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Abstract

Epilepsy presurgical investigation may include focal intracortical single-pulse electrical 

stimulations with depth electrodes, which induce cortico-cortical evoked potentials (CCEP) at 

distant sites because of white matter connectivity. CCEPs provide a unique window on 

functional brain networks because they contain sufficient information to infer dynamical 

properties of large-scale brain connectivity, such as preferred directionality and propagation 

latencies. Here, we developed a biologically informed modelling approach to estimate the 

neural physiological parameters of brain functional networks from the CCEPs recorded in a 

large multicentric database. Specifically, we considered each CCEP as the output of a transient 

stimulus entering the stimulated region, which directly propagated to the recording region. Both 

regions were modelled as coupled neural mass models, the parameters of which were estimated 

from the first CCEP component, occurring before 80 ms, using dynamic causal modelling and 

Bayesian model inversion. This methodology was applied to the data of 780 patients with 
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epilepsy from the F-TRACT database, providing a total of 34354 bipolar stimulations and 

774445 CCEPs. The cortical mapping of the local excitatory and inhibitory synaptic time 

constants and of the axonal conduction delays between cortical regions was obtained at the 

population level using anatomy-based averaging procedures, based on the Lausanne2008 and 

the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels respectively. To rule out 

brain maturation effects, a separate analysis was performed for older (>15 y.o.) and younger 

patients (<15 y.o.). In the group of older subjects, we found that the cortico-cortical axonal 

conduction delays between parcels were globally short (median=10.2 ms) and only 16% were 

larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general 

lengthening of these delays with the distance between the stimulating and recording contacts 

was observed across the cortex, some regions were less affected by this rule, such as the insula 

for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time 

constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal 

regions, than in other cortical areas. Finally, we found that axonal conduction delays were 

significantly larger in the group of subjects younger than 15 y.o., which corroborates that brain 

maturation increases the speed of brain dynamics. To our knowledge, this study is the first to 

provide a local estimation of axonal conduction delays and synaptic time constants across the 

whole human cortex in vivo, based on intracerebral electrophysiological recordings.
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Introduction
The transmission of neuronal activations in the brain results from the propagation of electrical 

currents through a series of distinct neuronal mechanisms. In short, the release of 

neurotransmitters into a synaptic junction gives rise to local changes of transmembrane 
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potential in a post-synaptic neuron (depolarization or hyperpolarization). These post-synaptic 

variations propagate along the dendritic tree and are integrated into a global (excitatory or 

inhibitory) post-synaptic potential, with specific dynamics that can be summarized into a 

synaptic time constant.1 When exceeding a given threshold, an action potential is triggered near 

the soma of the neuron and propagates along its axon towards the next synapse, with a 

conduction delay ranging from tenths to tens of milliseconds.2 These neuronal delays play a 

key role in the dynamics of the brain, considered as a distributed and integrative network which 

can be modelled in a biologically plausible way by local neural assemblies connected through 

long range connections.3,4 Knowing these delays is necessary to decipher causal interactions 

between brain areas.5 Many techniques can be used to measure neuronal delays in animal 

models.6 Intracellular patch-clamp, optogenetics7 or dense arrays of microelectrodes in 

combination with spike sorting techniques8 now provide very high spatio-temporal resolution 

to track membrane potential changes and propagation of action potentials along axonal 

arborization of single neurons. In contrast, so far, human studies only allowed indirect inference 

of axonal conduction velocity from the morphology of white matter fibers,2 characterized with 

electron microscopy9 or myelin g-ratio,10 thus lacking direct experimental evidence.

In this study, we focused on the direct cortico-cortical connections mediated by the 

excitatory projections of the axons of pyramidal cell populations and propose the in vivo 

estimation of the synaptic time constants and of the axonal conduction delays between distant 

brain regions of the human cortex based on dynamic causal modelling (DCM) of cortico-

cortical evoked potentials (CCEPs). CCEPs were obtained in the context of clinical 

neurophysiological procedures used for the resective surgery of pharmaco-resistant focal 

epilepsies, based on the use of intracerebral depth electrodes (stereoelectroencephalography, 

SEEG) for characterizing the seizure onset zone and the epileptogenic networks.11,12 During 

SEEG procedure, low frequency (typically 1 Hz) bipolar direct electrical stimulation (DES), by 

passing a current between two adjacent contacts located in a specific brain region, is repeated 

10 to 40 times to trigger evoked responses at distant locations, which are recorded by the other 

implanted electrodes. CCEPs generally consist of a first sharp peak (10-50 ms), the N1 

component, followed by a slow wave (80-250 ms), the N2 component. Please note that this 

N1/N2 terminology is a simplification of the complexity of CCEPs, which also includes 

positive components, but for simplicity we will refer only to “N1” when discussing early CCEP 

components, and to “N2” for the late CCEP components. The analysis of the CCEPs elicited 

by single-pulse DES is particularly relevant to infer the properties of large-scale brain 

connectivity.13 In the F-TRACT project (f-tract.eu), we gathered CCEPs from several hundreds 
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of patients worldwide to develop a probabilistic atlas of functional tractography by extracting 

the characteristics of each CCEP individually (i.e. peak significance and latency of the N1 

component).14,15

Here, we built on the assumption that the first early N1 component is generated via a 

direct cortico-cortical pathway between the stimulation and the recording site, mainly because 

we have previously shown that the peak delay of the N1 component linearly increases with 

distance, which suggests direct cortico-cortical pathways, assuming constant propagation 

speed.15 In addition, we did not primarily consider indirect cortico-subcortico-cortical pathways 

that would rather be implicated in the later N2 component.16 To characterize the direct 

connection underlying the N1 component, we applied the DCM approach to all significant 

responses available from the F-TRACT database that occurred during the first 80 ms following 

the stimulation (774 445 CCEPs). Based on local neural mass models embedded in a global 

model of effective connectivity,17,18 DCM implements an efficient Bayesian inversion to 

estimate the parameters of a generative neuronal model, including neuronal delays, which 

minimize the error prediction of the model. Finally, projecting the DCM estimation of axonal 

conduction delays and synaptic time constants from all the patients into a common anatomical 

space allowed us to build an atlas of these key neuronal delays at the group level, based on 

existing parcellation schemes.

