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Abstract 39 

Bauxite residue is the alkaline byproduct generated during alumina extraction and is 40 

commonly landfilled in open-air deposits. The growth in global alumina production 41 

have raised environmental concerns about these deposits since no large-scale reuses 42 

exist to date. Microbial-driven techniques including bioremediation and critical metal 43 

bio-recovery are now considered sustainable and cost-effective methods to revalorize 44 

bauxite residues. However, the establishment of microbial communities and their 45 

active role in these strategies are still poorly understood. We thus determined the 46 

geochemical composition of different bauxite residues produced in southern France 47 

and explored the development of bacterial and fungal communities using Illumina 48 

high-throughput sequencing. Physicochemical parameters were influenced differently 49 

by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-50 

stage microbial community dominated by haloalkaliphilic microorganisms and strongly 51 

influenced by chemical gradients. Microbial richness, diversity and network complexity 52 

increased significantly with the deposit age, reaching an equilibrium community 53 

composition similar to typical soils after decades of natural weathering. Our results 54 

suggested that salinity, pH, and toxic metals affected the bacterial community 55 

structure, while fungal community composition showed no clear correlations with 56 

chemical variations. 57 

 58 
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1. INTRODUCTION 69 

Bauxite residue is a solid by-product generated during the production of alumina from 70 

bauxite. Alumina extraction is most often performed by the Bayer process, where 71 

bauxite is digested with large quantities of sodium hydroxide at temperatures between 72 

150 and 250 °C (Evans, 2016). Depending on the process parameters and the origin 73 

of the bauxite, 0.7 to 2 tons of bauxite residues are produced per ton of alumina 74 

(International Aluminium Institute and European Aluminium, 2015). Over the last 10 75 

years, the average annual production of alumina was 116 ± 15 Mt (World Aluminium, 76 

2020), which corresponds to ~200 Mt of bauxite residue produced per year. In the 77 

absence of economically profitable large-scale applications, bauxite residues are 78 

commonly landfilled in large open-air deposit areas (BRDA), reaching a total of 4.5 Bt 79 

bauxite residue in storage at the present time (Dentoni et al., 2021).  80 

Due to the physicochemical characteristics of bauxite residue i.e., high alkalinity, high 81 

salinity, high metal content and lack of nutrients, BRDAs pose a challenge to most 82 

living organisms (Di Carlo et al., 2020; Santini et al., 2015b) and represent a potential 83 

source of contamination for the surrounding terrestrial and aquatic ecosystems 84 

(Bouchoucha et al., 2019; Ren et al., 2018). Consequently, efforts have been made to 85 

remediate these deposits, usually by the addition of amendments (e.g. gypsum and 86 

organic matter) that attenuate their harsh conditions prior to the revegetation of the 87 

area (Bray et al., 2018; Khaitan et al., 2010). BRDAs have also been considered as a 88 

promising secondary source of valuable and critical metals, as these elements are 89 

concentrated by a factor of 2 in bauxite residues compared to the initial bauxite ore 90 

(Panda et al., 2021; Ujaczki et al., 2017; Vind et al., 2018). Critical metals are chemical 91 

elements characterized by their high economic relevance and supply risk (European 92 

Commission, 2020) and include metals crucial for information and energy technologies 93 

such as Co, Mg, Ba, V, Ge, Nb, Sr, Ga, platinoids (PGMs), and rare earth elements 94 

(REEs: Lanthanides (Ln), Y, Sc).  95 

Recently, microbial-driven approaches have gained attention as viable and cost-96 

effective methods for the management and valorization of urban and industrial wastes, 97 

including bauxite residue (Lyu et al., 2021; Panda et al., 2021; Santini et al., 2019). 98 

During in-situ remediation processes, native microbial communities have been shown 99 

to decrease the pH and salinity of the bauxite residue, as well as play an essential role 100 

in soil formation and plant growth (Di Carlo et al., 2019; Tian et al., 2020; Wu et al., 101 



2019). Microbial metal recovery strategies are also promising for the dissolution and 102 

recovery of elements of interest (e.g., Fe, Al, critical metals) from waste (Baniasadi et 103 

al., 2019; Dev et al., 2020; Maes et al., 2016). Out of all these techniques, bioleaching 104 

and microbial electrochemistry are among the most-studied methods (Dominguez-105 

Benetton et al., 2018; Srichandan et al., 2019). In bauxite residues, these techniques 106 

are still at an early experimentation stage, although some promising results for REE 107 

recovery by bioleaching have been reported (Kiskira et al., 2021; Qu et al., 2019; 108 

Zhang et al., 2020).  109 

More generally, microbial-driven strategies for waste management imply the use of 110 

microbial communities native to contaminated sites, which tend to thrive better in such 111 

harsh environments due to their unique metabolisms developed through natural 112 

selection (Ghosh et al., 2018; Ma et al., 2019; Roy et al., 2018; Sajjad et al., 2020). In 113 

addition, microbial communities are known to perform complex functions and are more 114 

robust to environmental fluctuations compared to pure cultures (Perez-Garcia et al., 115 

2016; Wang et al., 2020; Zhang et al., 2008). Metagenomics studies based on Next 116 

Generation Sequencing have significantly expanded the identification and dynamics 117 

of microbial communities involved in different bioprocesses. However, the evolution of 118 

microbial communities in metal biorecovery experiments is still limited to a few weeks 119 

(Ma et al., 2017; Sajjad et al., 2020; Wang et al., 2020). Regarding bauxite residues, 120 

the identification of pioneer microbial communities and their dynamics during primary 121 

succession have been highlighted as research needs to improve microbial-driven 122 

bioremediation (Santini et al., 2015a). Nevertheless, to date, studies on microbial 123 

diversity in bauxite residue have focused on the responses of bacterial communities 124 

to remediation strategies, overlooking their active role in the process (Banning et al., 125 

2011; Fourrier et al., 2020; Ke, 2021; Krishna et al., 2014; Schmalenberger, 2013; Wu 126 

et al., 2020). 127 

This study aimed at exploring the microbial dynamics during primary succession in a 128 

BRDA from Southern France using an integrated physicochemical and biological 129 

approach. The specific objectives of this study were to (a) evaluate the effect of the 130 

deposit age and the ore origin on the geochemical characteristics of bauxite residue; 131 

(b) identify the first microbial communities colonizing BRDAs and their role in the 132 

establishment of new species; (c) determine the microbial community structure in the 133 

equilibrium stage of primary succession in BRDAs and the main geochemical factors 134 



driving it; (d) explore possible implications of this study for microbial-driven 135 

bioremediation and critical metal recovery. 136 

 137 

2. MATERIALS AND METHODS 138 

2.1 Site description and sampling 139 

The bauxite residues come from a refinery operating the Bayer aluminum extraction 140 

process since 1894 in Gardanne, Southern France. The sampling took place at the 141 

Mange-Garri bauxite residue disposal area (BRDA) in Bouc-Bel-Air, Southern France. 142 

This region is characterized by a hot-summer Mediterranean climate, with average 143 

annual precipitation and temperature of 485 mm and 16.3°C (Copernicus Climate Data 144 

Store, 2021). We selected four distinct areas of the BRDA based on their deposit age 145 

(1, 2, 90, and 100 years) and bauxite origin (lateritic bauxite from Boké, Guinea (Bo) 146 

and karstic bauxite from Provence, France (Pr)), named Bo1, Bo2, Pr90 and Pr100 147 

