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Abstract

This paper examines and demonstrates the importance of the adult modal age at death
(M) in longevity research. Unlike life expectancy at birth (e0) and median age at death,
M is determined solely by old-age mortality as far as mortality follows a bathtub
curve. It represents the location of old-age death heap in the age distribution of deaths,
and captures mortality shifts more accurately than conditional life expectancies such
as e65. Although M may not be directly determined from erratic mortality data, a
recently developed method for deriving M from the P-spline-smoothed mortality
curve based on penalised Poisson likelihood is highly effective in estimating M.
Patterns of trends and differentials in M can be noticeably different from those in other
lifespan measures, as indicated in some examples. In addition, major mathematical
models of adult mortality such as the Gompertz, logistic and Weibull models can be
reformulated using M, which plays a critical role as the mortality level parameter in
those models.

1 Introduction

Mankind has witnessed a substantial increase in the length of human life during the
last two centuries. In economically developed countries that currently have relatively
low levels of mortality, life expectancy at birth for both sexes rose from around
30 to 45 years in the mid-19th century to about 80 years in recent periods (Meslé
and Vallin 2011). The longevity expansion resulted in a considerable growth of
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the elderly population and also led to increasing concern about inequalities in the
lifespan (length of life) among populations and subpopulations.

Monitoring and analysis of these longevity trends and differentials need to be based
on proper and effective summarisation of statistical data on human lifespan. There
are two types of measures of mortality and survival. Some measures are expressed
as proportion, estimated probability, hazard (force), or rate of death. Others, called
lifespan indicators in this paper, are expressed in terms of the length of survival time.
Three major types of overall lifespan indicators are the mean, median and mode of
the length-of-life distribution: life expectancy, median age at death and modal age at
death. The life expectancy at birth (e0) has been widely used, but increasing attention
has recently been given to the modal age at death.

Typically, the age distribution of deaths in human life tables is bimodal, with
the first local mode at the left end (age 0) and the second local mode at an old age
(Figure 1). In this paper, the older mode (the modal age at death among adults) is
denoted by M. The number of deaths at the younger mode is greater than that at
the older mode in high-mortality regimes, but that at the older mode is greater in
low-mortality regimes. In economically developed countries, the older mode has
been higher than the mode at age 0 in most years during the last half century. In
France, for instance, the number of life table deaths at the older mode surpassed that
at age 0 in 1953 for females and in 1960 for males. Thus in this paper, M will be
indicated simply as the modal age at death except in analyses of long-term trends.

Whereas both life expectancy at birth and median age at death are affected by
mortality among infants, children and young-age and middle-age adults, M is solely
determined by old-age mortality, as far as the mortality risk follows a bathtub
curve (see Appendix A for a more detailed discussion). This feature gives a special
significance to M because the lifespan extension during the recent few decades is
mainly due to the reduction in old-age mortality (e.g. Wilmoth et al. 2000; Vallin
and Meslé 2001; Meslé and Vallin 2006). Furthermore, the feature may make M
suitable to be called a longevity measure: although developing a rigorous definition
of ‘longevity’ is beyond the scope of this paper, the concept seems to have been used
not for simply indicating a duration of lifetime but for emphasising old-age survival
to very high ages.

Other widely-used measures of old-age survival are life expectancies at some
selected early old ages such as 50 and 65. The life expectancy conditional on survival
to the selected old age is independent of mortality at young ages. However, as shown
later, changes in those conditional life expectancies tend to underestimate age shifts
of old-age mortality.

It is useful to characterise M in the context of the common pattern of age
distribution of deaths in human populations, which is illustrated in Figure 1 for
French women in 1960–1964. As originally indicated by Lexis (1878), the common
pattern may be described as a sequence of three phases: (1) a steep fall in early
childhood, from the relatively high frequency of deaths among new-born babies;
(2) a low and fairly flat curve in late childhood through middle age; and (3) a large,
left-skewed heap of deaths in old age. Usually the shift from the first to the second
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Figure 1:
Age distribution of life table deaths for French females, 1960–1964
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Source: Human Mortality Database (2012).

phase can be located around the typical age of puberty, but transition from the second
to the third phase appears more gradual. An improvement of old-age survival moves
the heap to higher ages. Thus, the location of the old-age death heap on the age
dimension may be considered as indicative of the level of longevity in the population.
M, which is the location of the peak of the heap, is a summary measure representative
of the location of old-age death heap.1

2 Modal age at death in longevity research

The use of M in longevity research is not a totally new approach. It has been
advocated by some researchers in such fields as demography, actuarial sciences,
statistics and biology in the past two centuries. According to Quetelet (1835, 1848,
1871), the mode is not an arithmetic mean but a typical value alongside a normal

1 Although Figure 1 shows an example of death distributions in period life tables, those in cohort life

tables follow the three-phase sequence as well. However, the old-age death heap tends to be steeper

for synthetic than actual cohorts in modern human populations, because when the level of mortality is

declining, mortality tends to increase with age faster in period than cohort life tables (Horiuchi and

Wilmoth 1998).
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curve which clearly accounts for the central value of the frequency distribution,
representing the most common individual observation, limited by minimum and
maximum values following the laws of nature.

Following the publication of Quetelet’s work (1835) on the ‘average man’
(l’homme moyen), Lexis (1878) also stated that M represents the most central and
natural characteristic of human longevity and that deaths occurring at and above
M should be regarded as ‘normal’ deaths following the right-hand side of a normal
distribution. Lexis theorised the idea of normal life duration, characteristic of a
natural and ageing lifetime. He divided the distribution of deaths in three parts:
(1) a J-curve right after birth corresponding to infant deaths; (2) the normal deaths
around the late modal age at death which obey the law of accidental errors reflecting
the natural lifetime; and (3) a transitional region between (1) and (2), where adult
premature deaths partly overlap with the normal deaths.

Following the work of Lexis, a number of researchers studied the age distribution
of deaths to better describe the shape of the human longevity and discuss its limits
(Elderton 1903; Gumbel 1937; Greenwood and Irwin 1939; Clarke 1950; Benjamin
1959, 1963, 1964, 1982a, 1982b, 1988). However, M was not perceived as a key
indicator of lifespan until the work of Kannisto (2000, 2001), who clarified that M
is not invariant over time but depends on the conditions of mortality of each period.
This work triggered various studies on changes in longevity in various settings
(Cheung et al. 2005, 2008, 2009; Cheung and Robine 2007; Gurven and Kaplan
2007; Canudas-Romo 2008, 2010; Thatcher et al. 2010; Ouellette and Bourbeau 2011;
Brown et al. 2012). Horiuchi (2003) used M for interspecies lifespan comparison
because a consistent definition of infant mortality for different species is impossible.

Acsádi and Nemeskéri (1970) considered the mean, median and mode of age
distribution of deaths in life tables as three major types of lifespan indicators: (1) the
average length of life attained by individuals; (2) the probable length of life attained
by half the individuals; and (3) the so-called normal age at death for most people,
disregarding those who died as children. These three central tendency measures well
reflect their orientation to different aspects of mortality (Cheung and Robine 2007;
Canudas-Romo 2010). Although the adult modal age at death has been used earlier in
order to characterise the natural and normal lifespan (Elderton 1903; Gumbel 1937;
Greenwood and Irwin 1939; Clarke 1950; Le Bras 1976), life expectancy at birth (e0)
was considered the best index of the lifespan (Dublin 1923). The substantial decline
in mortality at young ages during the first half of the 20th century was reflected in
the steep increase in e0. Currently, however, the extension of length of human life
in low-mortality countries is primarily due to improvements in old-age survival. In
these circumstances, the modal age at death is a useful lifespan indicator as it is
solely determined by old-age mortality (Appendix A) and is free from any arbitrary
selection of an age range for ‘old ages’ (Kannisto 2001).

