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Abstract: Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We
undertook  a  Genome  Wide  Association  Study  (GWAS)  using  age  at  death  of  parents  of  middle‐aged  UK  Biobank
participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores
for  19  phenotypes  (n=777  proven  variants) were  also  tested.  In GWAS,  a  nicotine  receptor  locus  (CHRNA3,  previously
associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring
further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery
disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type‐1 diabetes, inflammatory bowel
disease  and  Alzheimer's  disease.  In  candidate  analyses,  variants  in  the  TOMM40/APOE  locus  were  associated  with
longevity, but FOXO variants were not. Associations between extreme  longevity (mother >=98 years, fathers >=95 years,
n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7x10‐3).  These results
support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent
roles  for  cardiovascular‐related  pathways.  Several  of  these  genetically  influenced  risks,  including  blood  pressure  and
tobacco exposure, are potentially modifiable. 
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INTRODUCTION 
 
Over the last several decades, genetic studies conducted 
in-vitro and using model organisms have produced a 
stream of exciting findings linking specific pathways to 
major effects on aging [1], including, for example, gene 
knockouts in nutrient sensing pathways that cause 
dramatic life extension in C. elegans. However, humans 
outlive laboratory models many times over and humans 
suffer from several conditions that don’t normally affect 
laboratory animals. Moreover, beyond obvious 
differences in rate of aging, body size and higher brain 
functions, genomic responses in mice poorly mimic 
human inflammatory responses [2]. It is therefore 
uncertain to what extent the laboratory findings and the 
‘single pathway major effect’ model is relevant to 
human aging and longevity [3]. Additionally, in 
humans, health behaviors plus social and economic 
factors play a major role in explaining differences in 
survival, with smoking being a substantial negative 
factor [4].  
 
In addition to environmental exposures, genetic 
variation is important: for example, studies conducted 
on heterozygotic and homozygotic twins consistently 
report heritability of longer human lifespans of 20-30% 
[5,6], with negligible heritability before age 60 years 
but increasing estimates at advanced ages [7]; the low 
early heritability is hypothesized to be due to more 
“accidental” or exposure-related deaths at younger ages. 
Well-powered genome wide association studies 
(GWAS) provide robust evidence on which common 
single nucleotide polymorphisms (SNP) are associated 
with traits including longevity (selected references: [8–
14]).  
 
Deelen et al. recently reported that the T allele of 
variant rs2149954 (on chromosome 5q33.3) is 
associated with survival to 90 years of age (combined 
sample: 12,704 cases vs. 75,374 controls <65 years; 
combined p-value=1.7x10-8) [13]. This allele has 
previously been associated with lower blood pressure. 
The analysis also confirmed the association between 
variant rs4420638 (APOE/TOMM40 locus) and survival 
to age 90 (p=3.4x10-36). In another recent meta-analysis 
of data from 6,036 participants of European descent 
who survived beyond 90 years versus 3,757 younger 
controls (aged 55 to 80 years) [14] no genome wide 
significant variants were identified. In candidate 
analyses the APOE locus was consistently associated 
across the participating cohorts, and some evidence was 
found to support the FOXO3 gene variants previously 
linked to longevity in candidate studies in Asian and 
other populations (best performing variant in discovery 
analysis rs10457180, uncorrected p-value=0.012 for a 

priori SNP rs2802292). In smaller previous studies, the 
frequency of proven disease risk increasing SNP alleles 
appeared no different in long lived individuals, which 
was interpreted as showing that longevity is achieved 
independent of disease risk alleles [15,16].  
 
Identifying genetic variants associated with longevity 
using unbiased methods is challenging.   As described 
above, a common ‘direct’ approach has been to 
compare older study volunteers with younger 
participants from the next generation, but this approach 
may be biased by the many changes in exposures (e.g. 
early infectious diseases, changing medical treatment) 
and increasing life expectancy across the generations. 
Ideal comparisons might be of exceptionally old 
individuals with those from a representative sample of 
their own generation who died at younger ages, but 
obtaining DNA samples from controls who died 
decades earlier is challenging. An ‘indirect’ approach to 
the ideal design, based on the assumption that longevity 
is partly a genetic transmissible trait, is to access DNA 
from offspring and test for variations associated with 
the longevity of their parents. The middle-aged 
offspring of long-lived parents have less cardiovascular 
disease, cancer, diabetes, and all-cause mortality 
compared to offspring whose parents died at younger 
ages [17], consistent with the inheritance of longevity 
associated genetic variants. This better health status in 
offspring showed a linear association with advancing 
parental age, with a slightly stronger association with 
mother’s compared to father’s age at death. Given that 
offspring inherit their DNA from two parents who 
might have died at very different ages, associations with 
longevity in offspring are diluted and samples 3–4 times 
larger than the direct younger vs older approach are 
needed. In fact, Tan et al [18] estimate that 1,500 
participants of at least one long-lived parent would be 
needed to achieve >90% power to detect less common 
alleles (5% frequency) with effects of 0.85 (in binary 
analysis of offspring of 1 long-lived parent vs. controls) 
with 95% confidence.  
 