(Fig. 1). At the Bo1 and Bo2 sites, bauxite residues were produced from Guinean 148 

bauxite and were landfilled one and two years before sampling respectively. These 149 

deposits are occasionally watered to prevent dust dispersion and were not amended 150 

at the time of sampling. The Pr90 and Pr100 sites contain bauxite residues that were 151 

produced from Provençal bauxite and were deposited around 90 and 100 years ago 152 

respectively. These sites were amended with a soil layer in the 1960s and a slight 153 

coverage with low-lying vegetation can be seen.  154 

At each of the four sites, samples were collected in triplicate, gathering approximately 155 

500 g of bauxite residue at a depth of 20 to 30 cm in sterile plastic bags. At sites Pr90 156 

and Pr100, samples were collected at the edge of the deposit, where bauxite residues 157 

were distant from the added soil layer. In addition, freshly produced bauxite residue (4 158 

replicates) was also selected to analyze the initial bio-geochemical characteristics 159 

before landfill. Samples were divided into two groups based on the following analyses. 160 

Samples undergoing physicochemical analysis were oven-dried at 70°C, grounded in 161 

a mortar, passed through a 130 µm sieve, and stored in metal-free plastic tubes. 162 

Samples for microbial community analyses were stored at 4°C. 163 



 164 

2.2 Physicochemical analyses 165 

2.2.1 Elemental composition 166 

First, pH and electrical conductivity (EC) were measured at a solid/MilliQ water ratio 167 

of 1:5. Then, the elemental composition of the bauxite residues was determined after 168 

alkaline fusion of the samples (Rivera et al., 2019). Briefly, 1 g of each sample was 169 

digested with 750 mg of lithium tetraborate (Li2B4O7) at 1000°C for 30 min (WiseTherm 170 

F/FH 0-1200°C) and then immediately dissolved in 40 mL of HNO3 1N. Prior to 171 

elemental analysis, the samples were dissolved 200 times. Subsequently, inductively 172 

coupled plasma mass spectrometry (ICP-MS, Perkin Elmer NexIon 300X) was used 173 

to analyze elements with concentrations up to 1000 µg/L, while elements with 174 

concentrations above 1000 µg/L were analyzed by inductively coupled plasma optical 175 

emission spectroscopy (ICP-OES, Perkin Elmer 4300 DV). All analyses were 176 

conducted for major and trace elements commonly found in bauxite residues, namely 177 

Fe, Ti, Al, Ca, Zr, Cr, Mn, Zn, Th, Ni, Pb, Cu, Sn, Rb, Cs as well as critical raw elements 178 

(as defined by the European Commission (2020): P, Mg, V, Lanthanides (Ln), Sr, Y, 179 

Nb, Ba, Sc, Ga, Hf, Ge, Co, Sb, W, Ta). Total carbon (TC) and nitrogen were 180 

determined by dry combustion using an Elemental Analyzer (Flash EA, Thermo 181 

Scientific). To measure the total organic carbon (TOC), samples were treated with HCl 182 

to remove carbonates before analysis.  183 

2.2.2 Mineralogical composition 184 

The mineralogical analyses of bauxite residue were carried out by X-ray diffraction 185 

(XRD) using a PANalytical X’Pert Pro (Malvern Panalytical, UK) diffractometer 186 

equipped with a cobalt tube (l = 1.79 Å) running at 40kV and 40mA. Samples were 187 

100 m

Figure 1. Sampling site and samples description.



deposited on low background silicon plates and analyzed from 8° to 80° (2q) with a 188 

step size of 0.033° and a total counting time of 7 hours. Samples were also spun at 189 

15 rpm to improve statistics. Phase identification was performed using the X’pert 190 

Highscore plus software (PANalytical) together with the PDF-2 ICDD database 191 

(International Center for Diffraction data, Powder Diffraction Files 2). Profex software 192 

(Doebelin and Kleeberg, 2015) was used for Rietveld refinement to semi-quantify the 193 

proportions of the minerals in the bauxite residues. The following parameters were 194 

refined: zero point shift, sample displacement, cell parameters, preferred orientation 195 

and peak broadening resulting from the size of the crystallite and the micro strain. 196 

2.3 DNA extraction, PCR amplification and sequencing 197 

The total DNA was extracted from 5 g of each bauxite residue samples using the 198 

FastDNA® Spin Kit for soil (MP Biomedicals, USA) following the manufacturer’s 199 

protocol. Extracted DNA was used as template in separate PCR reactions amplifying 200 

the bacterial 16S and the fungal ITS rRNA gene sequences. For bacterial diversity 201 

analysis, we used the primers 341F (5’-CCTAYGGGRBGCASCAG-3’) and 806R (5’-202 

GGACTACNNGGGTATCTAAT-3’), targeting the V3 and V4 variable regions of the 203 

bacterial 16S rRNA (Caporaso et al., 2011; Muyzer et al., 1993). For fungal diversity 204 

analysis, we used the primers flTS7 (5’-GTGARTCATCGAATCTTTG-3’) and ITS4 (5’-205 

TCCTCCGCTTATTGATATGC-3’), targeting the ITS2 region (Ihrmark et al., 2012). 206 

The amplification conditions were as follows: initial denaturation at 95 °C for 2 min; 207 

followed by 34 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, 208 

and extension at 72 °C for 1 min; and a final extension at 72 °C for 5 min (Muller et 209 

al., 2021). PCR products were then purified using ProNex® Size-Selective Purification 210 

System (Promega, USA) and sequenced on Illumina MiSeq platform (Biofidal, Vaulx-211 

en-Velin, France). The raw sequence reads generated from this study have been 212 

deposited in the National Center for Biotechnology Information (NCBI) Sequence 213 

Read Archive under the accession number PRJNA748554. 214 

2.4 Sequencing data processing 215 

Microbiome bioinformatics were performed by the open-source software QIIME2, 216 

version 2019.10 (https://qiime2.org) (Bolyen et al., 2019). Raw reads were quality-217 

filtered, denoised and chimera-checked using DADA2 (Callahan et al., 2016). DADA2 218 

uses a parametric model to infer true biological sequences from reads. The model 219 



relies on input read abundances (true reads are likely to be more abundant) and the 220 

pairwise similarity between sequences. The taxonomic annotation of the resulting 221 

sequence variants (ASVs) was assigned using the feature-classifier command with 222 

default parameters in QIIME2 and sequences were matched against the Greengenes 223 

13_8 database (McDonald et al., 2012). Finally, scaling with ranked subsampling 224 

(SRS) curves (Beule and Karlovsky, 2020) were drawn to determine whether the 225 

sequencing depth was sufficient to represent the true diversity of the samples. 226 

2.5 Biodiversity parameters and microbial biomarker discovery 227 

Alpha diversity was explored through observed ASVs, Chao1, and Shannon. The 228 

observed ASVs and the Chao1 estimator were selected to identify community 229 

richness, and Shannon index was used to assess community diversity (Callahan et 230 

al., 2017; Hill et al., 2003). Beta diversity analysis was used to evaluate distribution 231 

patterns in samples based on bacterial and fungal ASV composition (Anderson et al., 232 

2011; Callahan et al., 2017). For this purpose, a principal coordinate analysis (PCoA) 233 

based on weighted UniFrac distances (Lozupone et al., 2007) was conducted. All 234 

alpha and beta diversity metrics were calculated using QIIME 2 after normalization to 235 