In the existing literature on M, however, at least two questions seem to remain
unanswered. The first one is empirically oriented. Could patterns of trends and
differentials in M be noticeably different from those in widely-used lifespan measures
such as e0 and e65? If so, M may be able to shed light on some aspects of mortality
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trends and differentials that are not necessarily captured well by e0 or e65. Although
trends in M and e0 (and also the median age at death in some case) were compared
for some countries (Kannisto 2001; Cheung and Robine 2007; Cheung et al. 2009;
Canudas-Romo 2010; Office of National Statistics 2012), the comparisons did
not include the life expectancy at an early old age (e.g. e65), which is a widely-
used indicator of old-age survival. Furthermore, to our knowledge, no systematic
comparison in mortality differentials has been made among major lifespan indicators.

The second question is theoretically oriented. It is widely known that some
mathematical equations, such as the Gompertz, logistic and Weibull models, fit
empirical age variations of adult mortality quite well and are used broadly in
mortality research, population projection and simulation studies. Could these models
be reformulated using M as their key parameter? It should be noted that those models
are used not only for parametric summarisation of adult mortality data but also to
construct mathematically formulated theories on ageing and mortality. Classical
examples include Strehler and Mildvan (1960) for the Gompertz model, Le Bras
(1976) for the logistic model, and Rosenberg et al. (1973) for the Weibull model. Thus,
if M plays critical roles in those models, the mathematical relationships may suggest
a potential theoretical significance of M in ageing research. Although expressions for
M in the Gompertz and logistic models were previously shown (Pollard 1991, 1998a,
1998b; Pollard and Valkovics 1992; Robine et al. 2006; Canudas-Romo 2008), it is
not fully clear whether those models can be entirely reformulated using M, and if so,
what roles M plays in the reformulated equations.

This paper will investigate the empirical and theoretical significance of M as
a summary measure of longevity, with focus on these two questions. In the next
section, we will describe the method for estimating M that is adopted in this paper and
recommendable to prospective users of this measure. Then we will compare empirical
patterns of trends and differentials in M, e0 and e65, and explore mathematical roles of
M in some widely-used models of adult mortality. Since comprehensive international
comparison is not a purpose of this paper, we will mainly use French civilian data
from the Human Mortality Database (2012) to illustrate widely-observed patterns.
(The time series do not include those in military services for 1914–1920 and 1940–
1945.) Although M is important in studies of both period and cohort mortality, we
will use period mortality data only, because the typical patterns of age variations in
mortality and death are common in both period and cohort data.

3 Methods for estimating the modal age at death

Although a simple visual inspection of the age distribution of life table deaths is
often sufficient to roughly locate the modal age area, determining M with greater
precision is more challenging given the typical flatness and irregular pattern of deaths
in this area. Indeed, multiple local modes of the death distribution are likely to be
found at different adult ages, due to erratic data and flatness of the curve in the
highest frequency region (Kannisto 2001). Figure 2(a) shows that this flat-topped and
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Figure 2:
Age distribution of life table deaths and corresponding age-at-death distribution
derived from the P-spline-smoothed mortality curve based on penalised Poisson
likelihood, French females, selected years
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(b) Smoothed death distribution

P
ro

po
rti

on
 o

f D
ea

th
s

40 50 60 70 80 90 100
Age

110
0.00

0.01

0.02

0.03

0.04

0.05
1952
1970
1993
2007

Source: Human Mortality Database (2012).

irregular pattern around the modal age does not only characterise earlier time-periods
and that it is found even in relatively large populations such as French females.
The most intuitive approach for estimating M then would be to smooth the age
distribution of life table deaths in the modal age area using a statistical model. A
perfectly smooth curve around the modal age would indeed make it very easy to
determine the precise age at which the peak of the heap of deaths occurs. Already in
1902, Pearson warned against choosing modal values based on a casual inspection of
the adult age-at-death distribution and recommended instead interpolating a curve
through the top of ordinates (Pearson 1902). Several parametric models, namely,
quadratic, normal (Lexis), Gompertz, logistic and Siler models, have been used for
directly or indirectly smoothing the distribution in the highest frequency region of
adult deaths and thereby estimating M (Kannisto 2000, 2001; Cheung 2003; Horiuchi
2003; Cheung and Robine 2007; Gurven and Kaplan 2007; Canudas-Romo 2008,
2010; Cheung et al. 2008, 2009; Thatcher et al. 2010; Brown et al. 2012). However,
these conventional parametric statistical modelling techniques have some limitations.
They rest on a priori assumptions about the shape of the age distribution of deaths
or the shape of the mortality curve. Moreover, most of these techniques also rest
on a priori assumptions about the proper restricted age domain over which the
models should be applied. Both assumptions could influence results and diminish
the accuracy of estimated values of M.

Recently, Ouellette and Bourbeau (2011) proposed a flexible nonparametric
smoothing method based on P-splines for estimating M, which relaxes these
assumptions. Instead of smoothing the age distribution of life table deaths, this
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P-spline approach for Poisson death counts uses data on observed deaths and
person-years lived to obtain a smoothed age pattern of mortality (i.e. mortality
curve) from which the corresponding smoothed age-at-death distribution can then
be derived (Figure 2(b)). Everywhere in this paper, unless otherwise specified, M
was estimated using this method. It is indeed our preferred method for estimating
M because in addition to being free from any assumptions about the shape of the
death distribution, it does not require users to select a proper restricted age domain
because the smoothing procedure can be systematically applied from age 10 and
onwards.2 It is advisable, nonetheless, not to extend the smoothing up to the very
last high ages, where deaths are scarce and person-years lived are small. At these
latter ages, the P-spline-smoothed mortality curve may show unrealistic behaviour
due to significant random fluctuations. This would have hardly any effect on the
estimation of M though, since the modal age is a measure of the location of the heap
of deaths and is thus insensitive to such extreme values. Still, we provide a simple
rule of thumb that prevents undesirable patterns in the right-hand tail of the smoothed
mortality curve: for each 1-year interval in the age range for smoothing, the observed
number of deaths should be greater than ten. More specifically, the age range for
smoothing should span ages 10 to j, where j is the highest age for which Di > 10
for all i ≤ j.3 In cases where this rule of thumb fails to prevent unrealistic smoothed
mortality behaviour at the highest ages, the threshold of ten observed deaths could
be increased.

Note that to estimate M, it is preferable to obtain the smoothed age-at-death
distribution directly from the P-spline-smoothed mortality curve than to smooth the
age distribution of life table deaths derived from observed age-specific death rates.
Indeed, the former case skips the process of constructing a period life table, which
rests on a number of assumptions and often involves estimation procedures and
adjustments (Preston et al. 2001, Chapter 3). It thus offers a more straightforward
framework that remains closer to the observed data.

When compared to competing methods that have been used to estimate the modal
age at death, the method of deriving M from the P-spline-smoothed mortality curve
based on Poisson likelihood has, notably, an important advantage for empirical
studies: it limits artificial fluctuations in estimated values of M (Ouellette and
Bourbeau 2011). For example, the post-1950 upward linear trend in M for French
females (Figure 3(a)), which is based on the Poisson P-spline smoothing method, is
much steadier than if Kannisto’s (2001) well-known quadratic estimation procedure
had been used instead (root-mean-square error (RMSE) of 0.31 for the former and of
0.74 for the latter).

2 Mortality in infancy and early childhood presents unique features (in particular, a very steep

downward slope between ages 0 and 1) which this P-spline method cannot cope well with, but this is

not of interest for estimating M by any means.
3 For instance, among French males in 2004, the number of observed deaths at ages 104 through 109

was 38, 13, 4, 7, 0 and 0 (Human Mortality Database 2012). In this case, the last four 1-year age groups

(i.e. ages 106 through 109) would be excluded from smoothing.



