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Abstract
1. An increasing number of empirical studies aim to quantify individual variation in 

demographic parameters because these patterns are key for evolutionary and 
ecological processes. Advanced approaches to estimate individual heterogeneity 
are now using a multivariate normal distribution with correlated individual ran-
dom effects to account for the latent correlations among different demographic 
parameters occurring within individuals. Despite the frequent use of multivariate 
mixed models, we lack an assessment of their reliability when applied to Bernoulli 
variables.
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1  | INTRODUC TION

Populations are composed of individuals that differ in their attri-
butes, both at the phenotypic and genetic level, which influences 
their fitness. This among- individual heterogeneity is ubiquitous 
across populations and is a fundamental topic in ecology and evolu-
tion (Bolnick et al., 2011; Hamel et al., 2018). Among- individual het-
erogeneity profoundly affects population responses as the average 
performance of all individuals in a population is typically different 
from the performance of a population of average individuals (van 
de Pol & Verhulst, 2006; Vaupel & Yashin, 1985). More generally, in-
dividual heterogeneity affects the estimation of critical parameters 
such as vital rates, population growth rate and components of de-
mographic variance (i.e. demographic stochasticity, environmental 
stochasticity and density dependence), with profound implications 
for population dynamics, phenotypic selection and the evolution of 

life- history strategies (Lomnicki, 1978 for a pioneer study; Snyder & 
Ellner, 2018; Vindenes et al., 2008; Vindenes & Langangen, 2015 for 
recent developments).

Various definitions of individual heterogeneity have been 
formulated (Cam et al., 2016; Gimenez et al., 2018; Wilson & 
Nussey, 2010). In evolutionary and behavioural studies, individual 
heterogeneity often refers to the among- individual variance ob-
served in a phenotypic trait. In this context, individual heterogeneity 
is generally trait specific and may vary within individuals over time 
(e.g. Jolles et al., 2020). Here, we define individual heterogeneity 
more restrictively as the among- individual variance in demographic 
parameters. Some of the factors generating individual heterogeneity 
can be easily observed (e.g. sex, age, size), but some are typically 
not observed by biologists (e.g. those due to dominance, personal-
ity or genetic make- up). Here, individual heterogeneity refers to this 
unobserved heterogeneity in demographic parameters that persists 

2. Using simulations, we estimated the reliability of multivariate mixed effect models 
for estimating correlated fixed individual heterogeneity in demographic param-
eters modelled with a Bernoulli distribution. We evaluated both bias and precision 
of the estimates across a range of scenarios that investigate the effects of life- 
history strategy, levels of individual heterogeneity and presence of temporal varia-
tion and state dependence. We also compared estimates across different sampling 
designs to assess the importance of study duration, number of individuals moni-
tored and detection probability.

3. In many simulated scenarios, the estimates for the correlated random effects were 
biased and imprecise, which highlight the challenge in estimating correlated ran-
dom effects for Bernoulli variables. The amount of fixed among- individual hetero-
geneity was frequently overestimated, and the absolute value of the correlation 
between random effects was almost always underestimated. Simulations also 
showed contrasting performances of mixed models depending on the scenario 
considered. Generally, estimation bias decreases and precision increases with 
slower pace of life, large fixed individual heterogeneity and large sample size.

4. We provide guidelines for the empirical investigation of individual heterogeneity 
using correlated random effects according to the life- history strategy of the spe-
cies, as well as, the volume and structure of the data available to the researcher. 
Caution is warranted when interpreting results regarding correlated individual 
random effects in demographic parameters modelled with a Bernoulli distribu-
tion. Because bias varies with sampling design and life history, comparisons of in-
dividual heterogeneity among species is challenging. The issue addressed here is 
not specific to demography, making this warning relevant for all research areas, 
including behavioural and evolutionary studies.

K E Y W O R D S

accuracy, among- individual variation, capture– recapture, GLMMs, individual quality, joint 
mixed models, multivariate normal distribution, precision
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after accounting for observed differences such as age, state and sex. 
Our demographic definition of individual heterogeneity is identical 
to what has been called fixed heterogeneity (Tuljapurkar et al., 2009; 
van Daalen & Caswell, 2020) or demographic heterogeneity (Stover 
et al., 2012), and align with the concept of frailty, although the latter 
is specific to individual variation in survival (Vaupel & Yashin, 1985).

Because quantifying all aspects of phenotypic variation that 
cause among- individual variation in demographic parameters is 
impossible, individual heterogeneity is frequently defined as an 
unmeasured latent variable (Cam et al., 2016). Many recent studies 
aimed to specifically quantify the amount of among- individual het-
erogeneity in demographic parameters to evaluate its biological im-
portance and determine its drivers. Two main modelling approaches 
have been used to estimate individual heterogeneity as a latent 
variable— the finite mixture models characterizing the presence of 
unobserved groups (Hamel et al., 2017; Pledger et al., 2003) and the 
mixed effect models quantifying random individual effects (Gimenez 
& Choquet, 2010; Hamel et al., 2018; van de Pol & Verhulst, 2006). 
Although both approaches have been employed to account for 
and quantify unobserved individual heterogeneity (Gimenez 
et al., 2018), mixed effect models are most widely used for two rea-
sons. First, they are convenient because they allow for straightfor-
ward quantification, interpretation and comparison of heterogeneity 
across traits and populations. Second, they are easier to implement. 
Indeed, mixture models often suffer from convergence problems, 
especially when Bernoulli- distributed traits are included, and defin-
ing the appropriate number of groups is not an easy task (Cubaynes 
et al., 2012; Hamel et al., 2017).