59388 and 4778 sequences per sample for bacteria and fungi, respectively. Linear 236 

discriminant analysis effect sizes algorithm (LEfSe) (Segata et al., 2011) was 237 

performed on the Galaxy platform (https://huttenhower.sph.harvard.edu/galaxy/) to 238 

identify bacterial biomarkers characterizing the samples. LEfSe couples Kruskal–239 

Wallis tests for measuring statistical significance with quantitative tests for biological 240 

consistency (Wilcoxon rank sum test). 241 

2.6 Statistical analysis 242 

All statistical analyses were performed with the open-source software R (R Core 243 

Team, 2020) using the packages “dplyr” (Wickham et al., 2021), “vegan” (Oksanen et 244 

al., 2020), “car” (Fox and Weisberg, 2019), “ggpubr” (Kassambara, 2020), and “rstatix” 245 

(Kassambara, 2021). Figures were produced with the package “ggplot2” (Wickham, 246 

2009). To study the ore-dependent differences in chemical and microbiological 247 

compositions of bauxite residue, unpaired two-sided T-tests and Wilcoxon rank sum 248 

tests were conducted respectively. Furthermore, Games-Howell post-hoc tests were 249 

used to assess the age-dependent variations in chemical and microbial compositions. 250 

Pearson correlations between each variable and the deposit age were used to further 251 



explore these relationships. Also, significant differences in alpha diversity indices were 252 

tested by Wilcoxon rank sum tests. 253 

Principal component analysis (PCA) was used to identify the variables that explain 254 

most of the variation in chemical composition. In addition, unsupervised hierarchical 255 

clustering was applied to the PCA to group the samples according to their chemical 256 

similarity. Both PCA and hierarchical clustering were performed using the packages 257 

“FactoMineR” (Lê et al., 2008) and “factoextra” (Kassambara and Mundt, 2020). 258 

PERMANOVA via the adonis function was conducted in both PCA and PCoA to test 259 

for the chemical and microbiological dissimilarities based on the deposit age and the 260 

bauxite origin. To study the factor age alone, nested PERMANOVA were calculated 261 

using the parameter strata to exclude the effect of bauxite origin. Furthermore, multiple 262 

co-inertia analysis (MCIA) was performed using the package “omicade4” (Meng et al., 263 

2014) to determine the relationships between the four datasets used in this study 264 

(chemical characteristics, mineralogy, 16S rRNA sequences and ITS sequences).  265 

2.7 Co-occurrence network construction 266 

Co-occurrence analyses were implemented for a better understanding of bacterial and 267 

fungal interactions in the four bauxite residues. Co-occurrence networks were 268 

constructed based on pairwise Pearson correlations calculated between bacterial and 269 

fungal ASVs by using the base R function cor (Berry and Widder, 2014; Williams et 270 

al., 2014). To avoid including false positives in the network due to spurious or random 271 

interactions, the ASV table we permuted 100 times and a p-value for each possible 272 

pairwise interaction was calculated to test its validity. The p-values were then adjusted 273 

using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995), and only 274 

edges with a p-value below 0.01 that corresponded to an absolute correlation higher 275 

than 0.4 were retained. To describe the topology properties of the networks, a set of 276 

network indexes including graph density, average degree of nodes, transitivity, 277 

modularity, average geodesic distance, betweenness centrality, and density were 278 

calculated with the R package “igraph” (Csardi and Nepusz, 2006). The Wilcoxon test 279 

was employed to assess significant differences in topological parameters between 280 

networks. The connectivity of the network nodes was determined by their within-281 

module connectivity (Zi) and among-module connectivity (Pi). Nodes were then 282 

classified into four categories, according to Poudel et al. (2016): peripherals (Zi < 2.5 283 

and Pi < 0.62, nodes with few links to other species), connectors (Pi > 0.62, nodes 284 



that connect modules), module hubs (Zi > 2.5, highly connected nodes within 285 

modules), and network hubs (Zi > 2.5 and Pi > 0.62, highly connected nodes among 286 

and within modules). 287 

 288 

3. RESULTS 289 

3.1.pH, EC and geochemical composition 290 

The pH of the bauxite residue ranged from 8.70 ± 0.34 to 11.90 ± 0.01, with the highest 291 

value in fresh samples and the lowest in Pr100 (Fig. 2a, Table S1). The EC of the 292 

bauxite residue ranged from 0.29 ± 0.15 mS/cm to 2.53 ± 0.04 mS/cm, and again, 293 

fresh samples showed the highest value and Pr100 the lowest (Fig. 2a, Table S1).  294 

The elements with the highest concentrations in all bauxite residue samples were Fe 295 

(268894 ± 45706 mg/kg), Ti (51313 ± 17317 mg/kg), Al (33093 ± 5662 mg/kg), Ca 296 

(22425 ± 4952 mg/kg), and TC (17162 ± 9439 mg/kg) (Fig. 2b, Table S2). Fe 297 

represents at least 22 ± 3 % of the dried mass in all samples. The main critical 298 

elements present in all samples were Ti (51313 ± 17317 mg/kg), P (2743 ± 1274 299 

mg/kg), Mg (1877 ± 987 mg/kg), V (849 ± 423 mg/kg), Ln (775 ± 339 mg/kg), Sr (240 300 

± 142 mg/kg), Y (159 ± 59 mg/kg), Nb (99 ± 16 mg/kg), Sc (73 ± 12 mg/kg), Ba (73 ± 301 

15 mg/kg), and Ga (56 ± 24 mg/kg) (Fig. 2c-d, Table S2). TN concentrations were 302 

only above the machine’s limit of detection (100 mg/kg) in the Provence samples, with 303 

values of 287 ± 183 mg/kg for Pr90 and 470 ± 158 mg/kg for Pr100 (Table S2).  304 

Statistical analysis showed that Ti, Cr, V, and Ga concentrations were significantly 305 

higher in samples coming from Boké bauxite (p < 0.05, Table S2), while samples from 306 

Provence bauxite showed greater abundances of TC, TOC, P, Mg, Ln, Mn, Sr, Y, Sc, 307 

Pb, Ni, and Co (p < 0.05, Table S2). Within these two groups, some elements 308 

concentrations changed over time. In the Boké samples, a significant decrease in Fe, 309 

Ca, Cr, V, Ga, Cu, Ge, and W was observed as sample age increased (p < 0.05, Table 310 

S2) while Mg, and Sr concentrations increased with age (p < 0.05, Table S2). In the 311 

Provence samples, Mg decreased significantly with age, while P and TOC 312 

concentrations increased (p < 0.05, Table S2). These relationships between the age 313 

of the sample and their chemical properties were further confirmed by Pearson 314 

correlations (R ≥ 0.9, p < 0.05, Fig. S1). 315 



 316 

3.1.2 Element correlation 317 

PCA was used to detect patterns in the chemical dataset and describe linear relations 318 

between the analyzed physicochemical parameters (Fig. 3a). The first three principal 319 

component axis (PC1, PC2, and PC3) explained 84.3% of the data variability between 320 

samples. PC1 explained 53.0% of the variance and included two groups: the first one 321 



composed of pH, EC, Ga, Cr, V, Cu, Fe, Ge, Ca, Ti, and W whereas the second one 322 

comprised TOC, Co, Ni, Sr, Ln, Mg, Pb, Mn, Y, Sb, Cs, and Sn. PC2 explained 18.4% 323 

of the variance among samples and was mainly composed of Zr, Sc, Hf, Ta, Al, Zn, 324 

