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RISK IN TIME: The Intertwined Nature of Risk Taking and Time Discounting *

Keywords: JEL D01, D81, D91

Standard economic models view risk taking and time discounting as two independent dimensions of decision making. However, mounting experimental evidence demonstrates striking parallels in patterns of risk taking and time discounting behavior and systematic interaction effects, which suggests that there may be common underlying forces driving these interactions. Here we show that the inherent uncertainty associated with future prospects together with individuals' proneness to probability weighting generates a unifying framework for explaining a large number of puzzling behavioral regularities: delay-dependent risk tolerance, aversion to sequential resolution of uncertainty, preferences for the timing of the resolution of uncertainty, the differential discounting of risky and certain outcomes, hyperbolic discounting, subadditive discounting, and the order dependence of prospect valuation. Furthermore, all these phenomena can be predicted simultaneously with the same set of preference parameters.

Introduction

Whatever the nature of our decisions, hardly ever can we be sure about their outcomes. In particular, the consequences of the most important decisions in our lives, such as what line of business to enter or whom to get married to, do not materialize immediately but usually take time to unfold. In other words, these important decisions involve both risk and delay. Driven by the evidence challenging expected utility theory and discounted utility theory, the past half century has seen a surge of new models of decision making for the domains of risk taking and time discounting [START_REF] Starmer | Developments in Non-Expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk[END_REF][START_REF] Frederick | Time Discounting and Time Preference: A Critical Review[END_REF]Wakker, 2010;[START_REF] Ericson | Intertemporal Choice[END_REF]. A considerable body of experimental evidence suggests, however, that risk taking and time discounting are linked and interact with each other in important ways summarized in Table 1 below.

First, risk aversion has been shown to be lower for risks materializing in the more remote future than for risks materializing in the more imminent future (e.g. [START_REF] Shelley | Gain/Loss Asymmetry in Risky Intertemporal Choice[END_REF]).1 Lower risk aversion for remote risks may be one reason why the mobilization of public support for policies combating global warming is so difficult. Thus, economic models of climate policy may benefit from recognizing that risk aversion decreases with time delay. Asset markets constitute another area where delay-dependent risk aversion may play an important role in understanding the downward sloping structure of risk premia, i.e. the fact that risk premia decline with maturity [START_REF] Van Binsbergen | On the Timing and Pricing of Dividends[END_REF].

A second fact is based on a considerable body of evidence that impatience tends to decrease when outcomes are shifted into the more remote future -a finding on which the large literature on hyperbolic discounting is based [START_REF] Loewenstein | Anomalies: Intertemporal Choice[END_REF][START_REF] Laibson | Golden Eggs and Hyperbolic Discounting[END_REF].

Third, the evidence indicates that many people seem to have a preference with respect to the way uncertainty resolves, i.e. sequentially or in one shot. Often, sequential evaluation of prospects renders decision makers less risk tolerant [START_REF] Abdellaoui | Experiments on Compound Risk in Relation to Simple Risk and to Ambiguity[END_REF].

In the domain of financial decisions, this phenomenon may underlie the large equity premia observed around the globe.

Fourth, regarding time discounting, a similar phenomenon has been observed: discount rates compounded over subperiods tend to be higher than the discount rate applied to the total period. This incidence of process dependence, labeled subadditive discounting, has been put forward as an alternative explanation to hyperbolic discounting to account for the observed patterns in discounting behavior [START_REF] Read | Is Time-Discounting Hyperbolic or Subadditive?[END_REF][START_REF] Dohmen | The Robustness and Pervasiveness of Sub-Additivity in Intertemporal Choice[END_REF].

Fifth, many people also exhibit a preference regarding the timing of the resolution of uncertainty. Usually, there is a substantial share of participants who favor delayed resolution of uncertainty in situations when money is at stake even though it should be beneficial to know the outcome of one's financial decisions as early as possible. This finding triggered a large theoretical literature following the seminal work of [START_REF] Kreps | Temporal Resolution of Uncertainty and Dynamic Choice Theory[END_REF].

A sixth regularity indicates that the presence of risk influences time discounting in an unexpected way: Sure outcomes appear to be discounted more heavily than uncertain ones, discussed in the literature under the heading diminishing immediacy [START_REF] Keren | Immediacy and Certainty in Intertemporal Choice[END_REF][START_REF] Weber | The Combined Effects of Risk and Time on Choice: Does Uncertainty Eliminate the Immediacy Effect? Does Delay Eliminate the Certainty Effect?[END_REF].

Finally, people's evaluations of future risky payoffs depend on the order by which they are devalued for risk and for delay, which should not make any difference according to the standard view [START_REF] Önc Üler | How Do We Evaluate Future Gambles? Experimental Evidence on Path Dependency in Risky Intertemporal Choice[END_REF]. These regularities suggest that theories that are restricted to either domain cannot easily account for the intertwined nature of risk taking and time discounting. The table describes seven regularities in experimental findings on risk taking and time discounting behavior with respect to delay, process, timing, risk, and order effects.

The main purpose of our paper is to provide a unifying account of all these phenomena by integrating risk taking and time discounting into one theoretical approach. Thus, our goal is to develop a formal model that is capable of explaining all the regularities on the basis of a parsimonious set of assumptions. Our approach rests on two key assumptions: First, there is risk attached to any future prospect because only immediate consequences can be totally certain. We believe that this is a plausible assumption because it is impossible to foresee all future contingencies. Accordingly, [START_REF] Prelec | Decision Making over Time and under Uncertainty: A Common Approach[END_REF] claim that "anything that is delayed is almost by definition uncertain" (page 784). In particular, it is always possible that an event may occur that prevents the realization of a future outcome, i.e. something may go wrong before payoffs actually materialize. An unforeseen contingency may arise, such as missing one's transatlantic flight because the taxi driver was late, or realizing that one has forgotten one's passport at home. Presumably, almost everyone can readily recall such an incident. We capture the notion that something may go wrong by introducing a survival probability 0 < s < 1 that applies also to allegedly certain future outcomes.

Second, if future prospects are perceived as inherently risky, people's risk tolerance must play a role in their valuations of future prospects. Therefore, the characteristics of (atemporal) risk preferences are crucial not only for evaluating delayed risky prospects but also for delayed (allegedly) certain ones. There is abundant evidence from the field and the laboratory that risk taking behavior depends nonlinearly on the objective probabilities [START_REF] Prelec | The Probability Weighting Function[END_REF][START_REF] Fehr-Duda | Probability and Risk: Foundations and Economic Implications of Probability-Dependent Risk Preferences[END_REF][START_REF] Barberis | Thirty Years of Prospect Theory in Economics: A Review and Assessment[END_REF][START_REF] O'donoghue | Modeling Risk Aversion in Economics[END_REF]. For this reason, models involving probability weighting, such as rank-dependent utility theory (RDU) [START_REF] Quiggin | A Theory of Anticipated Utility[END_REF] and cumulative prospect theory [START_REF] Tversky | Advances in Prospect Theory: Cumulative Representation of Uncertainty[END_REF] have been strong contenders of expected utility theory (EUT) (Wakker, 2010).

Our approach relies on a key characteristic of probability weighting, proneness to Allaistype common-ratio violations, that is one of the most widely replicated experimental regularities, found in human and animal behavior: Probabilistically mixing two lotteries with an inferior lottery frequently leads to preference reversals [START_REF] Kahneman | Prospect Theory: An Analysis of Decision under Risk[END_REF][START_REF] Gonzalez | On the Shape of the Probability Weighting Function[END_REF]. This feature of probability weighting is called subproportionality and was characterized axiomatically by [START_REF] Prelec | The Probability Weighting Function[END_REF].

Our contribution to the literature is fourfold. First and foremost, we show for general m-outcome prospects that subproportional probability weighting under rank-dependent utility (RDU) together with the assumption that (even allegedly certain) future outcomes are inherently risky provides an integrative account of all the above mentioned experimental regularities. We rely on a well-established model of risk preferences with axiomatic foundations (e.g. [START_REF] Quiggin | A Theory of Anticipated Utility[END_REF]; [START_REF] Yaari | The Dual Theory of Choice under Risk[END_REF]; Segal (1990); Wakker (1994); [START_REF] Chateauneuf | An Axiomatization of Cumulative Prospect Theory for Decision Under Risk[END_REF]; Abdellaoui (2002)) that we combine with the plausible assumption that something may go wrong in the future.

Second, we demonstrate that all seven stylized facts can be quantitatively predicted with the same set of preference parameters with survival probability lying in a narrow and plausible range. For this exercise, we quantitatively predict such diverse magnitudes as present certainty equivalents, discount rates, discount fractions and probability weights.

Third, addressing our theoretical contribution, we build on [START_REF] Halevy | Strotz Meets Allais: Diminishing Impatience and Certainty Effect[END_REF], followed by [START_REF] Saito | Strotz Meets Allais: Diminishing Impatience and the Certainty Effect: Comment[END_REF] and [START_REF] Chakraborty | The Relation between Behavior under Risk and over Time[END_REF], who demonstrate that there is a tight two-way relationship between hyperbolic discounting and the property of subproportionality.2 Our paper is inspired by their insight and extends it by showing that, beyond the two-way relationship between hyperbolic discounting and subproportionality, many additional important regularities in observed risk taking and time discounting follow from subproportional probability weighting and the assumption of an inherently uncertain future. In particular, we derive novel predictions regarding (i) the delay dependence of probability weights and (ii) the intrinsic preference for late resolution of uncertainty. Furthermore, we take advantage of Segal's work (Segal, 1987a(Segal, ,b, 1990) ) on two-stage prospect evaluation by explicitly integrating the dimension of time delay and show that (i) subproportional risk preferences imply subadditive discounting and (ii) that, under certain circumstances, an aversion to sequential resolution of uncertainty arises and remains intact under inherent future uncertainty.

Fourth, we derive new predictions which can be put to the test by future research. We show for example, that the decrease in risk tolerance, induced by the sequential resolution of uncertainty of (atemporal) prospect risks, carries over, under certain conditions, to the sequential resolution of uncertainty for delayed future prospects. This prediction is important as many societal risks (e.g. climate risks) and asset market risks resolve sequentially over time. However, so far this prediction has not been tested.

While there is a large empirical and theoretical literature on the domain of risk taking and an equally large one on time discounting, there are, in comparison, relatively few papers dealing with an integrated view of risk and time. However, the subject has recently gained traction. For example, motivated by the similarities of anomalies in risk taking and time discounting behaviors, [START_REF] Prelec | Decision Making over Time and under Uncertainty: A Common Approach[END_REF] develop psychological properties of multi-attribute prospect valuation that may be common in both decision domains. Thus, common ratio violations and decreasing impatience may be driven by the same psychological principles. The authors do not address how features of risk preferences and time preferences interact with each other, however.

Similarly, [START_REF] Quiggin | Time and Risk[END_REF] analyze parallels between the theories of choice under risk and choice over time and show the usefulness of RDU for understanding the analogy between risk aversion and impatience. [START_REF] Baucells | Probability and Time Tradeoff[END_REF] restrict their analysis to the case of simple prospects (x, p; 0, 1 -p) that pay x with probability p at time t and zero otherwise, and link risk taking and time discounting by making assumptions on how people trade off delays in future outcomes against reductions in the probability with which these outcomes occur. [START_REF] Leland | Risk Preference, Time Preference, and Salience Perception[END_REF] propose a different theory that can account for many anomalies in risk taking and time discounting behavior. Their approach extends the concept of salience from outcome differences to differences in probabilities and differences in delays. This enables the authors to explain a large set of interesting facts in risk taking, time discounting and consumer behavior. However, they explicitly mention on page 20 that their theory "does not account for interaction effects between risk and time" that are exactly the object of our paper. On the other hand, our paper does not explain facts such as labeling effects, framing effects or peanut effects which are the explicanda of [START_REF] Leland | Risk Preference, Time Preference, and Salience Perception[END_REF]'s paper. DeJarnette, [START_REF] Dejarnette | Time lotteries and stochastic impatience[END_REF] study a setting that is complementary to ours: Their time lotteries have fixed prices, but random payment dates. In contrast, we explicitly abstract from uncertainty with regard to the timing of outcomes. However, extending our approach to their time-lotteries setting may be an interesting direction of future research.

The remainder of the paper is organized as follows: Section 2 discusses the key assumptions of our model. Its implications for explaining the seven stylized facts are developed in Section 3.

Section 4 is devoted to a quantitative assessment of our model predictions. Section 5 presents the experimental findings on the seven stylized facts in more detail and discusses other theoretical approaches that address some of these empirical regularities. Finally, Section 6 concludes.

Propositions including proofs and complementary materials are available in the appendix.

The Model

In the following, we will first present the general setup of our approach. Second, we justify our assumptions on the characteristics of the probability weighting function. Finally, we explain how we integrate that "something may go wrong" into the model.

Risk Preferences

In this paper, we rely on rank dependent utility theory (RDU), a generalization of expected utility theory (EUT), that allows for nonlinear weighting of the probabilities. This additional feature has proven to be an exceptionally powerful component. First, overweighting of small probabilities may counteract risk aversion embodied in the utility function. Thus, RDU can handle the empirically observed probability dependence of risk tolerance (for an early example see [START_REF] Preston | An Experimental Study of the Auction-Value of an Uncertain Outcome[END_REF]). Probability weighting captures the intuition that "attention given to an outcome depends not only on the probability of the outcome but also on the favorability of the outcome in comparison to the other possible outcomes" [START_REF] Diecidue | On the Intuition of Rank-Dependent Utility[END_REF], page 284). Typically, decision makers focus on the worst and best possible outcomes and give much less attention to intermediate outcomes that will generally be underweighted even when they have the same objective probabilities as the extreme outcomes [START_REF] Quiggin | A Theory of Anticipated Utility[END_REF].

Second, RDU displays first-order risk aversion, i.e. preferences between prospects whose consequences are sufficiently close to one another do not necessarily tend to risk neutrality. Thus, the experimental evidence of pronounced risk aversion over small stakes favors RDU over many other approaches that accommodate non-EUT behavior but display only second-order risk aversion [START_REF] Sugden | Alternatives to Expected Utility: Foundations[END_REF]. Additionally, RDU was axiomatized by several authors and respects completeness, transitivity, continuity, and first-order stochastic dominance, qualities that many economists are hesitant to dispense with.3 Of course, RDU is not perfect, in the sense that it is always the best model to rationalize data. For example, it cannot handle choice-set dependent preferences, the strength of regret theory [START_REF] Loomes | Disappointment and Dynamic Consistency in Choice under Uncertainty[END_REF] and salience theory [START_REF] Bordalo | Salience Theory of Choice under Risk[END_REF]. In our view, choice sets can be tightly controlled in experimental settings, but are usually quite elusive in other contexts.

According to RDU, a decision maker's atemporal risk preferences over prospects that are played out and paid out with negligible time delay can be represented by a rank-dependent functional. Consider a prospect P = (x 1 , p 1 ; ...; x m , p m ) over (terminal) monetary outcomes x 1 > x 2 > ... > x m with x i ∈ X ⊂ R, p i ∈ [0, 1] and Σp i = 1. The function u denotes the utility of monetary amounts x, and w denotes the subjective probability weight attached to p 1 , the probability of the best outcome x 1 . As usual, both u and w are assumed to be monotonically increasing, w to be twice differentiable on (0, 1) and to satisfy w(0) = 0 and w(1) = 1. Decision weights π i are defined as4 

π i = w(p 1 ) for i = 1 w ∑ i k=1 p k -w ∑ i-1 k=1 p k for 1 < i ≤ m . (1)
Thus, the decision weight of x i is the probability weight attached to the probability of obtaining something at least as good as x i minus the probability weight attached to the probability of obtaining something strictly better than x i . Consequently, decision weights sum to one. Finally, the prospect's value is represented by

V(P) = m ∑ i=1 u(x i )π i . ( 2 
)
To keep the logic of our approach as transparent as possible we present the following steps for m = 2 and delegate the general case to Appendix A.1. For m = 2, the prospect reduces to P = (x 1 , p; x 2 , 1 -p) and Equation 2 reads as

V(P) = u(x 1 )w(p) + u(x 2 ) 1 -w(p) = u(x 1 ) -u(x 2 ) w(p) + u(x 2 ) . (3) 
This representation of V clarifies that x 2 is effectively a sure thing whereas obtaining something better than x 2 is risky.

If the prospect is not played out and paid out in the present, but at some future time t > 0, prospect value is affected by time discounting as well. We follow the standard approach and model people's willingness to postpone gratification by a constant rate of time preference η ≥ 0, yielding a discount weight of ρ(t) = exp(-ηt).5 A prospect to be played out and paid out at t > 0 is discounted for time in the following standard way:

V 0 (P) = V(P)ρ(t) . ( 4 
)
Abundant empirical evidence has demonstrated that risk taking behavior depends nonlinearly on the probabilities [START_REF] Starmer | Developments in Non-Expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk[END_REF][START_REF] Fehr-Duda | Probability and Risk: Foundations and Economic Implications of Probability-Dependent Risk Preferences[END_REF]. However, in order to explain the observed interaction effects, we need to put more structure on the type of nonlinearity.

