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A B S T R A C T   

Historical charcoal production is one of the significant factors affecting today’s forest dynamics. A key challenge 
is to develop tools to investigate historical charcoal production over large areas, allowing a more comprehensive 
understanding of past impacts and history of charcoal production over a given landscape. In this study, high- 
resolution remote-sensing airborne LiDAR images over a large woodland area were used to compare manual 
on-screen versus algorithm-based automatic methods to inventory charcoal kilns with inputs of field-validated 
data. The results revealed that (1) the on-screen detection method provided less false-positives, (2) the auto-
matic method detects a higher number of kilns and (3) kiln distribution seemed to be connected mostly to land 
ownership rather than to environmental variables. This study validates a new method of charcoal kilns’ in-
ventory and spatial analysis that can be applied to other areas to better understand the effect of past biomass 
harvesting for charcoal production on forest dynamics.   

1. Introduction 

In Europe, charcoal produced from biomass exploitation was a key 
source of energy for the (proto-) industrial development from the 
Middle-Ages to the emergence of fossil energy sources during the 19th 
century (Pain, 2017; Smil, 2004). The analyses of single relict sites of 
charcoal production (i.e., charcoal kilns or hearths) provide key infor-
mation about former local forest composition, woodland structure, 
wood resource management and use (Ludemann et al., 2004; Deforce et 
al, 2013; Schneider et al, 2020). However, charcoal production was, 
most of the time, spread over large areas (e.g., Ludemann, 2003, Deforce 
et al., 2020), and thus the related ancient exploitation of wood resources 
left long-lasting traces on the environment (Fouédjou et al., 2021) on 
large spatial scales (Rösler et al., 2012; Carrari et al., 2016). Therefore, 
quantification and spatial distribution analysis of kilns are crucial to 
assess the impacts of charcoal production on woodlands (Ludemann 
et al., 2004; Schmidt et al., 2016; Schneider et al., 2020). Nevertheless, 
field prospection of these structures was found to ignore a large -
number of kilns even in extensively studied areas (Ludemann, 2012). 
Moreover, the prospection and fieldwork to achieve a complete over-
view of kiln distribution are time-consuming. Therefore, most studies 
about kilns focus on few investigated sites at local (Nelle, 2003) or small 

catchment scales (Gocel-Chalté et al., 2020). The emergence and 
increasingly more detailed airborne LiDAR (Light Detection and 
Ranging) data provide a powerful tool to obtain more precise data on 
kiln density and distribution over large areas. LiDAR images have been 
used for more than a decade to map archaeological structures (e.g., 
Crutchley and Crow, 2010; Chase et al., 2017), including charcoal kilns 
(e.g., Ludemann, 2012; Raab et al., 2015, Trier et al., 2021). Indeed, 
charcoal kilns are characterized by a circular to oval outline easily 
visible in steep slopes in the field (Bonhage et al., 2020(Schneider et al., 
2015). When the topography is gentle, there is less requirement to 
artificially level the surface to build a kiln, making the detection in 
these areas challenging since there is less contrast between the kiln and 
the surroundings. Thus, prospecting kilns and other micro- 
topographical structures in Digital Elevation Models (DEM) can be 
made more efficient based on hillshade pictures (Raab et al., 2015), 
derived images such as slope (McCoy et al., 2011) or images under sky- 
view factor (i.e., “visualization technique based on diffuse light that 
overcomes the directional problems of hill-shading”, Kokalj et al., 
2011), principal component analyses or local-relief models (Bennett 
et al., 2012; Challis et al., 2011; Štular et al., 2012). However, the first 
proposed methods, appeared to be highly hand-engineered and strongly 
dependent on the numerical model and therefore may be case-specific. 
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Methods for the automatic detection of landforms on digital data 
have emerged over the last decade (Toumazet et al., 2017; Davis 2019; 
Davis et al., 2019), allowing a significant rise in the analytical capacities. 
In the last few years, the field of computer vision has been significantly 
transformed by the development of deep learning algorithms such as 
Convolutional Neural Networks (CNNs; (Ren et al., 2015)), providing 
new tools to improve charcoal kiln inventory (Bonhage et al., 2021; 
Trier et al., 2021). 

Here, we present a case study using an innovative approach of in-
ventory of charcoal kilns that combines for the first time both on-screen 
and algorithm-based detection complemented with field validation on a 
large area, to assess and explain the spatial distribution of kilns related 
to socio-environmental territorial attributes. Two detection methods 
were applied and compared: 1) an on-screen detection and 2) an object 
detection method, based on the analysis of a DEM. Moreover, it was 
developed an efficient and easily transferable charcoal kiln detection 
methodology to another dataset, using standard libraries and Applica-
tion Programming Interfaces (API) such as TensorFlow (Abadi et al., 
2016). The inclusion of a field-validation step was crucial to tune the 
detection and achieve a solid quantification to obtain an inventory close 
as possible to reality, which plays a key role when studying the impacts 
and legacy of historical charcoal production. 

