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Abstract. 12 

1. Functional beta redundancy has been recently defined as the fraction of species dissimilarity 13 

between two plots not expressed by functional dissimilarity. As such, it summarizes to what degree 14 

the compositional differences between two plots mirror their functional differences. 15 

2. A fundamental condition to obtain an appropriate measure of functional beta redundancy is that 16 

the functional dissimilarity between the plots is always lower (or at least not higher) than the 17 

corresponding species dissimilarity. However, many of the extant measures of functional 18 

dissimilarity do not fulfill this requirement. 19 

3. To overcome this problem, a class of tree-based indices of functional dissimilarity that conform to 20 

the above ‘redundancy property’ has been recently proposed. However, functional dissimilarity 21 

measures need not necessarily be based on a hierarchical representation of the species functional 22 

relationships. 23 

4. In this paper we introduce an algorithmic index of functional dissimilarity that conforms to the 24 

redundancy property. Since it does not rely on a hierarchical species organization, the proposed 25 

index allows to calculate functional beta redundancy in a more suitable way to the non-hierarchical 26 

structure of the species functional relationships. The behavior of the proposed measure is illustrated 27 

with data on the species functional turnover along real and simulated ecological gradients. 28 

 29 

Keywords: Algorithmic measure; Functional dissimilarity; Local vs. global scaling; Redundancy 30 

property; Standardized vs. non-standardized coefficients. 31 

 32 

1. Introduction 33 

In a recent paper, Ricotta, Laroche, Szeidl, & Pavoine (2020) introduced the notion of beta 34 

redundancy to quantify the fraction of species dissimilarity between two plots not expressed by 35 

functional or phylogenetic dissimilarity. Therefore, beta redundancy basically summarizes to what 36 

degree the species turnover between two plots is associated to a functional or phylogenetic turnover. 37 

This might help to infer the processes underpinning diversity distribution in space and time. 38 

mailto:carlo.ricotta@uniroma1.it


2 

 

For a pair of plots P and Q, the chief condition to get a meaningful index of beta redundancy is 39 

that the functional or phylogenetic dissimilarity 
FD  is always lower than the corresponding species 40 

dissimilarity 
SD . However, many of the most popular indices of functional and phylogenetic 41 

dissimilarity violate this condition, thus leading to the paradoxical situation of a negative beta 42 

redundancy (see Ricotta et al., 2020; Appendix S1). To overcome this problem, Ricotta et al. (2020) 43 

proposed a class of tree-based indices of functional and phylogenetic dissimilarity between plots that 44 

conform to the condition 
F SD D . The indices are said ‘tree-based’ because they depend on a 45 

functional or phylogenetic tree with species as tips and branches that express functional or 46 

phylogenetic relationships between species. However, while phylogenies have a hierarchical, non-47 

overlapping structure, functional diversity tends to have a non-hierarchical, overlapping structure 48 

(Von Euler & Svensson, 2001). Therefore, being based on a hierarchical structure of species 49 

relationships, the proposed tree-based measures are the more natural way for summarizing plot-to-50 

plot phylogenetic dissimilarity, whereas a tree-based representation of the species functional 51 

relationships is not unanimously accepted by ecologists (see e.g. Poos, Walker & Jackson, 2009; 52 

Pavoine, 2016). For example, Maire, Grenouillet, Brosse, & Villéger (2015) and Loiseau et al. 53 

(2017) have reported that dendrograms tend to overestimate the functional distance between species 54 

leading to a biased assessment of functional relatedness. 55 

The aim of this paper is thus to propose an abundance-based version of the algorithmic index of 56 

functional dissimilarity developed by Kosman (1996) and Gregorius, Gillet, & Ziehe (2003) that 57 

conforms to the requirement 
F SD D . Since it does not rely on a tree-based species organization, the 58 

proposed measure allows to calculate functional beta redundancy in a way that is more appropriate to 59 

the non-hierarchical structure of functional relationships among species. Two worked examples with 60 

artificial and actual data sets, both representing the species functional turnover along ecological 61 

gradients are used to illustrate our approach. 62 

 63 

2. An algorithmic measure of functional beta redundancy 64 

Let P and Q be two plots with species relative abundance vectors  1,..., ,...,i SP p p p  and 65 