Probability Weighting

Inspired by one of [START_REF] Allais | Le Comportement de L'Homme Rationnel Devant le Risque: Critique des Postulats et Axiomes de L'Ecole Americaine[END_REF]'s famous examples, [START_REF] Kahneman | Prospect Theory: An Analysis of Decision under Risk[END_REF] presented subjects with the following experiment: Subjects had to choose between 3000 Israeli pounds for sure and 4000 Israeli pounds materializing with a probability of 80%. Most people chose the sure option of 3000 pounds. When confronted with the choice between a 25%-chance of receiving 3000 pounds and a 20%-chance of receiving 4000 pounds, the majority opted for the 4000-pound alternative. Scaling down the probabilities of 100% and 80% by a common factor, in this example 1 /4, induced many people to reverse their preferences. Obviously, such Allais-type behavior is inconsistent with EUT.

An intuitive explanation for common-ratio violations is fear of disappointment: 6 Losing a gamble over very likely 4000 pounds is anticipated to be much more disappointing than losing a gamble over 4000 pounds with only a small chance of materializing. On the other hand, winning 4000 pounds in the unlikely situation of a 20%-chance may trigger feelings of elation. Thus, when people are prone to disappointment and/or elation, their behavior appears to depend nonlinearly on the probabilities [START_REF] Bell | Disappointment in Decision Making under Uncertainty[END_REF][START_REF] Loomes | Disappointment and Dynamic Consistency in Choice under Uncertainty[END_REF][START_REF] Gul | A Theory of Disappointment Aversion[END_REF][START_REF] Wu | Anxiety and Decision Making with Delayed Resolution of Uncertainty[END_REF][START_REF] Rottenstreich | Money, Kisses and Electric Shocks: On the Affective Psychology of Risk[END_REF][START_REF] Walther | Normal-Randomness Expected Utility, Time Preference and Emotional Distortions[END_REF]. 7

In RDU, common-ratio violations are mapped by subproportionality of probability weights.

Formally, subproportionality holds if 1 ≥ p > q > 0 and 0 < λ < 1 imply the inequality [START_REF] Prelec | The Probability Weighting Function[END_REF]. [START_REF] Kahneman | Prospect Theory: An Analysis of Decision under Risk[END_REF] note that this property imposes considerable constraints on the shape of w: it holds if and only if ln w is a convex function of ln p. In other words, d ln w d ln p > 0, or the elasticity of w, ε w (p) = d ln w d ln p , is increasing in p. 8 Subproportionality implies the certainty effect, which constitutes the special case of p = 1. Therefore,

w(p) w(q) > w(λp) w(λq) (5) 
w(λq) > w(λ)w(q) (6)
is satisfied for any λ, q such that 0 < λ, q < 1.9 This feature of subproportional probability 6 It is interesting to note that Gul (1991)'s theory of disappointment aversion is observationally equivalent to RDU with a specific convex subproproportional probability weighting function if prospects have only two outcomes, see also Appendix B.4. 7 Perceptual and procedural factors are potential drivers of probability distortions as well. The fathers of prospect theory, Kahneman and Tversky, attributed probability dependence to the psychophysics of perception according to which the sensitivity toward changes in probabilities diminishes with the distance to the natural reference points of certainty and impossibility [START_REF] Tversky | Advances in Prospect Theory: Cumulative Representation of Uncertainty[END_REF]. Several other contributions focused on procedural aspects of choice [START_REF] Rubinstein | Similarity and Decision-Making Under Risk (Is There a Utility Theory Resolution to the Allais Paradox?)[END_REF][START_REF] Loomes | Modelling Choice and Valuation in Decision Experiments[END_REF]. In these models, a prospect's value depends not only on the prospect's own characteristics but also on other prospects in the choice set. A recent contribution in this category is [START_REF] Bordalo | Salience Theory of Choice under Risk[END_REF] who posit that probabilities are distorted in favor of payoffs that are perceived as particularly salient. Whatever its cause, we interpret probability weighting in rank-dependent models as a kind of reduced form generated by some psychological mechanism. 8 The equivalence of subproportionality and increasing elasticity is shown in Appendix B.1. weights has a crucial implication: It produces an aversion to compounding of probability weights (Segal, 1987a(Segal, ,b, 1990)). We will use this insight when we discuss aspects of uncertainty resolution.

There is also ample evidence for general common-ratio violations that do not involve a sure outcome (e.g. [START_REF] Loomes | Disappointment and Dynamic Consistency in Choice under Uncertainty[END_REF]; [START_REF] Nebout | When Allais Meets Ulysses: Dynamic Axioms and the Common Ratio Effect[END_REF]). However, not everyone is prone to common ratio violations. Usually, there is great heterogeneity in people's behaviors, with the aggregate often exhibiting the common ratio effect.

On average, estimated probability weighting curves overweight small probabilities and underweight large probabilities of the best outcome, which is also a common characteristic of individual estimates [START_REF] Gonzalez | On the Shape of the Probability Weighting Function[END_REF][START_REF] Bruhin | Risk and Rationality: Uncovering Heterogeneity in Probability Distortion[END_REF]. This feature is labeled regressiveness, i.e. the probability weighting curve cuts the diagonal from above.

In the context of rank-dependent models, regressiveness of the probability weighting function generates overweighting of a prospect's tail outcomes and underweighting of its intermediate outcomes, which nicely captures the notion that more extreme outcomes within a given prospect are more salient. While the driver of our results is subproportionality, regressiveness is an independent additional characteristic that captures key features of observed behavior.10 Aside from regressive shapes, convex weighting curves which globally underweight probabilities comprise another common category of individuals' probability weighting functions (see e.g. van de Kuilen and Wakker (2011)), which may be subproportional as well.

When inspecting the graph of w(p), one cannot detect subproportionality with the naked eye. In fact, many different shapes of w(p) display subproportionality, at least over some range of probabilities. Figure 1 depicts three examples of subproportional probability weighting functions that display starkly different shapes, a regressive function and two non-regressive ones.

Aside from the examples in Figure 1, many other functional specifications have been proposed in the literature (see Appendix B.4). Perhaps the most widely used representative of a globally subproportional function is Prelec (1998)'s flexible two-parameter specification of the compound invariant class, designed to map common-ratio violations. Throughout the paper, we will use this "standard" functional specification to illustrate our results,11 defined as

w(p) = exp -β -ln(p) α , (7) 
where 0 < α < 1 indicates the degree of subproportionality and 0 < β governs the range of convexity. The smaller is α, the more pronounced is subproportionality and the greater is the departure from linearity. The greater is β, the greater, ceteris paribus, is the range of probabilities for which the curve is convex, i.e. underweighting p. [START_REF] Prelec | The Probability Weighting Function[END_REF]. This function is globally subproportional and regressive. Conditional invariant: w(p) = exp -5 1 -p 0.1 [START_REF] Prelec | The Probability Weighting Function[END_REF]. This function is globally subproportional and concave, i.e. non-regressive. Hyperbolic: w(p) = p p+2.8(1-p) [START_REF] Rachlin | Subjective Probability and Delay[END_REF]. This function is globally subproportional and convex, i.e. non-regressive.

Future Uncertainty

The final building block of our model concerns the integration of "something may go wrong" due to events unrelated to the prospect under consideration. This (uninsurable) risk inherent in the future, survival risk for short, turns allegedly guaranteed payoffs into risky ones and introduces an additional layer of risk over and above the objective probability distributions of risky payoffs (henceforth referred to as prospect risk). Consequently, there are two distinct types of risk, prospect risk which may resolve at any time between the present and the payment date, and survival risk which resolves fully only at the payment date. Thus, the subjective perception of future uncertainty changes the nature of the prospect. Formally, let 0 < s < 1 denote the constant per-period probability of prospect survival, i.e. the probability that the decision maker will actually obtain the promised rewards by the end of the period. Essentially, there are two ways of accounting for this subjective probability s. First, for a delay t, the probability s t is transformed according to the decision maker's probability weighting function, and the resulting w(s t ) affects the prospect as a whole, i.e. all outcomes equally. In this case, prospect value amounts to

V 0 (P) = V(P)w(s t )ρ(t) . ( 8 
)
Such an approach only affects measured discount rates but cannot handle the observed interaction effects. Thus, we work with the second solution, namely that s impacts the perceived probability distribution of the prospect. Then the probability that the allegedly guaranteed payment x m materializes at the end of period t is perceived to be s t , and the probabilities of obtaining something better than x m are scaled down by s t . Therefore, the objective m-outcome prospect is subjectively perceived as an (m+1)-outcome prospect. Focusing on m = 2 again, P = (P, s t ; x, 1 -s t ) = x 1 , ps t ; x 2 , (1 -p)s t ; x, 1 -s t , where x < x m captures that "something may go wrong".

Setting u(x) = 0, the subjective present value of the prospect amounts to

V 0 ( P) = u(x 1 ) -u(x 2 ) w(ps t ) + u(x 2 )w(s t ) ρ(t) = u(x 1 ) -u(x 2 ) w(ps t ) w(s t ) + u(x 2 ) w(s t )ρ(t) . ( 9 
)
From the point of view of an outsider, the subjective probability distribution of prospect P is not observable. Consequently, she infers probability weights w and discount weights ρ from observed behavior on the presumption that the decision maker evaluates the objectively given prospect P, and estimates preference parameters according to RDU in the standard way:12 

V 0 ( P) = u(x 1 ) -u(x 2 ) w(p) + u(x 2 ) ρ(t) , (10) 

Unifying the Experimental Evidence

In the following, we discuss the implications of our approach for the experimental phenomena listed in Table 1 and demonstrate that, qualitatively, all the Facts #1 through #7 can be explained within our framework. A quantitative assessment of the model predictions is presented in Section 4. While we retain some of the fundamental calculations in the main text, propositions and their proofs are presented in Appendix A.

Fact #1: Delay Dependence of Risk Taking Behavior

The first fact in our list considers the observation that risk tolerance for delayed prospects seems to be higher than risk tolerance for present ones. Concerning delayed risky prospects, we examine the case when prospect risk and survival risk are resolved simultaneously in one shot at time t.

We have seen from Equation 11 

implying that w is more elevated than w, i.e. that w lies above w, which constitutes one of the central implications of our model. Since the probability weighting function maps the decision weight of the best possible outcome, an increase in the elevation of the probability weighting curve gets directly translated into higher revealed risk tolerance. For m = 2 and a given observed discount weight ρ(t) = w(s t )ρ(t),

V 0 ( P) = u(x 1 ) -u(x 2 ) w(p) + u(x 2 ) w(s t )ρ(t) > V 0 (P) = u(x 1 ) -u(x 2 ) w(p) + u(x 2 ) w(s t )ρ(t) . ( 14 
)
Thus, the presence of survival risk makes people appear more risk tolerant for delayed prospects than for present ones. Intuitively, the event of something going wrong takes on the role of the perceived sure outcome, which makes x 2 an intermediate one and, thus, less salient to the decision maker. In addition, this risk-tolerance increasing effect is particularly strong for small probabilities, i.e. positively skewed prospects are subject to more pronounced increases in risk tolerance, as w(p) w(p) declines in p (see Proposition 1 in Appendix A.2). Such a prediction would not be possible if the utility function were the carrier of delay dependence, as for instance in [START_REF] Eisenbach | Anxiety in the Face of Risk[END_REF].

The delay dependence of observed probability weights w is illustrated in Figure 2. The top row of the figure characterizes preferences in the atemporal case. Panel 1a shows a typical specimen of a regressive subproportional probability weighting function w for t = 0, underweighting large probabilities and overweighting small probabilities of the best outcome. For illustrative purposes, Panel 1b on the right side depicts the corresponding decision weights π i for a prospect involving 21 equiprobable outcome levels, with outcome rank 1 denoting the best outcome and outcome rank 21 denoting the worst one. Their objective probabilities are represented on the horizontal gray line. As one can see, a regressive w generates strong overweighting of the extreme outcomes and underweighting of the intermediate ones relative to the objective probability distribution.

The bottom row of Figure 2 demonstrates the predictions for the case when prospects are played out and paid out simultaneously in the future, the focus of this section. Future uncertainty is captured by the parameter s = 0.8, i.e. the per-period prospect survival rate is perceived to be 80%. When payoffs are delayed by two periods, t = 2, observed probability weights w shift upwards, as shown in Panel 2a. This shift rotates the decision weights πi counterclockwise, as depicted in Panel 2b. Now the worst outcomes are underweighted while the best ones are more strongly overweighted. For longer time delays these effects become more pronounced and may lead to a substantial underweighting of the worst outcomes. Thus, underweighting of adverse extreme events becomes more likely with longer time horizons.

Fact #2: Delay Dependence of Time Discounting Behavior

The following section is dedicated to the fact that observed discount rates decrease with the length of delay, i.e. exhibit a hyperbolic decline. Allegedly guaranteed future payoffs constitute a special case of risky ones. As is evident from Equation 12, the observed discount weight for time equals ρ(t) = w(s t )ρ(t). Clearly, if w is linear, ρ declines exponentially irrespective of the magnitude of s. To see this, note that ρ(t) = exp(-ηt) and s t = exp --ln(s) t , implying a discount rate η = η -ln(s) > η for 0 < s < 1. In this case, uncertainty per se increases the absolute level of revealed impatience, but cannot account for declining discount rates. Thus, an expected utility maximizer will exhibit a constant discount rate that is higher than her underlying rate of pure time preference, but her behavior will not show any of the interaction effects addressed in this paper. If, however, w is subproportional and 0 < s < 1, the component w(s t ) distorts the discount weight in a predictable way (see details in Proposition 2 in Appendix A.3): The discount function ρ(t) declines at a decreasing rate, i.e. in a hyperbolic way. To show this result, we set ρ = 1 without loss of generality. The rate η(t) at which w(s t ) declines is defined as where ε denotes the elasticity of w. Therefore,

η(t) = - ∂w(s t ) ∂t w(s t ) = - w (s t )s t ln s w(s t ) = -ε(s t ) ln s , (15) 
η (t) = -ε (s t )s t (ln s) 2 < 0 , (16) 
since the elasticity of w is increasing. As [START_REF] Chakraborty | The Relation between Behavior under Risk and over Time[END_REF] have clarified, subproportionality not only predicts hyperbolic discounting, but the reverse relationship also holds in our setting. 
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Panel a shows discount rates as they move with the length of delay t for different levels of survival risk 1 -s, where s denotes the probability of prospect survival. When there is no survival risk, s = 1, the observed discount rate is constant and equals the rate of pure time preference (line labeled by s = 1.0). The higher is the level of risk, the lower s, the more pronounced the hyperbolic decline of discount rates over time is for decision makers with subproportional probability weights (curves labeled by s = 0.5 and s = 0.8). η(t) := -∂ ρ ∂t / ρ. w is specified as Prelec's probability weighting function (in this example α = 0.5 and β = 1). Panel b depicts discount rates for a constant level of survival probability s = 0.8 and varying number of resolution stages n. The more often a particular delay is divided into subintervals (of equal length in this graph), the higher is the discount rate, a manifestation of subadditive discounting.

Thus, decreasing impatience is not a manifestation of pure time preferences but a consequence of survival risk changing the subjective nature of future prospects. At the level of observed behavior, decreasing impatience is the mirror image of increasing risk tolerance if survival risk is integrated into the prospect's probability distribution. In fact, the degree of proneness to common-ratio violations, the degree of subproportionality, can be interpreted as the degree of time insensitivity. Intuitively, when the future is inherently risky, promised rewards do not materialize with certainty and, therefore, they incorporate the potential of disappointment. Because more immediate payoffs are more likely to actually materialize than more remote payoffs, this potential is perceived to decline with the passage of time and becomes almost negligible for payoffs far out in the future. Technically, since shifting a payoff into the future amounts to scaling down its probability, which constitutes an intertemporal variant of the Allais common ratio effect, a decision maker with subproportional preferences becomes progressively insensitive to a given timing difference. This insight provides a test bed for analyzing risk taking and time discounting behavior at the individual level because the characteristics of the probability weighting function feed directly into the characteristics of the observed discount function. For example, a Prelec compound invariant probability weighting function with α < 1 generates a Constant Relative Decreasing Impatience (CRDI) discount function, frequently used to map hyperbolic discounting [START_REF] Bleichrodt | Non-Hyperbolic Time Inconsistency[END_REF].

The effects of survival risk on revealed discount rates are presented in Panel a of Figure 3, which depicts a typical decision maker's observed discount rates η as they react to varying levels of s. The horizontal line represents the case of no survival risk, s = 1. In this case, the observed discount rate η is constant and coincides with the true underlying rate of time preference η.