Although many studies have focused on measuring individual 
heterogeneity for a single demographic parameter, quantifying indi-
vidual heterogeneity in multiple demographic parameters with their 
covariation is critical. Indeed, covariation in individual heterogene-
ity in multiple demographic parameters may reveal biological pro-
cesses driving individual heterogeneity such as allocation trade- offs 
or among- individual variation in resource acquisition (van Noordwijk 
& de Jong, 1986). For instance, some studies found that individu-
als with a high survival probability also tend to have a high proba-
bility of breeding (Cam et al., 2002; McElligott et al., 2002; Pigeon 
et al., 2017), supporting the hypothesis that the overall covariations 
shaping individual heterogeneity may correspond to a continuum of 
low-  to high- quality individuals (Wilson & Nussey, 2010). Excitingly, 
important advances have been made to expand statistical tech-
niques to not only quantify the amount of unobserved heteroge-
neity in demographic rates, but also look at whether patterns exist 
in how different demographic rates covary within a population. 
Recent approaches have quantified individual heterogeneity in 
multiple demographic parameters based on mixed effect models 
using a multivariate normal distribution (e.g. Browne et al., 2007; 
Cam et al., 2002; Knape et al., 2011; Paterson et al., 2018). In these 
models, normally distributed individual random effects and their co-
variation are jointly estimated in several demographic parameters 
accounting explicitly for the non- independence in among- individual 
heterogeneity occurring in demographic parameters.

No studies, however, have assessed the statistical reliability of 
multivariate mixed effects models in estimating correlated individ-
ual random effects for traits modelled with a Bernoulli distribution 
(hereafter Bernoulli- distributed traits). Previous studies have inves-
tigated the performance of multivariate mixed effects models (also 
referred to as joint mixed effects models) for normally distributed 
traits (Martin et al., 2011; van de Pol, 2012). Based on simulations, 
they found that reliable estimates and statistical inferences could be 
reached with sample sizes of a few hundred individuals. However, 
the difficulty in estimating individual heterogeneity could vary with 
the type of trait. For Bernoulli- distributed traits, accurately esti-
mating individual random effects could be more challenging (Hamel 
et al., 2012; Kain et al., 2015). Previous studies have shown that in 
situations where individual variation in continuous traits is accu-
rately estimated, all else being equal, estimates of individual het-
erogeneity in Bernoulli- distributed traits can be biased (Bonnet & 
Postma, 2016). Bernoulli- distributed data contain less information 
than continuous response data (i.e. presence or absence vs. pres-
ence, absence and magnitude of the response). Furthermore, data 
available to estimate individual variability in demographic parame-
ters are generally scarce (Browne et al., 2007). In longitudinal studies 
of wild populations, individuals are often observed only once or a 
few times (<5) throughout their lifetime due to imperfect detection 
and a short life span. Thus, the reliability of multivariate mixed ef-
fects models to estimate correlated individual random effects for 
Bernoulli- distributed demographic parameters remains an unre-
solved issue.

To fill this knowledge gap, we performed simulations to evalu-
ate the reliability of multivariate mixed effects models in estimating 
correlated among- individual heterogeneity in demographic parame-
ters that follow a Bernoulli distribution. Previous studies suggested 
that the amount of among- individual heterogeneity and the num-
ber of observations for each individual are critical to estimate indi-
vidual random effects (Kain et al., 2015). Because life span affects 
the number of occasions when an individual can be observed, and 
thus the amount of information potentially available to estimate 
demographic parameters, we may expect model performance to 
vary according to life span, and thereby with the life- history strat-
egy of the species considered. We first investigated the effects of 
life- history strategy and the amount of among- individual heteroge-
neity on the bias and precision of estimated correlated individual 
random effects in survival and reproduction. Furthermore, temporal 
variation and state- dependent variation (i.e. the probability that a 
given event for individual i at time t depends on the state of that 
individual at time t − 1), which are both pervasive in the wild, can 
be mistakenly attributed to fixed individual heterogeneity if ignored 
(Authier et al., 2017; Cam et al., 2016). Positive state dependence 
can be particularly problematic because the variation it generates 
in individual life- history trajectories can mimic that induced by fixed 
individual heterogeneity (Cam et al., 2016). For instance, if the prob-
ability of reproducing successfully is higher after a successful repro-
ductive attempt, state dependence will generate state persistence 
in life histories with some individuals accumulating successes and 
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others accumulating failures, in the same way fixed individual het-
erogeneity in reproductive success acts. Thus, empirical studies 
investigating individual heterogeneity have to estimate both individ-
ual heterogeneity and state dependence simultaneously, otherwise 
the estimates might be biased because state dependence and fixed 
individual heterogeneity could be confounded (Authier et al., 2017; 
Cam et al., 2016). Thus, in a second step, we assessed the reliability 
of mixed effects models to estimate correlated individual random 
effects including temporal variation and positive state dependence 
in our simulations. Finally, because the sample size (i.e. the number 
of individuals monitored) and the design of long- term studies show 
large variation, we also considered the effect of the number of indi-
viduals and the sampling design (i.e. detection probability and dura-
tion of the monitoring) on the bias and precision of the correlated 
individual random effects. We compared results across scenarios to 
provide guidelines for quantifying individual heterogeneity accord-
ing to the life- history strategy, the structure and the volume of data 
available to the researcher.

