Impact of Magnetic Field Strength on Resolution and Sensitivity of Proton Resonances in Biological Solids - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry C Année : 2020

Impact of Magnetic Field Strength on Resolution and Sensitivity of Proton Resonances in Biological Solids

Résumé

Sensitivity and resolution together determine the quality of NMR spectra in biological solids. Higher magic angle spinning frequencies yield a more efficient suppression of the coupling network and enable atomic-level investigations of protonated protein samples. On the other hand, truncation effects induced by higher magnetic fields have an impact on the achievable sensitivity and resolution. In this work, we address the question of how the proton dipolar coupling network affects the magnetic field strength-dependent gains in sensitivity and resolution. We find that-beyond the canonical B0 3/2 dependence-an additional factor of 2 in sensitivity can be achieved for residues embedded in the core of the protein, when the static magnetic field induces a transition from the strong-to the weak-coupling limit. The experiments are carried out using a selectively methylprotonated (13 CH3) α-spectrin SH3 sample, at magnetic field strengths of 11.75 T (1 H Larmor frequency of 500 MHz) and 23.5 T (1 H Larmor frequency of 1 GHz).
Fichier principal
Vignette du fichier
XueJPCC2020.pdf (847.47 Ko) Télécharger le fichier
jp0c05407_si_001.pdf (623.84 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03457084 , version 1 (30-11-2021)

Identifiants

Citer

Kai Xue, Riddhiman Sarkar, Daniela Lalli, Benita Koch, Guido Pintacuda, et al.. Impact of Magnetic Field Strength on Resolution and Sensitivity of Proton Resonances in Biological Solids. Journal of Physical Chemistry C, 2020, 124 (41), pp.22631-22637. ⟨10.1021/acs.jpcc.0c05407⟩. ⟨hal-03457084⟩
18 Consultations
273 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More