44 Modal age at death

A more detailed overview of the P-spline smoothing method for estimating
M as well as an implementation guide written for the statistical programming
environment R (R Core Team 2012) is provided in Appendix B. Conveniently,
the MortalitySmooth package (Camarda 2012, 2013) in R features a function called
‘Mort1Dsmooth’ that performs smoothing of Poisson death counts with P-splines
over a given range of ages or calendar years.4 This function can therefore be used to
obtain smoothed forces of mortality from observed death counts and person-years
lived. The subsequent steps leading to M estimates are not contained in the current
version of the MortalitySmooth package. However, we have included an R routine
that covers these steps in Appendix B.

4 Trends and differentials in modal age at death

4.1 Differential trends in M, life expectancy at birth and median
age at death

Because the age distribution of deaths is typically bimodal and that of adult deaths
is highly skewed to the left, M is considerably older than e0, and the median age is
placed between them (Figure 1). In high-mortality regimes in which e0 was around
40 years or lower, M was higher than e0 by about 30 years or more (Cheung et al.
2008, Figure 7). In high-income countries during the past few decades, values of the
three indicators are closer, but with the differences still noticeable: typically, M is
higher than e0 by about 5 years, and the median age is near the mid-point between
M and e0.

The change in the differences among the lifespan measures is a result of their
differential trends, which are shown for French females and males in Figure 3.
Similar patterns have previously been shown for some other countries and regions
such as England and Wales, Finland, France, Japan (only since 1950), Sweden and
Switzerland (Kannisto 2001; Cheung and Robine 2007; Cheung et al. 2009; Canudas-
Romo 2010; Office of National Statistics 2012). High-income countries witnessed
a substantial rise in e0 and median in the last quarter of the 19th and the first half
of the 20th century, due to the reduction in mortality among infants, children and
young-age and middle-age adults. The rise has continued in the second half of the
20th century and recent years, though not as fast as in the earlier phase. On the
contrary, the trajectory of M was almost flat or went only slightly upward in most of

4 The package also includes a ‘Mort2Dsmooth’ function, for those interested in smoothing mortality

data over ages and years simultaneously. This generalisation is particularly useful when dealing with

small populations, for instance. The ability of the two-dimensional approach to borrow information from

both neighbouring years and ages makes large random fluctuations less likely to distort the smoothed

outcome (Camarda 2012). For an analysis of geographical disparities in M using this generalised

approach, see Ouellette et al. (2012).
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Figure 3:
The life expectancy at birth (e0), median age at death and adult modal age at death
(M) for civilian females and males in France, 1920–2009
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Source: Human Mortality Database (2012).

the first half of the 20th century, until M started to increase during the second or third
quarter of the century and the upward trend continued. During the last few decades,
the three upward trajectories, all quite linear, appear nearly parallel, suggesting that
the gain in e0 was primarily attributable to the improvement in old-age mortality. It
should be noted, however, that this is a description of the typical pattern, and there are
some variations in the timing of acceleration/deceleration and concavity/convexity of
slope among high-income countries, some of which also show sudden falls reflecting
effects of wars and other disastrous events.

It should also be noted that when the latest figure of life expectancy is announced,
many people may take it as the ‘typical’ (i.e. most frequent) length of life. For
example, life expectancy at birth for French females is currently around 85 years.
They tend to miss the fact that the typical age at death has actually been over 90
years in the period life tables since 2006.

4.2 Comparison of trends in M and conditional life expectancies
e55, e65 and e75

Conditional life expectancy, defined as the expectation of life conditional on survival
to a certain age (i.e. ex for x > 0), is widely used as a summary measure of old-age
mortality. If an old age such as 65 is adopted as x, then ex is not affected by mortality
at young and middle ages, and determined by mortality at old ages only. Thus, it may
seem reasonable to expect similar trends for M and conditional life expectancies
such as e65.
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However, data from high-income countries that experienced significant declines
in old-age mortality actually exhibit noticeably different trends between M and
various ex’s. Figure 4(a) compares changes in e55, e65 and e75 with those in M for
French females from 1920 to 2009. M increased more steeply than the conditional
life expectancies. In addition, life expectancy at older ages tended to increase more
slowly.

In order to understand these different trends, we did a simple simulation of ‘old-
age mortality shift’: a mortality curve, which had the same shape as the three-
parameter logistic curve fitted to Swedish female data for 1973–1977 (Horiuchi
and Coale 1990), was assumed to shift to older ages at the rate of 1 year of age in
four calendar years, i.e. the force of mortality at age x and time t (in years) was
given by μ(x, t) = μ(x + 0.25, t + 1). Figure 4(b) shows the result of this simulation.
M increased from age 75 to 90 in 60 calendar years, exactly capturing the pace of
old-age mortality shift. Increases in e55, e65 and e75 were noticeably slower. Patterns
seen in Figures 4(a) and 4(b) appear fairly comparable, suggesting that differential
trends in Figure 4(a) are not just a peculiarity of demographic history in France but
reflect some general characteristics of M and conditional life expectancies.

It can be shown that in general, if the mortality curve makes a parallel shift to
older ages, M increases exactly at the same pace as the shift of the mortality curve,
but conditional life expectancies increase more slowly. (See Appendix C for the

Figure 4:
The adult modal age at death (M) and total life expectancies at age 55, 65 and 75
(55 + e55, 65 + e65, 75 + e75)

(a) For French civilian females, 1920–2009
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mathematical proof.) Thus, mortality shifts may not be accurately reflected in trends
of conditional life expectancies at old ages.5

It should also be noted that changes in conditional life expectancies are highly
age-dependent. As seen in the differential steepness of the three life expectancy
curves in Figures 4(a) and 4(b), the size of change in the conditional life expectancy
varies with the starting age such as 55, 65 and 75. There is no such dependency on
the selected age range for the modal age at death, as the modal age above 55, that
above 65 and that above 75 are all identical in any high-income country during any
recent period.

4.3 Gender longevity differentials in terms of M, e0 and e65

We now turn to issues in measurement of longevity differentials among populations
and subpopulations, using gender differences (present subsection) and international
differences (subsection 4.4) as examples. Differentials in terms of M, e0 and e65

(selected as a widely-used conditional life expectancy) are compared. Because the
analysis in 4.1 suggests that the median age at death is likely to fall between M
and e0, the median is not included in this comparison in order to avoid excessive
complexities in figures.

Figure 5 shows gender differences (female minus male) in the three length-of-life
measures for France from 1920 to 2009. For most of the period, the difference in
e0 is the largest, followed by that in M and then that in e65. The greater differences
in e0 than in M were expected, because gender differentials in e0 reflect mortality
at all ages, whereas gender differences in M are determined by old-age mortality
only. The smaller differences in e65 than in M were expected as well, because e65

seems less sensitive than M to horizontal differences on a mortality plot graph, as
described in 4.2 and Appendix C. Male and female mortality curves can be compared
on both the vertical and horizontal dimensions in a mortality plot graph: although the
female mortality curve may be considered as being below the male mortality curve
(i.e. for a given age, mortality for females is lower than mortality for males), the
female mortality curve may also be deemed as being at the right of the male curve
(i.e. for a given mortality level, females reach it at an older age than males).

5 Results of the simulation (Figure 4(b)) and mathematical reasoning (Appendix C) should be viewed

with caution as they are over-simplified models. Although trends of old-age mortality in some countries

during certain periods were approximated as parallel shifts of mortality curves to older ages (Kannisto

1996; Bongaarts 2005; Cheung and Robine 2007; Canudas-Romo 2008), mortality curves do not

necessarily make parallel shifts. In many populations, age shifts of higher mortality levels tend to

be slower, and usually the time trajectory of M tends to be close to age shift of μ(x) = 0.12. This

trend is called compression of old-age mortality, which should be distinguished from the overall
rectangularisation of the survival curve due to a reduction of young-age mortality. The old-age mortality

compression was observed in a number of high-income countries during the last several decades

(Kannisto 2000, 2001; Cheung et al. 2005, 2008, 2009; Thatcher et al. 2010).
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Figure 5:
Gender difference (female minus male) in the adult modal age at death (M), life
expectancy at birth (e0) and life expectancy at age 65 (e65) for France’s civilian
population, 1920–2009
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Source: Human Mortality Database (2012).