Nb, and Ti. Finally, PC3 (not shown) explained 12.9% of variance and was primarily 325 

composed of P, Th, Rb, Zn, Cs, and Sn. PERMANOVA analysis corroborated that the 326 

factors “age” (p < 0.01) and “bauxite origin” (p < 0.05) significantly explained the 327 

differences in chemical properties across samples. The factor “age” (tested by nested 328 

PERMANOVA to exclude the effect of the bauxite origin) explained 65.8% of the 329 

variance in chemical parameters while the factor “bauxite origin” explained 28.18%. 330 

The hierarchical cluster analysis (Fig. S2) provided statistical confirmation of the 331 

tendencies observed in the PCA and bauxite residue samples were clustered based 332 

on their chemical similarity. The first cluster contained the fresh samples, the second 333 

cluster Bo1 samples, the third cluster Bo2 samples, and the fourth cluster contained 334 

both Pr90 and Pr100 samples. 335 

To further understand the effect of the factor “age” on residues generated from the 336 

same bauxite ore, a second PCA was conducted considering only the Boké samples 337 

(fresh, Bo1 and Bo2) (Fig. 3b). The first two dimensions explained 82.5% of the 338 

variability and the factor “age” separated the samples significantly (PERMANOVA, p 339 

< 0.01). Co, Sr, Pb, Mg, and Sb were mostly associated with Bo2, while pH, EC, W, 340 

Ca, Ge, Fe, Cu, V, Cr, and Ga had their highest values in fresh samples and decreased 341 

progressively with age. In contrast, TOC, Y, Mn, Ln, Ni, Sn, Al, and Ta did not show 342 

any age-dependent trends during the first years of storage (Table S2). Globaly, this 343 

statistical analysis is in line with the expected behavior of the elements, such as the 344 

colocalization of Cr and V and their correlation with Fe (Markus Gräfe et al., 2011) as 345 

well as the REEs affinity for Mn phases (Vind et al., 2018). 346 



 347 

 348 



3.1.3 Mineralogical composition 349 

XRD analysis (Fig. 2d, Table S3) showed that bauxite residues were principally 350 

composed of iron and aluminum oxides, hydroxides, and silicates. Goethite 351 

(FeO(OH)), hematite (Fe2O3), gibbsite (Al(OH)3), and vishnevite 352 

(Na8(AlSiO4)6O24(SO4)) are the dominant phases and accounted for at least 70 % of 353 

the crystalline fraction in all the samples. Rutile (TiO2) and calcite (CaCO3) were also 354 

detected in all samples, in the range of 3-5 % and 2-14% respectively. The hematite, 355 

anatase (TiO2) and boehmite (AlO(OH)) were significantly more present in Provence 356 

samples, and interestingly, neither anatase nor boehmite were found in fresh samples 357 

(Table S3). In Boké samples, a significant decrease in goethite and Katoite 358 

(Ca3Al2(SiO4)1.5(OH)6) was observed as the age of the samples increased. 359 

3.2 Microbial community diversity, structure and dynamics 360 

3.2.1 Alpha diversity  361 

The influence of bauxite residue’s age and geochemical composition on microbial 362 

communities was assessed using 16S and ITS metabarcoding. As expected, no DNA 363 

could be extracted from the fresh residue samples. For Bo1, Bo2, Pr90, and Pr100, 364 

the sequencing achieved a coverage of more than 55000 16S rRNA sequences and 365 

4700 ITS sequences per sample. The SRS curves (Fig. S3) indicated that the 366 

sequencing depth was sufficient to identify the majority of ASVs within bacterial and 367 

fungal communities in all the samples (except fresh samples). Alpha-diversity derived 368 

from the number of ASVs, Chao1 richness, and Shannon’s index showed differences 369 

between samples regarding bacterial and fungal communities (Table S4). A total 370 

number of 7994 bacterial ASVs were identified, with 350 to 1318 ASVs per 371 

sample. The number of bacterial ASVs in the Provence samples (Pr90 and Pr100) 372 

was 6928, significantly greater than the 2867 ASVs found in the Boké samples (Bo1 373 

and Bo2). The Provence samples also showed the highest richness and Shannon 374 

values for bacteria, compared with Boké samples (Fig. 4a). For fungi, 892 ASVs 375 

ranging from 45 to 156 ASVs per sample were obtained, with again more ASVs and 376 

Chao1 richness in Provence samples. However, there were no significant changes in 377 

Shannon’s index between both group of samples, indicating that the specific diversity 378 

of the fungal communities was similar in Provence and Boké samples. 379 



 380 

A

B

Figure 4. Bacterial alpha and beta diversity of bauxite residues. A)
Chao1 richness and Shannon diversity index. B) Principal coordinate
analysis (PCoA) based on weighted UniFrac distances between
bauxite residue samples.



3.2.2 Microbial community structure 381 

PCoA ordinations based on weighted UniFrac distances (Fig. 4b) revealed that the 382 

bacterial community structure differed between the bauxite residue samples. Samples 383 

were significantly separated based on bauxite origin (PERMANOVA, p < 0.05), and 384 

nested PERMANOVA confirmed the difference in bacterial community structure 385 

across age (p < 0.001). The first two axes of PCoA explained 74.95% of the community 386 

dissimilarity. Axis 1 was most correlated with EC (R = 0.97, p = 1.1e-07), followed by 387 

Co (R = 0.96, p = 9.8e-07), Ni (R = 0.95, p = 1.4e-06), Cr (R = 0.94, p = 1.1e-07), V 388 

(R = 0.92, p = 2.5e-05), Ti (R = 0.9, p = 5.4e-05), and pH (R = 0.9, p = 8.1e-05); while 389 

Axis 2 correlated with P (R = 0.75, p = 0.005). In contrast, the fungal community 390 

structure did not seem to follow a clear pattern among samples according to PCoA 391 

built on Bray-Curtis distances (Fig. S4).  392 

The bacterial phyla that dominated all bauxite residue samples were Proteobacteria, 393 

Actinobacteria, Chloroflexi, Bacteroidetes, Gemmatimonaidetes, Planctomycetes, 394 

Verrucomicrobia, Acidobacteria and Firmicutes, accounting for more than 90% of the 395 

total bacterial communities (Fig. 5). When comparing the samples from Provence and 396 

Boké, significant taxonomic differences were observed. Actinobacteria and 397 

Gammaproteobacteria were the dominant taxa in the Boké samples with an average 398 

abundance of 28.0 % and 21.3 % respectively, followed by Chloroflexi (9.8 %) and 399 

Bacteroidetes (9.8 %). In the Provence samples, Actinobacteria (18.4 %) were still 400 

dominant while Gammaproteobacteria (4.8 %) and Bacteroidetes (3.6 %) lost 401 

prominence in favor of Alphaproteobacteria (12.0 %), Planctomycetes (9.6 %), 402 

Betaproteobacteria (6.3 %), and Deltaproteobacteria (3.2 %). Boké samples were 403 

significantly enriched in Actinobacteria, Gammaproteobacteria, Bacteroidetes and 404 

Firmicutes, whereas samples from Provence showed greater abundances of 405 

Alphaproteobacteria, Planctomycetes, Betaproteobacteria and Deltaproteobacteria (p 406 