2. Methods 

2.1. Study area 

The study area is set in a lowland area in the Grand-Est region in 
France (Meuse). The area comprises three patches of forest of 3.44, 
26.76 and 27.14 km2, ranging from 260 m above sea level (m a.s.l.) at 
the bottom of large valleys, to 410 m a.s.l. on the plateau, crossed by 
valleys with locally steep slopes created by small streams (Fig. 1). The 
area is occupied by broad-leaved forests, dominated by beech stands 
(Fagus sylvatica) and mixed-forests with oak (Quercus spp.), hornbeam 
(Carpinus betulus), and other species (BD Forêt® v.2.0-IFN). Forest 
stands are owned by the State, municipalities or private bodies. 

The historical occurrence of metal working activities in the 17th to 
early 20th centuries has been documented in the study area (Naegel, 
2006; Streiff, 2015) and, along with the occurrence of charcoal kilns, 
several other traces are present today in the region such as forges and 
metal extraction sites (Arnould, 1978). 

2.2. LiDAR data acquisition 

The acquisition of LiDAR data was performed in two campaigns in 

Fig. 1. Location of the study area in northeastern France lowlands, delineated by the full black line and the three sectors of field validation (in the background, 
hillshade representation of the DEM derived from airborne LiDAR data (restricted data access ©ANDRA)). 
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2009 and 2010, covering a mosaic of urban areas, agricultural fields and 
forests, across 230 km2 (overlap of 60%) and an additional flight was 
performed in woodland areas (overlap of 20%). 

The acquisition was done when broadleaved trees had shed their 
leaves to limit the influence of the tree canopy on the quality of the data. 
Individual images (1000 x 1000 pixels, 500 x 500 m) were produced, 
with a resolution of 4.5 points.m− 2 and an altitudinal precision of 8 cm, 
resulting in the Digital Elevation Model (DEM; pixel side: 50 cm) used in 
this study. 

From the DEM, slope-derived images (using the “Slope” tool in the 
“Raster terrain analysis” processing toolbox in QGIS 3.10) were also 
produced to help the on-screen inventory (Štular et al., 2012). When 
undisturbed, kilns have a characteristic outline (Bonhage et al., 2020; 
Hirsch et al., 2020; Ludemman and Nelle, 2002; Schneider et al., 2015) 
that can be recognized in the images by a ring-like boundary (Fig. 2b) or 
as an interruption of slope (Fig. 2d). 

2.3. On-screen inventory 

The on-screen inventory of kilns in the DEM was performed for each 
tile from the wooded areas (500 x 500 m, n = 342) comparing both 
hillshade (altitude 45.00◦; azimuth 0.00◦) and slope-derived images at a 
scale of 1:375. The combination of these two sets of pictures provided a 
complementary approach for on-screen avoiding the limitations of 
applying one method only. Each tile was surveyed following fictive lines 
in west-east and north–south directions to obtain redundant coverage in 
different orientations and to avoid missing areas in the images. Every 
time a potential kiln was found, a new point was added to the point 
layer. 

2.4. Automatic detection inventory 

For the automatic detection, TensorFlow (Abadi et al., 2016) Object 
Detection API, a widely used API, with several available pre-trained 
models was chosen. Among the available architectures, a Faster R- 
CNN with a Resnet 50 backbone was selected, because it is one of the 
smallest of the available models that have proven to be efficient at 
detecting small objects (Nguyen et al., 2020). Small object detection is a 
known limitation of object-detection architectures. Indeed, the size of a 
kiln is on the order of magnitude of 40 pixels depending on the DEM 
resolution, which is considered a small object for an object-detection 
task. 

The initial model was trained on the Ms COCO Dataset (Lin et al., 
2014) and fine-tuned on the on-screen inventory. The initial model 
being trained on RGB images, we first had to transform our DEM into 
RGB images. For this, the DEM was split with a 300 × 300 pixels sliding 
window, with a stride of 100 to perform data augmentation. The 
resulting float images were converted into RGB images with a jet col-
ormap encoding to minimize loss of information. Then, the geographic 
coordinates of the on-screen detected kilns were converted into pixel 
coordinates in those images, and a 40 × 40 pixels bounding-box around 
those points was labelled as a kiln. Finally, the dataset obtained was 
composed of 2828 images and 5824 bounding-boxes. 