When survival risk comes into play, however, discount rates decline in a hyperbolic fashion, and depart from constant discounting increasingly strongly with rising uncertainty, as shown by the curves for s = 0.8 and s = 0.5, respectively.

Fact #3: Process Dependence of Risk Taking

So far, we have considered the case when future prospects are evaluated in one single shot. In the following section we analyze the situation of uncertainty resolving in several distinct stages.

In the domain of risk, sequential resolution of uncertainty frequently reduces a prospect's value relative to its one-shot counterpart, Fact #3.

In order to derive our predictions for sequential resolution of uncertainty, we need to discuss the method by which multi-stage prospects are transformed into single-stage ones, the domain over which risk preferences are defined. In principle, there are two different transformation methods, reduction by probability calculus and folding back. 13 Reduction involves the calculation of the probabilities of the final outcomes and the transformation of these values by the appropriate weighting function. Folding back, on the other hand, weights the probabilities at each stage and then compounds these weights. Segal (1990) argues that folding back is particularly plausible when the stages are clearly distinct. It is well known that a naive RDU decision maker will be dynamically inconsistent if she cares only about the probabilities of the final outcomes -as the payment date draws near, she will re-evaluate the prospect and, because of the delay dependence of risk tolerance, become comparatively more risk averse. Folding back ensures dynamic consistency but has substantial consequences for prospect valuation.

Experiments on compound risks show that people frequently violate the reduction axiom of EUT, i.e. the value of a prospect resolving in several stages differs from the value of the probabilistically equivalent one-stage prospect. Therefore, we assume that the decision maker applies folding back when evaluating the prospect under consideration. (2) sequential

x 2 1 -q r x 1 q r x 2 1 -q x 2 1 -r x 1 r q
(1) one-shot: The tree depicts uncertainty resolution in one stage. (2) sequential: The probability tree shows the sequential resolution of uncertainty of a prospect P = (x 1 , qr; x 2 ) in two stages with partial probabilities q and r.

Figure 4 depicts the sequential resolution of a two-outcome prospect P = (x 1 , p; x 2 , 1 -p) in n = 2 stages with partial probabilities q and r and the corresponding one-shot resolution case. Under folding back, the prospects' values are given by V 1 (P) = u(x 1 ) -u(x 2 ) w(qr) + u(x 2 ) , and

V 2 (P) = u(x 1 ) -u(x 2 ) w(r)w(q) + u(x 2 ) ,
where the subscripts of V denote the number of resolution stages. As already noted, and discussed in detail in Segal's work (Segal, 1987a(Segal, ,b, 1990)), the certainty effect embodied in subproportional preferences generates an aversion to compounded probability weights: For 1 > p = qr > 0 the compounding of the respective weights always leads to lower prospect values, i.e. w(qr) > w(q)w(r) holds whatever are the values of q and r. Here the order of r and q, i.e. which probability resolves first, does not play a role, a feature labeled event commutativity [START_REF] Chung | An experimental test of event commutativity in decision making under uncertainty[END_REF]. Furthermore, a prospect's minimum value is attained when compounding occurs over equiprobable stages, i.e. when r = q = √ p . Partitions of equal length correspond to the least degenerate multi-stage prospect and can be interpreted as the comparatively most ambiguous situation, which is strongly disliked by people with subproportional preferences.14 

In principle, uncertainty may resolve in many different ways. This raises the question how general the prediction is that subproportional decision makers undervalue prospects with sequential resolution of uncertainty relative to those with one-shot resolution. Here we focus on sequential resolution in the form of prospect survival, i.e. we only consider probability trees that, at each stage, render either x 2 or the chance that x 1 is still available at a later stage. We term trees with this structure "survival trees". For example, a third stage with partial probability v could be appended to the tree in Figure 4, such that x 1 materializes with probability qrv. For survival trees with m = 2, Segal's insights on two-stage prospects generalize to n > 2 stages, i.e. w(∏ n i=1 q i ) > ∏ n i=1 w(q i ) for ∏ n i=1 q i = p, as shown in Proposition 3 in Appendix A.5. Another type of survival tree emerges when, at each stage, either the worst possible outcome materializes or "everything is still possible" which could be any number m of probabilistic outcomes that materialize at the final stage. Thus, the survival tree has two branches at all the chance nodes before the final stage, and m branches at the terminal resolution of uncertainty. An example for m = 3 and n = 3 is discussed in Appendix A.4. Subproportionality makes clear predictions for this type of sequential resolution of uncertainty as well: The prospect's one-shot value will be greater than its folded back version. Thus, such a resolution process has the flavor of disappointment aversion since at each stage something better than x m may turn out to be unreachable. For n resolution stages and m outcomes, the resulting probability weighting function for ∏ n i=1 q i = p is given by

w n (p) = n ∏ i=1 w(q i ). (17) 
Details are set out in Proposition 3 in Appendix A.5.

The top row of Figure 5 shows the basic probabiliy weighting function and the decision weights of 21 equiprobable outcomes when uncertainty resolves in one shot. On the bottom, the probability weighting function and the corresponding decision weights are displayed that result from compounding over 12 stages of equal partial probability. As one can see, the originally regressive probability weighting function is transformed into a strongly convex one. The decision weight curve now rotates clockwise, implying substantial underweighting of the best outcomes and overweighting of the worst outcomes, as is evident in Panel 2b. Thus, compounding probability weights greatly reduces risk tolerance. Sequential valuation of this type, therefore, has a dramatic effect on the overweighting of adverse tail events. This effect may be called myopic probability weighting in the style of myopic loss aversion [START_REF] Benartzi | Myopic Loss Aversion and the Equity Premium Puzzle[END_REF] which has similar consequences on risk taking behavior when short-sighted investors are frequently exposed to the possibility of facing losses.

To sum up: If uncertainty resolves according to a survival tree, one-shot resolution is always preferred to sequential resolution of uncertainty. A preference for one-shot resolution of uncertainty does not hold generally under subproportionality in RDU [START_REF] Dillenberger | Preferences for One-Shot Resolution of Uncertainty[END_REF], however, but only applies to the class of resolution processes studied here. 15 For details see our discussion in Appendix B.2.

Extension: Process Dependence of Risk Taking and the Passage of Time

The property of aversion to compound risk carries over to the case when the passage of time with its inherent uncertainty is introduced. In our view, this situation constitutes a much more interesting case than the frequently observed aversion to sequential resolution in atemporal experimental settings. However, we are not aware of any studies involving the sequential resolution of uncertainty of genuinely delayed prospects. Thus, the following insights provide the basis for novel experimental investigations.

In the following, we set ρ = 1 for ease of exposition. Let us first consider a two-outcome prospect P = (x 1 , p; x 2 ) resolving in n = 2 stages denoted by corresponding subscripts to w and ρ, such that uncertainty is partially resolved at some future time t 1 and fully resolved at the payment date t > t 1 , as depicted in Panel (ii) of Figure 6. Applying folding back, the resulting two-stage prospect is evaluated as

[V 2 ( P)] 0 = u(x 1 ) -u(x 2 ) w p t 1 t s t 1 w p t-t 1 t s t-t 1 + u(x 2 )w s t 1 w s t-t 1 = u(x 1 ) -u(x 2 ) w p t 1 t s t 1 w p t-t 1 t s t-t 1 w(s t 1 )w(s t-t 1 ) + u(x 2 ) w s t 1 w s t-t 1 = u(x 1 ) -u(x 2 ) w2 (p) + u(x 2 ) ρ2 (t) , (18) 
which yields the relationships

w2 (p) = w p t 1 t s t 1 w p t-t 1 t s t-t 1 w (s t 1 ) w (s t-t 1 ) (19) and ρ2 (t) = w s t 1 w s t-t 1 , (20) 
where ρ2 (t) is interpreted as the discount weight attached to the allegedly certain outcome x 2 . Subproportionality ensures that

w2 (p) = w p t 1 t s t 1 w p t-t 1 t s t-t 1 w (s t 1 ) w (s t-t 1 ) < w(ps t ) w(s t ) = w(p) , (21) 
i.e. under folding back observed risk tolerance is smaller than in the one-shot case, one of the main results generalized in Proposition 4 in Appendix A.6 where we provide a characterization based on the investment games by [START_REF] Gneezy | An Experiment on Risk Taking and Evaluation Periods[END_REF]; [START_REF] Gneezy | Evaluation Periods and Asset Prices in a Market Experiment[END_REF]; [START_REF] Bellemare | Myopic Loss Aversion: Information Feedback vs. Investment Flexibility[END_REF]. In these experiments, participants face three independent draws of the same probability distribution and have to decide how much of their initial endowment they want to invest into the risky asset. The resulting probability tree does not belong to the class of survival trees studied in the current paper because at each stage the player may lose only one invested amount and does not face the worst case of losing the total of three invested amounts. Such a situation only arises at the third draw. 
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(1) one-shot: The tree depicts uncertainty resolution of a prospect (x 1 , ps t ; x 2 , (1 -p)s t ; x) in one stage.

(2) sequential:

The probability tree shows the sequential resolution of uncertainty of the same prospect in two stages with partial probabilities (p 1/t s) t 1 and (p 1/t s) t-t 1 .

of wn . Furthermore, total prospect value is also smaller than for one-shot resolution as both w(ps t ) and w(s t ) are greater than any products of probability weights of partial probabilities. Thus, the preference for one-shot resolution of uncertainty is preserved when "something may go wrong". Probability weights w and wn as well as their corresponding decision weights π and πn are depicted in Figure 7, which show the same patterns as for the atemporal case of Figure 5, but less pronounced because delay dependence shifts the original atemporal probability weights upwards.

Fact #4: Process Dependence of Time Discounting

Fact #4 pertains to the finding that discount rates compounded over partial periods are higher than discount rates applied to the total period under consideration, so-called subadditive discounting. As we will see shortly, we can transfer all our insights for the sequential resolution of uncertainty to discounting behavior as allegedly certain future outcomes are a special case within the class of two-outcome prospects. According to our model an allegedly certain outcome

x payable at delay t is perceived as a risky future prospect (x, s t ; x, 1 -s t ). Suppose now that future uncertainty resolves in two stages, first at t 1 and finally at t. Coming back to Figure 4, redefine x 2 as x and the partial probabilities as survival probabilities, q = s t 1 and r = s t-t 1 . Subproportionaliy implies w(s t ) > w(s t 1 )w(s t-t 1 ), in other words discounting is subadditive, described as Fact #4. As before, this result holds for any number of resolution stages, and the more stages are involved the stronger the compounding effect.

Panel b of Figure 3 shows the effect of varying the number of compounding stages on ob- 

(p) = w((ps t ) 1/n ) w((s t ) 1/n )
n and the corresponding decision weights π n when uncertainty resolves in n = 24 equiprobable stages. served discount rates. As predicted, discount rates increase in the number of stages. In our model, subadditive discounting is the result of decision makers' aversion to compounded probability weights and not a feature of pure time preferences themselves, as often posited in the literature.

Fact #5: Preferences for the Timing of Uncertainty Resolution

The experimental evidence has found quite a puzzling result: a substantial share of participants prefer uncertainty to be resolved at the payment date, even in circumstances when one would expect that it is advantageous to know the outcome of one's financial decisions as early as possible. In this section, we explore the consequences of subproportionality for the preferences for the timing of uncertainty resolution. 
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(1) late: The tree depicts uncertainty resolution in one stage at the payment date t.

(2) immediate: The probability tree shows the immediate resolution of prospect risk, with survival risk resolving at t.

Figure 8 depicts two different cases of the timing of uncertainty resolution: either the prospect is played out at the payment date, corresponding to one-shot resolution and labeled "late" (Panel i), or the prospect is played out immediately after prospect valuation, labeled "immediate" (Panel ii). In the latter case, the decision maker will know the outcome right after her decision and faces only survival risk. Contrasting the resulting prospect values,

V 0 ( P) late = u(x 1 ) -u(x 2 ) w(ps t ) w(s t ) + u(x 2 ) w(s t )ρ(t) > V 0 ( P) immediate = u(x 1 ) -u(x 2 ) w(p) + u(x 2 ) w(s t )ρ(t) , (22) 
shows that late resolution is always preferred as w(ps t )

w(s t ) > w(p) is implied by subproportionality. Thus, if no other considerations, such as being able to make better future plans, play a role, a subproportional decision maker will exhibit a preference for late resolution of uncertainty. In fact, she will prefer resolution at t to any earlier resolution time t 1 < t, as shown in Appendix A.7.

In our view, that subproportional risk preferences induce an intrinsic preference for late resolution of prospect risk constitutes the third important result besides delay-and processdependence. If decision makers perceive the future as inherently risky and apply folding back, this property follows endogenously from subproportionality and does not constitute an independent preference as in the theoretical literature on resolution timing [START_REF] Kreps | Temporal Resolution of Uncertainty and Dynamic Choice Theory[END_REF][START_REF] Chew | The Structure of Preferences and Attitudes towards the Timing of the Resolution of Uncertainty[END_REF]Grant, Kajii, and Polak, 2000). Moreover, our model not only predicts a general preference for late resolution of prospect risk, it also specifically addresses skewness preferences because the effect is larger for small probabilities (see Proposition 5 in Appendix A.7), which cannot be handled by utility-based explanations. Additionally, this preference for late resolution of uncertainty of positively skewed prospects increases with time delay.

Fact # 6: Risk Dependence of Patience

Researchers have been puzzled not only by delay-dependent risk tolerance and preferences with respect to resolution timing but also by other interactions between time and risk, encompassing risk-dependent discounting and diminishing immediacy: Certain outcomes tend to be discounted much more heavily than risky outcomes are [START_REF] Stevenson | The Impact of Temporal Context and Risk on the Judged Value of Future Outcomes[END_REF]Ahlbrecht and Weber, 1997). As we will show below, these findings can be naturally accommodated within our framework.

Let V 0 denote the present value of the prospect P = (x 1 , p; x 2 , 1 -p) delayed by t periods. Hence, for ρ = 1,

V 0 = u(x 1 ) -u(x 2 ) w(ps t ) w(s t ) + u(x 2 ) w(s t ) . ( 23 
)
Furthermore, let V t denote the future value of P as of t:

V t = u(x 1 ) -u(x 2 ) w(p) + u(x 2 ) . ( 24 
)
Discounting by w(s t ) yields

V t w(s t ) = u(x 1 ) -u(x 2 ) w(p) + u(x 2 ) w(s t ) . ( 25 
)
According to standard discounting theory, the present value V 0 should be equal to the discounted value of V t , namely V t w(s t ). However, because w(p) < w(ps t ) w(s t ) , actually V t w(s t ) < V 0 . Therefore, it seems as if the certain value V t is discounted more heavily than the (at t equally attractive) future prospect. The difference in the valuations is not caused by different rates of time preference for risky and certain payoffs, however, but by survival risk changing the nature of the future prospect when evaluated from the point of view of the present rather than from the point of view of the future.

The same kind of risk dependence is at work when the revealed preference for a certain smaller present payoff over an allegedly certain larger later payoff decreases substantially when both payoffs are made (objectively) probabilistic, a phenomenon termed diminishing immediacy [START_REF] Keren | Immediacy and Certainty in Intertemporal Choice[END_REF][START_REF] Weber | The Combined Effects of Risk and Time on Choice: Does Uncertainty Eliminate the Immediacy Effect? Does Delay Eliminate the Certainty Effect?[END_REF]. Because of the certainty effect, the additional layer of riskiness affects the later payoff much less than the present one because, due to survival risk, it is viewed as a risky prospect already from the outset.

Fact #7: Order Dependence of Risk Tolerance

Order dependence refers to the phenomenon that it makes a difference in which order a prospect is discounted for risk and for time. In principle, there are three different methods of establishing a decision maker's value of a prospect P = (x 1 , p; x 2 , 1 -p) delayed by t periods: the riskfirst order, the time-first order, and the direct method by which both operations are performed simultaneously.

The risk-first order assesses the certainty equivalent as of time t at the first stage and its present value at the second stage. The time-first order reverses the elicitation stages and encompasses, at the first stage, the elicitation of the present risky prospect which is considered to be equivalent to the future one and, at the second stage, the elicitation of the certainty equivalent of this present risky prospect. The direct method, finally, elicits the present certainty equivalent of the delayed prospect in one single operation.

When the decision maker is required to state the prospect's value when discounting solely for risk, she ignores the dimension of time and reports V t which gets discounted to V t w(s t ) at the second stage:

V t w(s t ) = (u(x 1 ) -u(x 2 ))w(p) + u(x 2 ) w(s t ). ( 26 
)
Conversely, when discounting for time first, she states the present prospect which is equivalent to the delayed one. Discounting for risk at the second stage results in its value V 0 , evaluated as

V 0 = u(x 1 ) -u(x 2 ) w(ps t ) w(s t ) + u(x 2 ) w(s t ), (27) 
which is equal to the present value elicited by the direct method.