In the current analysis we aimed to identify common 
genetic variants (prevalence ≥1%) associated with 
longer parental lifespan. We focused firstly on a broad 
range of survival, aiming to identify associations 
relevant to the interplay of aging and age-related disease 
(i.e. of relevance to geroscience) [19]. We then also 
analyzed associations with extreme parental survival or 
longevity, which we defined as top 1% of survival. To 
achieve the sample sizes required, we utilized data from 
UK Biobank. We first performed genome-wide 
association studies (GWAS) and then used genetic risk 
scores (GRS) of known variants to test the hypothesis 
that offspring of longer-lived parents have lower 
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genetic-risk of common risk traits and diseases.  In 
these analyses we excluded ‘premature’ deaths and 
included middle aged participants only (age 55 to 70), 
so that the range of parents’ ages were relevant to 
‘normal’ aging. Analyses including younger biobank 
respondents would include large numbers of parents 
who were still relatively young for studying longer 
lifespan, biasing estimates toward early mortality.   
 
RESULTS 
 
Our sample included ‘white’ British UK Biobank 
participants aged 55-70 years old (n=75,244 with data 
on fathers survival, mothers survival or both; Table 1). 
There were relatively few current smokers (8.3% 
overall), but smoking rates were higher in those with 
short lived parents. The mean age at death of fathers 
was 72.9 (range 46 to 105 years) and mothers 78.5 years 
old (range 57 to 107 years). Nearly half the participants 
(48.5%) were men. Three continuous phenotypes were 
utilized throughout this analysis; participant’s father’s 
age   at   death   (n = 63,775),   mother’s   age   at   death  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(n=52,776) and combined (normalized) mothers and 
fathers ages at death (n=45,627 with age at death data 
for both parents). We had 90.4% power to detect an 
allele of 5% minor allele frequency in the sample of 
45,627 accounting for 0.1% of the variance in the 
phenotype after multiple-testing correction 
(alpha=5x10-8). 
 
In addition we created a binary “extreme longevity” 
phenotype based on the top 1% of the age at death 
distribution for mothers and fathers (≥98 years and ≥95 
years, respectively). Of 45,627 participants with age at 
death data for both parents 907 had at least one parent 
who died within these ranges (1.99%). An additional 
432 participants had at least one parent still alive who 
met the criteria; therefore 1,339 participants had at least 
one parent (alive or dead) who lived to an “extreme 
age” (3.2% of 42,273 participants; those with 
‘discordant’ parents – one long-lived and one short-
lived – are excluded). See Supplementary Figure 1 for a 
flowchart of the participants included in each of the four 
primary analyses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Summary statistics for the UK Biobank participants eligible for at least one analysis 
 

All participants Long-lived group ⱡ Medium-lived group ⱡ Short-lived group ⱡ   

Phenotype N ∞ Mean SD n Mean SD n Mean SD n Mean SD 
p-value 
* 

Age at recruitment 75,244 62.077 4.060 8,655 63.529 3.659 21,299 62.862 3.883 25,771 62.096 4.039 
3.6E-

209 
Body mass index 
(BMI) 75,038 27.654 4.687 8,633 26.970 4.358 21,248 27.537 4.588 25,683 28.040 4.812 

2.1E-
80 

          

Fathers age at death 63,775 72.925 11.095 7,171 81.844 12.456 21,299 76.973 6.143 23,984 64.396 10.209 n/a 

Mothers age at death 52,776 78.473 9.489 6,043 87.215 9.789 21,299 82.130 5.269 21,422 71.808 9.009 n/a 
Combined parent age 
death ◦ 45,627 0.003 1.526 4,052 2.318 0.697 21,299 0.736 0.818 19,635 -1.336 0.978 n/a 

          

Sex (% males) 75,244 48.49% n/a 8,655 49.10% n/a 21,299 48.72% n/a 25,771 48.79% n/a 
8.3E-

01 
Smoking status (% 
current) 74,990 8.34% n/a 8,637 6.24% n/a 21,237 7.78% n/a 25,671 8.98% n/a 

7.5E-
16 

 
ⱡ "Long-lived"=offspring of at least one long-lived parent, "medium-lived"=two medium-lived parents, "short-lived"= at least one short-lived parent.  
See methods. 
 
∞ The total N of all participants is greater than the sum of long/medium/short-lived groups as the total includes participants eligible for any analysis (e.g. those  
with living parents already of extreme age, and participants with age-at-death information on only one parent), whereas the groups only contain participants  
eligible for analyses including offspring where age-at-death information is available for both parents. 
 
* p-value from Kruskal-Wallis non-parametric analysis of variance test for significant difference in distribution of phenotype between the 3 longevity 
categories.  
No test was performed on parent’s age at death across the categories as the categories are derived from the age at death of the participants’ parents. 
 