Then, the dataset was split into three: training set, evaluation set, and 
test set. The splitting was not random because of the data augmentation 
technique used: a same kiln would have appeared in different sets if the 
images were randomly sampled. 

Several parameters were tested to fine-tune the detector. The best 
performing ones were selected based on its results on the evaluation set, 
on COCO metrics. Those metrics are the standard when comparing ob-
ject detectors performances. The parameters selected were as follows: 
the training was done on 60,000 steps, with a momentum optimizer and 

Fig. 2. Examples of charcoal kilns in the study area in contrasting slopes: a) charcoal kiln in a flat area, b) corresponding representation on a slope-derived LiDAR 
image, c) aspect of a charcoal kiln in a steep area, d) corresponding representation on a slope-derived LiDAR image. 
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an initial learning rate of 3e-04, dropped every 10,000 steps by factor of 
10. Since the bounding boxes in the dataset have a fixed size of 40 × 40 
pixels, this same size was used in the Region Proposal Network: the grid 
anchor generator parameters for height and width were 40 and the first 
stage features stride of the extractor was eight. The following data 
augmentation options were selected: random horizontal flip, random 
vertical flip and random rotation of 90 degrees The original images 
created were not resized during training. 

Finally, an interface with the trained model was run on the test set 
and we obtained the detections: a list of detected kiln bounding-boxes in 
the test set images (Fig. 3). 

Usually in object detection, the standard metrics are the COCO 
metrics: the Average Precision and the Average Recall on some specific 
IoU (Intersection over Union). Although those metrics were used to 
select the parameters to train the model, this was not how the perfor-
mance of the algorithm was evaluated. The parameters of interested 
were Recall and Precision. Recall is related to how good the network is 
capable of detecting the features and Precision points to how accurate its 
detections are. These parameters are calculated as follows:  

Recall =
true positive

true positive + false positive  

Precision =
true positive

true positive + false positive 

Thus, the higher the Recall, the less charcoal kilns are missed during 
the detection and the higher the Precision, the lower is the false positive 
occurrence. The output of the detector (the bounding boxes) was not 
directly used, but the centers of those boxes, converted into geographic 
coordinates. Thus, if an actual kiln center is within a 10 m range from 
the detection, it was a match. 

2.5. Field validation of the inventories 

Both on-screen and automatic detection inventories were validated 
using field-derived inventories. This is a crucial analytical step since 
specific landforms, such as rock slabs or fallen trees, might cause erro-
neous detections of kilns in the images. For the validation, 838.5 ha were 
prospected in three different sectors of the study area (Fig. 1). 

In these sectors, several field validation protocols were used to assess 
possible detection biases. A first sector of 115 ha was prospected 

according on the basis of previously on-screen detected (OSD) kilns. 
Each OSD kiln of that sector was checked one by one in the field by the 
presence/absence of a charcoal-rich soil layer on site. That check pro-
vided “OSD-validated” or “OSD-false positive” kilns. On the tracks be-
tween each kiln, if an additional kiln, not previously detected was found, 
it was recorded and added to inventory as “field detected”. 

A second sector of 33.5 ha was specifically prospected as it corre-
sponds to a zone with very low OSD rate. The survey was done sys-
tematically, following the limits of the forest parcel as a frame, a straight 
line was followed by individuals 20 to 25 m apart, and for every 8 to 12 
m a surveying pit was dug to search for traces of charcoal kilns. Once 
found, additional kilns were added to the digital inventory as “field 
detected”, similarly to what was done in the first sector. 

The third prospected sector, covering 690 ha, corresponds to a part of 
the testing surface of the automatic detection (AD) on which the kilns 
were also OSD. Each detected kiln by both AD and/or OSD in that sector 
was checked and finally recorded as “OSD-validated”, “AD-validated”, 
“OSD&AD-validated”, “OSD-false positive”, “AD-false positive” or 
“OSD&AD-false positive”. Also in that sector, if an additional kiln was 
found on the tracks between each kiln, detected neither by OSD nor by 
AD, it was recorded and added to inventory as “field detected”. 

The overall workflow of the detection and quantification is sum-
marized in Fig. 4. 