Materials and methods

General information

In this study, we used the data from 780 patients with epilepsy (387 females; age at evaluation 

from 2 to 61 years old – mean age 24 ± 14) explored with SEEG in 25 epilepsy surgery centers 

(see consortium in Appendix) and included in the F-TRACT protocol. As part of a pre-surgical 

evaluation of their drug-resistant epilepsy, each patient signed a written informed consent to 

undergo invasive recordings and low frequency stimulation. In accordance with the Declaration 

of Helsinki, they also agreed, either prospectively or retrospectively, for their data re-use for 

the F-TRACT protocol validated by the International Review Board at INSERM (protocol 

number: INSERM IRB 14-140), which adhered to the ethical procedures for conducting 

international multicenter post-processing of clinical data. The CCEPs were recorded using local 

clinical practice, following 1 Hz stimulations (99.5% of CCEPs), or rarely 2 or 3 Hz (0.5% of 

CCEPs), between two contiguous contacts located either in the gray matter (61% of contacts) 

or white matter (39% of contacts), using either monophasic (20% of CCEPs) or biphasic (80% 
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of CCEPs) electrical pulses. The number of pulses in a row were up to 40 and only stimulation 

runs with at least 3 pulses were considered (see Trebaul et al.15 for an analysis on the influence 

of the number of pulses for CCEP quantification). Other stimulation parameters were rather 

homogeneous across the population (mean pulse intensity: 3.4 ± 1.1 mA, mean pulse duration: 

1.0 ± 0.4 ms and mean pulse charge: 3.5 ± 1.8 μC, see Supplementary Fig. 10A for distribution 

analysis). On average, the patients were implanted with 320 ± 85 contacts (min: 60, max: 618) 

and were stimulated 58 ± 48 times (min: 1, max: 257).

Processing and selection of CCEPs

The multicenter F-TRACT database (f-tract.eu) comprises CCEPs induced by low frequency 

bipolar stimulations. Extensive details on the anatomical and functional preprocessing steps 

used to compute the CCEPs are available in two previous studies.14,15 In brief, with regard to 

anatomy, electrode and contact positions extracted from the post-implantation Computed 

Tomography (CT) scan were first co-registered to the pre-implantation 3D T1 MRI of the 

patient and their tissue classification was determined according to a gray/white matter 

segmentation of the MRI. Then, spatial normalization with DARTEL – as implemented in 

SPM12 (www.fil.ion.ucl.ac.uk/spm) – projected the contacts of each patient in the MNI 

referential. In addition, in order to formally cluster, summarize, and present the extracted 

CCEPs characteristics at the group level, we computed parcel labels with respect to a series of 

neuroanatomical atlases for each contact. The full neuroanatomical preparation of the data was 

performed with the IntranatElectrodes software.19

The slow early components of CCEPs, which are only considered here, are thought to 

be less affected by the pathology than the late ones, even for stimulating or recording electrode 

contacts located in either the epileptogenic or the propagation zone.20,21 However, to minimize 

a potential bias in our findings due to epileptogenic processes, we removed from our analysis 

the data recorded by electrode contacts suspected to present a pathological activity. To do so in 

an unsupervised manner, we computed the interictal spiking rate of each contact from pre-

stimulation period recordings using Delphos software (Detector of Electro Physiological 

Oscillations and Spikes)22,23. Given that no direct relationship is commonly accepted in SEEG 

between epileptogenicity and interictal spiking rate, we defined a rejection threshold on the 

interictal spiking rate from the results of a retrospective study.24 In this study, the data from 100 

patients with focal epilepsy and implanted with ECoG and SEEG electrodes were collected. 

The authors reviewed recorded seizures and epileptiform spikes and concluded that the majority 
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of electrodes were located in non-epileptic tissue (82%) and that sites with pathological activity 

were clustered in a few electrode contacts. Based on these observations, we decided to keep a 

similar proportion (80%) of electrode contacts for analyses, which corresponded to a maximum 

interictal spiking rate of 8.4 spikes per minute (the estimation and the thresholding of the 

spiking rates across contacts and CCEPs are detailed in Supplementary Fig. 2).

Following this initial selection step, stimulation runs (series of maximum 40 single 

electrical pulses at low frequency, i.e. in 99.5% of cases at 1 Hz) were first automatically 

detected in the raw data based on the stimulation artefacts caused by the electrical stimulation. 

Bad channels were first pre-identified with a machine learning approach,25 which was then 

followed by visual inspection by SEEG experts for final classification, and data were re-

referenced with a bipolar montage of adjacent contacts, to retain only focal activities. This 

procedure allowed to avoid selecting saturating responses in channels very sensitive to 

electrical artefacts or when acquisition procedures were not performed in optimal conditions. 

Transient stimulation artefacts were corrected using a piecewise cubic Hermite interpolation of 

the [-3 6] ms window surrounding the artefact peak and continuous data were band-pass filtered 

between 1 and 45 Hz. Epochs were defined on a [-200 800] ms interval around the stimulation 

pulse. Importantly, epochs containing (and following) the presence of after discharges were 

removed from the analysis. A robust-averaging procedure was also used to track and exclude 

epochs showing spiking activity and/or transient artefacts.14 Finally, CCEPs were z-scored with 

respect to a [-200 -10] ms baseline interval preceding the stimulation pulse. The evoked 

response was considered significant if its absolute value reached the threshold of z = 5 during 

the first 200 ms post-stimulation onset. This condition indicated the presence of a functional 

link between the stimulation and the recording sites. The software suite used to perform these 

processing steps are open-source tools available from the F-TRACT project at 

f-tract.eu/software.

For the ensuing DCM analysis, only significant CCEPs with a peak latency comprised 

in the first 80 ms were selected, in order to limit the analysis to the early N1 component. We 

made the explicit assumption that the N1 is primarily due to cortico-cortical propagation as 

demonstrated by us 15 and other authors.16 In our previous study15, we showed that the N1 peak 

latency linearly increases with the distance between stimulated and recorded areas, which is 

highly suggestive of cortico-cortical propagation as a major cause of observed delays in the N1 

response.