 1,..., ,...,i SQ q q q , where 0 1ip  , 
1

1
S

ii
p


  (similarly, 0 1iq  , 

1
1

S

ii
q


 ) and S is 66 

the total number of species in both plots. The information on the species functional organization 67 

within both plots is usually represented by a symmetric S S  matrix of pairwise functional 68 

dissimilarities ijd  between species i and j with 0 1ijd  , ij jid d  and 0iid    , 1,2,...,i j S . 69 

Also, let 
FD  be the functional dissimilarity between P and Q and 

SD  be the corresponding species 70 

dissimilarity. 
FD  is typically calculated by combining the species relative abundances in both plots 71 
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with their functional dissimilarities 
ijd , whereas 

SD  is calculated with the same species abundances 72 

as 
FD  but considering all species equally and maximally dissimilar from each other (i.e. with 1ijd   73 

for all i j ). 74 

The basic condition to obtain a meaningful and easily interpretable index of beta redundancy in 75 

the range [0,1]  is that the functional dissimilarity 
FD  is lower (or at least not higher) than the 76 

corresponding species dissimilarity 
SD . In this case, beta redundancy can be calculated as (Ricotta et 77 

al., 2020): 78 

 79 

 S F

S

D D
R

D



                           (1) 80 

 81 

while beta uniqueness, which is the complement of beta redundancy, can be calculated as: 82 

 83 

1 F

S

D
U R

D
                              (2) 84 

 85 

For 0R  , the species turnover between P and Q goes together with a corresponding functional 86 

turnover such that 
F SD D . Hence, the compositional differences between P and Q mirror their 87 

functional differences. On the contrary, for 1R  , both plots are functionally identical to each other 88 

(i.e. 0FD  ). In this case, the species turnover between P and Q is not associated to a corresponding 89 

change in functional properties. 90 

Kosman (1996) and Gregorius et al. (2003) independently proposed an algorithmic measure of 91 

(functional) dissimilarity which is based on the optimal overall matching between the species 92 

abundances in P and Q so as to minimize the mean functional dissimilarity between both plots. We 93 

can think of this operation as follows: for two plots of equal size P and Q with n individuals in each 94 

plot, to each individual in P an individual in Q is matched to obtain n pairs that minimize the sum of 95 

functional dissimilarities between individuals of the corresponding pairs (Kosman & Leonard, 2007). 96 

The pairs are constructed in such a way that all individuals in both plots are used only once. The 97 

dissimilarity between plots is then calculated by dividing this sum by n (the number of pairs of 98 

individuals). Finding the optimal matching between the species abundances in P and Q is known as 99 

the ‘assignment problem’ (Bellman, Cooke, & Lockett, 1970), a special case of the Transportation 100 

Problem (TP) of linear programming (Hitchcock, 1941). 101 
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Note that, since the number of individuals in both plots is usually not the same, to get a complete 102 

matching between P and Q, this operation is best performed on the species relative abundances (see 103 

Gregorius et al., 2003). Note also that, since this index is a mean dissimilarity between matched pairs 104 

of individuals, if the functional dissimilarity between each pair of individuals is in the range [0,1] , 105 

the resulting mean plot-to-plot dissimilarity also ranges between 0 and 1. 106 

In terms of relative abundances, the algorithmic index of functional dissimilarity between plots P 107 

and Q can be defined as (Gregorius et al., 2003): 108 

 109 

 
1 1

min ,
S S

KG ij
a

i j

D d a i j
 

                        (3) 110 

 111 

where ( , )a i j  is the proportion of abundance of species i in plot P that is assigned to individuals of 112 

species j in plot Q. According to Kosman & Leonard (2007), if the functional dissimilarity between 113 

species is metric, then 
KGD  is also metric. Gregorius et al. (2003) and Kosman (2014) further showed 114 

that if all species are considered maximally dissimilar from each other (i.e. if 1ijd   for all species 115 