< 0.05). Acidobacteria (10.3 %), barely found in Boké samples, showed a strong 407 

increase in Provence samples (p < 0.05). Chloroflexi, Gemmatimonaidetes and 408 

Verrucomicrobia were nearly constant across samples. 409 



 410 

At the level of bacterial classes, differences between Boké and Provence samples 411 

were also found (Fig. 6). Significantly higher proportions of Gammaproteobacteria, 412 

Nitriliruptoria, Thermomicrobia, Gemm3, Bacilli, Rhodothermi, TK17, Deinococci and 413 

Clostridia were identified in the Boké samples (p < 0.05). Within this group, variations 414 

between samples of different ages were also observed. Bo1 was enriched in 415 

Thermomicrobia, Thermoleophilia, Acidimicrobiia and Bacilli, whereas Opitutae, 416 

Verrucomicrobiae and Flavobacteriia showed greater abundances in Bo2 (p < 0.05). 417 

In contrast, Provence samples were significantly more enriched in 418 

Alphaproteobacteria, Planctomycetia, Acidobacteria6, Betaproteobacteria, 419 

Thermoleophilia, Deltaproteobacteria, Gemmatimonadetes, Pedosphaerae, 420 

Anaerolineae, Phycisphaerae, Spartobacteria, Gemm1, Chloracidobacteria, 421 

Ellin6529, S085, Nitrospira, Saprospirae, TK10, Solibacteres and TM71 (p < 0.05). In 422 

the Provence samples, the only differences seen over ages were Pedosphaerae and 423 

Actinobacteria, which were more abundant in Pr90 than in Pr100 (p < 0.05).  424 
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Figure 5. Relative abundance of the most abundant bacterial taxa among
bauxite residue samples. Proteobacteria are divided in classes.



 425 

3.2.3 Taxonomic characteristics of bacterial and fungal communities 426 

To further explore these temporal scale differences, LEfSe analyses were conducted 427 

to detect asymmetrically distributed bacterial taxa. Among the Boké samples, 9 428 

indicator bacterial taxa were found in Bo1 against 37 in Bo2 (Fig. 7a). LEfSe confirmed 429 

the highest abundance of three families of Bacilli in Bo1, as well as other taxa 430 

belonging to the phyla Actinobacteria and Proteobacteria, and the archaeal class 431 

Halobacteria. In line with our previous results, Opitutae, Verrucomicrobiae and 432 

Flavobacteriia were significantly more abundant in Bo2, together with other taxa 433 

belonging to the phyla Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, 434 

Planctomycetes and Nitrospirae. For the Provence samples, only two indicator 435 
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Figure 6. Z-score hierarchical clustering heat map representing the
relative abundance of the top 40 bacterial classes in different bauxite
residue samples.



bacterial taxa (classified as Bacteroidetes) were identified in Pr90, against 28 in Pr100 436 

(classified as Actinobacteria, Proteobacteria, Planctomycetes, Bacteroidetes, 437 

Verrucomicrobia, and Chloroflexi) (Fig. 7b). 438 



 439 



3.2.4 Microbial co-occurrence networks 440 

Co-occurrence networks were constructed using the ASV data of 16S rRNA and ITS 441 

sequences. The Boké (Fig. 8) and Provence (Fig. 9) samples did not differ significantly 442 

in network topological parameters such as average geodesic distance and modularity 443 

(Table S5). However, the network complexity (number of nodes and edges, degree of 444 

nodes, and transitivity) was different between the Boké and Provence networks (Table 445 

S5). The two Boké networks (Bo1 and Bo2) contained a similar number of nodes (366 446 

and 369), although Bo1 showed more edges (516 versus 324), higher average degree 447 

(2.46 versus 1.76), and transitivity (0.15 versus 0.11). The two Provence networks 448 

were more complex, as both Pr90 and Pr100 showed more nodes (603 and 571), more 449 

edges (1254 and 1322), higher average degree (4.16 and 4.63), and higher transitivity 450 

(0.18 and 0.12) compared to Boké. 451 

Most of the nodes from the Boké and Provence networks were classified as 452 

peripherals (specialists), and few nodes fell into module hubs (generalists) (Fig. 8-9). 453 

Generalists are considered keystone taxa, as they are responsible for structuring the 454 

different nodes and modules into a complete community, thus determining the 455 

efficiency of energy metabolism and nutrient cycling in habitats (Wang et al., 2019). In 456 

this study, more module hubs (generalists) were identified in Pr90 and Pr100 than in 457 

Bo1 and Bo2. In Bo1 and Bo2 networks, the module hubs were mainly members of 458 

Bacteroidetes, Actinobacteria, Proteobacteria, and Firmicutes for bacteria, and 459 

Ascomycota for fungi. In contrast, the module hubs identified in Pr90 and Pr100 460 

networks belonged to Proteobacteria, Actinobacteria, Chloroflexi, Verrucomicrobia, 461 

Gemmatimonaidetes, Planctomycetes and Firmicutes for bacteria, and Ascomycota 462 

and Basidiomycota for fungi. 463 
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Figure 8. Co-occurrence network and Zi-Pi plot of Bo1 (A) an Bo2 (B) bauxite
residue samples. Each node represents a bacterial class (circles) or a fungal phyla
(triangles). Nodes are colored by taxonomical affiliation and their size in the network is
proportional to the node betweenness. The color of each link reflects positive (red) or
negative (blue) interactions. The topological role of each node is defined by within-
module connectivity (Zi) and among-module connectivity (Pi). According to values of Zi
(2.5) and Pi (0.62), the roles of nodes are classified into four categories: Peripherals,
Module hubs, Connectors and Network hubs.
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Figure 9. Co-occurrence network and Zi-Pi plot of Pr90 (A) an Pr100 (B) bauxite residue
samples. Each node represents a bacterial class (circles) or a fungal phyla (triangles).
Nodes are colored by taxonomical affiliation and their size in the network is proportional to
the node betweenness. The color of each link reflects positive (red) or negative (blue)
interactions. The topological role of each node is defined by within-module connectivity (Zi)
and among-module connectivity (Pi). According to values of Zi (2.5) and Pi (0.62), the roles of
nodes are classified into four categories: Peripherals, Module hubs, Connectors and Network
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3.2.5 Multi co-inertia analysis 469 

Multiple co-inertia analysis (MCIA) was used to determine the relationships between 470 

the chemistry, mineralogy, bacterial and fungal community composition in our bauxite 471 

residue samples. Figure 10 displays the projection of the four datasets onto the first 472 

two principal components (PCs) of MCIA for Bo1, Bo2, Pr90 and Pr100 samples. PC1 473 

and PC2 explained 54% and 19% of the total variation respectively (Fig. S6b). The 474 

sample space (Fig. S6a) shows a good correlation between the different datasets in 475 

all samples, which could be clearly differentiated. Early-stage bauxite residues (Bo1 476 

and Bo2) were separated from equilibrium-stage samples (Pr90 and Pr100) along the 477 