◦ Z-scored mother's and father's ages at death, summed 
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Genome Wide Association Study: smoking-related 
variants are associated with father’s age at death 
 
Of the 9,658,292 genetic variants included none were 
significantly associated (p<5x10-8) with “parent’s age at 
death, combined” however one locus (36 variants in 
strong Linkage disequilibrium) on chromosome 15 was 
associated with “father’s age at death,” and 1 variant 
(on chromosome 22) with “mother’s age at death” (see 
Supplementary Table 2 for the top 1,000 results from 
each GWAS; see Supplementary Figures 2-5 for 
Manhattan and QQ plots). We focused on the locus on 
chromosome 15 associated with father’s age at death, 
because the variant associated with mother’s age at 
death was of low frequency (3%) and not in a typical 
“peak” expected of robust results (see Supplementary 
Figures 6-7 for LocusZoom plots [20]). rs1051730 is in 
this loci (beta between G allele and father’s age at 
death=-0.0269, se=0.0049, p=3x10-8); the A allele of 
rs1051730 in the nicotinic acetylcholine receptor alpha 
3 subunit CHRNA3 gene has been linked to smoking 
fewer cigarettes and lower risks of lung cancer, 
although this variant does not influence the chances of 
starting to smoke [21].  This analysis included fathers 
who died at ≥46 years of age; including only father’s 
aged ≥66 (the short-lived cut-off empirically calculated 
– see methods) reduces the association but it remains 
significant (beta= -0.0207, p= 6x10-6; sample size 
reduced from 63,775 to 47,094). 
 
We tested rs1051730 against smoking-status (in logistic 
regressions using binary current/never smoking status as 
the outcome) in the participants and found that per G 
allele there is an increased likelihood of current 
smoking (OR=1.063, 95% CIs=1.020 to 1.108, 
p=0.003). Participants’ smoking status is associated 
with father’s age at death (per year OR=0.993, 95% 
CIs=0.991 to 0.996, p=2x10-6), however adjusting for 
smoking status (current/former/never) in the model of 
rs1051730 had little effect on the association with 
father’s age at death (p=4.7x10-8).  
 
The association between rs1051730 and mother’s age at 
death (Beta=0.017, p=1.6x10-3) did not reach genome 
wide significance in our UK Biobank participants. We 
tested the association of rs1051730 with father’s age at 
death in the Framingham Heart Study (FHS) generation 
2, where 2033 participants were available (mean age at 
death of the fathers=77.4 years, SD=11.5, range=47.2 to 
102.8). The association was non-significant, but was 
directionally consistent (per C allele coefficient= 0.008, 
p=0.98). However, the effects size of this SNP is 
modest and the power to detect the association in the 
FHS was only 1% (Quanto parameters: 
coefficient=0.0269, n=2033, MAF=0.17, alpha=0.05).  

In the GWAS against the binary “extreme age” 
phenotype (at least one parent very long-lived) two 
variants (rs528161076 and rs75824829, on chromosome 
7 and 9 respectively; see Supplementary Figures 8-9 for 
Locus Zoom plots) were found to be significant 
(p<5x10-8). rs75824829 may be anomalous as it is not in 
a “peak” of associations expected of robust results 
(Supplementary Figure 4; Supplementary Figure 9), 
however rs528161076 is in a distinct peak of variants in 
an intron of AP5Z1 (adaptor related protein complex 5, 
zeta 1 subunit, thought to be involved in homologous 
recombination DNA double-strand break repair). The 
association between rs528161076 and extreme 
longevity should still be interpreted with caution, as the 
variant is not associated with the continuous age at 
death variables (combined parent’s age at death p=0.65, 
father’s p=0.47 and mother’s p=0.96). 
 
In all four GWAS performed, no variants on the X or Y 
chromosomes were associated with the phenotypes 
(p>1x10-5). For mitochondrial variants, the smallest p-
values for mother’s age at death, was 9x10-3. 
 
Heritability of parental longevity explained by 
genotyped common variants  
 
We determined the variance in parental age at death 
explained by all the common genetic variation (minor 
allele prevalence >1%) robustly genotyped directly on 
the UK Biobank arrays (n=457,643; see methods).  For 
combined parents age at death, the variance attributed to 
the measured genotypes was 8.47% (SD=1.06%); for 
mothers age at death 4.85% (SD=1.01%) and fathers 
age at death 5.35% (SD=1.04%). In a sensitivity 
analysis including all directly genotyped variants 
irrespective of minor allele frequency and missingness 
(n=845,997) the variance attributed for the combined 
age at death phenotypes was 10.24% (SD=1.26%); for 
mothers age at death 6.08% (SD=1.21%) and fathers 
age at death 5.79% (SD=1.23%).  
 
Genetic Risk Score associations  
 
For each genetic risk score (GRS) we first verified the 
association with the best-fit phenotype corresponding to 
the reported association: for example the coronary 
artery disease (CAD) GRS was tested against prevalent 
coronary heart disease in the offspring (CHD= 
myocardial infarction or angina) (Table 2). All GRS 
were associated with their available phenotypes in UK 
Biobank in the expected direction, for example CAD 
GRS and CHD (per weighted allele increased OR=1.12, 
95% CIs: 1.10 to 1.13, p=1x10-64). The lipid GRS could 
not be tested directly, as serum lipid concentrations are 
not yet available, however all three separate risk scores 
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are significantly associated with CHD. Although there 
were only 28 participants with dementia, a significant 
association was seen with the Alzheimer’s disease GRS 
(per weighted allele OR=1.52, 95% CIs: 1.17 to 1.98, 
p=2x10-3). Telomere length was not assessed in the 
Biobank participants so validation was not possible. 
 