The three measures of gender longevity difference differ not only in levels (in
years) but also in trends. The gender difference in e0 continued to increase from 1920
to 1992 in France, and decreased thereafter. Such downturns were observed recently
for many other high-income countries (Glei and Horiuchi 2007). Downturns can be
seen for the gender differences in M and e65, but the downturn was earlier (in the
early 1970s) and more pronounced for M than for e0, and the downturn for e65 was
fairly recent (around 2000) and modest. As seen in Figure 6, the narrowing of the
gender gap during the last few decades was more evident for M than for e0 and e65.
Figure 7 shows that the old-age death heaps for females and that for males moved
closer between 1972 and 2009. It seems that the narrowing distance between the two
heaps was reflected more clearly in M than in e0 and e65, both of which might have
been affected more by changes and differences in other aspects of male and female
death distribution curves.

4.4 International longevity differentials in terms of M, e0 and e65

Figure 8(a) presents trends in the three lifespan measures for French and Japanese
females from 1950 to 2009. At the beginning of the period, the Japanese lagged
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Figure 6:
The adult modal age at death (M), life expectancy at birth (e0) and total life
expectancy at age 65 (65 + e65) for civilian females (solid line) and males (dashed line)
in France, 1920–2009
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Source: Human Mortality Database (2012).

Figure 7:
Height-adjusted age distribution curves of adult deaths for females and males in
France, 1972 and 2009
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behind the French in all three measures, but by the end of the period, the hierarchy
was reversed. However, the timing of the French-Japanese reversals in M, e0 and
e65 differed. As shown in Figure 8(b), the reversal in e0 occurred around 1975 and
preceded that of M and e65. Thus, during the 1975–1985 period, Japan had higher
values of e0, but France still had higher values of M and e65. This situation is likely
due to a ‘crossover’ from lower death rates at younger ages to higher death rates at
older ages for Japan compared to France in this period. Figure 9 illustrates indeed
how the mortality curves for Japan and for France changed between 1950 and 2009
(calendar years 1950, 1980 and 2009 were selected for purposes of illustration) and
it confirms the occurrence and timing of this young-old mortality crossover. Prior
to the crossover (before 1975), death rates at all ages were higher in Japan than in
France, and thus Japan had lower values of M, e0 and e65. Then, while the young-
old mortality crossover was taking place (from 1975 to 1985, as illustrated by the
1980 mortality curves in Figure 9), death rates at ages under 60 in Japan fell below
those of France, which resulted in Japan recording higher values of e0 (due to this
measure’s sensitivity to mortality at all ages, including infant, child and young-age
adult mortality). Given that M and e65 are determined by mortality at old ages only,
both measures remained higher in France until 1985. Finally, when death rates at
almost all ages in Japan became lower than in France (after 1985), Japan recorded
higher values of M, e0 and e65.

It should be noted that the concept of mortality crossover is not unfamiliar to
demographers—the best-documented example being the mortality crossover at older
ages between black and white populations in the US (Coale and Kisker 1986;

Figure 8:
International trends and differentials in adult modal age at death (M), life expectancy
at birth (e0) and total life expectancy at age 65 (65 + e65), French and Japanese
females, 1950 to 2009

(a) Trends: France (dashed), Japan (solid)
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Kestenbaum 1992; Preston et al. 1996; Johnson 2000). However, when comparing
two countries such as France and Japan, mortality crossovers are seldom examined.
The above example demonstrates that these crossovers can actually produce reversals
of e0 and M trends, such that e0 is higher in one country while M is higher in the
other country.

5 Modal age at death in mortality models

It is known that observed age variations in adult mortality exhibit high degrees
of mathematical regularity, and some mathematical equations fit those empirical
variations very well. Those equations include the Gompertz, logistic and Weibull
models, as well as their Makeham variants. In this section we show that the
Gompertz, logistic and Weibull models can be reformulated using M as the parameter
representing the overall level of adult mortality, and their Makeham variants can also
be reformulated in similar manners. To our knowledge, this special advantage has
not been found for the life expectancy or median age at death.

Figure 9:
Age-specific death rates, French (dashed line) and Japanese (solid line) females, 1950,
1980 and 2009

D
ea

th
 R

at
e 

(lo
g 

sc
al

e)

0 10 20 30 40 50 60 70 80 90 100 110
Age

0.0001

0.001

0.01

0.1

1

1950
1980
2009

Note: Age-specific death rates in this figure were directly taken from life tables available in the Human Mortality

Database (2012). It should be noted that at older ages, such death rates are smoothed based on the Kannisto model

of old-age mortality (Thatcher et al. 1998; see also Wilmoth et al. 2007 for more details).

Source: Human Mortality Database (2012).



52 Modal age at death

Conventionally, the force of mortality (or the instantaneous death rate) at age x in
the Gompertz, logistic and Weibull models are expressed as follows:

Gompertz: μ(x) = aebx (1)

Logistic: μ(x) =
aebx

1 + (a/g)ebx (2)

Weibull: μ(x) = axb. (3)

Although these models have different mathematical characteristics, they are based
on comparable conceptual schemes. Each model has two basic parameters a and
b, with a summarising the overall level of adult mortality and b indicating the
pace of age-related mortality increase, although different age trajectories such as
exponential, logistic and polynomial increases are assumed. The logistic model has a
third parameter, g, which is the upper bound of logistic growth. Parameters a, b and
g are all assumed positive.

These models can also be expressed using M:

Gompertz: μ(x) = beb(x−M) (4)

Logistic: μ(x) =
beb(x−M)

1 + (b/g)eb(x−M)
(5)

Weibull: μ(x) =
b
M

( x
M

)b
. (6)

Derivations of Equations 4, 5 and 6 from their conventional forms are given in
Appendix D. In addition, M and M-related measures such as μ(M), l(M) (i.e. the
life table survival function) and d(M) (i.e. the density function for the age-at-death
distribution) in the Gompertz, logistic and Weibull models can be mathematically
expressed, as shown in Appendix E.

In each of the three models, the mortality level parameter a was replaced by
M. Although Equations 4, 5 and 6 may appear slightly more complicated than
Equations 1, 2 and 3, M is more clearly interpretable than a. This is illustrated in
Figure 10(a) in which the Gompertz model was fitted to death rates for ages 60 to 90
for French males in 1965 and 2005. Estimated values of a are 1.13 × 10−4 for 1965
and 2.4 × 10−5 for 2005 (indicated as asterisks), and estimated values of M (derived
from the Gompertz parameter values) are 76.4 for 1965 and 84.5 for 2005 (indicated
as filled circles).6

In the Gompertz model, a is the force of mortality at exact age 0 extrapolated from
adult ages. Thus a is a highly hypothetical quantity and the interpretation of a is not

6 Values of M estimated by Poisson P-splines are 76.8 for 1965 and 85.3 for 2005. The logarithmic

mortality curve at old ages for 2005 does not appear very straight but looks slightly convex at younger

old ages (centring around 70) and concave at older old ages (centring around 90). The 0.8 year difference

between the two M estimates for 2005 may be due to this departure from the exponential curve.
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Figure 10:
Age-specific death rates (Mx) and corresponding Gompertz models

(a) For French males, 1965 and 2005
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(b) For two hypothetical populations P and Q
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as straightforward as that of M. Actual central death rates for age 0 were 0.024779
in 1965 and 0.004129 in 2005, considerably higher than the estimated values of a.
In addition, estimated values of a are extremely small and it is difficult to have an
intuitive understanding of those values. On the contrary, the meaning of M values is
intuitively clear.