2.6. Analysis of kilns inventories and spatial distribution 

Analysis were done to compare the two methods of kiln detection to 
field prospection in a selected sector of the study area where both 
methods were available. In addition to computing the error rate of each 
method, we also sought a relationship between topographical variables 
and the efficiency of the methods according to six possibilities (“field 
detected”, “false positive on OSD”, “false positive on AD”, “OSD vali-
dation”, “AD validation” or “OSD&AD validation”). This dataset was 
analyzed by a partial least square discriminant analysis (plsda, MixO-
mics package, (Rohart et al., 2017)). Discriminant analysis is a super-
vised method that aims to separate individuals according to a qualitative 
variable, and to identify the independent variables that drive this sep-
aration. Between-group differences were then assessed with a permu-
tation test (Westerhuis et al., 2008). 

Then, an analysis was performed to assess the spatial distribution 
patterns of the inventoried kilns. These variables were socio- 

Fig. 3. Example of an area with automatic detection. The network predictions are in red (“det”) and the on-screen detected data (ground truth) are in green (“gt”): a) 
two predictions labelled as false positive that may potentially be actual kilns (i.e. true positive); b) one missed detection (false negative). The input images in our 
detector are the DEM encoded in jet (these examples are filtered images for visualization purposes). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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environmental territorial attributes selected among available datasets 
for the study area and from the GIS datasets (with Zonal Statistics tool in 
QGIS 3.10; Table 1). Among the available datasets, these variables were 
selected because they appeared relevant to explain variations in char-
coal kilns’ distribution. 

Three grid datasets (of 125, 250 and 500 m side) were generated to 
explore commonalities between charcoal kiln distributions. To identify 

the spatial distribution patterns of kilns according to the selected socio- 
environmental variables, a multiple correspondence analysis (MCA) was 
performed with the ade4 package (Dray & Dufour, 2007) in RStudio (R 
Core Team, 2000; RStudio Team, 2016). This analysis allows to consider 
both qualitative and quantitative data from the selected socio- 
environmental variables. For this, the continuous variables (mean 
elevation, standard deviation in elevation and mean slope) needed to be 
transformed into qualitative variables. For aspect (i.e., exposure), eight 
classes were defined (following the directions of the compass) and, for 
slope, two classes were designated (flat and steep, <5% and >5%, 
respectively). The MCA was, then, applied on each grid size, to define (1) 
if identified patterns changed according to the scale of observation and 
(2) the most relevant grid size to describe kiln density patterns. 

Finally, using the optimal grid size identified, the mean number of 
charcoal kilns was computed and the variance of charcoal kiln number 
across all squares for each level of the variables related to elevation and 
slope. Then, the variance/mean ratio was used to define whether the 
distribution pattern of kilns is uniform (ratio < 1), random (ratio = 1) or 
aggregated (ratio > 1). 

3. Results 

3.1. Kiln inventories 

3.1.1. On-screen detection 
The on-screen inventory retrieved a total of 2641 potential kilns in 

Fig. 4. Schematic summary of the for charcoal kiln quantification.  

Table 1 
Socio-environmental attributes used for kiln distribution analyses.  

Variable Support Categories Source 

Forest 
ownership 

Vectorial Private, Municipal, State ONF-carmen © 

Geology Vectorial Calco-magnesian, Carbonate, 
Silico-aluminous 

RRP-GrandEst, 
2020 

Dominant 
forest 
formation 

Vectorial Abies/Picea, Broad-leaved 
forest, Conifers, Douglas fir, 
Fagus sylvatica, Larix, Quercus 
deciduous, Mixed and No data 

BD Forêt® 
v.2.0-IFN 

Elevation (m a. 
s.l.) 

Raster 
(DEM) 

275–300, 300–325, 325–350, 
350–375, 375–400 

LiDAR image 

Slope (%) Raster Flat: <5%, Steep: >5% Derived from 
the LiDAR 
image 

Aspect/ 
Exposure (◦) 

Raster N, NE, E, SE, S, SW, W, NW Derived from 
the LiDAR 
image  
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the study area (5730 ha; Table 2). The density of charcoal kilns from the 
on-screen inventory was 0.46 kilns.ha− 1 and the mean distance between 
potential kilns was 54.7 m. The comparative analysis of the distribution 
of the kilns according to socio-environmental territorial attributes 
showed that kilns in State-owned forests represented almost half of the 
detections, of which 58% were positioned in areas where the slope is 
<5%. Regarding exposure, no kiln was found to be facing north, and the 
lowest detection numbers occurred in the NW and NE exposures, despite 
all directions representing an equivalent area. In terms of elevation, low 
numbers of charcoal kilns were detected in both lower (275–300 m a.s. 
l.) and higher (375–400 m a.s.l.) altitudinal ranges, however these were 
not the intervals with the lowest density observed. The three main 
geological types of the study area were not equally represented in terms 
of areas, although the density of kiln detections was similar in carbonate 
and silico-aluminous soils (0.46 and 0.49 kilns.ha− 1, respectively). 
Finally, areas whose present-day dominant forest cover is dominated by 
Fagus sylvatica (beech) and broad-leaved forests accounted for more than 
90% of kiln detections. Low detection values in “Larix,” “Abies/Picea” or 
“Conifers” areas, showed a high density biased by the small area of 
occupation of these categories that are sparsely represented in the area. 