We next tested associations between each GRS and 
parental age at death (combined mothers and fathers) in 
linear regression models plus ‘extreme longevity’ (at 
least 1 parent lived to the top 1% of the age at death 
distribution in UK Biobank) (Figure 1). These analyses 
included 76 statistical tests (19 GRS against 4 primary 
longevity phenotypes) and therefore we have ‘starred’ 
associations passing Benjamini-Hochberg correction 
only, although each test has a strong and distinct prior 
hypothesis (see full results in Supplementary Table 3). 
We observed associations in the expected directions (i.e. 
lower disease risk score or higher numbers of relatively 
protective alleles associated with older ages at death) 
between the combined parental age at death continuous 
trait and eight GRS’; for CAD (unadjusted p=1.5x10-11), 
LDL cholesterol (p=1.8x10-7), CAD without lipid-
associated alleles (p=1.8x10-7), triglycerides (p=1.0x10-

2), systolic blood pressure (SBP, p=1.2x10-4), BMI 
(p=8.2x10-4), Inflammatory Bowel Disease (p=7.0x10-3), 
T1D (7.5x10-3), and Alzheimer’s disease (p=1.4x10-2). 
Crohn’s disease (p=2.3x10-2) and breast cancer 
(p=3.5x10-2) were associated at nominal significance 
(p<0.05) but not after multiple-testing correction.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A number of GRS had similar trends for the extreme 
longevity association but become statistically non-
significant in the binary analyses of offspring of long-
lived parents, which has reduced statistical power 
(binary analysis vs. continuous). The HDL cholesterol 
GRS was associated with extreme longevity (p=5.7x10-

3) although this association did not reach statistical 
significance in the linear analysis of continuous age at 
death.  
 
We observed consistent effect directions, but reduced 
effect size and significance in separate analyses of 
mother’s age at death compared to father’s 
(Supplementary Table 3); with the exception of 
Alzheimer’s disease (AD) GRS which is only 
associated with mother’s age at death but not father’s 
(coefficient=-0.111, p=3.9x10-4; coefficient=-0.001, 
p=0.99, respectively) and Triglyceride level (TG) GRS 
was only associated with fathers not mothers age at 
death (father’s coefficient=-1.366, p=9x10-4; mother’s 
coefficient=-0.183, p=0.63, respectively). In linear 
regression models for AD and TG GRS there were no 
statistical interactions between mothers and fathers ages 
at death (p>0.05).  
 
To illustrate combined effect sizes, we computed an 
estimate across the three GRS most robustly associated 
with parental longevity (unadjusted p<0.001): CAD, 
SBP and LDL. In total, 525 participants (of 45,627) 
were in the bottom  quintile  (20%)  for  all  three  GRS;  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Genetic Risk Score associations with corresponding phenotypes in 75,244 participants included for at least one 
analysis 
 