PC1. Pseudo-eigenvalues (Fig. S6c) indicated that the chemistry and bacterial dataset 478 

contributed the most to the variation observed in PC1, while mineralogy was weighted 479 

in PC2. The pair-wise RV coefficient, which is multivariate generalization of the 480 

squared Pearson correlation coefficient, indicated higher global similarity between 481 

chemistry and bacterial classes (RV score  = 0.86) when compared to the similarities 482 

between the chemistry and fungal classes (RV score = 0.36), and between the 483 

mineralogy and microbial classes (RV score for bacterial classes = 0.41, RV score for 484 

fungal classes = 0.22). Fungal classes contributed little to the variation of PC1 or PC2 485 

and were mostly correlated with bacterial classes (RV score = 0.38). 486 



 487 

 488 

4. DISCUSSION 489 

4.1 BRDAs behave as primary successional environments 490 

The initial geochemical conditions of the fresh bauxite residue, characterized by high 491 

alkalinity (pH = 11.90 ± 0.01) and salinity (EC = 2.53 ± 0.04 mS cm-1) in line with 492 

previous studies (Cusack et al., 2019; Xue et al., 2016), make BRDAs hostile 493 

environments for most domains of life. The high pH and salinity derive from the excess 494 

of alkaline anions (hydroxides, carbonates, aluminates, aluminum hydroxides, 495 

silicates) and Na+ produced during the Bayer process (Cusack et al., 2019; X. Kong 496 

et al., 2017) and thus the bauxite origin does not seem to significantly influence the 497 

value of these parameters. Fresh and recently deposited bauxite residues (Bo1 and 498 



Bo2) also contained significant amounts of toxic metals for microorganisms, namely 499 

Cr (1594 ± 23 mg/kg), V (1452 ± 10 mg/kg) and Al (38420 ± 920 mg/kg). The high 500 

alkalinity (pH > 10) of fresh, Bo1 and Bo2 bauxite residues may favor the Cr (III) 501 

oxidation to Cr(IV) as well as the predominance of V(V), both highly mobile and toxic 502 

for bacteria, fungi and plants (Chen et al., 2021; Economou-Eliopoulos et al., 2016; 503 

Liang et al., 2021; Milačič et al., 2012; Xiao et al., 2017). Regarding aluminum, only 504 

1% of the total Al content in bauxite residue has been reported to be soluble at pH 505 

values above 9, mainly as mobile [Al(OH)4]− (Milačič et al., 2012). Nevertheless, its 506 

impact on microbial and plant communities should not be neglected, as even small 507 

proportions of the total Al correspond to potentially toxic concentrations. Moreover, 508 

fresh and recently deposited bauxite residues were inherently poor in most 509 

macronutrients required for microbial and plant growth, such as TOC, TN, and P 510 

(Table S2). TOC accounted for less than 0.6% of the mass (0.28 % in fresh residue, 511 

0.33 % in Bo1, and 0.23 % in Bo2) which is typically attributed to desert soils (Li et al., 512 

2013; Zech et al., 2014). TN concentrations were below the detection limit (100 mg/kg) 513 

in fresh, Bo1 and Bo2 samples in agreement with previous studies (Krishna et al., 514 

2014; Wu et al., 2020). Finally, although the P concentrations ranged from 1500 to 515 

3000 mg/kg in fresh, Bo1, and Bo2 samples, the available phosphorus in bauxite 516 

residue is usually around 6.7 mg/kg (Santini et al., 2015a; Wu et al., 2020).  517 

These extreme conditions, together with the absence of pre-existing life in the freshly 518 

produced bauxite residues, indicate that BRDAs behave as primary successional 519 

environments, similar to other well-studied natural systems (Guo et al., 2014; Schmidt 520 

et al., 2008). Primary succession is characterized by an initial short phase where the 521 

microbial community assembly is driven by stochastic dispersal processes, followed 522 

by a longer deterministic phase dominated by environmental selection and competition 523 

between species (Ortiz-Álvarez et al., 2018). In engineered environments like BRDAs, 524 

the dispersal of microorganisms is limited, and environmental selection pressure is 525 

usually stronger due to the extreme chemical characteristics of these sites. Therefore, 526 

a shorter stochastic phase and a stronger deterministic assembly is expected in such 527 

systems (Santini et al., 2015a). Given the environmental stress imposed by the 528 

geochemical properties of fresh bauxite residues, the first pioneer microorganisms to 529 

colonize BRDAs are likely to be haloalkaliphilic species able to accumulate nutrients 530 



to facilitate the incorporation of new species (Santini et al., 2015a; Schmidt et al., 2014; 531 

Sun et al., 2018).  532 

4.2 Geochemistry-dependent microbial community assembly in the early stages 533 

of primary succession 534 

The bacterial community composition of the recently deposited bauxite residues (Bo1 535 

and Bo2) was similar to that observed in soda lakes, alkaline residues, and other 536 

unamended BRDAs (Bondici et al., 2013; Chakraborty et al., 2021; Kalwasińska et al., 537 

2017; Ohlsson et al., 2019), characterized by the dominance of Actinobacteria 538 

(Actinobacteria, Nitriliruptoria, Acidimicrobiia) and Proteobacteria (especially 539 

Gammaproteobacteria) and relatively high proportions (1 to 16 %) of Bacteroidetes 540 

(Cytophagia, Rhodothermi, Flavobacteriia), Firmicutes (Bacilli, Clostridia), and other 541 

alkalophilic classes (Opitutae, Deinococci) (Fig. 5-6).  542 

The phyla Actinobacteria, Proteobacteria and Firmicutes contain some of the 543 

prokaryotes best adapted to high alkalinity and salinity. Alkaliphilic and alkalinotolerant 544 

microorganisms maintain their intracellular pH homeostasis by accumulating H+ in 545 

their cytoplasm trough Na+/H+ antiporters (Mamo, 2020). Our results showed that 546 

Halobacteria (Archaea), Gammaproteobacteria, Nitriliruoptoria and Rhodothermi were 547 

more abundant in Bo1 (Fig. 6-7) and correlated with EC (Fig. 10), corroborating the 548 

preference of these classes for high-salinity niches (Zhang et al., 2019). Extreme 549 

halophiles accumulate intracytoplasmic KCl to regulate their osmotic potential, which 550 

constrains them to be obligate halophiles and limits their dispersal (Chen et al., 2020; 551 

Shameer, 2016; Vaidya et al., 2018). Salinity (EC) decreased significantly from Bo1 to 552 

Bo2 (Fig. 1, Table S2), allowing the proliferation of a wider range of halophilic and 553 

halotolerant species such as Opitutae, Acidimicrobiia or the genus Halomonas 554 

(Gammaproteobacteria) (Fig. 6-7). Halotolerant bacteria can flexibly adapt to habitats 555 

with different salinities by synthesizing and accumulating compatible solutes in their 556 

cytoplasm, which in turn requires a more intensive use of energy (Gunde-Cimerman 557 

et al., 2018). Interestingly, the number of edges and network complexity was higher in 558 

Bo1 compared with Bo2 (Fig. 8), indicating that saline stress promoted microbial 559 

interaction as reported in other studies (Ji et al., 2019; Wang et al., 2019).  560 

As pioneer colonizers, microorganisms are critical in the biogeochemical cycles and 561 

the ensuing development of soil (Schmidt et al., 2008; Zeng et al., 2016). TOC 562 



concentration showed no significant trend in early-stage samples (Fig. 2, Table S2), 563 

suggesting that the ratio in TOC input and consumption was balanced. In primary 564 

successional environments, the main sources of TOC are airborne allochthonous 565 

organic matter and C fixed by autotrophic microbial species (Ciccazzo et al., 2016). 566 

Our results also highlighted the significant abundance of heterotrophic bacteria in the 567 

early-stage samples, especially in Bo1, enriched in Actinobacteria and Bacteroidetes 568 