Finally, unless specified otherwise, CCEPs were not selected based on the tissue 

classification of their contacts, in order to maximise the number of data for having optimal 
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spatial coverage. We elaborate on this choice in the “Impact of contacts tissue classification” 

section of the Discussion. The selection of data resulted in a total of 774445 CCEPs, spread 

across 34354 stimulations from 780 patients. The complete selection process of the CCEPs, 

along with the number of CCEPs remaining after each step, is detailed in Supplementary Fig. 

3.

Estimation of axonal conduction delays and synaptic time constants

Architecture of the DCM model

The DCM architecture used to fit the CCEPs of a given stimulation comprised one region for 

the stimulation site and one region for each of the recording sites, connected together by a single 

forward connection (Fig. 1A). Each region was modelled with an event-related potential (ERP) 

neural mass model,26 which is reproduced (along with the equations defining the dynamics) for 

clarity purposes in Supplementary Part 1 and Supplementary Fig. 1. Since electrode contacts at 

the stimulation site were used to inject the current, no CCEP was recorded at this location. The 

first region was therefore modeled as a hidden region, observed indirectly through its causal 

interactions with the second region,27 where CCEPs were recorded and observed directly. 

Consequently, the DCM observation model was reduced to the activity of the pyramidal cells 

of the second region. The DES pulse was modeled as a transient input entering the first region. 

Fit of the N1 component

The eventually large number of significant CCEPs recorded for any given stimulation site 

(mean=27) resulted in very high dimensionality of the parameter space. It was therefore 

computationally intractable to take into consideration all recording sites at once in one single 

model. Indeed, the running time required for the Bayesian inversion of such a DCM with more 

than 10 regions could exceed 12 hours (quadratic with respect to the number of regions). 

Computational time was also very much increased, compared to standard DCM code 

implementation, by the precise integration scheme required to estimate axonal delays28 (see 

below Technical implementation section). Therefore, we implemented an equivalent practical 

solution in which the CCEPs of a given stimulation were estimated separately from each other 

using a series of simple reduced models, where the first region, corresponding to the stimulated 

region, was artificially duplicated (Supplementary Fig. 4). To guarantee the uniqueness of the 

neuronal parameters of the stimulated region across the CCEPs, the estimation was then 

performed in two steps. During the 1st step, the N reduced models were fully estimated 
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independently (input and neuronal parameter estimation). The estimates of the parameters of 

the first (stimulated) region (input u, synaptic time constants and gains, intrinsic coupling) were 

then averaged across the N reduced models using a posterior variance weighted averaging 

procedure.29 During the 2nd step, the averaged posteriors of the stimulated region parameters 

were used as fixed parameters and only the connectivity parameters and the neuronal 

parameters of the second region were estimated (i.e. the strength of the forward connection, the 

axonal conduction delay, and the local synaptic parameters). This iterative 2-step procedure 

refers to an empirical Bayes approach, in which the empirical prior distributions for the 2nd step 

are derived from 1st step posterior distributions and thus estimated from the data. By reducing 

the number of parameters in each reduced model and iteratively setting the priors, the Bayesian 

inversion was less prone to the problem of local minima in both steps, and therefore provided 

a robust estimation of the model parameters.30 After the completion of the 2nd step, only 

accurate fits were selected for further analyses, according to the following conditions: (i) a 

goodness of fit (ratio of the explained variance to the total variance) above 70% and (ii) an 

absolute difference in the alignment of the N1 peak latencies between observation and 

prediction smaller than 5 ms. The undertaken 2-step approach had the advantage of giving us 

the possibility to consider the variability of the N1 peak latencies across recording sites and to 

adjust the time window of the fit separately for each CCEP for optimizing computational 

duration. The time interval used to fit the data was set to , where  corresponded to [𝑡0 𝑡1] 𝑡0 = 0

the stimulation onset and , with  being the time 𝑡1 =  𝑝𝑒𝑎𝑘_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 2 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

duration during which the response exceeded the significance threshold of z = 5.15 In addition, 

 was constrained to be smaller than . This ensured that DCM 𝑡1 𝑝𝑒𝑎𝑘_𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 40 𝑚𝑠

estimation focused on the N1 component, without being biased by the presence of a N2 

component, usually carrying a higher level of energy and for which the biological plausibility 

of the DCM was very much reduced.

Technical implementation

The technical implementation made use of the generic code of DCM as provided in the official 

SPM software (SPM12, version r6732, fil.ion.ucl.ac.uk/spm). In particular, the definition of the 

ERP neural mass model was left unchanged (Supplementary Part 1 and Supplementary Fig. 1). 

Yet, some adjustments were necessary. First, the model was equipped with a numerical 

integration scheme based on Runge-Kutta techniques to generate neural time series using an 

accurate integration of the system of delay differential equations describing brain dynamics.28 

Second, the DCM priors of the neuronal model parameters were modified from their default 
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values, to account for the specific context of DES, which induced faster evoked responses than 

usually observed from EEG during standard cognitive tasks.31 In particular, for the 1st step, the 

excitatory (respectively, inhibitory) synaptic time constant was set to 1 ms (respectively, 2 ms) 

for the first region. This reflected the fast activation of the hidden region, right after stimulation 

onset. With regard to the axonal delays between the two regions and the synaptic time constants 

of the second region, the prior means were initialized based on simulations. A series of CCEPs 

was generated with the previously described DCM (Supplementary Fig. 4) by varying axonal 

conduction delays between [1-40] ms and excitatory synaptic time constants between [1-8] ms, 

and the peak latency of the response was reported for each combination of parameters 

(Supplementary Fig. 5). Priors were then selected so that the peak latency of the model 

prediction, generated during the first iteration of the fit procedure, would coincide with the peak 

latency of the observation. This adaptive simple heuristic revealed both necessary and very 

efficient for fitting the model to any response that occurred within the first 80 ms. The synaptic 

gains were adjusted accordingly in order to preserve the power of the synaptic convolution 

kernel.17 The prior variance of each of these modified parameters was set to 1 (instead of the 

default value 1/16).17 Such an uninformative prior offered the parameters the possibility to 

easily depart from their initial value. Prior means and variances of all other parameters were 

left to their default values.