Model  GRS (n SNPs) Phenotype (n cases) OR (95% CIs) p-value 
Logistic regression models 
 Coronary Artery Disease, CAD (42) Prevalent CHD (5067) 1.12 (1.10 to 1.14) 6.4 x10-55 
 CAD,  without LDL, HDL and TG SNPs (23) Prevalent CHD (5067) 1.13 (1.11 to 1.16) 2.3 x10-36 
 LDL cholesterol (49) Prevalent CHD (5067) 2.97 (2.40 to 3.68) 1.3 x10-23 
 HDL cholesterol (67) Prevalent CHD (5067) 0.62 (0.50 to 0.78) 3.1 x10-05 
 Triglycerides, TG (37) Prevalent CHD (5067) 1.88 (1.43 to 2.46) 5.3 x10-06 
 Stroke (4) Prevalent stroke or TIA (1790) 2.04 (1.03 to 4.06) 4.0 x10-02 
 Type-1 Diabetes (29) Type-1 diabetes diagnosis (55) 2.35 (1.98 to 2.78) 9.8 x10-23 
 Type-2 Diabetes (55) Type-2 diabetes diagnosis (4,052) 5.29 (4.55 to 6.16) 1.7 x10-103 
 Alzheimer's Disease (8) Dementia diagnosis (28) 1.52 (1.17 to 1.98) 1.9 x10-03 
 Inflammatory Bowel Disease (156) Inflammatory Bowel Disease (654) 1.13 (1.10 to 1.16) 5.3 x10-22 
 Crohn's Disease (139) Prevalent Crohn's disease (250) 1.16 (1.11 to 1.21) 1.1 x10-12 
 Ulcerative Colitis (87) Prevalent ulcerative colitis (414) 1.17 (1.13 to 1.22) 4.4 x10-15 
 Prostate Cancer (85) * Prevalent prostate cancer (863) 1.18 (1.16 to 1.21) 2.5 x10-52 
 Breast Cancer (65) * Prevalent breast cancer (2036) 1.12 (1.11 to 1.14) 2.3 x10-43 
 Telomere Length (7) n/a   
Linear regression models Coefficient (95% CIs) p-value
 BMI (69) Body mass index  7.07 (6.62 to 7.51) 2.8 x10-209 
 Systolic Blood Pressure (26) Systolic blood pressure 1.31 (1.14 to 1.47) 4.3 x10-57 
 Age at menopause (52) * Age at menopause -1.79 (-1.92 to -1.65) 2.4 x10-154 
 Forced Vital Capacity (6) Forced Vital Capacity 0.001 (0.001 to 0.002) 7.0 x10-09 
GRS = genetic risk score. OR = per weighted allele odds ratio. CIs = confidence intervals. 
* Analysis performed in male/female participants only, as determined by the phenotype 
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these participants are the “lowest risk” group for these 
three cardiovascular traits. Correspondingly, 524 
participants were categorized as having the “highest 
risk” (top 20% of genetic risk for all three traits). In 
adjusted logistic regression models, participants with 
the lowest genetic risk (highest number of protective 
alleles) had 3.25 times the likelihood of having  at  least  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 parent in the top 1% of ages at death, compared to 
those with the highest genetic risk (OR=3.25, 
95%CI=1.3 to 8.1, p=0.012). Unadjusted prevalence: 19 
participants (1.4% of 1,339) with at least one long-lived 
parent were in the bottom 20% for all three risk scores, 
where only 7 participants (0.5% of 1,339) were in the 
top 20% for all three risk scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Genetic risk score associations with parents age at death. Forest plots show the relationship between the
genetic  risk  scores  (GRS,  z‐transformed)  and  2  different  parental  longevity  traits.  Results  from  regression models  (see
methods). *  indicates  the association  is significant after adjustment  for multiple  testing.  (A) Linear  regression  results  for
combined parent’s age at death. N=45,627. Coefficients (‘coef’) show the standard deviation (SD) difference in GRS per SD
of parent’s age at death. The results for `CAD (no Lipids)` and `LDL cholesterol` only appear identical due to rounding; the
effects were very similar. (B) Logistic regression results for the binary trait “participants of at least one parent reaching the
top 1% of  the age‐at‐death distribution vs. participants who parents did not”. Discordant participants  (i.e. one  long‐lived
and one  short‐lived) were excluded. n=42,273. n=1,339 participants of at  least one  long‐lived parent  (mother aged  ≥98
years or father aged ≥95 years).  Includes participants with alive parents reaching these  limits. Odds Ratios (OR) show the
likelihood of participants having at least 1 parent reaching the top 1% of age‐at‐death distribution per SD difference in GRS.
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In a sensitivity analyses we removed variants mapped 
to the APOE locus from the risk scores (rs4420638 
was included in the scores for CAD, LDL, HDL and 
AD) and assessed the associations with the parental 
age-at-death phenotypes. After exclusion the AD risk 
score is no longer associated with any of the parental 
age at death phenotypes. The effect sizes for CAD, 
LDL and HDL are attenuated but remain significant 
(see Supplementary Figure 10). Adjusting for presence 
of at least one ApoE-ε4 allele in the models against 
continuous age-at-death has the same effect on the 
associations: the CAD GRS association changes from 
(coef= -0.023, p= 1x10-10) to (coef= -0.022, p= 2x10-

9); the LDL GRS association changes from (coef= -
0.28, p= 6x10-8) to (coef= -0.22, p= 1x10-4); the HDL 
GRS association changes from (coef= 0.078, p=0.15) 
to (coef= 0.050, p=0.37); the AD GRS association 
changes from (coef= -0.015, p=0.008) to (coef= 0.002, 
p= 0.79). 
 
Candidate genetic variants associated with longevity 
 
We have highlighted the GWAS results for a number of 
SNPs a priori selected from the literature (see 
Supplementary Table 4 for the full details). We found 
significant (p<0.05, not ‘genome-wide’ significant 
p<5x10-8) associations between 4 of the 5 
APOE/TOMM40 SNPs tested and parents age at death 
(rs2075650 p=1x10-4, rs429358 p=8x10-7, rs7412 
p=0.02, rs4420638 p=3x10-5, but not rs405509 p=0.06). 
These variants are in moderate linkage disequilibrium 
(R2 from 0.1 to 0.7). Of 12 FOXO3 variants assessed, 
none were significantly associated with a longevity 
phenotype (p>0.05). The 5q33 variant identified by 
Deelen at al. [13] is associated with combined parents 
age at death and father’s, but not mother’s age at death 
or extreme survival (p=0.005, p=0.01, p=0.1 and p=0.6, 
respectively). We observed modest associations with 2 
of 7 variants at the CDKN2A locus (variants previously 
associated with coronary heart disease) with parent’s 
age at death (rs1333049 G allele beta=0.015, p=0.0015; 
rs4977574 A allele beta=0.014, p=0.0018); the 
CDKN2A variants associated with type-2 diabetes were 
not associated with parent’s longevity. Four variants 
were reported by Fortney to be associated with 
exceptional longevity; one is the APOE variant already 
discussed, and the other three are rs4977756 
(CDKN2B/ANRIL), rs3184504 (SH2B3/ATXN2) and 
rs514659 (ABO). Only rs3184504 is associated with 
extreme longevity in this analysis (T allele beta=-
0.0019, p=0.024), but rs4977756 was associated with 
continuous parent’s age at death (G allele beta=0.017, 
p=0.025). The final SNP is not associated with any 
longevity phenotypes in our analysis.  