i j  and 0iid  ), KGD  will be equal to the Rogers (1972) dissimilarity: 116 

 117 

1

1

2

S

R i i

i

D p q


                           (4) 118 

 119 

Otherwise, for any dissimilarity 
ijd  in the range [0,1] , KGD  is always lower than RD , thus 120 

conforming to the redundancy property that 
F SD D  (proof in Appendix 1). For those that are 121 

unfamiliar with the Rogers dissimilarity, it is worth mentioning that this coefficient is identical to the 122 

well-known Bray & Curtis (1957) dissimilarity (DBC) computed on the species relative abundances: 123 

 
1 1 1

2
S S S

BC i i i i i ii i i
D p q p q p q

  
       . 124 

Accordingly, based on the algorithmic dissimilarity KGD , we can define a measure of beta 125 

redundancy and uniqueness as: 126 

 127 

( ) ( )S F R KG

S R

D D D D
R

D D


 
                       (5) 128 

 129 

and 130 
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 131 

KGF

S R

DD
U

D D
                             (6) 132 

 133 

where beta uniqueness is the fraction of species dissimilarity that is associated to functional 134 

dissimilarity, and beta redundancy is the fraction of species dissimilarity that is not associated to 135 

functional dissimilarity. 136 

While the algorithmic dissimilarity of Kosman (1996) and Gregorius et al. (2003) has been 137 

originally developed in the field of genetics, in community ecology, a number of non-algorithmic 138 

measures based on minimum dissimilarity between the species in both plots have been proposed 139 

(Clarke & Warwick, 1998; Izsak & Price, 2001; Clarke, Somerfield, & Chapman, 2006; Ricotta & 140 

Burrascano, 2008; Swenson, 2011; Ricotta, Podani, & Pavoine, 2016). All these measures basically 141 

calculate the functional dissimilarity between a given species in the first plot and its closest 142 

functional relative in the second plot. This procedure is repeated for all species in P and Q and then 143 

averaged over both plots. The main difference is that KGD  is based on a (computationally intensive) 144 

optimal matching between the species abundances in both plots. This ensures that all individuals in P 145 

and Q are involved in the calculation of KGD . By contrast, the ‘suboptimal’ matching performed by 146 

the non-algorithmic measures retains only nearest-neighbor differences between species for the 147 

calculation of functional dissimilarity. As a result, they generally underestimate functional 148 

dissimilarity compared to KGD . For details, see Ricotta et al. (2020, Appendix S2). 149 

Beta uniqueness F SU D D   and redundancy ( )S F SR D D D    are standardized coefficients 150 

that allow us to partition species dissimilarity into two complementary components: the degree of 151 

overlap between species dissimilarity and functional dissimilarity (U ), and the fraction of species 152 

dissimilarity not expressed by functional dissimilarity ( R ) such that 1U R   . However, these 153 

measures tell us nothing on the amount of similarity among plots. To get a more complete picture of 154 

the patterns of species and functional similarity among pairs of plots, non-standardized coefficients 155 

may be also used. 156 

We start by noticing that if species dissimilarity SD  is bounded between zero and one, its 157 

complement 1 SD  represents a suitable measure of species similarity among plots. At the same 158 

time, SD  can be also partitioned into two complementary components which represent the non-159 

standardized versions of uniqueness and redundancy: functional dissimilarity FD , and S FD D  160 

which is the (absolute) amount of species dissimilarity not expressed by functional dissimilarity. To 161 
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differentiate S FD D  from beta redundancy, in the remainder we will call this quantity ‘dissimilarity 162 

gap’ (Table 1 contains a summary of terms along with their definitions). 163 

Therefore, for any functional dissimilarity coefficient that conforms to the redundancy property, 164 

we can define three non-standardized components: functional dissimilarity  FD , dissimilarity gap 165 