2  | MATERIAL S AND METHODS

2.1 | Data simulation

2.1.1 | Baseline model

We simulated individual life- history trajectories considering two 
demographic parameters, annual survival probability and reproduc-
tive success probability (i.e. the probability of successfully raising at 
least one offspring to independence), that are each modelled with a 
Bernoulli distribution. Each individual's trajectory starts when the 
individual is recruited as a first- time breeder in the population, and 
we did not simulate any age effect. The survival process was mod-
elled as follows:

where SURVIVALit is the survival of individual i from year t − 1 to year 
t and μΦ is the logit transform of Φ, which is the average survival prob-
ability. Conditional on its survival, individual i may breed successfully in 
year t following an additional Bernoulli process where:

where μψ is the logit transform of ψ, which is the average reproductive 
success. αi,Φ and αi,ψ are individual random effects that determine the 
fate of each individual and follow a multivariate normal distribution:

where �2
X
 is the variance of trait x (x refers to either survival Φ or repro-

ductive success ψ) and covΦ�
 is the covariance between the two 

demographic parameters. The correlation between the two demo-
graphic parameter is calculated as corΦ�

=
covΦ�

�Φ × �
�

.

2.1.2 | Full model

Individual variation in demographic parameters may originate from 
processes other than individual heterogeneity such as temporal vari-
ation due to changing environmental conditions and state depend-
ence, that is, the probability that a given survival or reproductive 
event for individual i at time t depends on the state of that individual 
at time t − 1. If not accounted for, positive state dependency would 
increase the estimated individual heterogeneity. Inversely, negative 
state dependency would lead to an underestimation of individual 
heterogeneity. To account for these two additional processes, we 
modified the baseline model by including temporal variation and 
state dependence. The model then becomes:

and

where γΦ and γψ are the parameters quantifying the intensity of state 
dependence in survival and reproductive success probabilities re-
spectively. εt,Φ and εt,ψ are the temporal random effects simulating the 
environmental effects following normal distributions of mean 0 and 
variance �2

�Φ
 and �2

�
�

 respectively (Authier et al., 2017).

2.1.3 | Parameterization

Based on the models described above, we simulated datasets with 
different parameter values corresponding to various scenarios 
(Table 1). For the means μΦ and μψ, we considered two sets of values 
corresponding to a fast and a slow life- history strategy. These values 
were chosen to reflect the pace of life of a small passerine (μΦ = 0.5 
and μψ = 0.7, generation time of 2 years assuming recruitment at 
1 year) and a long- lived seabird (μΦ = 0.9 and μψ = 0.8, generation 
time of 19 years assuming recruitment at 10 years). We simulated 
small and large amounts of individual heterogeneity in survival and 
reproductive success probability. Because the variance of a Bernoulli 
process is maximized at a mean probability of 0.5 and is constrained 
towards 0 as the mean approaches 0 or 1, we slightly adjusted 
the value representing a small and large amount of individual het-
erogeneity according to the life- history strategies as traits' means 
markedly differed between these strategies (Table 1; Figure 1). The 
correlation between the random effects was set to be 0.6, based 
on previous studies reporting positive covariations between de-
mographic parameters (Cam et al., 2002; Fay et al., 2018; McLean 
et al., 2019). We simulated the absence or the presence of both tem-
poral variation in demographic parameters and state dependence 
(Table 1). Specifically, we included positive state dependence, that 

SURVIVALit ∼ Bernoulli(logit−1(�Φ + �i,Φ)),

SUCCESSit|
(
SURVIVALit = 1

)
∼ Bernoulli(logit−1(�

�
+ �i,� )),

⎛
⎜⎜⎝
�i,Φ

�i,�

⎞
⎟⎟⎠
∼ MVN

⎛
⎜⎜⎝
0,

0,

⎡
⎢⎢⎣

�
2
Φ

covΦ�

covΦ�
�
2
�

⎤
⎥⎥⎦

⎞
⎟⎟⎠
,

SURVIVALit ∼ Bernoulli
(
logit−1

(
�Φ + �i,Φ + �Φ × successi(t−1) + �t,Φ

))
,

SUCCESSit|
(
SURVIVALit = 1

)
∼ Bernoulli

(
logit−1

(
�
�
+ �i,� + �

�
× SUCCESSi(t−1) + �t,�

))
,
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is, higher survival and reproductive success following a successful 
reproductive event the previous year. Although negative state de-
pendence is predicted by life- history trade- offs (Bell, 1980), empiri-
cal studies on natural populations have frequently reported positive 
state dependence (McElligott et al., 2002; Smith, 1981), which may 
persist even when individual heterogeneity is accounted for (Cam 

