time spent in contact, the number of follow behaviors (i.e., bouts of behaviors 

during which the host mouse follows the visitor mouse while making nose-genital contact), 

the number of escape behavior (i.e. behavioral sequences initiated by the host mouse 

consisting of interrupting the social contact and going away from the visitor mouse) and the 

number of rearing (lifting the two forepaws) performed by host mice. 

Tissue preparation and immunostaining for 5-HT  

At the end of the experiment, as previously described (Nosjean et al., 2015; Boukersi et al., 

2018), all mice were deeply anesthetized by intraperitoneal injection of sodium pentobarbital 

(40 mg/kg and transcardially perfused with ice-cold phosphate buffered saline (PBS, 0.1 M, 

pH 7.4) followed by 4%  paraformaldehyde in (PBS, 0.1 M, pH 7.4). Brains were removed 

and post-fixed for one week in the same fixative at 4 °C. For each brain serial coronal sections 

(40µm thickness), including the raphe nuclei in the brainstem were cut using Leica vibratome. 

Free floating sections were collected in 6-well tissue culture plates in 1.5 ml of cryoprotection 

solution and stored at -20°C until the day of primary antibody incubation. Sections processed 

in midbrain through the DRN and MRN were chosen for 5-HT immunolabelling. Free-

floating sections from both hydrated and dehydrated groups were immunostained 

simultaneously using the same reagents and same incubation time. Free-floating sections were 

rinsed 3 times in (PBS, 0.1 M) before being incubated in a solution containing methanol and 

hydrogen peroxide during 30 minutes at room temperature, rinsed in 0.1 M PBS followed by 

one wash in (PBS, 0.1 M) containing 0.2% Triton X-100 (PBST), and preincubated in 5% 

normal goat serum with PBST for 1 h. Sections were then incubated overnight at 4°C with 

rabbit primary antibody anti 5-HT (Euromedex) diluted 1:2000 in PBST and goat serum 5%. 

The next day tissues were washed 3 times in PBST the incubated for 2 h in goat secondary 

biotinyled anti-rabbit IgG (Eurobio) diluted 1:200 in PBST and goat serum 5%. Tissue was 

then washed 3 times in PBST followed by 2 h incubation with an avidin-biotin-peroxidase 

complex (ABC, Vectastain ABC kit, Vector laboratories). After washing sections in BPST 



then twice in Tris HCL 0.1 M, the peroxidase activity was revealed by incubating them in 

0.03% DAB (3,3’ diaminobenzidine, Sigma) + Nickel (NiCl2) 0.06% and 0.02% H2O2 in 0.05 

M Tris HCl, pH 7.5. All immunochemical reactions and washings described above were 

possessed simultaneously in four 12-well tissue culture plates, 10 sections in each well, to 

insure identical condition staining for all sections. Immediately after the chromogen reaction, 

sections were washed in (PB, 0.1M) and then in 0.15% gelatine in H2O before being mounted 

on glass microscope slides (Thermo Scientific Super Frost Plus). Lastly, slides were air dried 

for 24 hours, dehydrated through 2 min serial ethanol baths (70%, 95% and 100% ethanol), 

and cleared with xylene. Coverslips were placed on the sections using Eukit for optic 

microscopy observation. 

5-HT immunostaining assessment 

The selected coronal brain sections permitted evaluation of raphe regions known to be heavily 

populated with serotonergic neurons. Anatomical landmarks were used to ensure that 

comparable brain sections were analyzed for each region in each animal. Using atlas brain of 

mouse (Paxinos and Franklin, 2001), three sections corresponding to the same three levels of 

bregma (-4.72, -4.60 and -4.48) were chosen for each brain in which the whole DRN and       

MRN could be seen clearly and most entirely. Examination of the slices was performed by 

Olympus light microscope coupled to an image-analysis workstation (Mercator; Explora 

Nova software). Photomicrographic digital images were taken for the three sections of each 

animal’s brain, and the average density of 5-HT immunopositive neurons (number of somas 

per 1mm
2
) was calculated in DRN and in MRN by counting automatically all neurons having 

colour density more than threshold defined at start of counting. 

Statistical analysis 

Because of the small number of animals in each group (n=5), Mann-Whitney test was chosen 

to compare results of hydrated and dehydrated groups. A p value <0.05 was considered to 

indicate statistical significance between groups. Finally, to examine potential relationships 

between SIT and 5-HT immunostaining we applied the non-parametric test of correlation of 

Spearman, considering a significant correlation at p<0.05. 

Results  

Effect of water restriction on social interaction task 

Our data showed an increase of time spent in social contact betwen animals in dehydration 

condition as compared to normal hydratation (p= 0.015) (Fig 1). The number of follow 



behavior, index of social dominance, was significantly higher in the dehydrated group as 

compared to normally hydrated one (control) ( p= 0.007) (Figure 1). The number of rearings 

and of escape behavior were not significantly altered in dehydrated animals (group effect 

respectively p= 0.221 and p= 0,149). 