Group level analysis

Parcellations

To present the estimation of neuronal delays at the group level, we clustered all contacts 

according to their parcel label (see “Processing and selection of CCEPs” section) based on two 

established parcellation schemes: Lausanne200832 and HCP-MMP1.33 Lausanne2008 is a 

cortical parcellation, based on anatomical landmarks. In short, an average brain, manually 

labelled with regions of interest (ROIs), is registered to the anatomy of each subject during the 

individual segmentation procedure performed by Freesurfer (surfer.nmr.mgh.harvard.edu). By 

successively subdividing each ROI, the parcellation is available at resolutions 33, 60, 125, and 

250 (identified as Lausanne2008-resolution) which include 84, 130, 235, and 464 parcels 

respectively. Lausanne2008-60 was chosen in this study to map the axonal delays at the group 

level, because it offered the best compromise between its spatial resolution and the repartition 

density of the F-TRACT data across brain regions at the moment. At this resolution, each 
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hemisphere is partitioned into 57 cortical parcels, hippocampus and amygdala, and other 

subcortical areas of no interest here because they were not sampled by SEEG electrodes. In 

addition, we used the HCP-MMP1 parcellation scheme33 to map the synaptic time constants at 

the group level. HCP-MMP1 parcellation scheme was produced from multimodal acquisitions 

from 210 healthy subjects of the Human Connectome Project. By detecting reproducible "sharp 

changes in cortical architecture, function, connectivity, and/or topography",33 this semi-

automated approach identified 180 areas per hemisphere.

Distance between contacts

To assess the axonal conduction velocities, distances between stimulating and recording 

contacts were measured along the white matter fibers supposedly connecting them. Because the 

diffusion tensor imaging data were not available for the patients of F-TRACT, we used the 

ARCHI database built from 79 healthy subjects, aged between 18 and 40, at the Neurospin 

center.34 We registered each patient anatomy on the ARCHI DTI atlas and computed the 

distance as the average path length of the database bundles running close (within 5 mm) to both 

contacts.

Data availability

Raw data cannot be distributed because of personal data protection sensitive issues. Fully 

processed data at the group level are available for download on the atlas page F-TRACT website 

(f-tract.eu/atlas). Additionally, fully anonymized CCEPs time series have been made available 

on the website of the Human Brain Project (search for “CCEP database” on ebrains.eu).

Results

Individual data fitting

Typical examples of fitted CCEPs are presented (Fig. 1B) for increasing peak latencies (14, 29, 

41 and 57 ms), along with the estimated neuronal delays. In addition to the variability of the 

waveforms, these examples illustrate the face validity of the approach, namely the ability of the 

DCM model to provide accurate predictions of the observed N1 components. The complete set 

of 774445 CCEPs was fitted with an average goodness of fit (ratio of the explained variance to 

the total variance) of 87% and an average difference of the N1 peak alignment between 

observations and predictions of 1.9 ms. By requiring a minimum goodness of fit of 70% and a 

N1 peak alignment error smaller than 5 ms, poorly estimated CCEPs were identified and 
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eliminated. This resulted in 78% of the CCEPs (representing a total of 602154) to be considered 

in the subsequent analysis at the group level. Here, it is important to mention that pooling these 

CCEPs was also justified by the fact that the stimulation parameters used to trigger these 

602154 significant responses, similarly to the stimulation parameters used in the whole initial 

set of CCEPs (see General information), were still particularly homogeneous across patients 

(mean pulse intensity: 3.5 ± 1.0 mA, mean pulse duration: 1.0 ± 0.3 ms and mean pulse charge: 

3.5 ± 1.6 μC, see Supplementary Fig. 10B).

Group-level estimation of neuronal delays
Among the parameters of the DCM neuronal model, we focused on the estimates of the axonal 

conduction delays between the two regions and of the synaptic time constants of the second 

region. We computed the joint distribution for each of these parameters with the corresponding 

peak latency (Fig. 1C), as well as their marginal distribution. In general, the earliest N1 

responses required both short axonal delay and short excitatory synaptic time constant while 

longer N1 peak latencies were explained by an increase of both axonal delays and synaptic time 

constants. Interestingly, while the CCEP peak latency naturally imposed an upper bound on 

axonal delays and excitatory synaptic time constants (Fig. 1C, large white regions under the 

diagonal of the left and middle panels), this was not necessarily the case for the inhibitory 

synaptic time constants (Fig. 1C, right panel), which could exhibit large values (from 6 to 20 

ms) for both short and long N1 peak latencies. Marginal distributions revealed peaks for the 

shortest delays, particularly marked for axonal conduction delays. Indeed, 29% of axonal delays 

were estimated below 2 ms and 55% below 10 ms. It is also worth noting that both excitatory 

and inhibitory synaptic time constants exhibited a second mode around 4-6 ms. 

Mapping of axonal conduction delays
Because of changes in conduction properties (myelination, axonal growth, synaptic plasticity) 

during development,35 we used the age of 15 years as a boundary to split the subject sample 

into a younger (min: 2 y.o., max: 15 y.o., mean: 9 y.o., 274 patients) and an older group (min: 

15 y.o., max: 60 y.o., mean: 32 y.o., 506 patients). For each group, estimated neuronal 

parameters were spatially clustered using brain parcellation to provide an insight into their 

distribution across (pairs of) brain areas. In this study, parcellation schemes were chosen to 

offer the best compromise between their spatial resolution and the repartition density of the data 

provided by F-TRACT at the moment. Thus, we used Lausanne2008-60,32 which partitions 
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each hemisphere into 57 cortical parcels and also includes subcortical structures, i.e. 

hippocampus and amygdala (see Group level analysis). To limit the presence of outliers in the 

parameter estimates, the median delay was assigned to a given parcel pair when at least 5 

significant CCEPs were accurately fitted for this parcel pair; otherwise, it remained 

undocumented. Results are presented for the older group in a matrix form where each row 

corresponds to a stimulated parcel and each column corresponds to a recording parcel (Fig. 2A 

and Supplementary Fig. 6 for the number of CCEPs used in each estimation, along with the 

median absolute deviations). Estimated delays were color-coded from 0 to 30 ms, while grey-

colored entries corresponded to connections for which it was not possible to provide an 

estimation of the neuronal parameters (due to the absence of a significant connection, or to an 

insufficient number of accurate fits). Given the Lausanne2008-60 parcellation scheme, 54% of 

intra-hemispheric connections and 8% of inter-hemispheric connections were estimated.