et al., 2013; Zhang et al., 2015). After a failure, we used values for 
which survival value was Φ – 0.1 and reproductive success was ψ 
– 0.1 regardless of the life- history strategy. These values reflect ef-
fect sizes reported in empirical studies (e.g. Fay et al., 2018; Lescroël 
et al., 2009; McElligott et al., 2002). For simplicity, individuals per-
form as if they were previously unsuccessful at the first occasion. 

TA B L E  1   Parameter values used to simulate the datasets. For convenience, parameter values are alternatively given on the probability 
scale (PS) or logit scale (LS)

Parameters Meaning Scenarios Values

Biological process

Φ Mean survival (PS) Fast– slow 0.5 or 0.9

ψ Mean reproductive success (PS) Fast– slow 0.7 or 0.8

�Φ Standard deviation of the individual heterogeneity in survival 
(LS)

Low– high 0.2/0.3 or 0.6/0.8

�
�

Standard deviation of the individual heterogeneity in 
reproductive success (LS)

Low– high 0.2/0.3 or 0.6/0.8

corΦ�
Correlation between individual random effects for survival 

and reproductive success (LS)
Quality 0.6

�
�Φ

Standard deviation of the temporal variation in survival (LS) Absent– present 0 or 0.5

�
�Φ

Standard deviation of the temporal variation in reproductive 
success (LS)

Absent– present 0 or 0.5

γΦ State dependence in survival (PS) Absent– present 0 or 0.1

γψ State dependence in reproduction (PS) Absent– present 0 or 0.1

Sampling process

nyear Study duration Low– medium– high 10 or 20 or 40

nind Number of individuals marked per year Low– high 25 or 100

p Detection probability (PS) Imperfect– perfect 0.5 or 1

F I G U R E  1   Distribution of the simulated individual heterogeneity (σ) in survival (Φ) and in reproductive success (ψ) probabilities according 
to the life- history strategy and the amount of individual heterogeneity simulated. The vertical lines display the means. In each case, 
individual heterogeneity included in the trajectories corresponds to a continuum of increasing individual performance along the x- axis 
that can be interpreted as frailty for survival probability and as a measure of reproductive ability for reproductive success probability. The 
correlation between these axes of performance is positive and thereby corresponds to a continuum of individual quality
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Finally, we also simulated different sampling designs by using data-
sets consisting of 10, 20 or 40 years of monitoring with 25 or 100 
new individuals, recruited as first- time breeders, added each year, 
which produce six combinations of sample size, from 250 to 4,000 
individuals. These designs allowed us to disentangle the effect of 
the number of individuals from the number of years of monitoring. 
For instance, to investigate fixed individual heterogeneity, one may 
ask whether it is better to have a sample size of 1,000 individuals 
that come from 20 years of monitoring with 100 new individuals re-
cruited as first breeders per year, or from 40 years of monitoring 
with 25 new individuals recruited as first breeders per year. Lastly, 
because animal monitoring in the wild is usually akin to imperfect 
detection, we simulated datasets with either perfect (p = 1) or im-
perfect detection (p = 0.5) (Table 1). Ultimately, our simulations 
captured two distinct life- history strategies, two levels of individual 
heterogeneity, the presence or absence of temporal variability and 
state dependence, three levels of monitoring duration, two mark-
ing effort schemes and two levels of detection probability, thereby 
leading to 192 scenarios. The parameter space explored was a trade- 
off between the number of factors investigated and the number of 
resulting scenarios and computation time. Although the parameter 
space investigated remained relatively limited, contrasting two or 
three levels for each factor allowed describing the relevant patterns 
regarding model performance.

2.1.4 | Mixture of binomial and continuous traits

Reliably estimating individual random effects is particularly challeng-
ing for Bernoulli variables, but is easier for non- binary traits (Bonnet 
& Postma, 2016). One may thus suggest that the inclusion of addi-
tional demographic parameters following a Poisson or Normal distri-
bution for instance would improve the reliability of estimates of other 
individual random effects on survival and reproduction. Assuming 
that all random effects are correlated, accurately estimating one may 
improve the estimation of the others. To evaluate this possibility, we 
ran six additional scenarios to test how bias and precision of corre-
lated random effects in Bernoulli- distributed traits change when we 
include a third Poisson- distributed demographic parameter corre-
lated with the previous two. See Appendix S1 for details.