 S FD D  and species similarity (1 )SD  such that   (1 ) 1F S F SD D D D     . For the 166 

algorithmic measures of Kosman (1996) and Gregorius et al. (2003), these three non-standardized 167 

components are KGD , 
R KGD D  and 1 RD , respectively. Note however, that the same approach can 168 

be used for any functional dissimilarity measure in the range [0, 1] that conforms to the redundancy 169 

property, including the tree-based functional and phylogenetic dissimilarity measures proposed by 170 

Ricotta et al. (2020). 171 

 172 

3. Worked examples 173 

3.1. Artificial data 174 

The behavior of the proposed measures was first evaluated on a small artificial data set 175 

representing an ideal ecological gradient. The data consist of a matrix with the relative abundances of 176 

15 species (S1-S15) in 10 plots (P1-P10). The matrix was built such that all species have unimodal 177 

abundance pattern of varying amplitude along the gradient (Table 1), while the corresponding 178 

functional dissimilarity matrix among species was built such that the interspecies dissimilarities 179 

reflect the species ecological differences along the simulated gradient (Appendix 2). To this end, the 180 

interspecies similarities were set proportional to the distance between the species optima (i.e. the 181 

locations along the gradient where the species show their maximum abundances). 182 

To explore the response of the proposed measures to changes in species composition along the 183 

simulated gradient, we compared plot P1 with itself and with the remaining plots in terms of beta 184 

redundancy, species dissimilarity, functional dissimilarity, and dissimilarity gap. All measures were 185 

calculated with a new R function available in Appendix 3 of this paper, which uses the same TP 186 

algorithm of Gregorius et al. (2003). 187 

 188 

3.2. Vegetation primary succession 189 

We also explored the behavior of the proposed measures on Alpine vegetation sampled by 190 

Caccianiga, Luzzaro, Pierce, Ceriani, & Cerabolini (2006) along a primary succession. The data set, 191 

which has been already used in previous papers on alpha and beta redundancy (Ricotta et al., 2016; 192 

Ricotta et al., 2020) is composed of 59 plots of approximately 25 m
2
 sampled at the foreland of the 193 

Rutor Glacier (Northern Italy). For each plot, species abundances were measured with a five-point 194 

ordinal scale transformed to ranks. Based on the age of the moraine deposits, the plots were then 195 
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classified into three successional stages: early-successional stage (17 plots), mid-successional stage 196 

(32 plots), and late-successional stage (10 plots). 197 

For all 45 plant species in the data set, we selected six quantitative traits measured by Caccianiga 198 

et al. (2006, Table 2), which provide a good representation of the global spectrum of form and 199 

function (Díaz et al., 2016): canopy height (CH; mm), leaf dry mass content (LDMC; %), leaf dry 200 

weight (LDW; mg), specific leaf area (SLA; mm
2
 × mg

−1
), leaf nitrogen content (LNC; %), and leaf 201 

carbon content (LCC; %). All data are available in the data object named ‘RutorGlacier’ of the adiv 202 

package (Pavoine, 2020) of R (R Core Team, 2021). 203 

We used the Euclidean distance to calculate an interspecies dissimilarity matrix from the six 204 

functional traits. Before calculations, all traits were standardized to zero mean and unit standard 205 

deviation. The resulting functional distances among species were then rescaled to the unit range by 206 

dividing each distance by the maximum value in the distance matrix. 207 

Based on the scaled matrix, we calculated the standardized and non-standardized functional 208 

dissimilarity components for all pairs of plots in each successional stage. We next used the 209 

PERMDISP test (Permutational Analysis of Multivariate Dispersions) of Anderson (2006) to test for 210 

differences in the dispersion of species dissimilarity RD , functional dissimilarity KGD  and functional 211 

uniqueness U  among the three successional stages. 212 

 213 

4. Results 214 

4.1. Artificial data 215 

The profile diagrams in Figure 1 (Podani & Miklós, 2002) show the response of species 216 

dissimilarity RD , functional dissimilarity KGD , beta redundancy R  and dissimilarity gap 
R KGD D  217 

to changes in species composition along the artificial gradient in Table 1. The comparison of the first 218 

plot with itself and all other plots shows a monotonic increase of species and functional dissimilarity 219 