Presence of at least one ApoE-ε4 allele (10,237 of 
44,574 participants included in the analysis against 
continuous parents age at death, after excluding 1,053 
ε2/ε4 participants) was associated with reduced age at 
parents death (coef= -0.088, 95% CI= -0.12 to -0.05, 
p=3x10-7) and reduced likelihood of having a parent in 
the top 1% of the age-at-death distribution (OR=0.78, 
95% CI=0.66 to 0.91, p=0.002), compared to 
participants without an ε4 allele. Presence of at least 
one ApoE-ε2 allele (5,700 of 44,574) was associated 
with continuous parents age-at-death (coef= 0.052, 95% 
CI=0.01 to 0.09, p= 0.014) but not with having a parent 
in the top 1% of the age-at-death distribution (OR=1.09, 
95% CI=0.91 to 1.31, p=0.37). 
 
DISCUSSION 
 
We report the largest analysis thus far of common 
genetic variants and normal aging related human 
longevity, based on the indirect approach of testing 
variant associations in offspring. We have excluded 
premature deaths and the large number of younger 
biobank respondents whose parents were likely to be 
too young and who might bias results toward early 
deaths. We identified a genome-wide significant variant 
in the smoking-related CHRNA3 gene with father’s 
longevity. We also identified a variant associated with 
extreme longevity, in the AP5Z1 gene locus, a gene 
encoding a homologous recombination DNA double-
strand break repair helicase protein [22], although this 
association with longevity appears less robust. In 
addition, we have shown that longevity is associated 
with having greater numbers of relatively protective 
alleles (i.e. lower genetic risk scores) for several 
cardiovascular traits including lipid levels, CAD 
(excluding variants associated with LDL and HDL), 
BMI, and blood pressure. Weaker associations were 
also found for risks scores for Alzheimer’s disease and 
autoimmune diseases. While laboratory model work has 
shown major longevity effects of single genes or single 
pathways, our results tend to support a model of human 
longevity influenced by multiple smaller effect 
protective and risk variants in several pathways, most 
prominently in cardiovascular related phenotypes. Our 
findings also supports the Geroscience concept that 
chronic diseases and biological processes involved in 
aging and longevity share similar mechanisms and 
pathways; efforts to target them may help both delay or 
prevent the onset of chronic diseases while also 
increasing longevity [23]. 
 
The CHRNA3 rs1051730 variant has previously been 
linked to smoking fewer cigarettes and lower risks of 
lung cancer [21], although this variant does not 
influence the chances of starting smoking. Our finding 
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of association with father’s age at death is highly 
plausible given the strongly adverse effect of smoking 
on survival. The fact that this SNP is also associated 
with mother’s age at death may support this finding, 
with the weaker (non-genome wide significant) 
association perhaps explained by the lower rates of 
smoking in women in the generation of parents being 
studied. Data on parental smoking and cause of death 
are not present in the Biobank data so we cannot assess 
this, however rs1051730 is associated with smoking in 
the participants (p=0.003, current vs. never) and 
participants smoking is associated with father’s age at 
death (p=2x10-6). Adjusting for participants’ smoking 
status in the model of rs1051730 against father’s age at 
death did not change the association. We have noted 
that our attempt to test this variant independently in the 
Framingham Heart Study was not successful, but this 
analysis is severely underpowered, underlining the 
relatively small effect of this SNP on father’s longevity. 
Additionally, rs1051730 is located in a cluster of 
variants in high linkage disequilibrium covering several 
genes so the causal association could feasibly be via 
another mechanism (see Supplementary Figure 6). 
 
We also analyzed associations with extreme longevity 
(here defined as at least one parent in the top 1% of age 
at death, ≥98 years for mothers or ≥95 years for 
fathers). The GWAS analysis revealed two suggestive 
genetic variants that require further study; rs528161076 
is in a distinct peak of variants in an intron of AP5Z1, a 
gene encoding a homologous recombination DNA 
double-strand break repair helicase protein [22], and 
rs75824829 on chromosome 9 is ~50k from the nearest 
gene C9orf62 (chromosome 9 open reading frame 62) 
for which little information is available. For the AP5Z1 
variant, this involves a C insertion after the T allele, 
with a prevalence 4.5% with at least one copy and is 
enriched amongst the those with top 1% longevity 
parents: of 1,335 participants with at least one long-
lived parent, 84 have at least one of these insertions 
(6.3%) compared to 4.39% (1,796 of 40,871) of 
controls. Finding big enough independent samples to 
confirm these associations will be challenging.  
  
For the genetic risk score analysis, several associations 
with continuous longevity become non-significant for 
extreme longevity, apparently due to lower sample 
sizes, but the pattern of GRS associations for both 
phenotypes were similar (Figure 1). More extreme 
definitions of longevity might yield different results but 
numbers of centenarian parents, for example, were too 
small to study. A possible exception to the generally 
similar risk pattern is the HDL cholesterol GRS, which 
was associated with extreme longevity but did not reach 
significance with continuous longevity. A number of 

other traits including type-1 diabetes GRS were close to 
significance, but these require additional study in a 
larger sample.  
 