Furthermore, when mortality schedules of two populations are compared, a
paradoxical result about a could be obtained. Although a is generally considered
to be a parameter indicating the overall level of mortality, it is possible for a
population with higher adult death rates to have a lower value of a than the other
population, if b is substantially different between the two schedules. Figure 10(b)
shows mortality schedules of two hypothetical populations: although population Q
has higher mortality at old ages and lower M than population P, the value of a for
population Q is smaller than for population P. In contrast, a lower value of M almost
always indicates higher mortality rates at old ages.

The above argument is applicable to the logistic and Weibull models as well. In
the conventional form of each of those three models, the mortality level parameter a
is obtained by extrapolating the age pattern of adult mortality to some ‘reference age’
such as 0 and 1: μ(0) = a in the Gompertz model (Equation 1), μ(0) = a/{1 + (a/g)} ≈
a in the logistic model (Equation 2) and μ(1) = a in the Weibull model (Equation 3).
The large gap between adult ages and the reference age could produce paradoxical
results.

For each model, its Makeham variant could be set up by assuming that adult
mortality is the sum of premature mortality, which is assumed to be constant over
age and denoted by c below, and senescent mortality, which is represented by the
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original model (Equations 4, 5 and 6):

Gompertz–Makeham: μ(x) = c + beb(x−Ms) (7)

Logistic–Makeham: μ(x) = c +
beb(x−Ms)

1 + (b/g)eb(x−Ms)
(8)

Weibull–Makeham: μ(x) = c +
b

Ms

(
x

Ms

)b
. (9)

These Makeham variants use the modal age at death from senescent mortality
(Ms), which is nearly equal to (though slightly higher than) the modal age at death
from total mortality (M). For example, according to the logistic–Makeham model
fitted to mortality data for Swedish women aged 55–95 in 1973–1977 (Horiuchi and
Coale 1990), M = 84.3 and Ms = 84.6. This proximity is attributable to the fact that
at old ages the estimated level of senescent mortality is considerably higher than that
of premature mortality. It is estimated from the fitted model that 98 per cent of μ(M)
is due to senescent mortality, and only 2 per cent to premature mortality.

In summary, this section has shown that the Gompertz, logistic and Weibull
models and their Makeham variants can be reformulated using M. Algebraically, the
M versions tend to be slightly more complicated than the original versions. However,
the replacement of the original mortality level parameter by M makes those models
more clearly and straightforwardly interpretable. We could not find such a special
property for the life expectancy or median age at death. Thus, in addition to the
empirical evidence discussed in the preceding section, this special mathematical
feature may add to M’s importance as a major indicator of old-age survival.

6 Conclusion

As discussed in this paper, M is a lifespan indicator that is solely determined by old-
age mortality as far as mortality follows a bathtub curve. In the context of common
pattern of age distribution of deaths, M is considered to represent the location of the
old-age death heap.

When mortality data are erratic, for instance because of a small number of deaths
or some data quality problem, it may be difficult to determine M. However, based
on recent progress in the nonparametric regression methodology, a method has been
developed for deriving M from the P-spline-smoothed mortality curve based on
penalised Poisson likelihood, and it is highly effective in estimating M.

With selected examples in which M was estimated using this nonparametric
method, we have shown that patterns of trends and differentials in M and those in
other major lifespan indicators including the life expectancy at birth and conditional
life expectancies such as e65 could be noticeably different, reflecting the characteristic
of M as an indicator representing the location of the old-age death heap. In addition,
M plays key roles in widely-used mortality models such as the Gompertz, logistic
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and Weibull models as well as their Makeham variants, and M helps to formulate
those models in more clearly interpretable ways, which seems to suggest the potential
theoretical importance of M in ageing research.

As a summary measure of lifespan that reflects mortality rates at all ages, life
expectancy at birth should remain a major demographic indicator. However, at a
time when the length of human life is extending mainly due to a reduction in old-age
mortality, it is also useful to have an additional lifespan indicator that places special
focus on old-age survival. We recommend M to be included in the standard set of
demographic indicators and widely used in longevity research.
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Appendix A: Determination of M by old-age mortality

This appendix shows that if mortality follows a bathtub curve, M is determined
solely by old-age mortality. We will first present an artificial example and then
develop a line of mathematical reasoning. The argument will be descriptive and
not in the form of rigorous proof, partly because of the difficulty expressing the
notion of ‘determination of M by old-age mortality’ as a mathematical equation or
inequality and partly because the argument depends on descriptions of ranges and
extents of numerical variations (e.g. very small values) rather than exact mathematical
relationships.

We compare three different life tables that have the same age-specific death rates
for ages 75 and over but different rates for under age 75. The first life table is the
1970–1974 life table for French females. The second life table was constructed by
combining the 1950–1954 and 1970–1974 life tables for French females as follows:
for ages 35 and below, the same age-specific death rates as those in the 1950–1954
life table; for ages 75 and above, the same age-specific death rates as those in the
1970–1974 life table; and between ages 35 and 75, the death rate changes gradually
with age from the 1950–1954 level to the 1970–1974 level. The third life table was
constructed by combining the 2000–2004 and 1970–1974 life tables in the same way.
e0 in the three life tables is 76.2, 71.6 and 78.5, respectively.

The left panel of Figure A.1 displays the three age trajectories of death rates and
the right panel shows age distributions of deaths in the three life tables. In order to
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Figure A.1:
Age patterns of mortality (left) and age distribution of deaths (right) in actual and
hypothetical life tables for French females
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make the comparison easier, d75 (the number of deaths between exact ages 75 and
76) is set to unity in all of the three life tables. Although death distributions under
age 75 are different, death distributions for ages 75 and over are identical, and the
age interval with the highest number of deaths (the discrete M) is [84, 85) for the
three life tables. Thus, in this example, M is determined by mortality for ages 75 and
over, regardless of mortality under age 75.

Now we show that in general, M is determined solely by old-age mortality if overall
mortality follows a bathtub curve. We use life table functions l(x), d(x) and μ(x) with
their regular definitions in the continuous life table model, as well as the life table
ageing rate (LAR), which is defined as k(x) =

[
1/μ(x)

] · [dμ(x)/dx
]
= d ln μ(x)/dx

for any x ≥ 0, i.e. the age-specific rate of age-related relative increase in mortality
(Horiuchi and Coale 1990; Horiuchi and Wilmoth 1997). In this appendix, l(x), d(x),
μ(x) and k(x) are assumed to be differentiable.

The bathtub curve of human mortality can be split by two boundary ages, x1 and
x2, into three phases: under age x1 (childhood), from x1 to x2 (adolescence and
early adult age), and x2 and above (late adult age). Empirically, x1 is around the
age of puberty and x2 is in middle age, somewhere between 30 and 50. These three
phases approximately correspond to the three phases of d(x) curve described in the
introduction section. The three phases can be distinguished from each other in terms
of k(x): k(x) < 0 in the first phase, |k(x)| < λ1 in the second phase, and λ1 ≤ k(x) ≤ λ2

and |dk(x)/dx| < λ3 in the third phase. λ1, λ2 and λ3 are parameters that characterise
the variability of bathtub curves for human populations.
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In the first phase, the logarithmic mortality curve is downward, i.e. k(x) < 0 for
any x in [0, x1). In the neighbourhood of x1, μ(x) is very low and k(x) approaches
zero. In the second phase, the mortality curve remains fairly flat. This may be
expressed as |k(x)| < λ1 in [x1, x2): λ1 is the threshold value that separates steep
slopes (|k(x)| ≥ λ1) and not-steep slopes (|k(x)| < λ1). The limited variation in k(x)
keeps μ(x) low through the second phase. In the last part of this phase, k(x) gradually
increases and approaches λ1. In the third phase (late adult age), the force of mortality
increases steeply (i.e. k(x) ≥ λ1) in a stable manner. The stability of slope can be
described as limited variations of k(x) in a relatively narrow range (λ1 ≤ k(x) ≤ λ2 at
any x) and small change in k(x) (|dk(x)/dx| < λ3 at any x). In previous studies (e.g.
Horiuchi and Coale 1990; Horiuchi 1997; Horiuchi and Wilmoth 1998), it appears
that most smoothed values of k(x) in adult age fall in the range between 0.05 and
0.15, if the time unit is year, and |dk(x)/dx| remains under 0.004. Thus λ1 = 0.05,
λ2 = 0.15 and λ3 = 0.004 may be possible choices for modern human populations.7

Let M be the age of the maximum death density above age x1:

M = {x | max[d(x)] for x ≥ x1} . (A.1)

This may be considered a generalisation of the definition by Canudas-Romo (2010).
By differentiating d(x) = l(x)μ(x) with respect to x, we get

dd(x)

dx
= d(x)

[
k(x) − μ(x)

]
. (A.2)

Thus, if the d(x) function has a local maximum or minimum at age y, then

μ(y) = k(y). (A.3)

This is obtained by setting x = y, and making use of the fact that the derivative of
d(x) at y is zero. Thus, if d(M) occurs at one of the local maximums in the age range,
the force of mortality, μ(x), and the life table ageing rate, k(x), are identical at M, i.e.