Due to subproportionality, w(ps t )

w(s t ) > w(p). Therefore, we predict that discounting for risk first results in a lower prospect valuation than discounting for time first. Moreover, discounting for time first is equivalent to prospect evaluation in one single operation. In their study on order dependence, Önc üler and Onay (2009) indeed found this pattern: While valuations resulting from the time-risk order and the direct method are not statistically distinguishable from each other, risk-time evaluations are significantly lower than the ones obtained from the other two methods (see also Ahlbrecht and Weber (1997)).

Quantitative Assessment

The previous results indicate that our model is capable of explaining all seven facts. The question remains whether the model requires vastly different parameters to explain the various facts or whether is it possible to explain them with a set of parameters within a relatively narrow and plausible range. 16 To address this question, we tie our hands and assume a fixed set of preference parameter values for (i) the utility curvature, (ii) the degrees of subproportionality and convexity of probability weights, and (iii) the rate of pure time preference, as specified in Table 3. These parameters are suggested by typical estimates in the literature (see e.g. Abdellaoui, Diecidue, and Önc üler (2011); Fehr-Duda and Epper ( 2012)). Together with an estimated value of the survival probability s the preference parameters generate behavioral predictions that we can quantitatively compare with the outcomes of experiments that documented the seven facts. In other words, we use only one free parameter -the value of the (annualized) survival probability s -to fit the experimental data.17 

Ideally, for a given subject pool at a given point in time, and a given elicitation method, the estimated value of s should be rather similar across experiments because in this case the participants would have little reason to reveal different degrees of subjective uncertainty that "something may go wrong". However, the seven facts we discussed have been documented at different points in time, with different elicitation methods, and with rather different subject pools -French, Swiss, Swedish and US participants. Table 13 in the appendix summarizes the experimental studies we used for our task. Therefore, the best we can hope for is that the estimated value of s is roughly in a similar ballpark across the different experiments. In addition, because all studies have been conducted with university students in advanced Western countries with well-developed property rights, the estimated value of s should not be unreasonably low (e.g., below 0.5 or 0.6 p.a.). As we will see below, our quantitative estimates nicely confirm these expectations. The typical value of the survival probability across experiments is around 0.9 and never below 0.825. Thus, all seven facts can be quantitatively explained with a plausible and identical set of preference parameters and a narrow and plausible range of survival probabilities.

Fact #1: Delay Dependence of Probability Weights

To demonstrate the quantitative implications of our approach we proceed as follows. According to our framework the driver of risk tolerance increasing with delay are delay-dependent probability weights. Delay-dependent risk tolerance was observed in many experiments, but only a very few provide estimates of suitable probability weights. One particularly useful example is [START_REF] Abdellaoui | The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation[END_REF]'s investigation of the source dependence of uncertainty attitudes. Their experiment also involved pure risk, i.e. given objective probabilities, as a special source for which uncertainty resolved at the payment date three months after the 9, the curve of w predicted for this level of s * closely matches the actual reported curve w t=3 .

Fact #2: Hyperbolic Discounting

Epper, Fehr-Duda, and Bruhin (2011) elicited both time preferences and risk preferences of a student sample. 18 Comparing the average annualized discount rates observed for a two-month delay and a four-month delay shows the usual picture: they decline from 0.368 to 0.299 when the delay increases (all these numbers can be found in the first column of their Table 2 on page 183 of the paper). Assuming that the discount rates are generated by the theoretical discount weights w(s t ) exp(-ηt), we estimate s by minimizing the sum of squared deviations between model predictions and observations. This procedure yields s * = 0.947, resulting in predicted discount rates of 0.372 for the two-month delay, and 0.293 for the four-month delay, shown in Table 5, which are very close to the observed values.

Epper, Fehr-Duda, and Bruhin (2011) provide a number of additional insights. A large body of empirical evidence documents the prevalence of common-ratio violations as well as of nonexponential discounting, at least at the level of aggregate behavior [START_REF] Kahneman | Prospect Theory: An Analysis of Decision under Risk[END_REF][START_REF] Thaler | Some Empirical Evidence on Dynamic Inconsistency[END_REF][START_REF] Benzion | Discount Rates Inferred from Decisions: An Experimental Study[END_REF][START_REF] Starmer | Violations of the Independence Axiom in Common Ratio Problems: An Experimental Test of Some Competing Hypotheses[END_REF][START_REF] Prelec | Decision Making over Time and under Uncertainty: A Common Approach[END_REF]. However, there is vast heterogeneity in individuals' behaviors [START_REF] Hey | Investigating Generalizations of Expected Utility Theory Using Experimental Data[END_REF] Increasing Risk Tolerance Table : For each of the five probabilities in Abdellaoui, Baillon, Placido, and Wakker (2011), the table contrasts observed decision weights of the better outcome with decision weights predicted by our model with global parameter values and s * = 0.825. The exact observed weights are computed using the probability weighting function estimated by [START_REF] Abdellaoui | The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation[END_REF]. [START_REF] Chesson | The Heterogeneity of Time-Risk Tradeoffs[END_REF][START_REF] Bruhin | Risk and Rationality: Uncovering Heterogeneity in Probability Distortion[END_REF] and the question arises whether common-ratio violations and non-constant discounting are actually exhibited by the same people. To our knowledge, potential links between risk preferences and time preferences at the level of preference conditions or parameter estimates have not been explored so far. However, using the decline of discount rates as a measure of decreasing impatience, [START_REF] Epper | Uncertainty Breeds Decreasing Impatience: The Role of Risk Preferences in Time Discounting[END_REF] provide evidence that subjects' departures from linear probability weighting are indeed highly significantly correlated with the strength of the decrease in discount rates.

In fact, the only variable associated with decreasing discount rates turns out to be the degree of subproportionality of probability weights, which explains a large percentage of the variation in the extent of the decline, whereas observable individual characteristics, such as gender, age, experience with investment decisions and cognitive abilities are not significantly correlated with the degree of non-constant discounting.

Fact #3: Preference for One-Shot Resolution of Uncertainty

To the best of our knowledge, the process dependence of risk taking behavior has not been investigated experimentally in situations when there is actually a substantial time delay present. 

Fact #4: Subadditive Discounting

To illustrate the quantitative implications of our model we again examine the discounting data of [START_REF] Epper | Uncertainty Breeds Decreasing Impatience: The Role of Risk Preferences in Time Discounting[END_REF]. In the experiment, future equivalents FEs of a fixed sooner amount of CHF 60 were elicited for various time delays. We define the observed discount fraction as

f (t 1 , t 2 ) = 60 FE ,
where t 1 is the payment date for the sooner amount 60 and t 2 the payment date for the later amount FE [START_REF] Read | Is Time-Discounting Hyperbolic or Subadditive?[END_REF]. If the product f (t 1 , t 2 ) f (t 2 , t 3 ) is smaller than the discount fraction over the total period, f (t 1 , t 3 ), then discounting is subadditive. According to our model, indifference between sooner and later payments is given by u(60)w(s t 1 ) exp(-ηt 1 ) = u(FE)w(s t 2 -t 1 )w(s t 1 ) exp(-ηt 2 ) .

Assuming power utility with parameter γ the predicted discount fraction equals to

f (t 1 , t 2 ) = 60 FE = w(s t 2 -t 1 ) exp(-ηt 2 ) exp(-ηt 1 ) 1 γ .
Given the optimal survival probability derived for the same data set of Fact #2, s * = 0.947, the following predictions for the discount fractions result, listed in Table 7. Both the observed mean discount fractions and the predicted ones clearly exhibit subadditivity, with predictions fitting fairly well.

Fact #5: Preferences for the Timing of Uncertainty Resolution

Arai (1997) measured (hypothetical) strength of preference (SOP) towards resolution timing for delayed prospects that varied by outcome probability and time delay. In this case we do not have present certainty equivalents at our disposal but have to rationalize strength of preference values.

We report Arai (1997)'s findings on the prospect (5000, p; 0, 1 -p) listed in Table 1 on page 20 of his paper. Strength of preference was measured on a scale divided into 30 equal intervals, with SOP = 0 denoting strong preference for immediate resolution and SOP = 30 denoting strong preference for late resolution. Thus, SOP = 15 signals indifference between immediate and late resolution of uncertainty.

Arai (1997) finds a very distinct pattern of strength of preference depending on time delay and probability: The smaller the probability and the longer the time delay, the stronger the preference for late resolution. Our task is to predict the patterns observed by [START_REF] Arai | Temporal Resolution of Uncertainty in Risky Choices[END_REF]. For this purpose we examine the wedge W(p, t) := w(ps t )

w(p)w(s t ) which measures the decision weight for late resolution relative to the decision weight for immediate resolution of uncertainty. We hypothesize that it is more likely to observe strength of preference SOP > 15 in favor of late resolution for greater values of the wedge W(p, t). We calculate W(p, t) by assuming our global parameters and survival probability s = 0.9, which lies in the range of optimal s * found for the other facts (see Table 12 below.) w(p)w(s t ) predicted by our model with global parameter values and s = 0.9 and observed strength of preferences values reported in [START_REF] Arai | Temporal Resolution of Uncertainty in Risky Choices[END_REF] (Table 1 on page 20).

Table 8 shows a totally consistent picture, W(p, t) is predicted to decrease in p and increase in delay t, capturing the patterns in the observed strength of preference measures. The Spearman rank correlation coefficient between SOP and W(p, t) amounts to 90.2%, which we deem an excellent match.

Fact #6: Risk-Dependent Discounting

In their experiments, Weber and Chapman (2005) investigated whether delaying an outcome is equivalent to making it risky. In one of these experiments participants' present certainty equivalents for delayed prospects were elicited through a series of choices using a bisection algorithm. 124 participants supplied useful responses in the immediacy task, which involved hypothetical amounts of $100 and $110. These amounts were payable either immediately or with various time delays, and were supposedly certain or risky materializing with a probability of p = 0.5.

Working with our global parameters we estimated the optimal survival probability that minimizes the sum of squares of differences between observed and predicted values. This exercise resulted in an estimate of s * = 0.872, again a very reasonable number. -ηt). Its risky counterpart is evaluated as u(x)w(ps t ) exp(-ηt). Their corresponding non-delayed values amount to u(x) and u(x)w(p), respectively, implying the discount weights w(s t ) < w(ps t ) w(p) for the certain and risky outcomes. Comparing the entries for p = 1 and p = 0.5 for the various delays in Table 10 clearly shows a greater loss in value for allegedly certain outcomes than for risky ones. The table list predicted discount weights for the different delayed prospects in [START_REF] Weber | The Combined Effects of Risk and Time on Choice: Does Uncertainty Eliminate the Immediacy Effect? Does Delay Eliminate the Certainty Effect?[END_REF].

Fact #7: Order Dependence

In their study on order dependence, Önc üler and Onay (2009) found the following pattern: While valuations of delayed risky prospects resulting from the time-risk order ("TR", discounting for time first and for risk thereafter) and the direct method ("D", both operations performed simultaneously) are not statistically distinguishable from each other, risk-time evaluations ("RT", discounting for risk first and for time thereafter) are significantly lower than the ones obtained from the other two methods. Here we proceeded as before, we minimized the sum of squared deviations between observation and prediction based on our global parameters which resulted in an optimal survival probability s * = 0.937. We report the observed and predicted present certainty equivalents for the three elicitation methods in Table 11. Predictions match observations quite well. 

Summary

The quantitative assessments conducted in this section were based on the same set of preferences parameters. We deliberately tied our hands for the quantitative predictions by assuming a plausible set of preference parameters suggested by the literature. In this way, we avoid arbitrary degrees of freedom in accommodating the data and enable a judgment to what extent our approach indeed facilitates a unifying explanation of a diverse set of facts. Table 12 shows that the objects of interest that needed to be predicted to explain the facts were quite varied -ranging from probability weights to discount rates, from discount fractions to (present) certainty equivalents. Our quantitative analysis suggests that our predictions are in general well matched with the observations. Furthermore, as Table 12 reveals, we find that observed behavior is consistent with plausible values of an annual survival probability in the range of 0.825 to 0.947. In view of the fact that the data were elicited from different subject pools in different countries and at different points in time, we deem this a remarkably narrow and plausible range of values for survival probability. 

Experimental Findings and Related Literature

In the following we present the experimental evidence in more detail and discuss previous explanations of the observed effects. Extant explanations usually deal with only one or a few specific regularities and do not address the entirety of the phenomena summarized in Table 1.

By now, there is an extensive literature on many of these single aspects, for example on hyperbolic discounting, preferences for resolution timing and the value of information. As reviewing this literature is beyond the scope of this paper, we focus on those contributions that are more closely related to our work.

Delay dependence of risk taking behavior, Fact #1 in Table 1, has been documented by a range of papers that do not distinguish between effects of delay on utility and probability weights [START_REF] Jones | Delay of Consequences and the Riskiness of Decisions[END_REF][START_REF] Shelley | Gain/Loss Asymmetry in Risky Intertemporal Choice[END_REF]Ahlbrecht and Weber, 1997;[START_REF] Sagristano | Time-dependent Gambling: Odds Now, Money Later[END_REF][START_REF] Noussair | Risk Tolerance in the Present and the Future: An Experimental Study[END_REF][START_REF] Coble | At the Nexus of Risk and Time Preferences: An Experimental Investigation[END_REF]. That, in fact, probability weights react to delay, rather than the utility function, was shown experimentally by [START_REF] Abdellaoui | Risk Preferences at Different Time Periods: An Experimental Investigation[END_REF]. They conducted a carefully designed experiment eliciting probability weights for both present and delayed prospects. Their results provide support for our approach as the probability weights of the best possible outcome, when delayed, are significantly greater than their non-delayed counterparts, both in the aggregate as well as for the majority of the individuals. In their study on ambiguity attitudes, [START_REF] Abdellaoui | The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation[END_REF] show estimates of a probability weighting function derived from choices over prospects delayed by three months which we used to assess the quality of our predictions. This function is also much more elevated than typical atemporal estimates are, i.e. the curve lies above a typical atemporal one, see Figure 9. [START_REF] Baucells | Probability and Time Tradeoff[END_REF] restrict their analysis to the case of simple prospects (x, p; 0, 1p) that pay x with probability p at time t and zero otherwise. In this setting, the authors predict a number of effects by invoking varying additional assumptions. They model the delay dependence of risk tolerance in the following way. Aside from their fundamental axiom of a direct probability-time trade-off, mentioned in the introduction, they make two additional assumptions to predict risk premia declining with time delay. The first one is the common ratio effect, which is equivalent to subproportionality in our framework. The second crucial assumption makes the probability-time trade-off depend on outcome magnitude -the probability that renders an early prospect equally attractive as a prospect with a fixed additional delay declines with outcome magnitude. While they predict risk premia declining with delay, their time-dependent probability weights w(p) = w(p exp(-r x t)) clearly decrease with delay. Their approach also predicts hyperbolic discounting (Fact #2) (for this result, the common ratio effect has to hold as well as decreasing elasticity of the utility function) and risk dependence of patience (Fact #6), which is a direct consequence of the probability-time trade-off under subproportionality.

It is well known by now that delay dependence is also manifest in discounting behavior, which constitutes empirical Fact #2. There is abundant evidence that many people exhibit decreasing impatience, i.e. their discount rates are not constant but decline with the length of delay (among many others [START_REF] Benzion | Discount Rates Inferred from Decisions: An Experimental Study[END_REF]; [START_REF] Loewenstein | Anomalies: Intertemporal Choice[END_REF]; [START_REF] Ainslie | Derivation of 'Rational' Economic Behavior from Hyperbolic Discount Curves[END_REF]; [START_REF] Halevy | Strotz Meets Allais: Diminishing Impatience and Certainty Effect[END_REF]). This regularity has triggered a large literature on hyperbolic and quasi-hyperbolic time preferences (e.g. [START_REF] Laibson | Golden Eggs and Hyperbolic Discounting[END_REF], for reviews see [START_REF] Frederick | Time Discounting and Time Preference: A Critical Review[END_REF] and [START_REF] Ericson | Intertemporal Choice[END_REF]). Most closely related to our approach is a string of papers following [START_REF] Halevy | Strotz Meets Allais: Diminishing Impatience and Certainty Effect[END_REF]. His model derives hyperbolic discounting from the same mechanism that we employ, namely a combination of future uncertainty with nonlinear probability weighting. The subsequent contributions by [START_REF] Saito | Strotz Meets Allais: Diminishing Impatience and the Certainty Effect: Comment[END_REF] and [START_REF] Chakraborty | The Relation between Behavior under Risk and over Time[END_REF] are concerned with establishing a two-way relationship between subproportional probability weights and hyperbolic discounting. The final paper in this series clarifies that subproportionality both implies and is implied by hyperbolic discounting in the domain of single temporal prospects in continuous time, the objects of our model. For consumption streams in discrete time, [START_REF] Halevy | Strotz Meets Allais: Diminishing Impatience and Certainty Effect[END_REF]'s original topic, subproportionality still implies hyperbolic discounting, but the reverse direction requires more involved conditions, however.