Associations between germline genetic variants and 
phenotypes provide strong evidence of causality 
because variants are inherited at the beginning of life, 
before any confounding by environmental or other 
factors can occur. Our results confirm the importance of 
several potentially manageable risk factors in achieving 
exceptional longevity, including adverse lipid levels, 
raised blood pressure (systolic and diastolic), adiposity 
(body mass index) and also smoking, as noted above. 
Although there has been some debate on whether there 
are paradoxical associations between obesity risks 
factors and survival in old age [24], our result suggests 
that genetically influenced life-long exposures in the 
expected directions (i.e. non-paradoxical effects) do 
influence human survival. This genetic evidence 
supports recent work on BMI and survival in a sample 
of 1 million older people, suggesting that paradoxical 
associations reflect reverse causation from weight loss 
in older people who already have major diseases 
associated with weight loss (Bowman et al, in review 
2016).   
 
Comparison with previous work 
 
There is consistent epidemiological evidence for a 
relationship between longevity and lower rates of type-2 
diabetes [17], yet previous evidence from the Leiden 
study (n=2415) and the Life Long Family Study 
(n=1562 in generation 1; n=3102 generation 2) 
suggested that offspring of long-lived participants do 
not have lower burden of type-2 diabetes risk alleles 
compared to their partners [16,25]. We also did not 
observe an association between the type 2 diabetes GRS 
and longevity in the UK Biobank participants, although 
small effects cannot be excluded.   
 
There is evidence to suggest that long-lived individuals 
have reduced prevalence of Alzheimer’s increasing 
alleles [16], which includes the TOMM40/APOE locus 
identified in multiple analyses of longevity 
[13,14,12,10]. We confirmed that the A allele of 
rs2075650 was positively associated with increased 
parental age at death (beta=0.039, p=1x10-4), however 
there was no significant association with “extreme 
longevity” (at least one parent in the top 1% of ages at 
death). The A allele, here associated with increased 
parents lifespan, is associated with decreased risk of 
dementia [26]. Presence of the ApoE-ε4 was associated 
with reduced likelihood of having a parent in the top 1% 
of survival (OR=0.78, p=0.002), consistent with 
previous reports on mortality risk [27]; however we do 

  
www.impactaging.com                    554                                       AGING, March 2016, Vol. 8 No.3



not see a significant increase with presence of an ε2 
allele (OR=1.09, p=0.37). We find that a variant on 
chromosome 5q33.3 previously associated with survival 
to age 90 [13] is associated (p=0.003) with combined 
parental age at death in a consistent direction (T allele 
associated with increased age at death), but not with 
extreme survival (p=0.6) in this analysis. 
 
A recent study found that longevity-associated loci are 
enriched for disease-associated loci, consistent with our 
findings in Biobank [28]. The authors also performed a 
disease-weighted GWAS analysis, reporting 4 loci 
associated with exceptional longevity (≥90 years) with 
replication. We replicate the association between 
rs3184504 (mapped to SH2B3/ATXN2), previously 
shown to be associated with celiac disease [29], in our 
extreme longevity phenotype, but not the other three 
variants (although they are associated with continuous 
parent’s age at death p<0.05). rs3184504 has also been 
associated with blood pressure and cardiovascular 
disease [30]. This suggests rs3184504 is associated with 
survival to exceptional ages, but the others require 
further evidence. 
 
Previous analyses have found that long-lived 
individuals have lower low-density lipoprotein genetic 
risk than young controls [31,32], which we also observe 
(offspring of long-lived parents have lower LDL-
increasing genetic risk score). Our results extend this 
work by showing associations also with triglyceride and 
HDL genetic risk scores, plus BMI and systolic blood 
pressure, as well as associations with non-lipid 
cardiovascular disease genetic risk traits.   
 
Limitations 
 
This study is limited to white British UK Biobank 
participants of Caucasian genetic descent, thus the results 
may not be applicable to other populations. We plan to 
address this in future collaborations. Evidence from 
GWAS studies identifying novel markers is strongest 
when associations are shown to replicate in independent 
samples, but unfortunately no large-scale replication 
resources are currently available. We have therefore been 
very cautious in reporting the novel markers, which await 
validation. However, the results for previously proven 
SNPs (i.e. those with a high prior probability) are likely 
to be very robust, given our large sample size.   
 
UK Biobank is a volunteer study that did not aim for 
population representativeness at baseline, although 
efforts were made to recruit a heterogeneous sample by 
varying geographic placement of examination sites, 
including in economically deprived areas; the final 
response rate was 5.47% [33]. It has been reported that 

with sufficient variation in the phenotypes being 
studied, results are generalizable to the wider UK 
population [34].  
 
We are limited by the coverage of the genotyping 
microarray utilized; ~800,000 genetic variants were 
directly measured, allowing imputation of 73 million (9 
million of which were common enough and high quality 
enough for inclusion in this GWAS). Many variants 
may exist outside of the data available for this study, in 
particular on the X, Y and mitochondrial chromosomes, 
for which imputed data are not available.  
 