The MCA allowed to draw some trends between grid characteristics 
and charcoal kiln abundance. MCA results from the OSD were similar on 
the 125 m and 250 m grid sizes and the same trends could be seen on the 
500 m grid size, but with lower accuracy. The 250 m-size grid (Fig. 5) 
was thus chosen as the optimal size to investigate commonalities be-
tween charcoal kilns since it allowed to better distinguish the trends. 
Kiln number decreases along the F2 axis (vertical), with the highest 
number of kilns in the lower part of the factorial plane. The factorial 
planes for the other variables help to understand this gradient. The grids 
with the highest number of kilns were associated with areas with slope 
steeper than 5% and with State-owned parcels that occupy the same 
position in the bi-dimensional space. Concerning elevation, the plateau 
areas had the lowest number of kilns per grid, while grids with a mean 
elevation between 300 and 340 m had the highest number of kilns. The 
lowest areas (below 300 m) also had a high number of kilns. However, 

such grids are rare (7% of the 1174 grids), and may be not representative 
of the global pattern. For the other variables, no clear pattern could be 
detected. 

3.1.2. Automatic detection 
The automatic detection was performed on a test area covering 951 

ha where 342 kilns were detected (Table 2, Fig. 3), with a density of 0.36 
kilns.ha− 1, the mean distance between the detected features being 48.4 
m. The number of kilns detected in municipality-owned forests was 
larger, in part due to the larger area that investigated. Density trends 
related to forest area ownership are comparable for the two methodol-
ogies implemented. Areas with a slope above 5% accounted for almost 
60% of the detections, in contrast to the trends found when using OSD. 
Lower number of kilns were detected in the lowest and highest altitu-
dinal intervals ranges, despite the latter range representing the largest 
area under study (402 ha and only 76 kilns detected). The geological 
context was only represented by the occurrence of carbonate soils. The 
test area where automatic detection was performed did not cover all the 
categories of contemporary forest cover dominant groups (five out of 
nine categories present). Broad-leaved and Fagus forest formations 
dominated the detection numbers in terms of both area and features 
detected. The MCA computed for this area failed to identify specific 
relationships between number of kilns and the socio-environmental 
variables, since the ellipses for the five modalities of this variable 
were superimposed. 

Considering the three grid sizes analyzed, the variance/mean ratio 
was higher than one for each class of mean slope, mean elevation and 
elevation standard deviation, for OSD as well as AD, therefore, a strong 
aggregative distribution of kilns within the prospected area can be 
surmised. Focusing on the 250 m grid size with the OSD dataset (the 
largest one), trends could be identified, with a higher aggregation in low 
elevation, high slope and high standard deviation in elevation. 

Table 2 
Summary of the detected kilns by on-screen and automatic detection.    

On-screen detection Automatic detection   

n (2641) % Area (ha) Density (0.46) N (342) % Area (ha) Density (0.36) 

Forest ownership State 1258 47.6 1724.8 0.73 50 14.6 107.8 0.46  
Municipal 879 33.3 2604.9 0.34 267 78.1 694.4 0.38  
Private 504 19.1 1396.3 0.36 25 7.3 148.8 0.17 

Exposure N – – 629.8 – – – 77.7 –  
NE 76 2.9 679.5 0.11 9 2.6 96.3 0.09  
E 427 16.2 768.9 0.56 69 20.2 137.7 0.50  
SE 522 19.8 881.5 0.59 80 23.4 185.6 0.43  
S 537 20.3 806.2 0.67 71 20.8 163.0 0.44  
SW 417 15.8 652.0 0.64 74 21.6 121.7 0.61  
W 567 21.5 677.8 0.84 30 8.8 95.8 0.31  
NW 95 3.6 631.1 0.15 9 2.6 73.7 0.12 

Slope Flat (<5%) 1549 58.7 2664.8 0.58 138 40.4 452.0 0.31  
Steep (>5%) 1092 41.3 3062.0 0.36 204 59.6 499.0 0.41 