The mapping of neuronal parameters at group-level on a parcellated brain allows highlighting 

several properties of axonal delays in the human brain. First, it showed a gradient pattern 

whereby axonal delays increased along with the distance between the stimulated and the 

recording parcels. Delays shorter than 1 ms were found when recordings occurred within the 

stimulated parcel, and no longer than 5 ms for the parcels just next to the stimulated parcel. 

Delays greater than 10 ms corresponded to more distant connected regions, located in either the 

ipsilateral (Fig. 3A: 17 ms between the left pars triangularis and the left inferior parietal region) 

or the contralateral (Fig. 3A: 26 ms between the left pars triangularis and the right lateral 

orbitofrontal region) hemisphere with respect to the stimulation. Moreover, while results were 

qualitatively similar for the stimulation of the amygdala (Fig. 3D), the delays estimated from 

this subcortical region turned out to be slightly longer than following neocortical stimulation 

and ranged from 6-10 ms for the nearby temporal regions to 20-25 ms for the orbitofrontal and 

frontal regions. Finally, some regions such as the right insula presented an idiosyncratic pattern 

of dynamic functional connectivity, which shows, except for a few prefrontal regions, spatially 

uniform conduction delays less than 6-8 ms throughout the ipsilateral hemisphere (Fig. 4A). 

An intrinsic advantage of investigating the brain functional connectivity with CCEPs is the 

ability to characterize directed connections and assess the asymmetry of reciprocal connections. 

As a practical example, we considered the axonal conduction delays between the pars 

opercularis (Fig. 3B) and the posterior superior temporal gyrus (Fig. 3C), two parcels 

comprising respectively Broca’s and Wernicke’s areas involved in the language processing 

network. The axonal delay from the pars opercularis to the superior temporal gyrus was 

estimated around 5.1 ms (from 275 stimulations), whereas it was estimated around 6.2 ms (from 
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261 stimulations) for the reciprocal connection. Considering now the pars triangularis (Fig. 

3A), anterior to the pars opercularis (and also part of the Broca area), and the superior temporal 

gyrus, the axonal delay was estimated to be 6.6 ms (159 stimulations) and 8.3 ms (213 

stimulations) for the reciprocal connections. 

Finally, instead of focusing on the efferent connectivity from one stimulated area, as we did 

until now, an alternative approach is to examine the afferent connectivity to one recorded area. 

This showed for example regarding the insula that the axonal conduction delays of afferent 

connections (Fig. 4B) were very similar to the ones of efferent connections (Fig. 4A).

Mapping of axonal conduction velocities
For each estimated CCEP and given the white matter path length between the stimulating and 

the recording contacts computed from the ARCHI database34 (see Group level analysis), we 

produced two measures of conduction velocity, first based on N1 peak latency and second based 

on estimated axonal conduction delay. These velocity estimates were then extended at the group 

level using the same parcellation scheme as previously described. The distributions across 

parcels pairs of the Lausanne2008-60 parcellation scheme were computed for N1 peak latencies 

(median: 37.0 ms, Fig. 5A), axonal conduction delays (median: 10.2 ms, Fig. 5B), distances 

between contacts (median: 42.9 mm), and for the conduction velocities derived from the N1 

peak latencies (median: 1.1 m/s, Fig. 5C) and from the axonal conduction delays (median: 3.9 

m/s, Fig. 5D) respectively. The same measures were also estimated for the younger group of 

patients (<15 y.o.). As expected, it indicated a general slowdown of conduction, as compared 

to the older group (Table 1 and Supplementary Fig. 7), observed for N1 peak latencies (median: 

37.5 ms), axonal conduction delays (median: 11.0 ms) and the corresponding velocities 

(median: 0.9 m/s and 3.1 m/s), despite overall shorter distances between contacts (median: 34.9 

mm).

Mapping of synaptic time constants
Whereas the axonal conduction delays were estimated for each parcel pair, the synaptic time 

constants were considered as intrinsic neuronal properties of each parcel and were computed 

from all the CCEPs having their recording contact in that parcel, whatever the stimulated parcel. 

We assigned the median value of the synaptic time constants to each parcel for which a 

minimum of 5 significant CCEPs were accurately fitted by the model. The number of data was 

sufficient to provide an estimation for almost all parcels in each hemisphere, using the 
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functional HCP-MMP133 parcellation scheme (360 parcels, see Group level analysis). 

Considering the whole group of patients, the distributions exhibited globally shorter excitatory 

(median: 5.8 ms, Fig. 6A) than inhibitory (median: 7.3 ms, Fig. 6B) synaptic time constants 

(Wilcoxon signed-rank test, p<1e-5). Mapping the synaptic time constants on the cortex also 

pointed out some interesting properties. There was a statistically significant linear correlation 

of synaptic time constants between each hemisphere, both for excitatory (slope=0.51, r=0.48, 

p<1e-10, Supplementary Fig. 8A) and inhibitory (slope=0.46, r=0.55, p<1e-14, Supplementary 

Fig. 8B) time constants, indicative of a certain level of interhemispheric symmetry. 

Furthermore, the distribution of the synaptic time constants showed heterogeneity across the 

cortical brain regions. Sensorimotor, medial occipital, and lateral temporal regions exhibited 

shorter synaptic time constants than frontal, anterior insular, parietal, or cingulate regions did. 

Interestingly, regions belonging to the default mode network seemed to show slower synaptic 

time constants. This was also confirmed for the different spatial resolutions of the 

Lausanne2008 parcellation scheme (Supplementary Fig. 9). When considering the synaptic 

time constants for the younger versus the older group, no significant difference was found 

(Table 1).