Another recent contribution to modeling intertemporal choice is Kőszegi and Szeidl (2013)'s model of focusing. By explicitly taking into account attributes of the decision context, their model of attention is able to predict when people exhibit present or future bias. Our approach is able to generate future bias as well, if the decision maker is prone to a reverse common ratio effect (i.e. if the probability weighting function is supraproportional). [START_REF] Gabaix | Myopia and Discounting[END_REF] propose a yet different approach to time discounting. They derive hyperbolic discounting from the assumption that that decision makers obtain unbiased but noisy simulations of future utilities.

Both the source and the nature of uncertainty differ between their approach and ours: In their model, uncertainty captures the fact that the decision maker does not know the actual future utility she will experience. Simulation noise makes future utility more risky (in terms of secondorder stochastic dominance). In contrast, we model the fact that "something may go wrong", which adds a downside risk to future prospects (in terms of first-order stochastic dominance).

Moreover, [START_REF] Gabaix | Myopia and Discounting[END_REF] do not study the interaction of risk and time preferences.

Another regularity in the data concerns the process dependence of risk taking and time discounting behavior, Facts #3 and #4. In the domain of risk, the prevalent finding is that, on average, subjects do not reduce compound probabilities according to the rules of probability calculus. For example, [START_REF] Aydogan | An experimental test of reduction invariance[END_REF] show that for their participants the reduction principle is clearly violated at the aggregate level even though 60% of subjects behave in accordance with reduction. The aggregate result is driven by a minority of participants who depart strongly from reduction -in this case in the direction of a preference for sequential resolution. The authors attribute this finding to the utility of gambling. However, there is also abundant experimental evidence that the value of a compound lottery is smaller than the value of the equivalent single-stage lottery, for example [START_REF] Chung | An experimental test of event commutativity in decision making under uncertainty[END_REF], Budescu and[START_REF] Budescu | The Same But Different: An Empirical Investigation of the Reducibility Principle[END_REF][START_REF] Fan | Decisions With Compound Lotteries[END_REF][START_REF] Fan | Decisions With Compound Lotteries[END_REF] to name a few. It seems to be the case that the framing of the experimental tasks play a role whether one finds a preference or an aversion to compound risks [START_REF] Nielsen | Preferences for the resolution of uncertainty and the timing of information[END_REF].

One category of results concerns investment games [START_REF] Gneezy | An Experiment on Risk Taking and Evaluation Periods[END_REF][START_REF] Thaler | The Effect of Myopia and Loss Aversion on Risk Taking: An Experimental Test[END_REF][START_REF] Bellemare | Myopic Loss Aversion: Information Feedback vs. Investment Flexibility[END_REF][START_REF] Gneezy | Evaluation Periods and Asset Prices in a Market Experiment[END_REF][START_REF] Haigh | Do Professional Traders Exhibit Myopic Loss Aversion? An Experimental Analysis[END_REF]. The general finding is that people tend to invest less conservatively, i.e. they take on more risk, when they are informed about the outcomes of their decisions only infrequently. This finding is often interpreted as a manifestation of myopic loss aversion, a term coined by [START_REF] Benartzi | Myopic Loss Aversion and the Equity Premium Puzzle[END_REF]. In this context, myopia is defined as narrow framing of decision situations which focuses on short-term consequences rather than on long-term ones. Loss aversion, one of the key constituents of prospect theory, describes people's tendency to be more sensitive to losses than to gains. According to this interpretation, if people evaluate their portfolios frequently, the probability of observing a loss is much greater than if they do so infrequently.21 Whatever the specific experimental context, however, all these experiments share the feature that time delays were negligible. Tests of process dependence in genuinely temporal settings are still lacking.

Process dependence of risk taking was theoretically analyzed in the seminal contributions of Segal who deals with the evaluation of two-stage prospects in the domain of RDU (Segal, 1987a(Segal, ,b, 1990)). Dillenberger (2010) provides a necessary and sufficient condition for preferences for oneshot resolution of uncertainty which holds for example in [START_REF] Gul | A Theory of Disappointment Aversion[END_REF]'s theory of disappointment aversion, but not generally in RDU. However, we show in Appendix B.2 that this preference condition also applies to the class of resolution processes studied here.

In the domain of time discounting, a similar phenomenon of process dependence has been observed: The discounting shown over a particular delay is greater when the delay is divided into subintervals than when it is left undivided [START_REF] Read | Is Time-Discounting Hyperbolic or Subadditive?[END_REF][START_REF] Read | Subadditive versus Hyperbolic Discounting: A Comparison of Choice and Matching[END_REF][START_REF] Ebert | The Fragility of Time: Time-Insensitivity and Valuation of the Near and Far Future[END_REF][START_REF] Epper | Uncertainty Breeds Decreasing Impatience: The Role of Risk Preferences in Time Discounting[END_REF]Dohmen, Falk, Huffman, andSunde, 2012, 2017). This regularity of subadditive discounting has usually been interpreted as a manifestation of (pure) time preferences.

Fact #5 refers to the effect of the timing of uncertainty resolution on risk taking behavior. Several experimental studies investigated people's intrinsic preferences for resolution timing. The general finding is that there are varying percentages of people with preference for early resolution, preference for late resolution and timing indifference [START_REF] Chew | Hope: An Empirical Study of Attitude Toward the Timing of Uncertainty Resolution[END_REF][START_REF] Ahlbrecht | The Resolution of Uncertainty: An Experimental Study[END_REF][START_REF] Arai | Temporal Resolution of Uncertainty in Risky Choices[END_REF][START_REF] Lovallo | Living with Uncertainty: Attractiveness and Resolution Timing[END_REF][START_REF] Eliaz | Experimental Testing of Intrinsic Preferences for NonInstrumental Information[END_REF]von Gaudecker, van Soest, and Wengstr öm, 2011;[START_REF] Nielsen | Preferences for the resolution of uncertainty and the timing of information[END_REF]. Often, the percentage of people with a preference for late resolution is quite sizable [START_REF] Chew | Hope: An Empirical Study of Attitude Toward the Timing of Uncertainty Resolution[END_REF][START_REF] Ahlbrecht | The Resolution of Uncertainty: An Experimental Study[END_REF][START_REF] Arai | Temporal Resolution of Uncertainty in Risky Choices[END_REF][START_REF] Lovallo | Living with Uncertainty: Attractiveness and Resolution Timing[END_REF][START_REF] Eliaz | Experimental Testing of Intrinsic Preferences for NonInstrumental Information[END_REF]von Gaudecker, van Soest, and Wengstr öm, 2011;[START_REF] Ganguly | Fantasy and Dread: The Demand for Information and the Consumption Utility of the Future[END_REF]. 22 This finding is actually quite surprising, at least for situations when real money is at stake. Knowing early how much income to expect should always be advantageous for adapting one's consumption plans even though one might not be able to spend the money immediately.

In this context, a preference for late resolution of uncertainty can also be interpreted as an aversion to non-instrumental information. Information is non-instrumental when no further action can be taken that will change the decision maker's utility. 23 Grant, Kajii, and Polak (1998) present the following example of non-instrumental information: "Consider, for example, the decision of whether to be tested for an incurable genetic disorder. A director of a genetic counseling program told the New York Times that there are basically two types of people. There are 'want-to-knowers' and there are 'avoiders'. There are some people who, even in the absence of being able to alter outcomes, find information of this sort beneficial. The more they know, the more their anxiety level goes down. But there are others who cope by avoiding, who would rather stay hopeful and optimistic and not have the unanswered question answered." [START_REF] Grant | Intrinsic Preference for Information[END_REF], page 234).

An intrinsic preference for resolution timing cannot be accommodated by EUT but is usually modeled by an additional preference parameter [START_REF] Kreps | Temporal Resolution of Uncertainty and Dynamic Choice Theory[END_REF][START_REF] Chew | The Structure of Preferences and Attitudes towards the Timing of the Resolution of Uncertainty[END_REF]Grant, Kajii, and Polak, 2000). What these models cannot capture, however, is the probability dependence of timing preferences, as found by [START_REF] Arai | Temporal Resolution of Uncertainty in Risky Choices[END_REF], for example. [START_REF] Epstein | Cold Feet[END_REF]'s and Epstein ( 2008)'s axiomatic papers analyze resolution timing as well. According to their approach, decision makers may become more pessimistic as payoff time approaches, either due to changes in beliefs or anticipatory feelings (see also K öszegi and [START_REF] Rabin | Reference-Dependent Consumption Plans[END_REF] and [START_REF] Caplin | Psychological Expected Utility Theory and Anticipatory Feelings[END_REF]). 22 Epstein and Zin (1991) also find a preference for late resolution of uncertainty in market data on U.S. consumption and asset returns. In line with our predictions, preference for late resolution seems to be particularly pronounced for positively skewed distributions, i.e. for prospects with small probabilities of the best outcome, and increases with time delay -a prediction that is a distinguishing feature of our model. 23 There is a number of papers studying preference for instrumental information in non-expected utility models (see for instance [START_REF] Wakker | Nonexpected Utility as Aversion of Information[END_REF], [START_REF] Schlee | The Value of Information in Anticipated Utility[END_REF], [START_REF] Safra | Schur Convexity, Quasi-convexity and Preference for Early Resolution of Uncertainty[END_REF]. [START_REF] Li | Preferences for Partial Information and Ambiguity[END_REF] analyzes aversion to partial information in the context of an ambiguity averse preferences. See also the discussion of the value of information in [START_REF] Dillenberger | Preferences for One-Shot Resolution of Uncertainty[END_REF].

Fact #6 pertains to a number of experimental studies that report systematic effects of risk on discounting behavior: Discount rates for certain future payoffs tend to be higher than discount rates for risky future payoffs [START_REF] Stevenson | The Impact of Temporal Context and Risk on the Judged Value of Future Outcomes[END_REF]Ahlbrecht and Weber, 1997;[START_REF] Abdellaoui | Take Your Time or Take Your Chance: Time Discounting as a Distorted Probability[END_REF]. Risk-dependent discounting is also evident in diminishing immediacy: People's preference for present certain outcomes over delayed ones, immediacy, weakens drastically when the outcomes become risky -they behave as if they discounted the risky reward less heavily than the original certain one [START_REF] Keren | Immediacy and Certainty in Intertemporal Choice[END_REF][START_REF] Weber | The Combined Effects of Risk and Time on Choice: Does Uncertainty Eliminate the Immediacy Effect? Does Delay Eliminate the Certainty Effect?[END_REF][START_REF] Baucells | Probability and Time Tradeoff[END_REF]. This evidence motivated [START_REF] Halevy | Strotz Meets Allais: Diminishing Impatience and Certainty Effect[END_REF]'s conjecture that future uncertainty might be a driver of this phenomenon.

Furthermore, the valuation of future prospects appears to be order dependent: It makes a difference whether a risky future payoff is first devalued for risk and then for delay or in the opposite order [START_REF] Önc Üler | How Do We Evaluate Future Gambles? Experimental Evidence on Path Dependency in Risky Intertemporal Choice[END_REF]. When payoffs are discounted for risk first they are assigned a less favorable value than in the reverse case. Moreover, the delay-first value practically coincides with the value reported when both dimensions are accounted for in one single operation. This finding #7 can be also interpreted as a manifestation of risk dependence of discounting.

Concluding Remarks

We have demonstrated that our modeling approach organizes all seven stylized facts of experimental research and is also able to predict quantitatively aggregate experimental outcomes. In our view, apart from explaining the seven stylized facts uncovered by experiments, the model helps to better understand the patterns of heterogeneity in individual behaviors. Not everyone is prone to common ratio violations. In fact, almost any kind of shape of probability weighting can be found in individual estimates, and even among common-ratio violators the degree of subproportionality may vary greatly. Thus, our framework provides a host of predictions that can be investigated in future experimental research. For example, people with comparatively stronger subproportional probability weights should, ceteris paribus, exhibit a greater increase in risk tolerance for delayed prospects than less subproportional decision makers do. Similarly, the former group should show a greater preference for uncertainty to resolve in the future rather than in the present. Moreover, these effects are predicted to be more pronounced for positively skewed prospects -a prediction that is specific to our model. Sequential resolution of uncertainty is another area where more work needs to be done as evidence on substantially delayed prospects is still missing. Ideally, the same subjects should be exposed to the full program of experiments delineated in this paper to find out if and when our predictions materialize.

Another interesting test of the model can be based on the model's assumption that survival probability depends on time horizon according to s t . For a given subject pool at a given point in time the preference parameters and the uncertainty perception s should not vary across time horizons. Thus, if a given subject pool faces future prospects of different delays, we should not observe a change in the estimated value of s (nor a change in estimated preference param-eters) because such a change would challenge the assumption that survival probability can be represented by s t .

The ultimate test of our model, however, is to exogenously manipulate the subjective probability that something may go wrong, s, the second crucial component of our approach aside from subproportionality. As effect sizes also depend on the perceived uncertainty of the future, such a manipulation can shed light on the question whether our model has actually identified an important causal driver of behavior.

Aside from conducting new experiments, the usefulness of our approach should be tested in the field as well. Both financial and insurance markets are fruitful areas for such an endeavor. [START_REF] Barberis | Thirty Years of Prospect Theory in Economics: A Review and Assessment[END_REF] concludes his review of 30 years of prospect theory in the following way: "Probability weighting, [...] has drawn increasing interest in recent years. Indeed, within the risk-related areas of finance, insurance, and gambling, probability weighting plays a more central role than loss aversion and has attracted significantly more empirical support" (page 191). Thus, our survival-risk augmented version of probability weighting could be put to the test in these fields as well. Puzzles like the maturity dependence of risk premia may appear in a new light. Another fertile application may be option prices: [START_REF] Polkovnichenko | Probability Weighting Functions Implied in Options Prices[END_REF] show the usefulness of probability weighting for explaining option prices which could be enhanced by incorporating the maturity dimension as well. 24 Insurance markets are another domain where our approach may reconcile conflicting findings: Recognizing that risk preferences are delay dependent may help understand why people are willing to pay outrageous premiums for certain insurance contracts, such as extended warranties, and totally unwilling to take out insurance at all, such as in the health domain.

We do not claim that subproportionality plus future uncertainty are the only important drivers in the domain of risk-and time-dependent decision making. Other factors such as concave utility, intrinsically hyperbolic pure time preferences or reference dependence are also likely to play a role. However, there is accumulating evidence that risk and time preferences are intertwined and interact in systematic ways and we are just beginning to understand the factors underlying these phenomena. We have shown that subproportionality plus subjectively perceived future uncertainty provides a unifying explanation for a set of key facts -suggesting that these factors should be taken seriously in future research.

A Propositions and Proofs

A.1 The General m-Outcome Case

Rearranging terms in Equation 2yields

V(P) = u(x 1 )w(p 1 ) + u(x 2 ) w(p 1 + p 2 ) -w(p 1 ) + ... + u(x m ) 1 -w(1 -p m ) = u(x 1 ) -u(x 2 ) w(p 1 ) + ... + u(x m-1 ) -u(x m ) w(1 -p m ) + u(x m ) . ( 28 
)
This representation of V clarifies that x m is effectively a sure thing whereas obtaining something better than x m is risky.

Setting u(x) = 0, the subjective present value of the prospect amounts to

V( P) 0 = u(x 1 ) -u(x 2 ) w(p 1 s t ) + ... ... + u(x m-1 ) -u(x m ) w (1 -p m )s t + u(x m )w(s t ) ρ(t) = u(x 1 ) -u(x 2 ) w(p 1 s t ) w(s t ) + ... ... + u(x m-1 ) -u(x m ) w (1-p m )s t w(s t ) + u(x m ) w(s t )ρ(t) . ( 29 
)
From the point of view of an outsider observer, the subjective probability distribution of prospect P is not observable. Consequently, she infers probability weights w and discount weights ρ from observed behavior on the presumption that the decision maker evaluates the objectively given prospect P, and estimates preference parameters according to RDU in the standard way:

V( P) 0 = u(x 1 ) -u(x 2 ) w(p 1 ) + ... + u(x m-1 ) -u(x m ) w(1 -p m ) + u(x m ) ρ(t) . (30) 
A.2 Proposition 1: Characteristics of w(p)

Given subproportionality of w, t > 0 and s < 1:

1. The function w is a proper probability weighting function, i.e. monotonically increasing in p with w(0) = 0, w(1) = 1.

2. w is subproportional.

3. w is more elevated than w: w(p) > w(p). The gap between w(p) and w(p) increases with

• time delay t,

• survival risk 1 -s, and • comparatively more subproportional w.

The relative gap w(p)

w(p) declines in p.

5. w is less elastic than w.