Elevation [250–300[ 86 3.3 159.3 0.54 6 1.8 18.6 0.32  
[300–325[ 372 14.1 540.1 0.69 36 10.5 51.3 0.70  
[325–350[ 971 36.8 1601.3 0.61 103 30.1 137.2 0.75  
[350–375[ 962 36.4 2345.6 0.41 121 35.4 342.6 0.35  
[375–410] 250 9.5 1061.2 0.24 76 22.2 401.8 0.19 

Geological context Calco-magnesian 4 0.2 87.5 0.05 – – – –  
Carbonate 1726 65.4 3767.4 0.46 342 100.0 951.0 0.36  
Silico-aluminous 911 34.5 1876.9 0.49 – – – – 

Dominant forest formation Abies/Picea 23 0.9 30.9 0.74 – – – –  
Broad-leaved forest 916 34.7 2960.0 0.31 228 66.7 629.7 0.36  
Conifers 23 0.9 23.8 0.97 – – 5.8 –  
Douglas fir 3 0.1 24.2 0.12 – – – –  
Fagus sylvatica 1483 56.2 2293.0 0.65 99 28.9 274.5 0.36  
Larix 7 0.3 4.9 1.43 – – – –  
Mixed 45 1.7 171.5 0.26 10 2.9 24.1 0.41  
Quercus deciduous 81 3.1 156.3 0.52 – – – –  
No Data 60 2.3 115.4 0.52 5 1.5 17.0 0.29  
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3.2. Inventories validation and comparison 

The validation process was performed in three different sectors 
(Table 3, Fig. 1). Of the possible categories defined for validation, only 
“OSD & AD false positive” did not occur. In the first sector (with OSD 
only), 182 kilns out of 243 detected features were successfully field 
validated. Overall, in the prospected area, 61 platforms were not vali-
dated. In addition, during the validation process, 124 kilns not previ-
ously detected by OSD were added to the inventory. This first assessment 
retrieved a field-validated inventory of 306 kilns, hence a density of 2.66 
kilns.ha− 1, instead of 2.11 kilns.ha− 1 initially estimated by OSD. 

The second sector assessed, covering 33.5 ha, provided the OSD 
detection of only four features that were not field-validated charcoal 
kilns. Nevertheless, due to the prospection effort done in this sector, 
eight newly-detected charcoal kilns were detected by the presence of 
charcoal traces in the soil (density of 0.239 kilns.ha− 1). 

The third sector investigated (690 ha), that combined both methods 
– OSD and AD – yielded 121 potential charcoal kilns. The assessment of 
these potential kilns returned the validation of nine kilns detected by 
OSD only, 35 detected by AD only, and 53 detected by both methods. 
False positives were also present, 23 derived from AD exclusively and 
one from OSD only. Similar to what occurred in the other two sectors, 
the inventory was enriched with 15 field-detected charcoal kilns, 
totalizing 112 features (density of 0.162 kilns.ha− 1), instead of 0.175 
kilns.ha− 1 initially estimated with OSD and AD. 

In the totality of the sectors surveyed, 426 charcoal kilns were 
validated, 147 kilns were added after field detection only, and 89 po-
tential kilns were not validated. 

3.3. AD algorithm performance 

The results of the automatic detection algorithm on the test dataset 
89.69% for the Recall and 84.47% for the Precision. The algorithm was 
thus able to detect nearly 90% of the charcoal kilns in a given area. In 
15% of the cases, the features detected were not kilns. 

Fig. 5. MCA for on-screen detection method on the 250 m grid. Each factorial plane is built on the projection of the 1174 grids according to their topographical 
characteristics. Data points are then gathered according to each modality of each variable. The ellipses represent the 95% confidence interval for each modality. 
Modalities that occupy the same position on two different factorial planes are correlated (colors are present only to help visualization). 

Table 3 
Summary of the potential charcoal kilns validated by sector (sector 1: validation 
in after on-screen detection only; sector 2: validation in a flat area; sector 3: 
validation after on-screen and automatic detection).   

Sector 1 Sector 2 Sector 3 Total 

Area (ha) 115 33.5 690 838.5 
Number of potential kilns detected 243 4 121 368 
Density of potential kilns (kilns.ha− 1) 2.113 0.119 0.175 0.439 
OSD validated 182 0 9 191 
AD validated – – 35 35 
OSD&AD validated – – 53 53 
OSD false positive 61 4 1 7 
AD false positive – – 23 23 
Field detected charcoal kilns 124 8 15 147 
Number of kilns validated 306 8 112 426 
Density of kilns validated (kilns.ha− 1) 2.661 0.239 0.162 0.508  
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3.4. Validation assessment 

The discriminant analysis revealed no significant differences be-
tween the six assessment types (p = 0.05). Hence, although the two 
methodologies yielded different results, the differences in accuracy and 
efficiency cannot be explained by the topographical variables used in 
these analyses. 