μ(M) = k(M). (A.4)

This was initially found in the specific context of the Gompertz model (Pollard
1991, 1998a and 1998b; Pollard and Valkovics 1992), in which k(x) is assumed
constant over age, and then extended to the more general form (Robine et al. 2006;
Canudas-Romo 2008).

The assumed properties of k(x) in the third phase imply that the age-at-death
distribution in late adult age is unimodal and M is determined by old-age mortality.

7 This condition allows a deceleration of relative mortality increase at old ages (dk(x)/dx < 0) but

does not allow a near-flattening of the mortality curve at extremely old ages, which was observed for

ages 100 to 106 in a pooled population of male centenarians (Kannisto 1996). For our purposes, this

problem does not matter because d(x) is very small at extremely old ages.
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Figure A.2:
Mortality and life table ageing rate (LAR) by age for French females, 2009
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Source: Human Mortality Database (2012).

This is illustrated in Figure A.2, which shows trajectories of the μ(x) and k(x) in
old age for French females in 2009. The two curves cross only once in the figure,
indicating that there is only one local maximum value of d(x) within the age range.
For the d(x) function to have two or more local maximums and minimums, the two
curves need to cross with each other multiple times.

Since μ(x) remains low in the second phase, μ(x2) is considerably lower than 0.05.
Thus initially in the third phase, the μ(x) curve remains below the k(x) curve. Because
μ(x) increases steeply at the exponential rate of 0.05 per year or higher but k(x) stays
in the range between 0.05 and 0.15, the two curves eventually cross with each other,
causing d(x) to reach a local peak. Let the age of this local peak be denoted by y.
This age is the only local mode in the third phase: once the two curves cross with
each other, they will not cross again, because μ(x) continues to rise steeply and k(x)
remains stable (i.e. dμ(x)/dx > dk(x)/dx for any x ≥ y), thereby enlarging the gap
between them. Thus, the death distribution in late adult age is unimodal.

Because μ(y) = k(y), μ(y) must be between 0.05 and 0.15. Thus, the location of y,
which is around age 90 in Figure A.2, is determined by the age trajectory of μ(x) in
the range of 0.05 to 0.15, which is a very high level. Given that μ(x) continuously
increases with age in the third phase, it can be stated that this μ(x) range is in old
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age, if we consider ‘old age’ as adult age of high mortality. Therefore, the location
of y is determined by the age trajectory of mortality in old age.

Finally, y = M if d(y) is greater than any d(x) in the second phase. This seems
intuitively clear, but can also be based on the fact that because both |k| and μ are very
small in the second phase and because k is greater than μ under age y in the third

phase, we have
∫ y

x k(t) dt >
∫ y

x μ(t) dt. This inequality leads to l(y)/l(x) > μ(x)/μ(y)
and then d(y) > d(x) for any x in [x1, x2).

Appendix B: Poisson P-spline smoothing method for
estimating M: Overview and implementation in R

B.1 Overview of the method

Let Di and Ei denote the observed death count and person-years lived in the age
interval [i, i + 1). Assuming that the force of mortality (i.e. mortality curve) is a
piecewise constant function, or to be more specific, that the force of mortality is
constant within each 1-year age interval such as μ(x) = μi for any x in [i, i + 1), then
the various Di can be seen as realisations of a Poisson distribution with mean Ei · μi.

Thus, in order to estimate μi, a Poisson regression model is used such that

ln(E(D)) = ln(E · μ) = ln(E) + ln(μ), (B.1)

where D, E and μ respectively correspond to observed death, person-years lived
and force of mortality vectors (each one including all the age-specific information).
The unknown parameters of this regression model are estimated with a flexible
nonparametric approach based on P-splines, which combines the concepts of
B-splines and penalised likelihood (Eilers and Marx 1996). The main outcome
of this is a fitted (i.e. smoothed) log force of mortality, which is described as a
linear combination of B-splines whose coefficients have been penalised. For a brief
introduction to P-splines and more details regarding their use in the specific context
of mortality analysis, please refer to Ouellette and Bourbeau (2011, Appendix). Thus,
smoothed forces of mortality resulting from the estimation procedure correspond to:

μ̂(x) = exp(B(x)α̂), (B.2)

where B is the B-spline basis matrix and α̂ is the vector of estimated penalised
coefficients for each B-spline included in B.

Given the usual correspondence between the force of mortality, survival and density
functions, the smoothed density function describing the age-at-death distribution is
expressed as:

d̂(x) = μ̂(x) · l̂(x) = μ̂(x) exp
(
−
∫ x

0

μ̂(u) du
)

(B.3)
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and can be computed using standard numerical integration techniques. Finally, the
estimated modal age at death is given by M̂ = maxx d̂(x).

B.2 An R routine for computing M estimates from
P-spline-smoothed mortality curves

Suppose that the “Mort1Dsmooth” function of the MortalitySmooth package in R
(Camarda 2013) is used to smooth death counts with Poisson P-splines over a given
range of ages as described above. This can be done with the following commands:

R > library(“MortalitySmooth”)
R > fit <- “Mort1Dsmooth”(x = age, y = D, offset = log(E))

where age is a vector with the age values for smoothing (e.g. 10, 11, . . . , 109), and
the vectors D and E include the observed death counts and person-years lived in each
age interval. The output of the “Mort1Dsmooth” function is a fit object that contains
information about the fitting of the Poisson regression model and about the original
data.

The “predict.Mort1Dsmooth” function can be used to obtain predictions of the
smoothed mortality curve over very narrow age intervals (i.e. narrower than the
original 1-year intervals), in order to come closer to the concept of force of mortality
(or instantaneous death rate). For instance, if each 1-year interval is subdivided into
1,000 equal parts, then:

R > delta <- 0.001
R > age.narrow <- seq(from = min(age), to = max(age), by = delta)
R > log.mu.hat <- predict(object = fit, newdata = age.narrow)
R > mu.hat <- exp(log.mu.hat)
To compute the smoothed survival function corresponding to the P-spline-

smoothed mortality curve, mu.hat, the latter must be integrated over age
(Equation B.3). This integral can be evaluated using numerical approximation
techniques. As long as the age intervals are very narrow (e.g. 0.001 as above) and
the integrand is a smooth function, basic numerical integration methods can be used,
such as the left Riemann sum:

R > l.hat <- exp(-cumsum(mu.hat ∗ delta))
The corresponding smoothed density function, which describes the age-at-death

distribution, is then readily obtained (Equation B.3):

R > d.hat <- mu.hat ∗ l.hat
Finally, the estimated value of M is given by the age at which the peak of the heap

of deaths occurs in the smoothed density function:

R > M.hat <- age.narrow[which.max(d.hat)]
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Appendix C: Changes in the conditional life expectancy at old
age in the context of mortality shift

Suppose that the mortality schedule above age y at time t0 shifts to higher ages by u
years in the period between t0 and t:

μ(x + u, t) = μ(x, t0) for any x ≥ y. (C.1)

Note that in this case,

ex+u(t) = ex(t0) for any x ≥ y (C.2)

and M also increases by u, i.e.