(Fig. 6-7). MCIA revealed that Cytophagia (Bacteroidetes) and Nitriliruptoria 569 

(Actinobacteria) correlated negatively with TOC (Fig. 10) and members of these 570 

classes were identified as keystone species in Bo1 (Fig. 8), confirming their relevance 571 

in oligotrophic habitats (Foreman et al., 2007; Gonzalez-Pimentel et al., 2018). 572 

Heterotrophic communities may represent the earliest stage of microbial assembly, 573 

degrading allochthonous organic compounds and supplying essential nutrients (TOC, 574 

N, P) for the subsequent development of autotrophic species (Hodkinson et al., 2002). 575 

Our results also indicated the presence of chemoautotrophic Proteobacteria typically 576 

involved in the primary production of alkaline environments (Fig. 7), including iron-577 

oxidizing bacteria within Alphaproteobacteria (Rhodobacteraceae) and 578 

Betaproteobacteria (Comamonadaceae) (Jamieson et al., 2018; Kumaraswamy et al., 579 

2006; Straub et al., 1996) and sulfur-oxidizing Chromatiales (Gammaproteobacteria) 580 

(Yuan et al., 2021). In tune with previous studies (Harantová et al., 2017; Schmidt et 581 

al., 2008), the abundance of non-symbiotic N-fixing bacteria, represented by members 582 

of Clostridia, Opitutae, Comamonadaceae (Betaproteobacteria), Rhodospirillales 583 

(Alphaproteobacteria) and Bacilli (Ciccazzo et al., 2016; Hingole and Pathak, 2013; 584 

Navarro-Noya et al., 2016), increased significantly after the first years of primary 585 

succession (Fig. 5-6). These bacteria could contribute to the slight increase in TN 586 

observed after the first years of bauxite residue weathering (Wu et al., 2020), 587 

undetectable in this study as it is expected to be less than 100 mg/kg. Nitrifying 588 

bacteria (Nitrosomonas and Nitrospiraceae) were also more prevalent in Bo2, 589 

confirming that, although the amount of ammonia derived from bacterial fixation is low 590 

at early stages of primary succession, it must be sufficient to fuel nitrification (Ollivier 591 

et al., 2011; Zeng et al., 2016). Moreover, our results suggest that the increase in N-592 

cycle bacteria could be due to a significant decrease in EC and Cr in Bo2 (Fig. 2, Fig. 593 

10, Table S2), as N-cycle enzymes are particularly sensitive to high salinity (Claros et 594 

al., 2010; Herbst, 1998) and heavy metal contamination (Kim et al., 2016; Oliveira and 595 

Pampulha, 2006). 596 



4.3 Primary succession reaches an equilibrium in BRDA over few decades 597 

The last stage of primary succession arises after long periods of time when the habitat 598 

becomes less harsh and environmental selection loses its strength in the assembly of 599 

communities, reaching an equilibrium (Ferrenberg et al., 2013). This maturity is 600 

expected to require more time to be developed in extreme geochemical systems as 601 

BRDAs. (Santini et al., 2015a). In our study, Pr90 and Pr100 samples, which have 602 

been naturally weathered for at least 90 years, did not show significant dissimilarities 603 

in either physicochemical parameters (Fig. 3a, Tables S1 and S2) or bacterial and 604 

fungal community composition (Fig. 4b; Fig. S5), suggesting that primary succession 605 

had reached the equilibrium in these sites. In Pr90 and Pr100, pH (8.8 ± 0.3) and 606 

salinity (EC = 0.29 ± 0.11 mS cm-1) were significantly lower than in early-stage 607 

samples (Fig. 2, Table S1), revealing a significant dependence with the age of the 608 

samples. During bauxite residue natural weathering, salinity is generally assumed to 609 

decrease due to the dissolution of alkaline minerals by rainfall (Cusack et al., 2019; 610 

Zhu et al., 2016), while the decrease in pH is normally attributed to atmospheric and 611 

microbial carbonation (Cusack et al., 2019; Khaitan et al., 2010; Schmalenberger, 612 

2013; X. Kong et al., 2017). Moreover, Pr90 and Pr100 showed a significantly higher 613 

concentration of macronutrients such as TOC, TN and P, which are accumulated 614 

during the bauxite residue natural aging due to the action of the different 615 

microorganisms that colonize the BRDAs (Santini et al., 2015a). This negative 616 

correlation between pH-salinity and age-nutrients is characteristic of restored and 617 

amended BRDAs (Courtney et al., 2014; Wu et al., 2021). Finally, our results also 618 

indicated a significant and steady decrease in Cr and V associated with the natural 619 

aging of the samples (Fig. 2, Table S2). However, the concentration of these metals 620 

also seems to be determined by the bauxite type and, therefore, the effect of the ore 621 

origin should not be neglected (Gentzmann et al., 2021). 622 

Both alpha and beta bacterial diversity increased significantly in the equilibrium-stage 623 

samples (Fig. 4), in line with the results observed in restored BRDAs (Krishna et al., 624 

2014; Wu et al., 2021, 2020). Beta-diversity analysis confirmed that “age” was the 625 

main factor explaining the dissimilarities of microbial community between Bo1/Bo2 and 626 

Pr90/Pr100 and not the ore origin. In addition, the changes in beta-diversity could be 627 

explained by pH, EC and some metal concentration gradients, all of them strongly anti-628 

correlated with the age of the samples (Fig. 3). Circumneutral pH, lower salinity and 629 



metal concentration, and increase in macronutrients support the survival of a more 630 

diverse microbial community dominated by bacteria commonly found in ordinary soils 631 

and freshwater like Alphaproteobacteria, Betaproteobacteria, Planctomycetes, 632 

Gemmatimonaidetes, and Acidobacteria. Acidobacteria are one of the most abundant 633 

terrestrial bacterial taxa, reaching 52% from the total bacterial community in certain 634 

soils (Kielak et al., 2016). Their abundance is positively correlated with low pH (Jones 635 

et al., 2009), and their accumulation over time in BRDAs is commonly associated with 636 

the restoration of chemical conditions in bauxite residue (Santini et al., 2015b; Wu et 637 

al., 2021). The equilibrium-stage bauxite residue also harbors a more complex 638 

microbial network, accounting for more highly connected taxa (nodes) than early-stage 639 

residues. Nutrient availability and higher microbial richness have been shown to favor 640 

microbial network complexity and the emergence of new ecological functions, making 641 

the ecosystem more stable (Qiu et al., 2021; Wagg et al., 2019).  642 

In contrast, fungal biodiversity and community structure did not appear to be 643 

significantly affected by chemical gradients (Table S4, Fig. S5). The fungal community 644 

structure in early-stage bauxite residues was dominated by Ascomycota (80.1 ± 9.8 645 

% of fungal communities), and Basidiomycota (> 14 %). This distribution seems to be 646 

the usual in natural and engineered haloalkaline environments, although the analysis 647 

of fungal communities in these habitats is limited to few studies (Grum-Grzhimaylo et 648 

al., 2016; Salano et al., 2017; Santini et al., 2015b). In the equilibrium-stage samples, 649 

the relative abundance of Ascomycota decreased (52.1 ± 24.2 %) while 650 

Basidiomycota (mostly Agaricomycetes) increased (35.0 ± 23.3 %). This pattern has 651 

been observed in restored BRDAs and was attributed to a decrease in total alkalinity 652 