along the gradient. Note however that, while for the pair of plots P1/P10, species dissimilarity 220 

reaches its maximum value (i.e. 1RD  ), meaning that P1 has no species in common with P10, 221 

functional dissimilarity does not reach its maximum value because the species in both plots are not 222 

completely functionally distinct. The profile diagrams in Figure 1 also show the main conceptual 223 

differences between standardized beta redundancy ( )R KG RR D D D    and the non-standardized 224 

dissimilarity gap 
R KGD D . In absolute terms, 

R KGD D  increases along the first part of the gradient 225 

where the species turnover among plot P1 and the other plots is only weakly associated to a 226 

corresponding functional turnover. Then, it decreases along the second part of the gradient, where 227 

most of the species differences among P1 and the other plots are associated to functional differences 228 
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among plots. By contrast, in relative terms, as species dissimilarity increases along the gradient, 229 

functional redundancy R  tends to be progressively replaced by functional uniqueness 1U R   . 230 

Note that for two identical plots, species dissimilarity SD  and functional dissimilarity 
FD  are 231 

both zero. In this case, beta uniqueness 
PP F SU D D  and redundancy ( )PP S F SR D D D   are not 232 

defined. However, considering that beta uniqueness 
F SU D D   is a relative measure that relates 233 

plot-to-plot functional dissimilarity to its local maximum, we set by definition 0PPU   if 0SD  . At 234 

the other extreme, for two maximally dissimilar plots P and Q with no species in common and 235 

maximum functional dissimilarity 1ijd   for species i and j belonging to P and Q, respectively, we 236 

have 1F SD D   and hence 1PPU  . Likewise, since beta redundancy 1R U    it follows that 237 

1PPR   if 0SD  , and 0PPR   if 1F SD D  . 238 

 239 

4.2. Vegetation primary succession 240 

Caccianiga et al. (2006) showed that in the early-successional stage , the colonization of the 241 

moraine ridges of the Rutor glacier by the first pioneer species is primarily controlled by random 242 

dispersal, whereas the vegetation of the mid- and late-successional stages shows a higher level of 243 

functional homogeneity. This increase in functional homogeneity produces a similar increase in 244 

functional alpha and beta redundancy along the primary succession (Ricotta et al., 2016; 2020). 245 

The results of the test for differences in the dispersion of RD , KGD  and U  among the three 246 

successional stages are shown in Table 3. First, based on the pairwise dissimilarities among pair of 247 

plots in each successional stage, the test calculates the dissimilarity of individual plots from the 248 

corresponding group centroid. Next, a permutational t-test with 9999 randomizations of these 249 

dissimilarities is used to test for pairwise differences in average dissimilarity of individual plots from 250 

their group centroids. For details on the PERMDISP test, see Anderson (2006). 251 

In good agreement with the results of Ricotta et al. (2020), the successional stages do not differ 252 

significantly in species dissimilarity RD , meaning that the species turnover among plots is more or 253 

less the same in all successional stages. By contrast, (non-standardized) functional dissimilarity KGD  254 

and (standardized) uniqueness 
KG RD D  in the early-successional stage are both significantly higher 255 

than in the mid- and late-successional stages. That is, due to the more random dispersal mechanisms, 256 

in the early-successional stage, the species turnover is associated to a higher rate of functional 257 

turnover compared to the the mid- and late-successional stages where the species in one plot tend to 258 

be replaced by functionally related species in the other plots. 259 

 260 
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Discussion 261 

Ricotta et al. (2020) introduced the concept of beta redundancy to summarize the fraction of 262 

species dissimilarity 
SD  between two plots not expressed by functional or phylogenetic dissimilarity 263 

FD . From an ecological viewpoint, this index tells us to what degree the species turnover between 264 

two plots is associated to a functional or phylogenetic turnover among the species in both plots. 265 