M(t) = M(t0) + u. (C.3)

However, the increase in ey is smaller:

ey(t) =
Ty(t)
ly(t)

=
uLy(t) + Ty+u(t)

ly(t)

=
uLy(t)
ly(t)

+
ly+u(t)
ly(t)

ey+u(t)

=
uLy(t)
ly(t)

+
ly+u(t)
ly(t)

ey(t0)

< u + ey(t0). (C.4)

The inequality holds because uLy(t)/ly(t) (the mean number of years lived between
ages y and y + u) must be lower than u and ly+u(t)/ly(t) (the proportion of those who
are alive at age y who survive to y + u) must be lower than one, unless mortality in
the age range is null. Thus, the increase in ey between t0 and t is less than u.

Equation C.1 also implies that if mortality increases with age, then for any pair of
ages y and x (y < x),

uLy(t)
ly(t)

>
uLx(t)
lx(t)

and
ly+u(t)
ly(t)

>
lx+u(t)
lx(t)

(C.5)

so that
ey(t) − ey(t0) > ex(t) − ex(t0). (C.6)

�
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Appendix D: Derivation of M versions of the Gompertz,
logistic and Weibull models

In this appendix, the M versions of the Gompertz, logistic and Weibull models
(Equations 4, 5 and 6) are derived from the corresponding conventional forms
(Equations 1, 2 and 3, respectively). All of the derivations are based on a fundamental
relation, Equation A.4 in Appendix A: μ(M) = k(M).

The life table ageing rate (LAR) for each model is as follows (Horiuchi and Coale
1990):

Gompertz: k(x) = b (D.1)

Logistic: k(x) =
b

1 + (a/g)ebx (D.2)

Weibull: k(x) = b/x. (D.3)

For the Gompertz model, by setting x = M in Equations 1 and D.1 and substituting
them into Equation A.4, we get a = be−bM . Substitution of this into Equation 1 leads
to Equation 4. A similar derivation works for the logistic model: by setting x = M in
Equations 2 and D.2 and substituting them into Equation A.4, we obtain a = be−bM

again, which is substituted into Equation 2, resulting in Equation 5. For the Weibull
model, by setting x = M in Equations 3 and D.3 and substituting them into A.4, we
have a = bM−(b+1). Substitution of this into Equation 3 leads to Equation 6.

Appendix E: M-related measures in mathematical mortality
models

Characteristics of M in the Gompertz model were investigated by Pollard and his
colleagues (Pollard 1991, 1998a and 1998b; Pollard and Valkovics 1992). The work
was elaborated further and extended to the logistic and Weibull models (Robine
et al. 2006; Canudas-Romo 2008). In this appendix, mathematical expressions of
M, μ(M), l(M) and d(M) for the Gompertz, logistic and Weibull models are shown in
terms of their conventional parameters. Some of the expressions for the Gompertz
and logistic models were previously reported by Pollard and colleagues and/or
Canudas-Romo, but are included here for consistency and comprehensiveness.

In what follows, l(0) is set to unity. The expressions for l(M) and d(M) should
be taken with caution, because they are obtained assuming that the age trajectory
of mortality throughout the entire lifespan follows the model, which actually fits
mortality at adult ages only. Thus, if the model fits mortality above age 30, the
analytical expressions for l(M∗) and d(M∗), where M∗ = M − 30, should be close to
observed values of l(M)/l(30) and d(M)/l(30).
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E.1 Gompertz model

M, μ(M), l(M) and d(M) for the Gompertz model are given by:

M =
ln(b/a)

b
(E.1)

μ(M) = b (E.2)

l(M) = e−1+(a/b) ≈ e−1 (E.3)

d(M) = be−1+(a/b) ≈ b/e. (E.4)

The expression for M (Equation E.1) is implied by a = be−bM, which was
derived earlier in Appendix D. The expression for μ(M) (Equation E.2) comes
from Equation 4 by setting x = M. Derivation of Equation E.3 starts with the basic
definition of the survival function:

l(x) = exp
(
−
∫ x

0

μ(y) dy
)
. (E.5)

Substituting Equation 1 into E.5 and making use of a = be−bM, we get

l(x) = exp
(
−
[a
b

eby
]y=x

y=0

)
= exp

(a
b
− eb(x−M)

)
, (E.6)

so that l(M) = e−1+(a/b), which is approximated by e−1 because usually a � b. The
expression for d(M) is obtained simply as a product of l(M) and μ(M).

E.2 Logistic model

M, μ(M), l(M) and d(M) for the three-parameter logistic model are expressed as:

M =
ln(b/a)

b
(E.7)

μ(M) =
b

1 + (b/g)
≈ b (E.8)

l(M) =

{
1 + (b/g)

1 + (a/g)

}−(g/b)

≈ {1 + (b/g)}−(g/b) ≈ e−1 (E.9)

d(M) =
b

{1 + (b/g)}1+(g/b){1 + (a/g)}−(g/b)

≈ b
{1 + (b/g)}1+(g/b)

≈ be−1. (E.10)

Interestingly, the Gompertz and logistic models have similar expressions for M.
As in the case of the Gompertz model, derivations of M and μ(M) are simple (μ(M) is
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approximated by b because b � g). As for l(M), by substituting Equation 2 into E.5
and using a = be−bM, we have

l(x) = exp
(
−
[
ln
{
(g + aeby)(g/b)

}]y=x

y=0

)

=

{g + aebx

g + a

}−(g/b)

=

{
1 + (b/g)eb(x−M)

1 + (a/g)

}−(g/b)

. (E.11)

By setting x = M, we have l(M) = [{1 + (b/g)}/{1 + (a/g)}]−(g/b). Because a/g is
very small, this is close to 1/{1 + (b/g)}(g/b). The denominator of the ratio converges
to e as b/g approaches zero. Because b/g is fairly small, l(M) is expected to be close
to e−1. Equations E.8 and E.9 imply that d(M) can be approximated by be−1. As the
logistic b is usually in the range of 0.10 to 0.14 in low-mortality countries (Thatcher
et al. 2010), this suggests that the number of deaths in a one-year period around M
should be 4 to 5% of all adult deaths.

E.3 Weibull model

Expressions for M, μ(M), l(M) and d(M) in the Weibull model are shown below:

M = (b/a)1/(b+1) (E.12)

μ(M) = b/M (E.13)

l(M) = e−b/(b+1) ≈ e−1 (E.14)

d(M) = (b/M)e−b/(b+1) ≈ b/(eM). (E.15)

Derivations of these equations are similar to those for the Gompertz and logistic
models. As for l(M), substitution of Equation 3 into E.5 and using a = bM−(b+1)

results in

l(x) = exp
(
−
[ a
b + 1

yb+1
]y=x

y=0

)

= exp
{
−
( a
b + 1

)
xb+1
}

= exp
{
−
( b
b + 1

)( x
M

)b+1}
, (E.16)

so that l(M) = e−b/(b+1), which is slightly higher than e−1 because the value of b in
the Weibull model is typically in the range of 6 to 10. It is interesting to note that
l(M) in each of the three models is close to (though slightly larger than) e−1 ≈ 0.368,
suggesting that although the overall level of adult mortality changes substantially
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over time, l(M)/l(30) is expected to be fairly constant, because usually mortality
above age 30 is well approximated by those models. Again, d(M) is directly obtained
as l(M) × μ(M).
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Benjamin, B. 1959. “Actuarial Aspects of Human Lifespans”. In Ciba Foundation
Symposium: the Lifespan of Animals, ed. by G. E. W. Wolstenholme and M.
O’Conner, 5:2–20. Boston: Little, Brown / Company.