Discussion

In this study, a biologically informed ERP neural mass model was fitted to the early N1 

component of CCEPs to provide estimates for axonal conduction delays and synaptic time 

constants throughout the human brain, from a large series of 774445 CCEPs obtained in 780 

patients with epilepsy. Although the involvement of indirect cortico-subcortico-cortical or even 

cortico-cortico-cortical connections cannot be completely excluded, we grounded our 

modelling approach on the results from previous studies15,16 (see Processing and selection of 

CCEPs) and assumed that the N1 components of the CCEPs were generated by direct cortico-

cortical connections between the stimulating and the recording sites. This allowed to put in light 

different properties of the dynamical functional properties of the brain. The brain mapping at 

the group level revealed that the axonal propagation delays were globally short (median: 10.2 

ms for the older group). Although an increase of these delays with the distance between the 

stimulation and the recording site was an overall general rule across the cortex and recorded 

subcortical structures, some regions were less submitted to this rule, such as the insula (Fig. 4) 

for which almost all ipsilateral efferent and afferent connections were faster than 10 ms. This 

fits with the view of the insula as a region at the crossroad of multiple functional networks.36 
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Moreover, the spatial distribution of synaptic time constants pointed out an interesting 

interhemispheric symmetry as well as local cortical specificities. While primary areas (sensory, 

motor, auditory, visual) exhibited the fastest dynamics, other regions (medial prefrontal cortex, 

anterior insula, cingulate cortex, precuneus, temporoparietal junction, medial temporal lobe) 

reminiscent of the default mode network37 showed slower ones. Moreover, within the younger 

group (<15 y.o.), axonal delays were significantly increased (Table 1). This result indicates that 

the dynamics of CCEP are sufficiently sensitive to indirectly track brain maturation 

mechanisms, like the degree of myelination at the origin of axonal velocity changes. In this 

regard, the ambition of the present study was very limited and the simple comparison between 

two age ranges was used as an internal validation step. Another limitation of the present analysis 

is that we used structural connectivity pathways obtained in adults (the ARCHI database was 

built with subjects aged between 18 and 40) to estimate axonal conduction velocity at all ages. 

More sophisticated analyses should be considered in the future to evaluate better the interest of 

CCEPs for addressing developmental questions. 

Effect of the CCEPs selection

One of the main difficulties when generating different CCEP-based atlases is to select the 

CCEPs with a good compromise between the quantity and the accuracy of the estimations, 

while reaching a sufficient spatial resolution for a whole-head coverage. We discuss below 

important parameters.

Effect of the contact tissue classification

 In a previous work15, we have demonstrated how the stimulation parameters influence the 

connectivity estimated from CCEPs, i.e. fewer remote responses are detected for low levels of 

injected electrical charges38. A similar effect can be anticipated here but its precise 

quantification was outside of the scope of this study. For completeness, we provide in 

Supplementary Fig. 10 the distributions of stimulation parameters.

Effect of the contact tissue classification

To maximise the biological plausibility of the model, we could have selected only CCEPs for 

which both stimulating and recording contacts were located in the gray matter, because when 

contacts are located in white matter, the direct stimulation of axons can make difficult to clearly 

distinguish between the stimulation and the recording sites.39 However, we did not consider this 

option in the main report, because it would have dramatically decreased the number of available 
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data as 39% of contacts of the F-TRACT database are located in white matter; we preferred to 

prioritise statistical robustness of reported effects. In the Supplementary Materials, we elaborate 

further on this issue and provide additional data on the influence of tissue classification (gray 

or white matter) of CCEPs contacts on the estimations of neuronal parameters.

Effect of the spiking rate threshold

Even if the early N1 slow component of the CCEPs may be unaffected by the hyper-excitability 

of the recording region20, we used a threshold to detect and reject contacts with highest interictal 

spiking activity. To keep 80% of the contacts, this (default) threshold was set to 8.4 

spikes/minute according to the output of the DELPHOS software with default parameters (see 

Processing and selection of CCEPs). To study the potential impact of this threshold, estimations 

of neuronal delays based on 3 more restrictive thresholds (respectively 1, 2 and 4 spikes/minute) 

were performed and compared to the estimations based on the default threshold (Supplementary 

Fig. 12). Results demonstrated that a higher number of data increases the convergence of the 

estimations across the different thresholds. With a higher threshold of 8.4 spikes/minute, the 

greater presence of potentially pathological CCEPs was counterbalanced and attenuated by a 

higher number of CCEPs, which enabled to almost provide whole-brain estimates.

Effect of the parcellation scheme

Parcellation schemes were used in the present study as a practical solution for presenting the 

results at the whole-brain level and for estimating differences between conditions (age of 

patients, tissue classification of contacts or spiking rate threshold). A parcellation scheme is 

optimal when its spatial resolution is sufficient to reflect the spatial variability present in the 

data, and when adding new data has no more effect on the results (a stationary distribution is 

reached). In the present study, it also needs to adapt to the inhomogeneous spatial density of 

the recordings (see Group level analysis). In this respect, the multimodal and functional HCP-

MMP1 parcellation scheme was in good agreement with the resolution of our data for the 

mapping of synaptic time constants. This was evaluated by using two high resolutions of the 

multilevel Lausanne2008 parcellation, including respectively 235 and 464 parcels 

(Supplementary Fig. 9C-D), which showed results very similar to the ones obtained with the 

HCP-MMP1 parcellation, including 360 parcels (Fig. 6). For the mapping of axonal conduction 

delays, which uses number of parcels times more values than the mapping of synaptic time 

constants, the spatial resolution of the Lausanne2008-60 is already sufficient, in particular to 

study the influence of different conditions which systematically reduces the quantity of data 

available in each condition. Indeed, using a parcellation scheme with a higher resolution such 
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as Lausanne2008-125 or HCP-MMP1 would imply having respectively nearly 3 and 7 times 

more parcel pairs to estimate than for Lausanne2008-60. The consequence of such a transition 

would be a reduction of the number of values available for each estimate, resulting in an 

increase of undocumented estimates and a loss of their precision. Thus, we have chosen to 

display in this report the data in the most appropriate parcellation schemes for a general 

presentation, but it should be noted that the F-TRACT atlas maps have been generated in 

multiple parcellation schemes that can be downloaded at f-tract.eu. For an appropriate use of 

the atlases, it is important to remember that, at the group level, a connection with a small 

probability (number of significant responses/number of stimulations), e.g. 0.2 or below, is 

indicative of an absence of connection.15 Axonal conduction parameter estimates in that case 

are thus likely to be less robust because estimated from fewer responses than in cases where 

connection probability is high. 