From a technical viewpoint, a necessary condition for a suitable index of beta redundancy is that the 266 

functional or phylogenetic dissimilarity is always lower than species dissimilarity: 
F SD D . This 267 

condition prevents beta redundancy from taking negative values. Ricotta et al. (2020) also developed 268 

a new class of indices of functional and phylogenetic dissimilarity between plots that conform to the 269 

redundancy property 
F SD D . However, these indices depend on a hierarchical structure (a tree) of 270 

functional differences among species, which is not always considered adequate to portray the species 271 

functional relationships. 272 

To develop a new index of functional beta redundancy that does not require the definition of a 273 

functional tree, our first step was to ‘import’ in the ecological literature an algorithmic index of 274 

functional dissimilarity 
KGD  originally proposed by Kosman (1996) and Gregorius et al. (2003) for 275 

genetic studies. Given two plots P and Q, the index is based on the optimal overall matching between 276 

the species abundances in both plots, so as to minimize the mean functional dissimilarity for the 277 

matched species abundances between P and Q. Since the calculation of 
KGD  does not require a tree-278 

based species structure, the proposed measure of functional beta redundancy is now more flexible 279 

and compatible with the usual ways of representing functional relationships among species. Note 280 

that, since this index is essentially a kind of mean functional dissimilarity between the species in two 281 

plots, the practitioner can base the analysis on any functional dissimilarity measure of choice. 282 

Being conform to the redundancy property 
F SD D , this algorithmic index enables to calculate 283 

(relative) functional redundancy and uniqueness in the usual way: ( )S F SR D D D    and 284 

1 F SU R D D    . In addition to these relative coefficients, for a dissimilarity index that is 285 

bounded in the range [0, 1] the non-standardized coefficients of functional dissimilarity 
FD  and 286 

dissimilarity gap S FD D  may be also used. 287 

The main difference between beta redundancy and uniqueness and their non-standardized 288 

versions, S FD D  and 
FD , is how the measures are scaled. For two plots with relative abundance 289 

vectors  1,..., ,...,i SP p p p  and  1,..., ,...,j SQ q q q , a measure of non-standardized functional 290 

dissimilarity FD  in the range [0, 1], attains its maximum value (i.e. its global maximum) 1FD   for 291 

two maximally dissimilar plots with no species in common and maximum functional differences 292 
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1ijd   for species i belonging to plot P and species j to plot Q. By contrast, to calculate U  293 

functional dissimilarity 
FD  is scaled by its local maximum SD , i.e. by the maximum value that 

FD  294 

can reach by keeping the relative abundance vectors unchanged and by imposing 1ijd   for all i j . 295 

The ecologically interesting aspect of the non-standardized dissimilarity gap S FD D  is related to 296 

its dual nature. In fact, S FD D  is at the same time a component of species dissimilarity and of 297 

functional similarity. The dissimilarity gap thus summarizes to what degree the differential species in 298 

two plots are able to perform the same ecological functions. Therefore, S FD D  and its standardized 299 

version R  are directly related to classical ecological processes, such as habitat filtering (Zobel, 300 

1997), dark diversity (Pärtel, Szava-Kovats, & Zobel, 2011) and the species carousel model (van der 301 

Maarel & Sykes, 1993). 302 

For example, using simulated and real data, Laroche, Violle, Taudière, & Munoz (2020) 303 

illustrated how the difference between functional and compositional dissimilarities can help in 304 

identifying the processes underpinning diversity patterns at the metacommunity scale. In case of 305 

habitat filtering, species in the same habitat tend to have more similar traits that help them to cope 306 

with the local environmental conditions. Optimal traits are different from one habitat to another. 307 

Species present in the regional species pool but absent from a given habitat may thus have non-308 

optimal traits for that habitat that enable them to colonize different habitats with different 309 

environmental conditions. If species traits are more related to their fitness than to their niche, then, 310 

competitive exclusion could lead to the absence of the less competitive species from a given site and 311 

thus to coexisting species with similar trait values. Combined together, these equalizing processes 312 

due to abiotic and biotic filtering (i.e. species share trait values that make them locally adapted to 313 

their environment and that ensure their similarity in terms of fitness; Chesson, 2000) could both lead 314 

to high SD  and 
FD , low R  and low S FD D  between plots of different habitats, and to low 