Benjamin, B. 1963. “Actuarial Methods of Mortality Analysis: Adaptation to
Changes in the Age and Cause Pattern”. Proceedings of the Royal Society of
London. Series B: Biological Sciences 159 (974): 38–54.

Benjamin, B. 1964. “Demographic and Actuarial Aspects of Ageing, With Special
Reference to England and Wales”. Journal of the Institute of Actuaries 90:
211–253.

Benjamin, B. 1982a. “The Human Lifespan”. Journal of Applied Probability 19:
159–172.

Benjamin, B. 1982b. “The Span of Life”. Journal of the Institute of Actuaries 109
(3): 319–357. doi:10.1017/S0020268100036295.

Benjamin, B. 1988. “Years of Life Lost and Other Mortality Indices”. Journal of the
Institute of Actuaries 115 (4): 709–719. doi:10.1017/S002026810004292X.

Bongaarts, J. 2005. “Long-Range Trends in Adult Mortality: Models and Projection
Methods”. Demography 42 (1): 23–49. doi:10.1353/dem.2005.0003.

Brown, D. C., M. D. Hayward, J. K. Montez, R. A. Hummer, C.-T. Chiu, and
M. M. Hidajat. 2012. “The Significance of Education for Mortality Compression
in the United States”. Demography 49 (3): 819–840. doi:10.1007/s13524-012-
0104-1.

Camarda, C. G. 2012. “MortalitySmooth: An R Package for Smoothing Poisson
Counts With P-Splines”. Journal of Statistical Software 50 (1): 1–24.

Camarda, C. G. 2013. MortalitySmooth: Smoothing and Forecasting Poisson
Counts with P-splines. http://cran.r- project.org/web/packages/
MortalitySmooth/index.html.

Canudas-Romo, V. 2008. “The Modal Age at Death and the Shifting Mortality
Hypothesis”. Demographic Research 19 (30): 1179–1204.

Canudas-Romo, V. 2010. “Three Measures of Longevity: Time Trends and Record
Values”. Demography 47 (2): 299–312. doi:10.1353/dem.0.0098.



66 Modal age at death

Cheung, S. L. K. 2003. Scalar Expansion and Normal Longevity in Hong Kong. PhD
Thesis. Hong Kong: Division of Social Science, The Hong Kong University of
Science and Technology.

Cheung, S. L. K., J.-M. Robine, E. J.-C. Tu, and G. Caselli. 2005. “Three
Dimensions of the Survival Curve: Horizontalization, Verticalization, and
Longevity Extension”. Demography 42 (2): 243–258. doi:10.1353/dem.2005.
0012.

Cheung, S. L. K., and J.-M. Robine. 2007. “Increase in Common Longevity and the
Compression of Mortality: The Case of Japan”. Population Studies 61 (1): 85–97.
doi:10.1080/00324720601103833.

Cheung, S. L. K., J.-M. Robine, and G. Caselli. 2008. “The Use of Cohort and Period
Data to Explore Changes in Adult Longevity in Low Mortality Countries”. Genus
LXIV (1–2): 101–129.

Cheung, S. L. K., J.-M. Robine, F. Paccaud, and A. Marazzi. 2009. “Dissecting the
Compression of Mortality in Switzerland, 1876-2005”. Demographic Research 21
(19): 569–598.

Clarke, R. D. 1950. “A Bio-Actuarial Approach to Forecasting Rates of Mortality”.
Proceedings of the Centenary Assembly of the Institute of Actuaries 2: 12–27.

Coale, A. J., and E. E. Kisker. 1986. “Mortality Crossovers: Reality or Bad Data?”
Population Studies 40 (3): 389–401. doi:10.1080/0032472031000142316.

Dublin, L. I. 1923. “The Possibility of Extending Human Life”. Metron 3 (2):
175–197.

Eilers, P. H. C., and B. D. Marx. 1996. “Flexible Smoothing With B-Splines and
Penalties (With Discussion)”. Statistical Science 11 (2): 89–121.

Elderton, W. P. 1903. “Graduation and Analysis of a Sickness Table”. Biometrika 2
(3): 260–272.

Glei, D. A., and S. Horiuchi. 2007. “The Narrowing Sex Differential in Life
Expectancy in High-Income Populations: Effects of Differences in the Age
Pattern of Mortality”. Population Studies 61 (2): 141–159. doi:10 . 1080 /
00324720701331433.

Greenwood, M., and J. O. Irwin. 1939. “The Biostatistics of Senility”. Human
Biology 11 (1): 1–23.

Gumbel, E. J. 1937. La durée extrême de la vie humaine. Paris: Hermann et cie.

Gurven, M., and H. Kaplan. 2007. “Longevity Among Hunter-Gatherers: A Cross-
Cultural Examination”. Population and Development Review 33 (2): 321–365.
doi:10.1111/j.1728-4457.2007.00171.x.

HMD. 2012. Human Mortality Database. University of California, Berkeley (USA)
and Max Planck Institute for Demographic Research (Germany). Data downloaded
on 9/12/2012. http://www.mortality.org.



Shiro Horiuchi et al. 67

Horiuchi, S. 1997. “Postmenopausal Acceleration of Age-Related Mortality
Increase”. The Journals of Gerontology. Series A: Biological Sciences and Medical
Sciences 52 (1): B78–B92.

Horiuchi, S. 2003. “Interspecies Differences in the Life Span Distribution: Humans
Versus Invertebrates”. In Life Span: Evolutionary, Ecological, and Demographic
Perspective, ed. by J. R. Carey and S. Tuljapurkar, 127–151. Supplement to
Population and Development Review 29. New York: Population Council.

Horiuchi, S., and A. J. Coale. 1990. “Age Patterns of Mortality for Older
Women: An Analysis Using the Age-specific Rate of Mortality Change With
Age”. Mathematical Population Studies 2 (4): 245–267. doi:10 . 1080 /
08898489009525312.

Horiuchi, S., and J. R. Wilmoth. 1997. “Age Patterns of the Life Table Aging Rate
for Major Causes of Death in Japan, 1951-1990”. The Journals of Gerontology.
Series A: Biological Sciences and Medical Sciences 52 (1): B67–77.

Horiuchi, S., and J. R. Wilmoth. 1998. “Deceleration in the Age Pattern of Mortality
at Older Ages”. Demography 35 (4): 391–412. doi:10.2307/3004009.

Johnson, N. E. 2000. “The Racial Crossover in Comorbidity, Disability, and
Mortality”. Demography 37 (3): 267–283.

Kannisto, V. 1996. The Advancing Frontier of Survival: Life Tables for Old Age.
Monographs on Population Aging 3. Odense: Odense University Press.

Kannisto, V. 2000. “Measuring the Compression of Mortality”. Demographic
Research 3 (6). doi:10.4054/DemRes.2000.3.6.

Kannisto, V. 2001. “Mode and Dispersion of the Length of Life”. Population (English
Edition) 13 (1): 159–171.

Kestenbaum, B. 1992. “A Description of the Extreme Aged Population Based on
Improved Medicare Enrollment Data”. Demography 29 (4): 565–580. doi:10.
2307/2061852.
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ed. by J. Vallin, F. Meslé, and T. Valkonen, 31–184. Strasbourg: Council of Europe
Publishing.

Wilmoth, J. R., K. Andreev, D. Jdanov, and D. A. Glei. 2007. Methods Protocol for
the Human Mortality Database. http://www.mortality.org/Public/Docs/
MethodsProtocol.pdf.

Wilmoth, J. R., L. J. Deegan, H. Lundström, and S. Horiuchi. 2000. “Increase of
Maximum Life-Span in Sweden, 1861-1999”. Science 289 (5488): 2366–2368.
doi:10.1126/science.289.5488.2366.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /DEU (PDF online: Komprimierung auf 200 dpi)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