6. The decision weight of the (objectively) worst possible outcome, x m , decreases with delay t.

Proof of Proposition 1

1. Since w(0) = w(0) w(s t ) = 0, w(1) = w(s t ) w(s t ) = 1, and w = w (ps t )s t w(s t )

> 0 hold, w is a proper probability weighting function.

2. Subproportionality of w follows directly from subproportionality of w as for p > q and 0 < λ < 1: w(λp) w(λq) = w(λs t p) w(λs t q) < w(s t p) w(s t q) = w(p) w(q) . ( 31)

3.

• Since w is subproportional,

w(p) = w(ps t ) w(s t ) > w(p) w(1) = w(p) (32) 
holds for s < 1 and t > 0. Therefore, w is more elevated than w.

• Obviously, elevation gets progressively higher with increasing t and an equivalent effect is produced by decreasing s. Since w increases monotonically in t and w ≤ 1 for any t, elevation increases at a decreasing rate.

• In order to show that a comparatively more subproportional probability weighting function entails a greater increase in observed risk tolerance we examine the relationship between the underlying atemporal probability weights w and observed ones w.

Let w 1 and w 2 denote two probability weighting functions, with w 2 exhibiting greater subproportionality.

If w 1 (λ)w 1 (p) = w 1 (λpq) holds for a probability q < 1, then w 2 (λ)w 2 (p) < w 2 (λpq) follows as w 2 is more subproportional than w 1 [START_REF] Prelec | The Probability Weighting Function[END_REF]. Choose r < 1 such that w 2 (λ)w 2 (p) = w 2 (λpqr). For λ = s t , the following relationships hold:

w1 (p) w 1 (p) = w 1 (λp) w 1 (λ)w 1 (p) = w 1 (λp) w 1 (λpq) . ( 33 
)
Applying the same logic to w 2 yields w2 (p)

w 2 (p) = w 2 (λp) w 2 (λ)w 2 (p) = w 2 (λp) w 2 (λpqr) > w 2 (λp) w 2 (λpq) . ( 34 
)
Therefore, the relative wedge w2 (p) w 2 (p) caused by subproportionality is larger than the corresponding one for w 1 . pw(s t )w(p) [ε w (ps t )ε w (p)] < 0, as the elasticity of a subproportional w, ε w , is increasing in p.

It is straightforward to show that

5.

For the elasticity of w, ε w( p), the following relationship holds:

ε w( p) = w (p)p w(p) = w (ps t )ps t w(ps t ) = ε w (ps t ) < ε w (p) , (35) 
as the elasticity ε w increases in its argument iff w is subproportional.

6. As w(p) > w(p) holds for any 0 < p < 1, πm = 1 -w(1 -p m ) < 1 -w(1 -p m ) = π m results for the decision weight of x m . As w increases with t, the weight of x m declines with time delay.

A.3 Proposition 2: Characteristics of ρ(t)

Given subproportionality of w:

1. ρ(t) is a proper discount function for 0 < s ≤ 1, i.e. decreasing in t, converging to zero with t → ∞, and ρ(0) = 1.

2. Observed discount rates η(t) are higher than the rate of pure time preference η for s < 1.

3. Observed discount rates decline with the length of delay for s < 1.

4.

Greater survival risk generates a greater departure from constant discounting.

5.

Comparatively more subproportional probability weighting generates a comparatively greater departure from constant discounting.

Proof of Proposition 2

1. ρ(0) = w(s 0 )ρ 0 = 1. Since w > 0 holds, ∂w(s t ) ∂t < 0 and, therefore, ρ < 0. Finally, lim t→∞ ρ(t) = 0 (in terms of discount rates: lim t→∞ η(t) = η).

2. Discount rates are generally defined as the rates of decline of the respective discount functions, i.e. η = -ρ (t) ρ(t) and η(t) = -

ρ (t) ρ(t) . Therefore, η(t) = - ρ (t) ρ(t) = - w (s t )s t ln(s) exp(-ηt) -w(s t ) exp(-ηt)η w(s t ) exp(-ηt) = - w (s t )s t w(s t ) ln(s) -η = -ln(s)ε w (s t ) + η > η (36)
since ln(s) < 0, w > 0, w > 0. Note that w (s t ) w(s t ) s t corresponds to the elasticity of the probability weighting function w evaluated at s t , ε w (s t ).

3. Since the elasticity of a subproportional function is increasing in its argument, the elasticity of w(s t ) is decreasing in t. Thus,

η (t) = -ln(s) ∂ε w (s t ) ∂t < 0 . ( 37 
)
4. In order to derive the effect of increasing survival risk, i.e. decreasing s, we examine the sensitivity of ρ(t+1) ρ(t) ρ(1) = w(s t+1 ) w(s)w(s t ) , which measures the departure from constant discounting between periods t + 1 and t, with respect to changing s:

∂ ∂s w(s t+1 ) w(s)w(s t ) = 1 w(s)w(s t )
2 (1 + t)s t w(s)w(s t )w (s t+1 ) -ts t-1 w(s)w(s t+1 )w (s t ) -w(s t )w(s t+1 )w (s) = 1 s w(s)w(s t ) 2 (1 + t)s t+1 w(s)w(s t )w (s t+1 ) -ts t w(s)w(s t+1 )w (s t ) -sw(s t )w(s t+1 )w (s) = w(s t+1 ) sw(s)w(s t ) (1+t)s t+1 w (s t+1 ) w(s t+1 )

ts t w (s t ) w(s t ) -sw (s)

w(s) = w(s t+1 ) sw(s)w(s t ) (1 + t)ε w (s t+1 ) -tε w (s t ) -ε w (s) < 0 .
As s t+1 < s t < s, ε w (s t+1 ) < ε w (s t ) < ε w (s) and, hence, the sum of the elasticities in the final line of the derivation is negative. Therefore, increasing survival risk, i.e. decreasing s, entails a greater departure from constant discounting.

5.

In order to examine the effect of the degree of subproportionality on decreasing impatience, suppose that the probability weighting function w 2 is comparatively more subproportional than w 1 , as defined in [START_REF] Prelec | The Probability Weighting Function[END_REF], and that the following indifference relations hold for two decision makers 1 and 2 at periods 0 and 1:

u 1 (y) = u 1 (x)w 1 (s)ρ for 0 < y < x, u 2 (y ) = u 2 (x )w 2 (s)ρ for 0 < y < x . ( 38 
)
Due to subproportionality, the following relation holds for decision maker 1 in period t:

1 = u 1 (x)w 1 (s)ρ u 1 (y) < u 1 (x)w 1 (s t+1 )ρ t+1 u 1 (y)w 1 (s t )ρ t . (39)
Therefore, the probability of prospect survival has to be reduced by compounding s over an additional time period ∆t to re-establish indifference:

u 1 (y)w 1 (s t )ρ t = u 1 (x)w 1 (s t+1+∆t )ρ t+1 . ( 40 
)
It follows from the definition of comparative subproportionality that this adjustment of the survival probability by ∆t is not sufficient to re-establish indifference with respect to w 2 , i.e. u 2 (y )w 2 (s t )ρ t < u 2 (x )w 2 (s t+1+∆t )ρ t+1 . (41)

A.4 Folding Back of Survival Trees

In RDU, subproportional preferences are generally not sufficient to produce a preference for oneshot resolution of uncertainty. Resolution processes that can be represented by a survival tree are an exception -in this case, folding back of the tree generates compounded decision weights that are always smaller than the corresponding one-shot weights. To illustrate this result, we use an example with n = 3 stages and m = 3 outcomes, as the n = m = 2-case is trivial.

A survival tree is characterized by the following resolution process: At each chance node either the certain outcome materializes or the tree continues to the next stage when everything is still possible. Our example is depicted in Figure 10. 

x 3 1 -p x 3 1 -q x 3 1 -r 1 -r 2 x 2 r 2 x 1 r1 q p
The tree depicts the resolution of survival risk of a prospect P = (x 1 , pqr 1 ; x 2 , pqr 2 ; x 3 , 1 -pq(r 1 + r 2 )) in three stages.

which corresponds to the representation in Equation 48where the passage of time is modeled explicitly by the partial probabilities. 
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The tree depicts the resolution of survival risk of a prospect P = (x 1 , pqr 1 s 3 ; x 2 , pqr 2 s 3 ; x 3 , (1 -(r 1 + r 2 ))pqs 3 ; x, 1pqs 3 ) in three stages.

These results generalize to multi-outcome prospects resolving over more than two stages if uncertainty resolves in a way analogous to the process described above: The topmost branch of the survival tree defines the path to "everything is still possible" when uncertainty resolves fully at the payment date. At each chance node along this topmost path the tree has three branches, where the two branches below the topmost one reflect the partial resolution of uncertainty of x m contingent on its stage-by-stage prospect survival, and of x, respectively. In this case, for any number of outcomes m ≥ 1, the observed probability weights are given by wn (p, t) =

∏ n i=1 w p

τ i t s τ i ∏ n i=1 w (s τ i ) = n ∏ i=1 w p τ i t , τ i , (48) 
when the interval [0, t] is partitioned into n subintervals with lengths τ i , i ∈ {1, ..., n}, such that

∑ n i=1 τ i = t.
The following Proposition 3 summarizes our insights on subproportional probability weights w themselves, which drive overall prospect value, without teasing apart the separate effects on observed risk tolerance and discounting behavior. We extend these results to observed risk tolerance w in Proposition 4. Since discount weights ρ(t) = w(s t ) are simple probability weights themselves, Proposition 3 also speaks directly to observed discounting behavior.

Segal's work on two-stage prospects encompass the following results: For 1 > p = qr > 0 the compounding of the respective weights always leads to lower prospect values, i.e. w(qr) > w(q)w(r) holds whatever are the values of q and r. Here the order of r and q, i.e. which probability resolves first, does not play a role. Furthermore, a prospect's minimum value is attained when compounding occurs over equiprobable stages, i.e. when r = q = √ p. We generalize these insights in Proposition 3.

Additionally, it can be schown that positively skewed prospects are affected more strongly by compounding of the respective probability weights: ∂ ∂p w(p) w(q)w(p/q) = w(p) pw(q)w(p/q) [ε(p)ε(p/q)] < 0, as p < p/q and the elasticity of w, ε, is increasing in p.

A.5 Proposition 3: Characteristics of w n (p)

Given subproportionality of w, s < 1, t > 0, prospect risk and survival risk resolving simultaneously along a survival tree, and folding back:

1. For any number of resolution stages n > 1, probability weights w for one-shot resolution of uncertainty are greater than compounded probability weights for sequential resolution.

2. For a given number of resolution stages n, probability weights are smallest for evenly spaced partitions τ i = t n = τ.

3. For evenly spaced partitions, probability weights decline with the number of resolution stages n.

Proof of Proposition 3

1. Setting q = ps t or q = s t , respectively, we prove by induction that w(q) > ∏ n i=1 w(q i ) for probability q, 0 < q < 1, and q = ∏ n i=1 q i .

• For n = 2 subproportionality implies w(q) = w(q 1 q 2 ) > w(q 1 )w(q 2 ).

• Assume that w(∏ n i=1 r i ) > ∏ n i=1 w(r i ) for any probabilities 0 < r i < 1. • For q = ∏ n+1 j=1 q j subproportionality implies

w(q) = w q n+1 n ∏ i=1 q i > w(q n+1 )w n ∏ i=1 q i > w(q n+1 ) n ∏ i=1 w(q i ) = n+1 ∏ j=1
w(q j ).

2. Without loss of generality, we reorder the sequence of subintervals such that τ 1 ≤ τ 2 ≤ ... ≤ τ n . For some i, τ i-1 < τ i holds because otherwise the partition would be equally spaced right away. In this case, there exists ε > 0 such that τ i-1 + ε < τ iε is still satisfied. Due to subproportionality, the following relationship holds for 0 < q < 1:

w(q τ i-1 ) w(q τ i -ε ) > w(q τ i-1 q ε ) w(q τ i -ε q ε ) = w(q τ i-1 +ε ) w(q τ i ) , (49) 
implying w(q τ i-1 )w(q τ i ) > w(q τ i -ε )w(q τ i-1 +ε ).

3. Consider two equally spaced partitions of [0, t]:

(τ i = t n =: τ) i=1,...,n and (δ i = t n-1 =: δ) i=1,...,n-1 . Our claim is that for 0 < p ≤ 1, n ∏ i=1 w p τ t s τ < n-1 ∏ i=1 w p δ t s δ . (50) 
Setting q = p 1 t s t n(n-1) , we examine whether

w q n-1 n < w q n n-1 . ( 51 
)
Proceeding by induction:

• n = 2: Subproportionality implies w(q) 2 < w q 2 .

• n = 3: Subproportionality implies w q 3 > w(q 2 ) 2 w(q)

. Thus,

w(q 3 ) 2 > w(q 2 ) 2 w(q) w(q 2 ) 2 w(q) > w(q 2 ) 3 w(q 2 ) w(q) 2 > w(q 2 ) 3 w(q) 2 w(q) 2 = w(q 2 ) 3 . (52) 
• n → n + 1: Suppose that w(q n-1 ) n < w(q n ) n-1 holds. Subproportionality implies w(q n-1 )

w(q n ) > w(q n ) w(q n+1 ) . Hence,

w(q n+1 ) n > w(q n )w(q n ) w(q n-1 ) n = w(q n ) n+1 w(q n ) n-1 w(q n-1 ) n > w(q n ) n+1 w(q n-1 ) n w(q n-1 ) n = w(q n ) n+1 . ( 53 
)
Since observed risk tolerance depends on the interaction of probability weights and discount weights (subproportional probability weights themselves), it is a priori not clear whether all these characteristics carry over to observed risk tolerance. As it turns out, with one exception, the characteristics of subproportional probability weights shape observed delay-dependent risk tolerance accordingly. We enter uncharted territory with the following proposition because to our knowledge so far no experiments on the process dependence for genuinely delayed risks exist.

A.6 Proposition 4: Characteristics of wn (p)

Given subproportionality of w, s < 1, t > 0, prospect risk and survival risk resolving simultaneously along a survival tree, and folding back:

1. For any number of resolution stages n > 1, risk tolerance is higher for one-shot resolution of uncertainty than for sequential resolution of uncertainty, w(p, t) > wn (p, t).

2. For a given number of resolution stages n, risk tolerance is lowest for evenly spaced partitions if the elasticity of w is concave.

3. For evenly spaced partitions, risk tolerance declines with the number of resolution stages, wn (p, t) < wn-1 (p, t).

Proof of Proposition 4

1. Consider Equation 48:

wn (p, t) = n ∏ i=1 w p τ i t , τ i . Note that w p τ i t , τ i = w p τ i t s τ i w(s τ i ) < w p τ i t s τ i s t-τ i w(s τ i s t-τ i ) = w p τ i t s t w(s t ) = w p τ i t , t .
According to Proposition 1, w (p, t) is subproportional for a fixed length of delay t and, therefore,

wn (p, t) < n ∏ i=1 w p τ i t , t < w n ∏ i=1 p τ i t , t = w(p, t) . ( 54 
)
2. We proceed by induction.

• Consider the case of n = 2 and assume that the time interval of length t is divided into two subintervals of lengths τ and tτ with τ < t 2 < tτ. We compare wn corresponding to the evenly spaced partition w (s τ ) w (s t-τ ) .

Since p 1 t s < s for any 0 < p < 1, this condition amounts to requiring that w q t 2 w q t 2 w(q τ )w(q t-τ ) increases in q, 0 < q < 1. It is straightforward to show that its derivative with respect to q equals ∂ ∂q

w(q t 2 )w(q t 2 ) w(q τ )w(q t-τ ) = t w q t 2 2 qw(q τ )w(q t-τ ) ε w (q t 2 ) -λε w (q τ ) + (1 -λ)ε w (q t-τ ) ,
where λ = τ t . As τ < t 2 < tτ and ε w q t-τ < ε w q t 2 < ε w (q τ ), the term in the brackets is positive if the elasticity of w, ε w , is a strictly concave function.

• For n ≥ 2 the general formula for the derivative reads as

w(q t n ) n q ∏ n i=1 w(q τ i ) tε w (q t n ) - n ∑ i=1 τ i ε w (q τ i ) ,
where (τ i ) i=1,...,n is a partition of the time interval t with ∑ n i=1 τ i = t.