Comparison with other approaches

Until recently, the standard way to estimate axonal velocities was to measure axonal diameters. 

Electron microscopy of histological sections has indeed proven to be efficient to characterize 

in vitro the distribution of axonal diameters both within non-human40 and human9 brains. Based 

on anatomical and diffusion MRI and validated with histology, an alternative non-invasive 

methodology has been developed to characterize in vivo the geometrical properties of white 

matter fibers: axonal diameter,41 tract length42 and g-ratio.10 The accuracy of this technique 

mainly depends on reliable local estimates of axonal diameter, given its higher spatial 

variability compared to the g-ratio.43 This approach estimated the axonal velocities in the 

human corpus callosum between 8 m/s and 41 m/s (median: 14 m/s), which is compatible with 

our results at whole-brain level (Fig. 5). Even if these anatomy-based methods are very precise, 

they do not rely on the dynamics directly observed in brain signals. Measures from information 

theory are thus also relevant to characterize communication between brain regions. By 

extending the measure of transfer entropy between a source and a target, interaction delays can 

be taken into account during the causal modelling of the time-series.44 In turn, they can be 

precisely recovered, even from complex interacting conditions (reciprocal connections, 

multiple delays). This general formulation is particularly attractive because it can be applied to 

noninvasive electrophysiological signals, such as waveforms resulting from cortical MEG 

source reconstruction.45 However, it lacks the important physiological distinction between 

axonal and synaptic propagation. It is important to underline that, here, although different 
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neural models could have been suitably used,46 we assumed a simple but robust 3-population, 

convolution based, neural mass model.17 Our aim was to adopt a compromise between 

biological realism and computational efficiency. However, given the uniqueness of the F-

TRACT database, such modelling issues as the development and comparison of neural model 

architectures will undoubtedly be the matter of dedicated studies in the future.

Extension to the healthy population

Even if all CCEPs exhibiting epileptic activity (high interictal spiking rate, after discharges) 

were removed from our analysis (see Processing and selection of CCEPs), a crucial question is 

whether the estimation of neuronal parameters carried out on data from patients with epilepsy 

is valid for the healthy brain. Indeed, it remains unclear to what extent whole-brain long-range 

connectivity profiles (and axonal conduction delays) are affected. Using diffusion MRI 

tractography, a general decrease of structural connectivity in the connectome of patients with 

epilepsy was observed, while the connections intrinsic to the epileptogenic network, which are 

the ones mostly represented in our data, were spared.47 A recent multimodal study embedded a 

neuronal model in the individual connectome of a patient with epilepsy in order to predict the 

spatio-temporal structure of seizure propagations.48 It showed that, although the general 

topology of the connectivity matrix was very important, predictions were not significantly 

improved when the structural information was extracted from control subject's anatomy instead. 

This indicated that the contained alterations of structural properties observed across patients 

with epilepsy, while still preserving the essential features intact, should not be considered as an 

obstacle to the extension of the present results to healthy subjects. From a neurophysiological 

point of view, some authors found that the early slow wave N1 component of CCEPs was not 

significantly altered in epileptogenic zones of hyper excitability20, while other authors 

concluded that epilepsy could indeed affect the early part of the CCEP response, but only in the 

high frequency domain21. Local changes in cortical excitability (through synaptic properties) 

could however induce an increase in the amplitude of CCEPs recorded in ictal-onset regions, 

while leaving the latencies unchanged.49 Changes of functional connectivity are also not spread 

across all cortical connections, but rather restricted to the epileptogenic zone, and do not affect 

the propagation zone, when compared to healthy tissue.50 In addition, investigating fronto-

temporal functional connections with 1 Hz electrical stimulation in a cohort of 51 patients with 

epilepsy, no difference was found between epileptogenic and non-epileptogenic hemispheres.51 

The important (and still growing) number of patients included in the present work, the fact that 
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a majority of the contacts may be located in nonepileptic tissues,24 and the variability in the 

localization of their epileptic foci should in principle also reduce the functional effects of the 

pathology. However, the question of an eventual impact of the pathology on the estimated 

neuronal parameters is an important one and we are currently investigating it in our group. 

Based on a similarity analysis of CCEPs characteristics, this dedicated study aims for an 

automatic detection (and removal) of abnormal contacts. This identification could in turn 

provide some hints about the structural and functional reorganization which occurred, with 

respect to the onset of the pathology. In our case, because we provided median values of neural 

parameters, the impact of outliers in parameter distributions was very limited.

Implications for neuronal modelling

Axonal and synaptic delays are essential for the emergence of (large-scale) synchronized 

oscillations, although their respective roles are not well understood.52,53 When modelling the 

whole brain at a macroscale, both attributes of the space-time coupling (along with noise) are 

required to predict the functional connectivity and the spectral properties observed during 

resting state in EEG and BOLD signals.5,54 Similarly, in models of epileptic activity, the 

neuronal delays within implicated regions are determining factors for the spatial propagation 

and synchronization of fast oscillations at the seizure onset55 or for the frequency of 

characteristic ictal patterns.56 While axonal delays between brain areas are usually taken as 

discrete values (length of fiber times a constant uniform velocity), several studies have 

emphasized the importance of considering distributed axonal velocities in mean field models 

for a better prediction of spectral densities57 and long-range propagation of cortical activity.58 