4. Discussion 

4.1. Kiln inventory 

The spatial distribution of charcoal kilns detected by either OSD or 
AD showed strong aggregation. The aggregation measured on the basis 
of OSD dataset, the most consistent one, showed a trend towards a 
higher aggregation at low elevation, i.e., valleys, suggesting that the 
available space for charcoal kilns was reduced in these areas since these 
valleys areas are occupied by roads, paths and rivers. However, the 
lower aggregated pattern observed at high elevation and in smooth areas 
points to the difficulty in detecting charcoal kilns in such topographical 
features and must be taken with caution. In the flat area, the four po-
tential charcoal kilns detected, proved to be false positives, and the 
newly-detected kilns in the field were not perceivable in the images. This 
indicates that bias was caused by methodology and not by preferences of 
the people when choosing the area to build a charcoal kiln or topo-
graphical constraints (Krebs et al., 2017). Lastly, aggregation tended to 
increase with slope, indicating that the construction of charcoal kilns 
demanded high efforts and, resembling the valleys, the space is limited. 
Indeed, despite not being identified as an important variable for kiln 
distribution in the study area, slope remains a relevant variable to 
explain the detection of charcoal kilns. Charcoal kilns need to be built on 
a horizontal surface to support the wood mound. On steep slopes, the 
presence of charcoal kilns is easily detected due to the interruption of the 
inclination by the platform, creating an easily spotted discontinuity 
(Gocel-Chalté et al., 2020; Hirsch et al., 2017; Ludemann and Nelle, 
2002). However, in flat areas, insufficient heterogeneity between the 
charcoal kiln and its surroundings hides the presence of kilns. Moreover, 
the validation and prospection in the field in such areas can be made 
more difficult due to the presence of vegetation covering the charcoal 
kiln (e.g., Hedera helix as observed in the area) or densely-wooded areas 
where access is very limited or virtually impossible. The occurrence of 
false positives derived from the OSD in the sector 1 is, surely, over-
estimated due to the factors described above. 

The AD method led to lower number of charcoal kilns detected and a 
lower frequency and density in flat areas compared to steep areas. The 
automatic detection rate needs to be improved to avoid biases caused 
insufficient data (i.e., the referential collection of ground truth data) to 
cover all the specificities of the charcoal kiln outlines in these areas. The 
quality of the template dataset provided to the algorithm to perform the 
AD is determinant to produce confident and reliable detections. A key 
step to achieve the most accurate and reliable algorithm detection is also 
to provide the largest possible collection of kilns contours to cope with 
the variability of these features (Bonhage et al., 2020; Hirsch et al., 
2020). The use of template databases supported by OSD can lead to 
misidentification or incorrect labeling of charcoal kilns. Field validation 
of the detections, both by OSD and AD must be routinely performed to 
increase the Precision and the Recall of the detections. 

Field validation of the on-screen and automatically detected charcoal 
kilns is an important step in the overall development of an automated 
methodology. Both methodologies missed the detection of charcoal 
platforms, and the false positives also occurred. Validation of on-screen 
detected kilns revealed that this method was highly precise but missed 
several charcoal kilns. The precision reached 98.4% (only one false 
positive verified) but the recall was only 63.9% suggesting that the 
expert was conservative in terms of which kind of landforms could 
potentially be kilns and only marked them when the level of confidence 

was high. 
The performance of the AD algorithm must be looked at closely. The 

presence of false positives (15%) can be connected, to some extent, to 
labeling errors on the training dataset, and other natural or manmade 
structures misidentified as charcoal kilns outlines. After validation in the 
field, the Recall, i.e., how good the network is at finding charcoal kilns 
reached almost 90%, similar to other works such as Toumazet et al. 
(2017) in Central France where template matching methods were 
applied. Nevertheless, in the study cited, the precision was lower than 
the one achieved by the approach in this study (c. 73% versus 84% 
respectively), showing our method to be more robust. 

Other studies have used CNNs for the detection of archaeological 
features (Trier et al., 2018; Bonhage et al., 2021; Trier et al., 2021) and 
the latter study used the same model as the present study. Trier et al. 
(2018; 2021) achieved similar recall than in our study, 86% or higher, 
reaching 96% in some cases. Nevertheless, precision was stated as being 
overestimated in Trier et al. (2021), at 76% dropping to 64% or even 
11% depending on the area under analysis. In our study, we reached 
more than 84% (84.4%) precision indicating that only 15% of the 
detected charcoal kilns were, in fact, false positives. These values are 
comparable with another study by Bonhage et al. (2021) for lowland 
areas in North German Lowland using Mask R-CNN. 