• n → n + 1: Assume that for t > 0 tε w (q

t n ) - n ∑ i=1 τ i ε w (q τ i ) > 0 (55)
holds. Define a partition (δ i ) i=1,...,n+1 of t as follows:

δ i = nτ i n + 1 for 1 ≤ i ≤ n δ n+1 =t - n ∑ i=1 δ i = t n + 1
Then the following relationships result:

n+1 ∑ i=1 δ i ε w q δ i = n ∑ i=1 nτ i n + 1 ε w q nτ i n+1 + t n + 1 ε w q t n+1 tε w q t n+1 - t n + 1 ε w q t n+1 = tn n + 1 ε w q t n+1
Since Equation 55 holds for any t > 0 and, therefore, also for t = tn n+1 and τi = nτ i n+1 ,

tε w q t n - n ∑ i=1 τi ε w q τi > 0, (56) 
which implies tn n + 1 ε w q t n+1 - n ∑ i=1 nτ i n + 1 ε w q nτ i n+1 > 0. ( 57 
)
3. We examine whether

  w (p 1 t s) t n w(s t n )   n <   w (p 1 t s) t n-1 w(s t n-1 )   n-1 , which is equal to the condition that w (p 1 t s) t n n w (p 1 t s) t n-1 n-1 < w(s t n ) n w s t n-1 n-1 .
Therefore, we examine whether the derivative of

w q t n n w q t n-1 n-1 with respect to q is positive. It is straightforward to show that ∂ w q t n n w q t n-1 n-1 ∂q = t w q t n n q w q t n-1 n-1 ε w q t n -ε w q t n-1 > 0 (58)
as the elasticity of w is increasing.

Contrary to the underlying probability weights w themselves, subproportionality alone does not guarantee that, for a given number of resolution stages, risk tolerance w attains its minimum at evenly spaced partitions. The additional requirement of concavity of the elasticity of w implies that the elasticity increases more quickly for small probabilities than for large ones. While such a characteristic has not attracted any attention in the literature, there is a nice specimen of a subproportional regressive probability weighting function with concave elasticity, the so-called neo-additive specification

w(p) =      0 for p = 0 β + αp for 0 < p < 1 1 for p = 1 . ( 59 
) with 0 < β < 1, 0 < α ≤ 1 -β. If β = 0, w is not subproportional, for α + β = 1 it is not regressive.
It is linear over the inner probability interval and, thus, provides an excellent approximation for the commonly used nonlinear functional forms. Since we rarely, if at all, have experimental evidence for behavior over probabilities that are extremely small or extremely large, such an approximation seems justified. This specification is also very useful for the case of ambiguity, when the probabilities are not precisely known [START_REF] Chateauneuf | Choice Under Uncertainty With the Best and Worst in Mind: Neo-additive Capacities[END_REF].

A.7 Proposition 5: Preferences for Resolution Timing

Given subproportionality of w, s < 1, t 1 < t, and folding back:

1. Prospects with prospect risk resolving at the time of payment t are valued more highly than prospects resolving at t 1 < t.

2. The wedge between late and immediate resolution, w(ps t )

w(p)w(s t ) , declines with probability p.

3. The wedge between late and immediate resolution increases with time horizon t and survival risk 1 -s.

Proof of Proposition 5 Without loss of generality, we set the number of outcomes m = 2.

1. The value of the prospect to be resolved immediately amounts to

u(x 1 ) -u(x 2 ) w(p) + u(x 2 ) w(s t ) < u(x 1 ) -u(x 2 ) w(ps t ) w(s t ) + u(x 2 ) w(s t ) , (60) 
as w(ps t ) > w(p)w(s t ) is implied by subproportionality of w. Thus, prospects resolving at the date of payment t are valued more highly than prospects with immediate resolution.

What happens if prospect risk is not resolved immediately but rather at some later time t 1 , 0 < t 1 < t? After t 1 , only survival risk remains to be resolved. In this case, the prospect's present value amounts to u(x 1 ) -u(x 2 ) w(ps t 1 ) w(s t 1 ) + u(x 2 ) w(s t 1 )w(s t-t 1 ) . ( 61)

Subproportionality implies w(p) < w(ps t 1 ) w(s t 1 ) < w(ps t ) w(s t ) and, therefore, observed risk tolerance is highest for resolution at payment time t. Moreover, the late-resolution discount weight w(s t ) = w(s t 1 s t-t 1 ) is also greater than w(s t 1 )w(s t-t 1 ) for any earlier t 1 , implying that late resolution is always preferred. 

Examining the derivative of

= w(ps t ) pw(p) ε w (ps t ) -ε w (p) <0 , (62) 
as p > ps t and the elasticity is increasing. Therefore, the wedge between late evaluation and immediate evaluation decreases with p. 

The derivative of

as ln(s) < 0, s t > ps t and the elasticity is increasing. Therefore, the wedge between late and immediate evaluation increases with time horizon t and, equivalently, with survival risk 1 -s.

While it is always the case that late resolution at t is preferred to any earlier resolution time t 1 , we cannot ascertain that preferences for later resolution timing increase monotonically in t 1 . Examining the earlier situation (Panel ii) in Figure 12, renders the prospect value (setting ρ = 1 again)

u(x 1 ) -u(x 2 ) w(ps t 1 )w(s t-t 1 ) + u(x 2 )w(s t 1 )w(s (1) Later: The tree depicts uncertainty resolution during the final stage.

(2) Sooner: The probability tree shows the resolution of prospect risk after the first stage, with survival risk fully resolving at t.

We have already established that the weight of the allegedly certain outcome x 2 , w(s t 1 )w(s t-t 1 ), attains its minimum value at t 1 = t /2. Analogously, for the risky component ps t 1 = s t-t1 must hold at its minimum. Solving for t 1 yields

t * 1 = t 2 - ln(p) 2 ln(s) , (65) 
which lies below t 2 . Regarding a simple prospect (x, p), if t * 1 > 0, then earlier resolution may be preferred to some later times before t 2 , otherwise prospect value increases monotonically in resolution time. The latter is the case for p ≤ s t . For a given prospect, this condition is more likely to be met for low survival risk and/or short time horizons.

B Additional Materials

B.1 The Equivalence of Subproportionality and Increasing Elasticity

We use [START_REF] Prelec | The Probability Weighting Function[END_REF] definition of (strict) subproportionality: A probability weighting function w(p) is subproportional if for all 1 ≥ p > q > 0 and 0 < λ < 1 w(p) w(q) > w(λp) w(λq) . (66)

As p > q, Equation 66 holds if and only if 

⇐⇒ ε(p) > ε(q) , (67) 
where ε denotes the elasticity of w, i.e. iff the elasticity of w is increasing.

B.2 A Note on Sequential Evaluation

In his Proposition 1, [START_REF] Dillenberger | Preferences for One-Shot Resolution of Uncertainty[END_REF] shows that, under recursivity, negative certainty independence (NCI) and a weak preference for one-shot resolution of uncertainty (PORU) are equivalent. The NCI axiom requires the following to hold: If a prospect P = (x 1 , r; x 2 , 1 -r) is weakly preferred to a degenerate prospect D = (y, 1), then mixing both with any other prospect does not result in the mixture of the degenerate prospect D being preferred to the mixture of P. This axiom is weaker than the standard independence axiom and does not put any restrictions on the reverse preference relation when a degenerate prospect is originally preferred to a non-degenerate one. The latter case characterizes the typical Allais certainty effect. NCI allows for Allais-type preference reversals but does not imply them. David Dillenberger's Proposition 3 demonstrates that NCI is generally incompatible with rank-dependent utility unless the probability weighting function is linear, i.e. unless RDU collapses to EUT. An intuitive explanation for Dillenberger's Proposition 3 is that under RDU prospect valuation is sensitive to the rank order of the outcomes and, therefore, mixtures with other prospects may affect the original rank order of outcomes in P (and D). How does Dillenberger's result relate to our claim that subproportional probability weights conjointly with recursivity imply a strong preference for one-shot resolution of uncertainty?

The crucial insight is that for the class of resolution processes studied in this paper changes in rank order do not occur and NCI is satisfied. To see this, assume that the prospect (x 1 , p; x 2 , 1p), x 1 > x 2 ≥ 0, gets resolved in two stages (x 1 , r; x 2 ), q; (x 2 , 1), 1 -q such that p = qr. In the atemporal case, when there is no additional survival risk, the two-stage prospect continues to be a strictly two-outcome one and the only relevant mixtures are those involving x 2 . Suppose that P = (x 1 , r; x 2 , 1 -r) (y, 1) = D, with x 1 > y > x 2 and consider the following mixtures with (x 2 , 1λ) for some λ ∈ (0, 1): P = (x 1 , λr; x 2 , 1λr) and D = (y, λ; x 2 , 1λ). The following 

B.3 Overview of Studies Used for Quantitative Assessment

B.4 Characteristics of Functional Specifications of Probability Weights

In this section we a number of probability weighting functions that are either globally or locally subproportional. We limit our attention to functional forms with at most two parameters. Recall that subproportionality is equivalent to increasing elasticity. Consequently, if the elasticity is U-shaped, the function is supraproportional over the range of small probabilities and subproportional over large probabilities. These functions still capture the certainty effect but not necessarily general common-ratio violations. Many specifications used in the literature exhibit such a characteristic. Some experimenters found reverse common-ratio violations which require supraproportionality over the relevant probability range (see e.g. [START_REF] Blavatskyy | Reverse Common Ratio Effect[END_REF]). Ultimately, it is an empirical issue whether locally or globally subproportional functions fit better.

Polynomials are linear in the parameters and, thus, generally less flexible than specifications that are nonlinear in the parameters. Note that second-order polynomials demarcate the intersection of the class of quadratic utility and RDU (see also the discussion in [START_REF] Masatlioglu | A Behavioral Analysis of Stochastic Reference Dependence[END_REF]).

Gul (1991)'s theory of disappointment aversion, for example, implies a strictly convex subproportional function in the context of RDU for two-outcome prospects. Another interesting specimen is the probability weighting function discussed in [START_REF] Delquié | Disappointment Without Prior Expectation: a Unifying Perspective on Decision Under Risk[END_REF]. In the context of RDU, their model of disappointment aversion generates a subproportional secondorder polynomial that is equivalent to the one implied by K öszegi and Rabin (2007)'s choiceacclimating personal equilibrium, which provides an endogenous reference point [START_REF] Masatlioglu | A Behavioral Analysis of Stochastic Reference Dependence[END_REF]. The same polynomial also emerges in [START_REF] Safra | Constant Risk Aversion[END_REF]'s approach to constant risk aversion. This concept captures the idea that a decision maker commits to a choice long before uncertainty is resolved, and is, therefore, particularly plausible in the context of our model. Under specific assumptions, [START_REF] Bordalo | Salience Theory of Choice under Risk[END_REF] derive (discontinuous) context-dependent probability distortions from their salience theory. While their concave segment is supraproportional, the convex segment is subproportional, both of the Gul (1991) variety with 0 < β < 1 and β > 1, respectively. The psychological mechanisms underlying probability weighting, therefore, often imply at least some extent of subproportionality.

An intermediate case is the constant-sensitivity specification suggested by [START_REF] Abdellaoui | Separating Curvature and Elevation: A Parametric Probability Weighting Function[END_REF] which is subproportional for large probabilities but exhibits constant elasticity for small probabilities. Thus, risk tolerance increases with delay until it hits an upper bound, staying constant afterwards. Ultimately, it is an open question whether this feature is consistent with actual behavior, which provides a fruitful avenue for future research. In particular, the associated discount function is characterized by decreasing impatience for more imminent time horizons, but constant impatience for more remote horizons. Thus, it constitutes an alternative to the quasi-hyperbolic β-δ model. for p = 0 β + αp for 0 < p < 1 1 for p = 1 0 < β < 1, 0 < α ≤ 1β increasing, concave regressive [START_REF] Bell | Disappointment in Decision Making under Uncertainty[END_REF]; [START_REF] Cohen | Security Level, Potential Level, Expected Utility: a Three-criteria Decision Model Under Risk[END_REF]; [START_REF] Chateauneuf | Choice Under Uncertainty With the Best and Worst in Mind: Neo-additive Capacities[END_REF] * Increasing elasticity is equivalent to subproportionality. * * An inverse-S shape means that both tails are overweighted, i.e. that the weighting function is regressive. (1) Equivalent to power specification w(p) = p β .

(2) The weighting function consists of a concave and a convex segment with a jump discontinuity in between (see text).

(3) For α > 1, β = 1 constant elasticity, convex; for α < 1, β = 0 increasing elasticity, convex. (4) Special case of [START_REF] Blavatskyy | A Probability Weighting Function for Cumulative Prospect Theory and Mean-Gini Approach to Optimal Portfolio Investment[END_REF] with β = 0.

(5) Specific parameter constellations with β > 0 generate regressive with U-shaped elasticity. (6) The full specification of the conditional invariant form also contains the power function (see row 1) as a special case [START_REF] Prelec | The Probability Weighting Function[END_REF], Proposition 4).

Figure 1 :
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 7 Figure 7: Extension: Preferences for the Resolution of Uncertainty with Survival Risk

Figure 8 :

 8 Figure 8: Late and Immediate Resolution of Prospect Risk

  (

  Figure 9:Observed versus Predicted Weighting Functions
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 : Figure:The green curve corresponds to the atemporal probability weighting function, w t=0 , generated by our global parameter values. The red curve depicts the probability weighting function estimated by[START_REF] Abdellaoui | The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation[END_REF] for uncertainty resolution in three months, w t=3 (see Panel B in their Figure9on page 713). The blue cross-shaped curve is our prediction for the global parameter values and a survival probability of s * = 0.825. Table:For each of the five probabilities in[START_REF] Abdellaoui | The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation[END_REF], the table contrasts observed decision weights of the better outcome with decision weights predicted by our model with global parameter values and s * = 0.825. The exact observed weights are computed using the probability weighting function estimated by[START_REF] Abdellaoui | The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation[END_REF].
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Table 1 :

 1 Seven Stylized Facts on Risk Taking and Time Discounting

	Dimension	Fact Observed risk tolerance	Fact Observed patience
	Delay dependence	#1	increases with delay	#2	increases with delay
	Process dependence #3	higher for one-shot than	#4	higher for one-shot than
			for sequential valuation		for sequential valuation
	Timing dependence #5	intrinsic preference for timing of uncertainty reso-		-
			lution		
	Risk dependence		-	#6	higher for risky payoffs than for certain ones
	Order dependence	#7	depends on order of delay and risk discounting		-

Table 2 :

 2 Model Variables

	interpreting w as true probability weights and ρ as true discount weights, while in fact the
	weights are distorted by survival risk. By comparing Equation 9 with Equation 10 we can see
	that the relationships between true and observed weights are given by
			w(p) =	w(ps t ) w(s t )	(11)
	and			
			ρ(t) = w(s t )ρ(t) .	(12)
	These equations define the central relationships between observed and true underlying prob-
	ability and discount weights. Concerning observed discount weights, Equation 12 resembles
	Halevy (2008)'s representation for consumption streams in discrete time, while the focus here is
	on temporal prospects in continuous time. This equation is the basis for explaining hyperbolic
	and subadditive discounting, while all the other facts rest on Equation 11, a novel prediction of
	our model.			
	Since w(p) = w(p) and ρ(t) = ρ(t), the presence of survival risk drives a wedge between
	true underlying preferences and observed risk taking and discounting behavior. Thus, future
	risk conjointly with proneness to Allais-type behavior provides the mechanism by which behav-
	ior under risk and behavior over time are intertwined. A summary of the model variables is
	provided in Table 2.		
		Variable Description		Characteristics
	Prospects	x p s 1 -s t	monetary payoff probability of x probability of prospect survival 0 < s < 1 x ≥ 0 0 ≤ p ≤ 1 survival risk " length of time delay t ≥ 0
	Preferences	u(x) w(p) η ρ(t)	utility function true probability weight rate of pure time preference discount weight	u(0) = 0, u > 0 w(0) = 0, w(1) = 1, w > 0 η ≥ 0, constant ρ(t) = exp(-ηt)
	Behavior	w(p) ρ(t) η(t)	observed probability weight observed discount weight observed discount rate	w(p) = w(ps t ) w(s t ) ρ(t) = w(s t )ρ(t) η(t) = -

Table 3 :

 3 Global Parameter Values Power utility function: u(x) = x γ . Time discount function:ρ(t) = exp(-ηt).experimental sessions.[START_REF] Abdellaoui | The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation[END_REF] assume a[START_REF] Prelec | The Probability Weighting Function[END_REF] compound-invariant probability weighting function and report α = 0.67 and β = 0.76 for the delayed weights w t=3 (p) (see their Figure9on page 713). Now, what is the level of survival probability s such that their delayed weights w t=3 (p) can be interpreted as w(p) based on the atemporal weights w t=0 (p) generated by our global parameters? We estimate s by minimizing the sum of squares of the difference between w and w t=3 . This exercise yields an optimal s

	Function	Specification	Parameter	Value
	Probability weighting compound invariant α: subproportionality	0.50
			β: convexity	0.95
	Utility	power	γ: curvature	0.80
	Time discounting	exponential	η: rate of time preference 0.10
	The functions are specified as follows. Prelec (1998)'s compound-invariant probability weighting function: w(p) = exp(-β(-ln(p))

α ). * of 0.825 p.a., which we deem a very plausible number. In other words, subjects behaved as if they thought outcomes payable in one year would actually materialize with a 82.5% chance. As one can see in Figure

Table 4 :

 4 Decision Weights

	Probability Observed Predicted
	0.125	0.289	0.308
	0.250	0.388	0.395
	0.500	0.552	0.544
	0.750	0.719	0.710
	0.875	0.821	0.821

Table 5 :

 5 Hyperbolic Discounting -Observed versus Predicted Discount RatesThe table lists observed and predicted annualized discount rates for the two different time delays in[START_REF] Epper | Uncertainty Breeds Decreasing Impatience: The Role of Risk Preferences in Time Discounting[END_REF]. The observed rates can be found in the first column of[START_REF] Epper | Uncertainty Breeds Decreasing Impatience: The Role of Risk Preferences in Time Discounting[END_REF]'s Table 2 (page 183). The predicted rates result from our model with the global parameter values and s * = 0.947.