FD  315 

and relatively high to high R  between plots of similar habitats depending on the level of the 316 

corresponding SD . 317 

If dispersal is high between plots regardless of habitat conditions, and if stabilizing niche 318 

differences (see Chesson, 2000) favor coexistence between species with distinct trait values allowing 319 

low overlap in resource use and stronger intraspecific competition than interspecific competition, 320 

then we expect high functional differences between locally coexisting species and high species 321 

turnover between plots because similar species cannot coexist. Accordingly, we also expect high 322 

functional overdispersion meaning that the functional differences within plots are high, and the plots 323 

are functionally similar because for each species in one plot we can expect to find a ‘functionally-324 
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relative’ species not in the same plot but in another plot. In that case, limiting similarity due to 325 

stabilizing niche differences will lead to high SD , low 
FD , and hence high R  and high S FD D  326 

between plots irrespective of the environmental conditions in the different plots. 327 

High beta redundancy between plots ( R  and S FD D ), combined with high species dissimilarity 328 

(high SD ) could also inform priorities of conservation if some vulnerable species are absent in a site 329 

although the local ecological (biotic and abiotic) conditions would be favorable (dark diversity, 330 

Pärtel et al., 2011). This could be due to the species mobility and to stochastic colonization processes 331 

of favorable habitats (the species carousel of van der Maarel & Sykes, 1993). However, this could 332 

also be driven by habitat fragmentation, local extinction and limited or even hampered dispersal 333 

between the remnant habitat patches. This diversity of processes emphasizes the importance of 334 

selecting an appropriate null hypothesis for analyzing beta-redundancy patterns. In this paper, we 335 

used a standard permutational approach. Narrower null hypotheses, such as constrained permutations 336 

(Peres-Neto, Olden, & Jackson, 2001) or the neutral baseline approach of Laroche et al. (2020) could 337 

also be used to facilitate the distinction between alternative processes that may produce similar 338 

species distribution patterns. 339 

Temporal surveys, revealing increase in SD  over years, accompanied by an increase in R  and 340 

S FD D , could be even more informative alerting conservation agencies to potentially drastic 341 

environmental impact on biodiversity necessitating ecosystem restoration. Consider a hypothetical 342 

case where functional dissimilarities between plots in a habitat are proportional to species 343 

dissimilarities: the more complementary the plots are in terms of species, the more functional types 344 

they together contribute to the functional diversity of the habitat. If in addition local species 345 

extinctions are so numerous that some species become globally extinct (over all habitat patches), R  346 

is expected to remain constant but S FD D  to decrease, meaning that the original levels of species 347 

and functional diversity could only be reestablished by habitat restoration and species 348 

reintroductions, wherever possible. 349 

To conclude, functional beta redundancy allows us to explore an important aspect of the complex 350 

multidimensional space of ecological data. As highlighted by several authors (see e.g. Lavorel et al., 351 

2008; Ricotta & Moretti, 2011), which traits are actually relevant for ecosystem functioning depends 352 

on the specific process of interest. Therefore, a critical point is the selection of an appropriate set of 353 

functional traits. The basic assumption for exploring the effects of dissimilarity on ecosystem 354 

functioning is that communities with similar functional traits have similar ecological properties. 355 

Therefore, two communities are supposed to be functionally similar with respect to some a priori-356 

defined ecological property if they share the same traits. In principle, increasing the number of traits 357 
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leads to more accurate measures of community similarity. However, these higher-dimensional 358 

functional spaces generally do not have any direct biological connection to the specific ecological 359 

properties under scrutiny. Therefore, instead of building increasingly larger functional spaces, we 360 

need to develop increasingly focused spaces that optimize their association to the property of interest 361 

(Ricotta and Moretti 2010). The construction of such ‘tailored’ functional spaces may be based on 362 

expert knowledge (Caccianiga et al., 2006), statistical methods (Ricotta & Moretti, 2010; Pierce et 363 

al., 2017) or on modeling approaches (Petchey & Gaston, 2006). In this view, we believe that future 364 

work combining indices of beta redundancy with the development of functional spaces strongly 365 

connected to a priori-selected properties will greatly contribute to the understanding of the 366 

relationships among different facets of community dissimilarity and ecosystem functioning. 367 