2.2 | Analysing the simulated data

To assess the quality of the estimates provided by the multivariate 
mixed models, we simulated 100 datasets for each scenario, which 
led to n = 19,800 simulated datasets in total. For each dataset, we 
ran a Bayesian multi- state capture– recapture model identical to the 
model used to simulate the data. We computed the bias, both non- 
scaled and scaled, and the precision for all estimates for each sce-
nario using the set of 100 simulated datasets/fitted models. The bias 
was the difference between the average estimate over the 100 fitted 
models and the simulated value. The scaled bias was the bias divided 

by the simulated value. The precision was the average coefficient of 
variation of the estimate. Ninety five per cent credible interval (CRI) 
coverages were computed over 300 fitted models. To reduce com-
putation time, we computed CRI for a subset of 44 scenarios (over 
192) including two distinct life- history strategies, two levels of indi-
vidual heterogeneity, the simultaneous presence or absence of both 
temporal variability and state dependence, three levels of monitor-
ing duration, two levels of detection probability and the low marking 
effort level (i.e. 25 new individuals, recruited as first- time breeders, 
added each year). When simulated datasets had perfect detection, we 
fixed the detection probability to 1 in the model analysing the data 
rather than estimating its value. This corresponds to the choice made 
in practice when detection is equal or close to 1 in real datasets (e.g. 
Cam et al., 2002; Knape et al., 2011). This means that for scenarios 
with perfect detection, we were not using capture– mark– recapture 
(CMR) models but classical GLMMs with correlated random effects. 
We simulated data using R 3.5.1 (R Core Team, 2018) and conducted 
all analyses in JAGS (Plummer, 2003) using the ‘jagsUI’ r package 
(Kellner, 2016). R and JAGS codes used are provided in Appendix S2. 
We used a modified Cholesky decomposition (Chen & Dunson, 2003) 
to specify the prior of the covariance matrix. In order to improve 
mixing of chains, we used parameter expansion as in the study by 
Dunson (2008), a technique to improve computational efficiency by 
reducing dependence among MCMC draws (Browne, 2004). Details 
including the description of the prior used for the covariance matrix 
are given in Appendix S3. Given the large amount of computation 
required to fit Bayesian models with individual random effects, the 
analyses were run on two supercomputers located in Canada.

3  | RESULTS

3.1 | Model performance across life histories and 
amount of individual heterogeneity

Simulations based on the baseline model showed that both life- 
history strategy and amount of individual heterogeneity have a 
critical effect on the ability of the model to accurately estimate cor-
related random effects (Figure 2). When we simulated datasets cor-
responding to a fast life- history strategy, individual heterogeneity in 
both survival and reproductive success tended to be overestimated 
(relative bias of the two demographic parameters ranging from −6% 
to +157% according to the level of heterogeneity, sample size and 
detection probability; Appendix S4; Figure 2a,b). Correlation and 
covariation among random effects were strongly underestimated 
(bias −4% to −96% and −3% to −94% respectively; Figure 2a,b). 
Additional simulations with different correlation values showed that 
it was the absolute value of the correlation that was underestimated 
(Figure S1). By contrast, the amount of individual heterogeneity was 
estimated with smaller bias (bias −11% to +124%) and higher preci-
sion for the slow strategy. The correlation and covariation between 
random effects were also underestimated for the slow strategy 
and bias was potentially large, but slightly smaller than for a fast 
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life- history strategy (bias −0.5% to −94% and −1% to −89% respec-
tively; Figure 2a,b). Finally, the amount of simulated individual het-
erogeneity had a strong effect on the reliability of estimates. When 
simulated individual heterogeneity was high, bias decreased for in-
dividual heterogeneity estimates (bias −8% to +16% compared with 
−4% to +157% for low individual heterogeneity) and for estimates 
of correlations and covariation between random effects (bias −0.5% 
to −76% compared with −21% to −96% and −1% to −65% compared 
with −19% to −94%, respectively), but estimates generally became 
less precise (Figure 2a,b). Coverages of 95% CRI were generally high 
(>80%) showing that despite frequent bias, CRIs were large and in-
cluded the true parameter value most of the time.

3.2 | The effect of temporal variation and 
state dependence

The full model included two additional processes: temporal vari-
ation and positive state dependence. Generally, the inclusion of 

these processes made the estimation of the variance of individual 
random effects and correlation and covariation between random 
effects more challenging (Figure 2c,d). The inclusion of these 
processes accentuated the bias and decreased the precision 
compared with the estimates obtained from the baseline model. 
These effects were independent of the simulated amount of in-
dividual heterogeneity, but it was more detrimental for fast life- 
history strategies. For this latter, relative bias in the estimated 
individual heterogeneity ranged from −6% to +157% for the 
baseline model compared with a range of −14% to +225% when 
including temporal variation and state dependence (Appendix S4; 
Figure 2). In contrast, for the slow life- history strategy, bias 
ranged from −11% to +124% for the baseline model and from −7% 
to +129% for the full model (Figure 2). Although both temporal 
variation and state dependence tended to decrease the quality of 
the estimates, they did not contribute equally to this deteriora-
tion. An increased bias was mainly observed when state depend-
ence was included (Appendix S4). While we obtained unbiased 
estimation of temporal variation on average for most scenarios, 