 

Figure 1. Social interaction task in dehydrated and control mice. Data is presented as means ± 

SEM. Significant group effect (i.e. effect of dehydration) is indicated by * (p< 0.05, Mann-

Whitney test). 

Serotonin immunolabeling in DRN and in MRN  

We examined the 5-HT immunolabeling in the DRN and MRN. Positive 5-HT 

immunolabeled neurons density in both nuclei was significantly increased in dehydrated mice 

as compared to controls (p= 0.007 and p= 0.015, Figures 2 and 3) 
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Figure 2. Representative microphotographs of 5-HT immunolabeled neurons in the dorsal 

raphe nucleus (DRN, A & C) and median raphe nucleus (MRN, B & D, bregma -4.72 mm) in 

dehydrated (top) and control mice (bottom). DRD: dorsal part of dorsal raphe nucleus; 

DRVL: ventro lateral part of dorsal raphe nucleus; DRV: ventral part of dorsal raphe nucleus; 

DRI: interfascicular part of dorsal raphe nucleus; mlf: medial longitudinal fasciculus.    

 

Figure 3. 5-HT immunolabeled neuron density in the DRN and MRN in dehydrated and 

control mice. Data is presented as means ± SEM. Signficant group effect (i.e. effect of 

dehydration) was indicated by * (p< 0.05, Mann-Whitney test). 
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Correlation between serotonin immunolabeling in DRN and MRN and social behavior 

in SIT 

Across both DRN, density of 5-HT immunolabeled neurons correlates positively and 

significantly with time spent in social contact (R² = 65%; p< 0.01, Figure 4) and number of 

follow behaviors (R² = 65%; p< 0.01, fig 5). However, in MRN, density of 5-HT 

immunolabeled neurons correlates positively and significantly only with time spent in social 

contact (R² = 52%; p<0.05, Figure 4) but not with the number of follow behaviors (R² = 

41.5%; p>0.05, fig.5). The density of 5-HT neurons in DRN and MRN was not correlated 

with the number of escape behavior (R² = 5.9%; p>0.05 and R² 56.8%; p>0.05 respectively, 

Figure 6) nor with the number of rearings (R² = 3.1%; p>0.05 and R² = 42.1%; p>0.05 

respectively, Figure 7).  

 

Figure 4. Positive correlation between 5-HT neuron density in the DRN and MRN and 

contact time in the social interaction task. Black dots represent dehydrated mice, grey dots 

represent control mice. Significant correlation was indicated by * (p< 0.05, R
2 

Spearman 

correlation coefficient).  
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Figure 5. Positive correlation between 5-HT neuron density in the DRN and MRN and the 

number of follow behaviour displayed by the host mice. Black dots represent dehydrated 

mice, grey dots represent control mice. Significant correlation was indicated by* (p< 0.05, R
2
 

Spearman correlation coefficient).  

 

Figure 6. No correlation between 5-HT neuron density in the DRN and MRN and the number 

of escapes displayed by the host mice. Black dots represent dehydrated mice, grey dots 

represent control mice (p> 0.05, R
2 

Spearman correlation coefficient).  
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Figure 7. No correlation between 5-HT neuron density in the DRN and MRN and the number 

of rearings displayed by the host mice. Black dots represent dehydrated mice, grey dots 

represent control (p> 0.05, R
2 
Spearman correlation coefficient). 

 

 

Discussion 

In the present study, we aim to explore the hypothesis that temporary chronic water restriction 

could affect social behavior, via its action on the density of 5-HT neurons in DRN and in 

MRN. The C57Bl/6j strain that we used is known for its sociability and is thus perfectly 

suitable for studying social behavior (Faure et al. 2017; Lawrence et al. 2017).  

Results reveal significant increases of the time spent in social contact and of dominance 

behavior, and of 5-HT neurons density within both DRN and MRN in dehydrated animals as 

compared to control animals. 

Our findings suggest that disturbance in 5-HT innervation caused by temporary dehydratation 

stress could unbalance choice processes of animals in the social task. Indeed, we previously 

showed that this social task relies on the ability to make choices between two concurrent 

motivations, i.e., getting a social contact and exploring a novel environment (Granon et al., 

2003; Avale et al., 2011; De Chaumont et al., 2012;), processes supported by prefrontal 

activity (Avale et al., 2011; Nosjean et al., 2018) and prefrontal monoaminergic modulation 

(Cambon et al., 2010; Coura et al., 2013). Results of correlation between 5-HT 

immunolabling in DRN and MRN and social contact parameters support this hypothesis, 

showing that higher number of 5-HT neurons in DRN and MRN is associated with longer 
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social contact and more dominance behavior. We previously evidenced that follow behavior, 

an index of social dominance, largely contributes to social contact (Coura et al., 2013; Faure 

et al., 2017) and is promoted by acute stress (Nosjean et al., 2018). Our current data therefore 

supports and reinforces previous works showing that social dominance is positively related to 

5-HT neuronal activity (Kiser et al., 2012; Kim et al., 2015), and that while decreased levels 

of 5-HT promote social isolation (Higley et al., 1996), its increase promote social cooperation 

and contact (Paula et al. 2015; Anstey et al., 2009) and affiliative behaviors (Aan het Rot et 

al., 2006; Tse and Bond, 2002). 