Likewise, a recent modelling study pointed out the key role of regional heterogeneity in 

excitatory and inhibitory synaptic properties to account for the wide repertoire of brain 

dynamics.59 The estimation of neuronal delays that we provided in this study should therefore 

improve not only the physiological ground and validity of brain modelling approaches, but also 

the comprehension of neuronal mechanisms occurring during large-scale integration both in 

healthy and pathological conditions. In order to further progress in the understanding and 

characterization of the governing principles of brain network dynamics, future work should 

investigate how the different synaptic dynamics revealed by the present study are related to the 

hierarchical principles of a distributed brain organization, from the spatial heterogeneity of gene 

expression underlying cytoarchitecture, microcircuitry and functional segregation,60 to the 

integration mechanisms taking place at the macroscale level. The F-TRACT atlas has been 
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updated with the proposed methodology and provides dynamical information of human brain 

large scale connectivity at an unprecedented precision level. It can be downloaded from 

f-tract.eu/atlas and is regularly updated with novel data. It is in the process of being integrated 

to the Human Brain Project atlas on the EBRAINS platform as an interactive tool, offering the 

unique opportunity to be compared and integrated with other multimodal brain atlases 

(https://ebrains.eu/service/human-brain-atlas).
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Figure legends

Fig. 1: Estimation of CCEPs neuronal parameters at the individual level. (A) Architecture 

of the generative model underlying the early N1 component of CCEPs. Each of the stimulation 

(red circle) and recording (blue circles) sites are modeled with local neural mass models. 

Following a transient bipolar stimulation and for a sufficient charge level (product of pulse 

intensity and duration), action potentials initiated in the stimulated region propagate via 

orthodromic projections to connected regions, where significant responses are recorded. (B) 

Model predictions (red) of CCEP observations (blue) for increasing N1 peak latencies (vertical 

line). Estimated axonal conduction delays (Ax), excitatory (Se) and inhibitory (Si) synaptic 

time constants are indicated on top of each panel. (C) Distribution of the estimated neuronal 

delays. The main panels (colored 2D histograms) represent the joint distribution of the axonal 

conduction delays (left), excitatory (middle) and inhibitory (right) synaptic time constants 

(horizontal axes) according to the N1 peak latency (vertical axis). White color indicates an 

absence of data. The side panels (grey 1D histograms) show the marginal distributions of the 

N1 peak latencies (vertical plot on the left) and of each neuronal parameter (horizontal plots at 

the bottom).

Fig. 2: Estimation of axonal conduction delays between brain regions. Results are presented 

for the older group (>15 y.o.) based on the Lausanne2008-60 parcellation scheme. The matrix 

presents median axonal delays for this group, between stimulating (vertical axis) and recording 

(horizontal axis) parcels based on the Lausanne2008-60 parcellation scheme. Grey colored 

entries indicate the absence of direct connections (or an insufficient number of significant 

responses fitted with accuracy).

Fig. 3: Brain mapping of axonal conduction delays. Median axonal conduction delays are 

presented for the efferent connections from one stimulated parcel (pointed by a red arrow) to 

the rest of the brain. Here, the series of stimulated parcels have been chosen in the left 

hemisphere: (A) the pars triangularis, (B) the pars opercularis, (C) the superior temporal gyrus 

and (D) the amygdala. Results are presented for the older group (>15 y.o.) based on the 

Lausanne2008-60 parcellation scheme.

Fig. 4: Brain mapping of axonal conduction delays for the right insula. (A) Efferent 

Page 29 of 57

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain
D

ow
nloaded from

 https://academ
ic.oup.com

/brain/advance-article/doi/10.1093/brain/aw
ab362/6433676 by guest on 30 N

ovem
ber 2021



connections: the insula is stimulated and CCEPs are recorded in other regions. (B) Afferent 

connectivity: insula is recording CCEPs when stimulation is performed in other regions. Results 

are presented for the older group (>15 y.o.) based on the Lausanne2008-60 parcellation scheme. 

The red arrow indicates the right insula.

Fig. 5: Estimation of conduction velocities. Results are presented for the older group (>15 

y.o.) based on the Lausanne2008-60 parcellation scheme. Distributions of (A) N1 peak latencies 

(median: 37.0 ms), (B) axonal conduction delays (median: 10.2 ms), and conduction velocities 

based on (C) N1 peak latencies (median: 1.1 m/s) and (D) axonal conduction delays (median: 

3.9 m/s). Distances between stimulating and recording contacts were measured along white 

matter fibers, using the ARCHI DTI atlas (see Group level analysis).

Fig. 6: Estimation of synaptic time constants. Results are presented for the whole group based 

on the 360 parcels of the HCP-MMP1 parcellation scheme. (A) Distribution (left) and brain 

mapping (right) of excitatory synaptic time constants. (B) Distribution (left) and brain mapping 

(right) of inhibitory synaptic time constants. For a very few grey-colored cortical regions, the 

estimation was not possible, due to an insufficient amount of data.
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Table 1 Comparison of neuronal characteristics between age groups

Neuronal characteristic Median ± mad

<15 y.o. >15 y.o.

p-value

Peak latency 37.5 ± 14.5 ms 35.0 ± 10.8 ms <10−10

Axonal conduction delay 11.0 ± 8.2 ms 9.5 ± 5.5 ms <10−10

Distance between parcels 34.0 ± 15.7 mm 34.2 ± 14.5 mm <10−6

Peak latency velocity 0.9 ± 0.4 m/s 1.0 ± 0.3 m/s <10−10

Axonal conduction delay velocity 3.1 ± 2.0 m/s 3.5 ± 1.8 m/s <10−6

Excitatory synaptic time constant 5.8 ± 1.2 ms 5.6 ± 1.0 ms 0.2

Inhibitory synaptic time constant 7.3 ± 1.1 ms 7.3 ± 0.7 ms 0.9

Median values and median absolute deviations (mad) are provided separately for the younger (<15 y.o., 274 patients) and 
the older (>15 y.o., 506 patients) group. The first five characteristics were estimated based on the Lausanne2008-60 
parcellation scheme and Wilcoxon signed rank tests were performed across parcels pairs (total of 2712) estimated conjointly 
in the two groups. The last two characteristics were estimated based on the HCP-MMP1 parcellation scheme and Wilcoxon 
signed rank tests were performed across parcels (total of 327) estimated conjointly in the two groups. Please note that, 
because of the joint estimation, median values reported here slightly differed from median values
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