F I G U R E  2   Bias and precision in the estimates of individual random effects and their correlation for Bernoulli variables. Parameters 
include the standard deviation of the individual heterogeneity in survival (�Φ) and reproductive success (�

�
) and their correlation (cor) and 

covariance (cov). Each plot displays the estimates for a scenario with a specific amount of individual heterogeneity (i.e. low vs. high), and for 
scenarios that include or exclude temporal variation in demographic parameters and positive state dependence (i.e. baseline vs. full model). 
The study duration was 20 years and the number of new individuals recruiting as first- time breeders per year was 25, leading to a sample 
size of 500 individuals. Diamonds in darker colour give the values used to simulate the datasets and points in lighter colour give the average 
estimates over the 100 models fitted to the 100 simulated datasets. Error bars give the range including 95% of the estimated values
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state dependence estimates were frequently biased negatively. 
When state dependence was underestimated, the individual 
random effects were strongly positively biased, which suggests 
that random effects captured part of the individual heterogene-
ity in demographic parameters generated by the positive state 
dependence.

3.3 | Influence of sampling design

As expected, sampling design had a strong effect on the performance 
of the estimates. All else being equal, increasing the study duration, 
the number of marked individuals and the detection probability 
reduced bias and increased precision (Figures 3 and 4). However, 

F I G U R E  3   Bias and precision in the estimates of individual random effects and their correlation for Bernoulli variables with the full 
model, that is, including temporal variation in demographic parameters and state dependence. Parameters include the standard deviation of 
individual heterogeneity in survival (�Φ) and reproductive success (�

�
) and their correlation (cor) and covariance (cov). Each plot (a, b, c, d, e 

and f) displays the estimates for a scenario with a specific amount of individual heterogeneity (i.e. low vs. high) and study duration (10, 20 or 
40 years). The number of new individuals recruited as first- time breeders per year was 25, leading to the sample sizes of 250, 500 and 1,000 
individuals according to the study duration. Diamonds in darker colour give the values used to simulate the datasets and points in lighter 
colour give the average estimates over the 100 models fitted to the 100 simulated datasets. Error bars give the range including 95% of the 
estimated values
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increasing sample size may reduce 95% CRI coverage when estimates 
are biased (Appendix S4). For large sample sizes (≥1,000 recruited 
individuals), individual heterogeneity estimates were fairly accurate 
for most scenarios for the slow life- history strategy (relative bias 
−6% to +6%; Figures 3e,f and 4b– f). However, the clear underesti-
mation of the correlation and covariation between random effects 
persisted when we simulated low individual heterogeneity (relative 

bias −30% to −60% and −31% to −0.56% respectively; Figures 3e 
and 4a,c,e). For the fast life- history strategy, the bias persisted for a 
sample size of 1,000 individuals, especially when the model included 
state dependence (Appendix S4). With very large sample sizes 
(4,000 recruited individuals), a slight bias of the individual heteroge-
neity in reproductive success persisted (relative bias −11% to +12%) 
and the correlation and covariation between random effects were 

F I G U R E  4   Bias and precision in the estimates of individual random effects and their correlation for Bernoulli variables with the full 
model, that is, including temporal variation in demographic parameters and state dependence. Parameters include the standard deviation of 
the individual heterogeneity in survival (�Φ) and reproductive success (�

�
) and their correlation (cor) and covariance (cov). Each plot (a, b, c, d, 

e and f) displays the estimates for a scenario with a specific amount of individual heterogeneity (i.e. low vs. high) and study duration (10, 20 
or 40 years). The number of new individuals recruited as first- time breeders per year was 100, leading to the sample sizes of 1,000, 2,000 
and 4,000 individuals according to the study duration. Diamonds in darker colour give the values used to simulate the datasets and points in 
lighter colour give the average estimates over the 100 models fitted to the 100 simulated datasets. Error bars give the range including 95% 
of the estimated values
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still strongly underestimated (relative bias −15% to −93% and −12% 
to −91% respectively; Figure 4e,f). Doubling the study duration had 
more impact on improving the reliability of estimates than doubling 
the number of marked individuals per year for the slow life- history 
strategy (Figure 3c,d vs. Figures 3e,f and 4a,b), but not for the fast 
life- history strategy. Imperfect detection generally increased the 
bias and lowered the precision, but these effects were stronger for 
the estimated amount of individual heterogeneity. When detection 
probability decreased from 1 to 0.5, the bias in individual heteroge-
neity increased from 0% to 232%, whereas the bias in the correlation 
and covariation between the random effects increased from 0% to 
47% and from 7% to 832% respectively (Figure S2).