It is noticeable that aggressive behavior was not observed in any mouse that was socially 

isolated before the social task, independently of their hydratation condition (except one brief 

aggression from one dehydrated animal). This supports our previous work (Nosjean et al., 

2015) showing that acute stress, but not temporary social isolation during adulthood, can 

trigger aggressive behavior in some mice. Social dominance is a normal behavior dissociated 

from aggressive behavior that we previously showed to be modulated by the cholinergic 

system activity (Nosjean et al., 2015) while aggressive behavior was modulated by the 

noradrenergic system activity (Cambon et al., 2010; Coura et al., 2013). However, other 

studies suggested causal links between increased aggression and low 5-HT activity (Audero, 

et al, 2013; Bjork et al., 1999; Caramaschi et al., 2007). One hypothesis to explain this 

discrepancy is that these authors consider extracellular 5-HT and its metabolite 5-HIAA 

(Dekeyne et al., 2000; Mir and Taylor, 1997; Sambunaris et al., 1997), whereas we look here 

at 5-HT neurons. We have recently shown that acute sleep restriction produced a decrease of 

5-HT level in the prefrontal cortex, together with altered decision-making processes (Pittaras 

et al., 2018). It could therefore be of interest in future works to measure not only the cellular 

plasticity of 5-HT after dehydration but its consequences on 5-HT level and its metabolites in 

various brain areas. Besides, further study should clarify the signalling consequences of 

intracellular 5-HT increase after dehydration and its temporality, i.e., whether synthesis, 

degradation, reuptake and release of 5-HT are altered, by which mechanisms and which 

duration of dehydration is needed for them to take place. Conversely, it would be valuable to 

investigate other cognitive consequences of temporary dehydration. Nevertheless, to our 

knowledge, this is the first work showing neuronal plasticity of 5-HT in DRN and MRN after 

temporary dehydration stress and its detrimental effect on social interaction.  

5-HT neurons had been found in higher density under dehydratation in Gerbillus tarabuli 

(Boukersi et al., 2018), a rodent adapted to dry environment. The fact that we showed a 



similar plasticity of the serotonergic system in mice, rodents not particularly adapted to lack 

of water, suggests that this monoaminergic system may play a pivotal role in the rapid brain 

response to water homeostasis. This is in accordance with several reports providing evidence 

for involvement of this neurotransmitter in controlling vasopressin secretion (Popova et al., 

2001), drinking behaviour (Reis et al., 1990), salt appetite (Cooper and Ciccocioppo, 1993), 

water intake and urine production (Olivares et al., 2003; Reis et al., 1994), supporting the 

view that serotonergic circuits originating from the mesencephalic raphe are implicated in 

hydromineral homeostasis (Fitzsimons, 1998; Franchini et al. 2002; McCann et al., 2003; 

Phillips et al., 1982; Reis et al. 1994).  

In addition, it is well known that midbrain 5-HT neurons establish reciprocal interactions with 

thirst and water balance control areas, such as the subfornical organ (Tanaka et al., 2003), 

organum vasculosum laminae terminalis (Thrasher and Keil, 1987), and hypothalamo-

pituitary axis (Maslova al., 1990; Popova et al., 2001). The latter is known to be markedly 

affected when animals are dehydrated (Langle et al., 2002) since it secretes vasopressin which 

controls water homeostasis in mammalians (Elgot et al. 2012a, b; Jones and Pickering, 1969). 

Furthermore, some areas involved in stress management and social behavior such as the 

prefrontal cortex (Abrams et al., 2004; Avale et al., 2011; Loiseau et al., 2008), the amygdala 

(Imai et al.,1986; Nosjean et al., 2018; Olsson and Phelps, 2007 ) and the hippocampus 

(McEwen et al., 2016; Kohler and Steinbusch, 1982) make important reciprocal anatomical 

connections with raphe nuclei (Groenewegen and Uylings, 2000;  Hajós et al., 1998; Sesack et 

al., 1989), hence playing an important role in regulating executive function (Puig and 

Gulledge, 2011). Consequently, the wide distribution of 5-HT in the brain may make any 

change in its source (DRN and MRN) a potential cause of change in all functions controlled 

by areas innervated by 5-HT.  
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