 368 
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Appendix 1. Proof that the algorithmic dissimilarity KGD  is always not higher than the Rogers 482 

dissimilarity RD . 483 

 484 

Appendix 2. Interspecies dissimilarity matrix used for the calculation of the proposed redundancy 485 

measures with the artificial data in Table 1. 486 

 487 

Appendix 3. R scripts for the calculation of the proposed redundancy measures. 488 
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Table 1. Summary of all redundancy components used in this study. All components are formulated 489 

in terms of species and/or functional dissimilarities. 490 

 491 

 492 

 493 

Component 
Definitions and 
Abbreviations 

Functional Dissimilarity DF 

Species Dissimilarity DS 

Dissimilarity Gap DS - DF 

Species Similarity 1 - DS 

Functional Similarity  1 - DF 

Beta Uniqueness U = DF/DS 

Beta Redundancy R = (DS - DF)/DS 

 494 

 495 

 496 

 497 

 498 

Table 2. Artificial data set with the relative abundances of 15 species (S1-S15) in 10 plots (P1-P10) 499 

ordered along an ideal ecological gradient. The matrix was built such that all species have unimodal 500 

response of varying amplitude and abundance to a hypothetical one-dimensional gradient. Non-zero 501 

abundances are shown in grey. The locations of the species optima are highlighted in bold. 502 

 503 

 504 

 505 

Species Plot 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

S1 0.15 0 0 0 0 0 0 0 0 0 
S2 0.4 0.2 0.15 0.05 0 0 0 0 0 0 
S3 0.1 0.15 0.05 0 0 0 0 0 0 0 
S4 0.2 0.35 0.25 0.15 0.05 0 0 0 0 0 
S5 0 0 0.1 0 0 0 0 0 0 0 
S6 0 0 0 0.05 0 0 0 0 0 0 
S7 0.15 0.2 0.25 0.35 0.25 0.2 0.1 0.1 0.1 0 
S8 0 0.1 0.15 0.25 0.35 0.3 0.2 0.1 0 0 
S9 0 0 0.05 0.15 0.25 0.2 0.1 0 0 0 
S10 0 0 0 0 0.1 0.2 0.15 0 0 0 
S11 0 0 0 0 0 0 0.15 0 0 0 
S12 0 0 0 0 0 0.1 0.25 0.5 0.45 0.45 
S13 0 0 0 0 0 0 0.05 0.15 0.25 0.05 
S14 0 0 0 0 0 0 0 0.1 0.15 0.3 
S15 0 0 0 0 0 0 0 0.05 0.05 0.2 

 506 
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Table 3. Mean (Standard deviation) dissimilarity values of the vegetation plots in each successional 507 

stage from the corresponding centroids. Pairwise differences in mean plot dissimilarity from the 508 

group centroids were tested with permutational t-tests (9999 permutations). For each dissimilarity 509 

index, numbers followed by the same letter do not differ significantly at P < 0.05. 
RD  = species 510 

dissimilarity; KGD  = functional dissimilarity; U  = beta uniqueness. 511 

 512 

 513 

 514 

 
Early-successional 

stage (17 plots) 
Mid-successional 
stage (32 plots) 

Late-successional 
stage (10 plots) 

DR 0.407 (0.075)
a
 0.365 (0.083)

a
 0.361 (0.106)

a
 

DKG 0.149 (0.044)
a
 0.095 (0.026)

b
 0.091 (0.023)

b
 

U 0.253 (0.037)
a
 0.182 (0.024)

b
 0.170 (0.016)

b
 

 515 
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Figure 1. Profile diagram showing the response of species dissimilarity RD , functional dissimilarity 516 

KGD , dissimilarity gap 
R KGD D  and beta redundancy ( )R KG RR D D D    to changes in species 517 

composition along the artificial gradient in Table 1. The profile diagram reflects the comparison of 518 

the first plot with itself and all other plots along the gradient. 519 
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