3.4 | Mixture of Bernoulli-  and Poisson- distributed 
demographic parameters

Additional simulations showed that including a Poisson- distributed 
trait— such as the number of offspring produced per successful 
breeding attempt— had only a weak effect on the ability of the model 
to accurately estimate correlated random effects for the Bernoulli- 
distributed traits. Although estimated individual heterogeneity of 
the demographic parameter following a Poisson distribution was 
unbiased and precise under all simulated scenarios, bias in corre-
lated individual random effects for Bernoulli- distributed traits was 
almost unchanged (Figure S3). Individual heterogeneity estimates 
for Bernoulli variables were the same with and without the Poisson 
variable and the bias of the correlation between random effects was 
slightly decreased only for high individual heterogeneity. For high 
individual heterogeneity, relative bias in the estimated correlation 
ranged from −22% to −64% when modelling only Bernoulli traits 
compared with −12% to −60% when including a Poisson- distributed 
trait, whereas for low individual heterogeneity, the relative bias 
remained the same with or without the inclusion of a Poisson- 
distributed trait, ranging from −93% to −96%.

4  | DISCUSSION

Although ecologists have shown increasing interest in estimat-
ing individual heterogeneity by modelling correlated random ef-
fects in multivariate mixed models (Bonnet & Postma, 2016; Cam 
et al., 2013; Knape et al., 2011; Paterson et al., 2018), an assess-
ment of how reliably these models quantify individual heteroge-
neity in demographic parameters was lacking. Our simulations fill 
this gap and reveal that estimating correlated random effects for 
Bernoulli variables is challenging because estimations of fixed indi-
vidual heterogeneity in survival and reproductive success and their 
correlation could be strongly biased and imprecise for most of the 
scenarios investigated in our study. Simulations also indicated that 
bias in estimates strongly depends on the life- history strategy of 
the species, which we measured by the species pace of life (gen-
eration times spanning over an order of magnitude), as well as the 

amount of individual heterogeneity and the sample size, both cover-
ing the ranges commonly reported in empirical studies. Generally, 
estimates become less biased and more precise when a large sample 
size was obtained from a focal population that had a slow pace of 
life and higher individual heterogeneity. Although our study raises 
concerns regarding the biological interpretation of previously pub-
lished empirical estimates of correlated individual random effects 
for Bernoulli- distributed demographic parameters, it also provides 
useful guidelines for future empirical studies determining under 
which conditions reliable estimates could be obtained depending 
on the type of life- history strategy of the study species considered. 
Most importantly, although we address this issue in a demographic 
framework, the problem treated here is not specific to demography 
and these results are relevant for all research areas using correlated 
random effects for Bernoulli- distributed traits.

4.1 | Bias in the variance and correlation estimates

In many scenarios, estimates from the variance– covariance matrix 
were biased and imprecise. Although individual heterogeneity was 
frequently overestimated, the absolute value of the correlation be-
tween random effects was almost always underestimated. Here, we 
used the same model for generating and analysing the data, meaning 
that we describe model performances under the best- case scenario. 
These results confirm the concerns raised by Knape et al. (2011) re-
garding the large uncertainty associated with empirical estimates of 
correlated random effects.

Correlation and standard deviation of the individual hetero-
geneity in survival and reproduction are directly related since 
corΦ�

= cov(Φ, � )∕(�Φ × �
�
). Therefore, for a given covariance level, 

an overestimation of individual heterogeneity also results in an un-
derestimation of the correlation. The systematic underestimation of 
the correlation among random effects is in line with results from pre-
vious simulations investigating the reliability of temporal correlation 
estimates among demographic components (Riecke et al., 2019). 
Based on datasets including temporal random effects simulated 
with a multivariate normal distribution, these authors found that the 
temporal correlation could be underestimated whichever the sign 
of the true correlation. The systematic underestimation of covaria-
tion could be compared with the well- known problem of regression 
dilution in linear models. When fitting a linear model, the random 
measurement error in the explanatory variable systematically biases 
the estimate of the regression slope towards zero (Spearman, 1904). 
In our case, the estimation error in individual heterogeneity causes 
a systematic underestimation of the correlation between random 
effects.

The priors we used for the covariance matrix may affect the 
observed bias and precision. To assess the sensitivity of the re-
sults to prior choice, we reran simulations with two different 
priors (Appendix S5). Results show that this choice of prior dis-
tributions has a small effect on the magnitude of the bias in the 
estimated amount of individual heterogeneity and correlation 
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between random effects (Figure S4). Overestimation of the indi-
vidual heterogeneity and strong underestimation of the correla-
tion estimate were observed irrespective of the prior used. The 
prior used for our simulation study tends to shrink the correlation 
estimates towards zero. This effect was expected since we used a 
slightly informative prior favouring a null value for the correlation 
(Appendix S3). Ensuring a marginal uninformative prior is straight-
forward in the case of a 2 × 2 covariance matrix but not for matri-
ces of higher dimensions. The advantage of the prior used for this 
simulation study is that it can be used for more than two traits (e.g. 
Cam et al., 2013; Appendix S1). Finding priors with marginal uni-
form correlations for multivariate covariance matrices is an active 
area of research (Huang & Wand, 2013).