	Delay	Observed Predicted
	2 months	0.368	0.372
	4 months	0.299	0.293
	Experimental tasks are typically based on one-stage and numerically equivalent multi-stage
	prospects that are resolved almost immediately. In other words, survival probability s is ir-
	relevant in such situations. Thus, we will illustrate an atemporal version of the preference for
	one-shot resolution of uncertainty over sequential resolution by (i) documenting that the pre-
	dicted certainty equivalents of one-shot resolved prospects are always higher than those of se-
	quentially resolved prospects, and (ii) by comparing the actually observed certainty equivalents
	with the predicted certainty equivalents.		

[START_REF] Abdellaoui | Experiments on Compound Risk in Relation to Simple Risk and to Ambiguity[END_REF] 

report mean certainty equivalents for simple prospects (50, p; 0, 1 -p) (their Table

2

on page 1310) that are resolved in one stage or in two stages. Table 6 shows that one-shot certainty equivalents are always higher than sequential ones, and the predicted values, based on our global parameters, are reasonably close to the observed ones, particularly for the probabilities 1 /2 and 11 /12. For p = 1 /12 the model overpredicts the difference between one-shot and sequential values.
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Table 6 :

 6 Process Dependence -Observed versus Predicted Certainty EquivalentsThe table lists certainty equivalents documented in Table2on page 1310 of[START_REF] Abdellaoui | Experiments on Compound Risk in Relation to Simple Risk and to Ambiguity[END_REF] for one-shot and sequential resolution (their "CRG" condition). The predictions are obtained for our model with the global parameter values listed.

	Prospect	Condition Observed Predicted
	(50, 1 /12; 0)	one-shot sequential	9.910 9.250	11.184 7.182
	(50, 1 /2; 0)	one-shot sequential	22.650 20.720	22.671 19.052
	(50, 11 /12; 0)	one-shot sequential	37.740 34.720	37.781 35.435

Table 7 :

 7 Subadditive Discounting -Observed versus Predicted Discount Fractions The table lists discount fractions for various payment dates and the relevant product. Observed values are derived from the values shown in Table 2 of Epper, Fehr-Duda, and Bruhin (2011) (page 183). Predictions are derived by our model with global parameter values and s * = 0.947.

	Discount Fraction Observed Predicted
	f (0, 2) f (2, 4) f (0, 4) f (0, 2) f (2, 4)	0.927 0.941 0.886 0.872	0.893 0.893 0.852 0.797

Table 8 :

 8 Resolution Timing -W(p, t) and Strength of Preference SOP

	t = 1 /4 p W(p, t) SOP W(p, t) SOP W(p, t) SOP t = 2 t = 10
	0.05	1.16 16.4	1.46 17.0	2.03 17.8
	0.35	1.15 15.6	1.41 16.5	1.77 18.2
	0.65	1.14 12.4	1.35 14.4	1.55 17.2
	0.95	1.11 12.3	1.18 13.9	1.21 16.9

The table shows wedges W(p, t) = w(ps t )

Table 9 :

 9 Risk-Dependent Discounting -Observed versus Predicted Present Certainty Equivalents

	Delay Amount Probability Observed Predicted
	0	100	1.0	100.00	100.00
			0.5	38.32	37.21
	4	110	1.0	70.52	81.86
			0.5	35.46	38.02
	26	100	1.0	41.11	39.94
			0.5	23.34	23.40
	30	110	1.0	47.85	40.16
			0.5	23.75	24.03

The table lists present certainty equivalents reported in

[START_REF] Weber | The Combined Effects of Risk and Time on Choice: Does Uncertainty Eliminate the Immediacy Effect? Does Delay Eliminate the Certainty Effect?[END_REF]

, Table

5

(page 111). The predicted present certainty equivalents are obtained using our model with global parameter values and s * = 0.872.

Table 9

 9 

contrasts observed present certainty equivalents 20 with predicted ones. Generally, we are able to produce an excellent match between observed and predicted values, only the present value of 110 materializing in 4 months is overstated by the model, i.e. participants discounted 110 much more heavily than predicted. According to our model an allegedly certain outcome payable at delay t, (x, t), is evaluated as u(x)w(s t ) exp(

Table 10 :

 10 Diminishing Immediacy -Predicted Discount Weights

	Delay t Amount Probability Discount Weight
	4	110	1.0	92.4%
			0.5	94.3%
	26	100	1.0	59.8%
			0.5	69.0%
	30	110	1.0	55.3%
			0.5	65.3%

Table 11 :

 11 Order Dependence -Observed versus Predicted Present Certainty Equivalents

	Probability Condition Observed Predicted
	0.5	RT	35.94	34.09
		TR	39.83	37.06
		D	39.60	37.06
	0.3	RT	22.07	24.89
		TR	24.44	27.09
		D	24.14	27.09

The table shows observed present certainty equivalents reported in Önc üler and Onay (

2009

), Table

1

on page 285. The predictions are obtained by our model using global parameter values and s * = 0.937.

Table 12 :

 12 Summary: Optimal Survival Probability s *The table lists estimated optimal survival probabilities for each fact (see the remarks for exceptions). Survival probabilities are estimated by minimization of the sum of square deviations between observed output variables and our model with the global parameter values.

	Fact # Output Variable 1 Probability weights	s * p.a. Remark 0.825
	2 Discount rates	0.947
	3 Certainty equivalents	-not relevant
	4 Discount fractions	0.947 same as in #2
	5 Correlation with preference strength	0.900 assumed
	6 Present certainty equivalents	0.872
	7 Present certainty equivalents	0.937

  t-t 1 ) .

			Figure 12: Later and Sooner Resolution of Prospect Risk	
			(i) later				(ii) sooner	
							s t-t1	x 1
			p s t-t1 (1 -p)s t-t 1	x 2 x 1	p s t 1	1 -s t-t 1	x
		t 1 s	1 -s t-t 1	x		(1 -p)s t 1	s t-t1	x 2
	0	1 -s t 1	t 1	x	t	1 -s t 1	1 -s t-t 1	x x
					0	t 1		t
								(64)

Table 13 :

 13 Study Overview

	Fact Study	Sample	Elicitation method	Incentives
	#1	Abdellaoui, Baillon, Placido and Wakker Study 2: 31+31 French students certainty equivalents via 31 subjects: real
		(2011)		bisection	31 subjects: hypothetical
	#2	Epper, Fehr-Duda and Bruhin (2011)	112 Swiss students	certainty equivalents via real
				choice lists	
	#3	Abdellaoui, Klibanoff and Placido (2015) 209 French students	certainty equivalents via real
				choice lists	
	#4	Epper, Fehr-Duda and Bruhin (2011)	112 Swiss students	certainty equivalents via real
				choice lists	
	#5	Arai (1997)	44 Swedish students	rating scale and choice	hypothetical
				frequencies	
	#6	Weber and Chapman (2005)	Experiment 2: 124 US students present certainty	hypothetical
				equivalents via	
	#7	Önculer and Onay (2009)	Study 1a: 39 French students	bisection certainty/present	hypothetical
				equivalents via	
				text field	

Table 14 :

 14 Probability Weighting Functions ≤ p ≤ β 1 -(1β) 1-α (1 -p) α if (ii) β < p ≤ 1

	Probability weighting function w(p) p α p 2-p exp -β(-ln(p)) α	Parameter range α > 1 -0 < α < 1, β > 0 α = 1, β > 1	Elasticity * constant increasing increasing, con-cave/convex constant	Shape * * convex convex regressive convex	Reference Luce, Mellers, and Chang (1993) Yaari (1987) Prelec (1998) Prelec (1998) 1
	exp -β α (1 -p α )		α, β > 0	increasing	concave, re-gressive	Prelec (1998) 6
	(1 -α ln p) -β α p α (p α +(1-p) α ) 1/α		α, β > 0 0.279 < α < 1	increasing U-shaped	regressive regressive	Prelec (1998) Tversky and Kahneman (1992)
	βp α βp α +(1-p) α		0 < α < 1, β > 0 0 < α < 1, β = 1	U-shaped U-shaped	regressive regressive	Goldstein and Einhorn (1987) Karmarkar (1979)
			α = 1, β < 1	increasing, con-vex	convex	Rachlin, Raineri, and Cross (1991)
				see text	see text	Bordalo, Shleifer (2012) 2 Gennaioli,	and
	p+αp(1-p) 1+(α+β)p(1-p) β 1-α p α	α > 0, β > 0 if (i) 0 0 < α, β < 1	U-shaped (i) constant, (ii) increasing	regressive regressive	Walther (2003) Abdellaoui, l'Haridon, and Zank (2010) 3
	p 1+(1-p)β		β > 1	increasing, con-vex	convex	Gul (1991)
	p p+(1-p)β		β > 1	increasing, con-vex	convex	Rachlin, Raineri, and Cross (1991)
	p -αp + αp 2 p + 3-3β α 2 -α+1 (αp -(α + 1)p 2 + p 3 ) p -αp(1 -p) + βp(1 -p)(1 -2p)   0	0 < α < 1 0 < α, β < 1 α depends on β	increasing, con-cave U-shaped variety	convex regressive variety	Masatlioglu and Raymond (2016); Delquié and Cillo (2006); Safra and Segal (1998) 4 Rieger and Wang (2006) Blavatskyy (2014) 5
					

In Section 5 we provide a detailed list of references regarding the empirical evidence and a discussion of extant theories that address various subsets of these facts.

Relatedly, Chakraborty (2021) explores risk-time separability violations by adopting a weaker version of the stationarity axiom to simple risky prospects (x, p; 0, 1 -p).

RDU can handle other behavioral phenomena as well, such as correlation aversion: When decision makers evaluate risky consumption streams they often have a preference for diversifying consumption across time, i.e. they prefer some good and some bad to all or nothing[START_REF] Kihlstrom | Risk Aversion with Many Commodities[END_REF][START_REF] Richard | Multivariate Risk Aversion, Utility Independence and Separable Utility Functions[END_REF][START_REF] Epstein | Increasing Generalized Correlation: a Definition and Some Economic Consequences[END_REF][START_REF] Bommier | Risk Aversion, Intertemporal Elasticity of Substitution and Correlation Aversion[END_REF][START_REF] Denuit | Some Consequences of Correlation Aversion in Decision Science[END_REF].[START_REF] Epper | Comment on "Risk Preferences Are Not Time Preferences": Balancing on a Budget Line[END_REF] show that RDU implies correlation aversion if the decision maker is sufficiently pessimistic, which is usually borne out by the data.

Alternatively, decision weights π i can be expressed in terms of the cumulative distribution function F of the outcomesx i : π i = w(1 -F(x i+1 )) -w(1 -F(x i )) for 1 ≤ i ≤ m,where F(x m+1 ) := 0.

This assumption is not crucial for our results -neither a zero rate of time preference, i.e. ρ = 1, nor genuinely hyperbolic time preferences affect our conclusions.

The numerical example above is a manifestation of the certainty effect, as the smaller outcome in the first decision situation, 3000 pounds, materializes with certainty.

Empirical estimates are often based on inverse-S shaped functional forms, that are concave over small probabilities and convex over large probabilities.

[START_REF] Aydogan | An experimental test of reduction invariance[END_REF] provide experimental support for the compound invariant specification at the level of preference conditions.

Note that it takes at least two non-zero outcomes to separate risk taking and time discounting.

ρ (t) ρ(t)

Alternatively, the term backward induction has been used in the literature.Segal (1990) replaces the reduction axiom by an axiom of compound independence which ensures the applicability of folding back as transformation mechanism.

Because of this characteristic,Segal (1987b) proposes to model ambiguity aversion by subproportional risk preferences over two-stage lotteries. A recent paper by[START_REF] Dillenberger | Recursive Ambiguity and Machina's Examples[END_REF] shows that such an approach has another attractive implication: It is able to solve[START_REF] Machina | Risk, Ambiguity, and the Rank-Dependence Axioms[END_REF]Machina ( , 2014))'s paradoxes which involve a number of situations where standard models of ambiguity aversion are unable to capture plausible features of ambiguity attitudes[START_REF] Baillon | Ambiguity Models and the Machina Paradoxes[END_REF].

An example for which a general preference for one-shot resolution cannot be predicted is the series of experiments

We thank an anonymous referee for proposing this calibration exercise.

Note that there are so far no stylized facts regarding the perceived subjective uncertainty captured by the survival probability s. Therefore, it makes sense to estimate s.

Based on the risk taking data,[START_REF] Epper | Uncertainty Breeds Decreasing Impatience: The Role of Risk Preferences in Time Discounting[END_REF] estimated the mean Prelec α = 0.505 and the mean β = 0.974, which lie very close to our global parameter values.

Regarding the other features of our model, event commutativity and aversion to equiprobable stages, the evidence so far is mixed. For a review see[START_REF] Fan | Decisions With Compound Lotteries[END_REF].

Values for present certain $100 were not elicited.

In these experiments subjects evaluate sequences of identical two-outcome lotteries over several periods where the range of potential outcomes increases with the number of periods. As we noted in Section 3.3, subproportionality does not deliver clear predictions for this class of prospects. However,[START_REF] Langer | Myopic Prospect Theory vs. Myopic Loss Aversion: How General is the Phenomenon?[END_REF] show that the same is true for myopic loss aversion -for specific risk profiles, myopia will not decrease but increase the attractiveness of a sequence.[START_REF] Blavatskyy | Reevaluating Evidence on myopic loss aversion: aggregate patterns versus individual choices[END_REF] also contest the validity of the myopic loss aversion hypothesis.

We thank an anonymous referee for suggesting this application.

This work was supported by a grant from the Swiss National Science Foundation (#100018M 182128).

Applying folding back, the value of the prospect is given by V 3 (P) = (u(x 1 ) -u(x 2 ))w(r 1 ) + (u(x 2 ) -u(x 3 ))w(r 1 + r 2 ) + u(x 3 ) w(q)w(p) + u(x 3 )(1 -w(q))w(p) + 1 -w(p)) = (u(x 1 ) -u(x 2 ))w(r 1 ) + (u(x 2 ) -u(x 3 ))w(r 1 + r 2 ) + u(x 3 ) w(q)w(p)

Clearly, it does not matter how many final branches the tree possesses -the formula generalizes to m outcomes in a straightforward way as the rank-dependent decision weights at the final stage get compounded with w(p)w(q). The same applies if the number of stages is greater than three. If uncertainty resolves in one shot, the value of the prospect is represented by

Subproportionality implies that w(pqr 1 ) > w(q)w(p)w(r 1 ) and w(pq(r

In other words, if uncertainty resolves according to a survival tree, one-shot resolution is preferred to sequential resolution. When future uncertainty comes into play, the survival tree consists of an additional branch at each chance node, as shown in Figure 11, and the former certain outcome x 3 becomes risky as it is subjected to survival probability, here assumed to be s at each stage. The question now arises whether preference for one-shot resolution is preserved for this more complex resolution process. Recalling that u(x) = 0,

(44) Its one-shot counterpart is evaluated as

Obviously, the decision weights for V 1 ( P) are greater than the respective ones for V 3 ( P). Thus, for this specific structure of uncertainty resolution, preference for one-shot resolution is preserved under subproportionality for any n > 2 and m > 2. Consequently, w(pqr 1 ) is defined as

and w3 (pqr 1 ) is defined as w3 (pqr 1 ) = w(ps)w(qs)w(r 1 s) w(s) 3 , (47) relationships hold:

because w(r)w(λ) < w(λr) for any λ ∈ (0, 1) (and hence also for λ = q) due to subproportionality of w. Consequently, for mixtures with the smaller outcome x 2 , NCI, and therefore also PORU, is strongly satisfied. If the mixing prospect may be any arbitrary prospect, in other words if surprises are possible in the course of uncertainty resolution, this result does not hold generally.

The only surprise that is still admissible is the occurrence of an outcome worse than x 2 , say z.

= u(x 1 ) -u(x 2 ) w(r)w(λ) + u(x 2 ) -u(z) w(λ) + u(z)

< u(x 1 ) -u(x 2 ) w(λr) + u(x 2 ) -u(z) w(λ) + u(z) = V(P ) .

(69)

For u(z) = 0, this case is exactly the situation studied in this paper when survival risk comes into play.