(Santini et al., 2015b). In this study however, MCIA revealed a poor correlation 653 

between fungal communities and chemical parameters (RV score = 0.36). It is known 654 

that the fungal community assembly is more influenced by stochastic processes in 655 

primary successional environments (Schmidt et al., 2014). Unlike bacteria, climate is 656 

often considered the main environmental factor affecting the fungal community 657 

composition, rather than soil chemical properties (Egidi et al., 2019). Interestingly, all 658 

fungal keystones identified in Bo1 (Fig. 8) belonged to the class Dothideomycetes 659 

(Pleosporaceae, Macrophoma, Cladosporium), within the Ascomycota. 660 

Dothideomycetes constitute almost the entire fungal community in microbial mats from 661 

soda lakes and are also found in microbial mats from hypersaline and iron-rich habitats 662 



(Gerea et al., 2012; Maza-Márquez et al., 2021; Salano et al., 2017). In microbial mats, 663 

fungi play a crucial role in nutrient recycling by decomposing complex carbohydrates 664 

into simpler compounds that fuel chemoheterotrophic species (Carreira et al., 2020). 665 

4.4 Implications for bioremediation and metal recovery 666 

To date, only few studies have focused their efforts on an integrated chemical, 667 

physical, and biological approach for the characterization of BRDA in the optic of 668 

bioremediation or critical metal bio extraction strategies.  669 

Our results highlight the key role of pH and EC for natural microbial restoration and 670 

therefore should be considered primary targets in bioremediation. If natural weathering 671 

appears to be effective in reducing both pH and EC, it is also a slow process that could 672 

be artificially accelerated. In the last few years, microbially-driven pH neutralization 673 

using organic acids and CO2 produced by fermentation of added carbon sources has 674 

gained attention as a promising technique for in-situ bioremediation of BRDAs (Santini 675 

et al., 2021; Wu et al., 2019). Santini et al. (2021, 2016) proved that the efficiency of 676 

this process could be improved by decreasing the initial pH and salinity and increasing 677 

the biodiversity of the microbial inoculum. However, they also identified the shortage 678 

of nutrients (N and P) in the medium term as a limiting factor for the development of 679 

this methodology. Our results suggest that lowering EC increased biodiversity and 680 

facilitated the development of bacteria related to the N cycle. Hence, a first treatment 681 

focused on reducing salinity (and pH if possible) before bacteria-mediated pH 682 

neutralization could yield considerably better results. Few studies have investigated 683 

the effect of lowering artificially pH and EC in the optic of bioremediation of BRDAs 684 

(Courtney et al., 2014; Jones et al., 2011; Wong and Ho, 1994). As a recent example, 685 

the recent study by Fourrier et al. (2021) has reported the positive effect of gypsum 686 

addition and repeated washing on pH neutralization and EC decrease. In addition, 687 

fungal contribution to early-stage microbial assembly seems to be underrated and their 688 

role in bauxite residue remediation needs more research. Regarding microbially-689 

driven strategies for metal bio-extraction, our study is particularly informative for 690 

selecting appropriate bauxite residue and bacteria for the selective extraction of critical 691 

metals. In agreement with literature (Rivera et al., 2019; Vind et al., 2018), our results 692 

indicated that the concentration of REEs (Ln, Sc and Y) in bauxite residue is primarily 693 

determined by the ore origin, with karst bauxite (Pr90 and Pr100) being more enriched 694 

in REEs than laterite bauxite (Fresh, Bo1 and Bo2). In addition, Y and Ln were strongly 695 



correlated as expected regarding the analogy between Y and heavy REEs while Sc 696 

behaves differently to Y and Ln and is likely incorporated in iron oxyhydroxyde such 697 

as goethite (Levard et al., 2018). The conventional methods to recover these metals 698 

are not environmentally acceptable due to their excessive energy consumption and 699 

the production of hazardous residues, that require further treatment and high operating 700 

costs (Baniasadi et al., 2019). Metal bio-extraction is an interesting alternative to 701 

traditional mettalurgy that has still been poorly investigated for critical metals. Among 702 

the ideas that could benefit from our study, alkaline-active exoenzymes produced by 703 

bacteria found in Bo1 and Bo2 offer interesting possibilities for the valorization of 704 

bauxite residue. Despite their ability to lower their intracellular pH and salinity, 705 

haloalkaliphilic species must still be able to secrete stable and operational enzymes 706 

at elevated pH and salinity (Mamo, 2020), making BRDAs potential sources of these 707 

enzymes. Some of the haloalkaliphilic bacteria known to synthesize alkaline-active 708 

enzymes, namely Gammaproteobacteria, Actinobacteria and Firmicutes (Kalwasińska 709 

et al., 2018; Litchfield, 2011; Maharaja et al., 2018; Shameer, 2016; Shivlata and 710 

Tulasi, 2015), are also capable to modify the chemical phase and mobility of various 711 

critical metals (Chidambaram et al., 2010; Presentato et al., 2020; Wee et al., 2014), 712 

including REEs. For example, Maleke et al. (2019) reported the direct reduction of 713 

Eu3+ to Eu2+ by Clostridium sp. (Firmicutes). In line with previous studies (Santini et 714 

al., 2015b), the majority of Gammaproteobacteria corresponded to uncharacterized 715 

lineages, highlighting the potential of this group as a phylogenetic hot spot for novel 716 

haloalkaliphilic taxa.  717 

 718 

5. CONCLUSIONS 719 

In summary, this paper presents an integrated physicochemical and biological 720 

approach to explore the composition and dynamics of bacterial and fungal 721 

communities in bauxite residues deposited at different times and produced from 722 

different bauxite ores. Our results revealed that both deposit age and ore origin affect 723 

the geochemistry of bauxite residue, although unequally. Salinity, pH, TOC, TN, and 724 

P values seem to depend predominantly on the natural aging of bauxite residue, while 725 

the content of REE is mainly influenced by the origin of the bauxite ore. Our results 726 

highlight the behavior of bauxite residue deposits as primary successional 727 

environments and bring new insights into the early stages of microbial community 728 



assembly in these sites. The pioneer microbial community was dominated by 729 

haloalkaliphilic microorganisms, strongly influenced by chemical gradients. 730 

Autotrophic and heterotrophic microbial species contribute to the supply of nutrients 731 

necessary for the development of other species through C fixation and degradation of 732 

allochthonous organic compounds, respectively. After the first years of natural 733 

restoration, nitrogen-fixing bacteria increase their presence and contribute to enhance 734 

N bioavailability. Microbial richness, diversity and network complexity increased 735 

significantly with age of deposition, until primary succession equilibrium was reached 736 

decades later, characterized by a microbial community composition similar to that of 737 

typical soils and freshwater. Our results suggested that salinity, pH, nutrients, and toxic 738 

metals (mainly Cr and V) were the main factors explaining this change in microbial 739 

communities. These results confirm the key role of pH and salinity in the establishment 740 

of early microbial communities and highlight them as main targets for bioremediation. 741 

Moreover, our co-occurrence network data suggest an important role of fungal 742 

communities in structuring the early-stage microbial community during primary 743 

succession, potentially by recycling complex organic matter. We also identified 744 

bacteria with potential metal extraction abilities, such as secretion of alkaline-active 745 

enzymes that could modify the chemical phase of the metals present.  746 
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