4.2 | Effect of the pace of life and state dependence 
on estimates

We found contrasting model performance depending on the pace of 
life of the species. Although the two life- history strategies simulated 
may not be representative of the whole slow– fast continuum, they 
clearly suggest patterns according to the species' pace of life and 
reveal key aspects affecting model performances. Estimates were 
substantially less biased and more precise for the slow life- history 
strategy, especially for individual heterogeneity in reproductive suc-
cess. This contrasting performance according to the life history is 
likely due to variation in the number of reproductive attempts per 
individual caused by differences in the average life span within con-
trasting life- history strategies. In our simulations, individuals bred 
once a year, meaning individuals with a fast strategy (mean sur-
vival = 0.5 leading to an adult life expectancy of 1 year) reproduced 
twice on average (i.e. at recruitment and the year after), whereas 
individuals with a slow strategy (mean survival = 0.9 leading to an 
adult life expectancy of 9 years) reproduced 10 times on average. 
Thus, the information available to estimate individual- specific per-
formance in reproduction was larger for individuals with a slow life- 
history strategy. In contrast, the information available to estimate 
individual heterogeneity in survival probability was less affected by 
the pace of life because mortality occurs only once per individual, 
regardless of the pace of life.

Although temporal variation in demographic parameters has 
weak effects on model performance, the simulation results showed 
the detrimental effect of positive state dependence on the estima-
tion of the individual random effects. This reveals the difficulty in 
disentangling individual heterogeneity in life- history trajectory due 
to positive state dependence, from that of inherent individual dif-
ferences in survival and reproductive ability. In many scenarios, in-
dividual heterogeneity generated by state dependence was partly 
captured by the inflated variances of the individual random effects. 
Because both processes can replace each other in accounting for 
state persistence over time, they have to be estimated simultane-
ously when both are present to get unbiased estimates (Authier 
et al., 2017). In accordance with previous studies, our results show 

that simultaneously estimating state dependence and fixed individ-
ual heterogeneity is challenging (Hamel et al., 2012; Nerlove, 2014). 
Still, our simulations show that disentangling these processes is 
possible when sample size is large enough. For the slow life- history 
strategy, relatively reliable estimates of state dependence were ob-
tained from sample sizes of 1,000 or more recruited individuals. For 
the fast life- history strategy, unbiased estimation of state depen-
dence seemed possible from 4,000 individuals.

4.3 | Importance of the sampling design

The reliability of estimates of the variance– covariance matrix de-
pended strongly on the study design. Most of the difficulties de-
scribed above vanished with large sample sizes, that is >1,000 
individuals monitored. This demonstrates that observed bias is not 
due to the unidentifiability of the parameters but rather related 
to a lack of information in the data. Clearly, reliable estimation of 
correlated random effects for Bernoulli variables requires very 
large sample sizes. According to the simulation results, the order 
of magnitude for an adequate sample size should be >1,000 indi-
viduals. Although this is larger than most sample sizes available 
from individual- based long- term studies in the wild, some datasets 
meet this requirement (e.g. Cam et al., 2013; Gillespie et al., 2013; 
Paterson et al., 2018).

For the sampling designs we investigated, study duration seemed 
to be more influential than total number of individuals monitored for 
the slow life- history strategy, but not for the fast life- history strat-
egy. This difference according to the pace of life is, again, likely due to 
the average life span associated with each life- history strategy. Since 
average life span of an individual with a slow life- history strategy is 
longer than that of an individual with a fast life- history strategy, in-
creasing the study duration is more likely to increase the number of 
observations per individual for the former. As a general rule, it seems 
more efficient to increase the number of observations per individual 
than to increase the number of individuals (see Figure S6 for an illus-
tration of the effect of the number of observations per individuals).

4.4 | Implications for future research

Results from studies estimating correlated individual random ef-
fects among demographic parameters modelled with Bernoulli 
distribution should be interpreted cautiously because bias is likely 
to be pervasive and strong. We also found that it can vary accord-
ing to demographic parameters, pace of life and true amount of 
fixed individual heterogeneity. These difficulties make compara-
tive studies very challenging to perform. Although multi- species 
comparisons play a key role in life- history research, differences in 
estimates of individual heterogeneity could be affected, or even 
driven, by biases that change according to the species' pace of life, 
the amount of individual heterogeneity and sample size. Variable 
bias according to the true amount of individual heterogeneity is 
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particularly problematic because we cannot know the true amount 
of fixed individual heterogeneity in any specific demographic pa-
rameter a priori.

Although our results raise concerns about the biological inter-
pretation of individual random effects for Bernoulli- distributed 
variables, investigating individual heterogeneity with multivariate 
mixed models is not a hopeless cause. Studies interested in esti-
mating and interpreting individual heterogeneity from correlated 
individual random effects should favour the investigation of contin-
uous traits. When Bernoulli- distributed traits are involved, estimat-
ing individual heterogeneity reliably is possible if studies are based 
on very large sample sizes (i.e. thousands of individuals or more for 
fast life- history species), and include individuals with near complete 
life histories. Although such datasets are not common, some moni-
toring on long- lived sea birds, marine mammals, small passerines or 
humans meet this requirement. Ideally, such studies should simulate 
data to assess precision of estimates prior to drawing inference on 
estimated correlated random effects from their data. We provided 
R code (see Appendix S2) that will help researchers perform cus-
tomized simulations for their specific study system and sampling 
design.
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