4.2. Distribution patterns 

Charcoal kiln detection and inventory are important steps in the 
assessment of the impacts and extent of former exploitation of forest 
resources (Rutkiewicz et al., 2019). It is important to improve meth-
odologies to detect these past activities, and better estimate their 
quantity, density and distribution. Other structures than charcoal kilns 
can be detected and the number of kilns can be under- or overestimated 
due to several factors such as image illumination, the operator’s expe-
rience in performing the OSD of images or a reference database that is 
not sufficiently vast to perform the AD. 

In this study, an area of more than 5700 ha was extensively and 
exhaustively examined by OSD to estimate charcoal kiln number as 
accurately as possible. The inventory resulting from OSD provided a 
density of 0.46 kilns.ha− 1 with 2641 potential charcoal kilns detected. 
Deforce et al. (2013) determined a density of 0.32 charcoal kilns.ha− 1 

(49 charcoal kilns in 150 ha) by visually scanning hillshade images in an 
area with continuous forest cover in Northern Belgium. Schneider et al. 
(2020), combining several methods, performed an exhaustive mapping 
of charcoal kilns (>94000 charcoal kilns in, approximately, 15300 km2) 
in forested areas in Germany, with densities ranging from 0.01 to 0.02 
kilns.ha− 1 to more than 2 kilns.ha− 1, and found that the distribution was 
related to former industrial activities, geology or strong relief. In our 
study, half of the detections were in State-owned forests, that cover only 
30% of the study area, suggesting that charcoal production was actively 
practiced in these forests. The same trend was observed in the test area 
using the AD method, and densities were always higher than in 
municipality-owned or private areas (Table 2). Our results thus suggest 
that topography had a minor role in the distribution of charcoal kilns, 
while forest ownership status seemed to be intrinsically correlated with 
the presence of these structures. This correlation can be associated with 
the differential use of wood resources related to forest ownership and/or 
management practices. Wood can be immediately used as raw material 
for construction (e.g., oak from stands) or firewood, or used to produce 
charcoal. These different usages lead to different imprints in the forest, 
such as charcoal kilns. The low correlation of the selected variables with 
kiln density (or abundance), especially the variables related to topog-
raphy, may give a hint that, in this area, topography did not represent a 
marked constraint for charcoal production, unlike in areas with more 
marked relief, such as the Northern Vosges (Gocel-Chalté et al., 2020) or 
in Hesse, Germany (Schmidt et al., 2016). 
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4.3. Further perspectives 

The continuous acquisition of high-resolution LiDAR data presents 
an invaluable opportunity to explore and implement methodologies of 
detection and mapping on large scale. The automatic detection method 
used here is very flexible, allowing for reproducibility. Further per-
spectives after this study include the testing and evaluation of the al-
gorithm performance in different areas and at different spatial scales 
with available high-resolution LiDAR data. We will also include more 
reliable field-validated data to increase the quality of the reference 
dataset used for object detection. 

5. Conclusion 

The detection, mapping and validation of charcoal kilns in the 
studied forest area revealed the occurrence of, potentially, more than 
2600 charcoal kilns in an area of 57 km2. Topographic or environmental 
factors were not relevant to explain the distribution of charcoal kilns in 
the study area, unlike socio-historical variables such as forest ownership 
that were found to be the relevant drivers of charcoal kiln distribution. 

The conjugation of different methods allowed for a better perspective 
of their limitations such as operator biases during on-screen detection, 
insufficient ground truth data to perform AD, or the lack of represen-
tativeness in fieldwork prospection and validation. However, the results 
provided by AD are encouraging and the methodology developed in this 
work can be easily transferable to a novel environment since hand- 
engineering is not required to create a template model. The approach 
allows the user to apply the method in an area of interest without 
needing to invest much time to acquire specific skills. To do so, it can be 
mentioned that it is not necessary to pre-process the images (a DEM is 
sufficient) or deal with data augmentation steps, since the network does 
it by default. The training dataset is enriched with both positive and 
negative examples (examples with or without kilns), leading to an in-
crease in precision, and a more generalized method. To build on these 
promising results, the network can be refined in order to achieve a better 
performance. The development of easy and user-friendly methodologies 
increases our understanding of these historical activities such as char-
coal production. Exhaustive charcoal kiln inventories are key to 
correctly gauge the extent of former historic activities impacts where 
most studies rely on local-scale studies. 

In this study, field validation of the detections was an important step 
to reach better results in both metrics (Recall and Precision) and it 
should be implemented routinely, even in small areas. 
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