We have studied the normal range of parental ages at 
death, as well as extreme longevity (top 1% of 
survival). Some would argue that normal age at death is 
necessarily influenced by disease and has little 
relevance to aging. However, age is the major risk 
factor for most causes of death in later life, and the 
geroscience view sees aging as a major contributing 
factor to these diseases and deaths. Our extreme 
survival group is older than those studied in many of the 
previous GWAS of longevity [13,14], but did suffer 
from a somewhat limited sample size of n=1339: 
analyses with bigger samples of those attaining extreme 
ages are needed. Our longevity phenotypes do involve 
some repeat testing of the same individuals, but these 
phenotypes are closely related rather than being 
independent, and therefore should not have produced 
additional multiple testing problems.   
 
We excluded early parental deaths based on an 
empirical approach [17,35] to avoid using arbitrary 
cutoffs. Only 13.6% of the fathers were aged between 
46 and 60 at death (only 2% 46 to 50), suggesting that 
the exact cut-offs for premature deaths would have a 
modest effect on findings, especially as the results were 
similar for the extreme longevity group comparisons.   
The available information about the parents is very 
limited, with no dates of birth for those who had died 
and no cause of death information. We have excluded 
UK Biobank participants aged less than 55 to avoid 
adding large numbers of parents who are likely to be too 
young to have reached the longer lifespans which are 
our main focus in this analysis. The lack of cause of 
death data may have resulted in an underestimation of 
effect sizes on lifespan due to aging and related disease, 
as we have had to include e.g. accidental deaths 
unrelated to aging. It is unlikely that e.g. Second World 
War related parental deaths could have biased results, as 
few combatants were aged over 45, our earliest age of 
death for inclusion the analyses. The consistency of 
known allele results between normal and extreme ages 
at death also suggests that our findings are not driven by 
early deaths.  
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When comparing the effect sizes between different 
GRS, it is important to consider that each GRS 
explains a different proportion of its associated 
phenotype: this will in turn affect the interpretation of 
the association with longevity. For instance, only 
approximately 1% of the variance in mean length of 
the telomeres is explained by the 7 reported SNPs 
[36], whereas more than 10% of the variance in the 
blood lipids is accounted for by associated variants 
[37]; therefore the strength of association between 
these two phenotypes and longevity may not be 
proportionately represented by the effect sizes of the 
GRS longevity associations. 
  
Conclusions 
 
Longer lifespans in our studied Caucasian origin sample 
are influenced by multiple common risk and protective 
genetic variants. Cardiovascular trait variants are 
particularly prominent in associations with longevity. 
Several of these genetically influenced risks including 
tobacco exposure are potentially modifiable. Further 
work is needed in other ethnic groups and to test less 
common variants for associations with longevity.  
 
METHODS 
 
Between 2006 and 2010, 503,325 volunteers (aged 45 to 
69 years old) were recruited from across the United 
Kingdom to the UK Biobank study [38]. Of these, 
75,244 participants met the inclusion criteria for at least 
one analysis: participants aged between 55-70 years 
with complete genetics data and date of death data for 
either parent (additional participants were included if 
they had an alive parent that met the “long-lived” 
criteria for binary analyses). We chose this 55 to 70 
age-range because usual intergenerational age gaps 
mean that very few participants below age 55 at 
baseline could have parents old enough to be longer 
lived, thus including younger ages would enrich and 
potentially bias our study toward premature and early 
deaths. Participants were excluded if they reported 
themselves as adopted, or if either parent died 
prematurely (fathers <46 years or mothers <57 years – 
see methods below), or if their parent was still alive but 
not yet long-lived. Several longevity phenotypes are 
defined below based on the age at death of the 
participant’s parents. 
 
Parental age at death and longevity phenotypes. 
Participants were asked the age at which their parents 
had died (or their current age if still alive). Analyses 
were performed separately on mother’s age at death and 
father’s age at death, and also on a combined 
phenotype. To reduce the effect of higher ages at death 

of mothers (compared to the fathers) we first z-
transformed the mothers and fathers age at deaths 
before combining the z-scores into a single summed 
phenotype. Offspring of parents who died prematurely 
were excluded because the cause of death of the 
participant’s parents was not asked, so we could not 
exclude accidental deaths explicitly. To determine the 
premature age at death cut-offs we used previously 
described methods to define the normal range of age at 
death for mothers and fathers separately, and excluded 
participants below these values (methods described here 
[17], description of method applied to UK Biobank here 
(Atkins et al. in review 2016)). In brief, non-linear least 
square regression models are used to fit a normal curve 
to the right-side of the distribution of parents age at 
death; the left half of the curve is then fitted and cut-
offs determined (see [35] and [17]). The analysis 
identified the following cut-points for short, 
intermediate, and long-lived parents ages at death: for 
mothers (57 to 72 years, 73 to 92 years, and ≥93 years, 
respectively) and for fathers (46 to 65 years, 66 to 89 
years, and ≥90 years, respectively). Parents below the 
“short” definition are excluded as premature deaths. 
We also defined a binary trait for an “extreme 
longevity” phenotype by determining the top 1% of age 
at death for mothers (≥98 years) and fathers (≥95 years) 
separately. We were able to increase the number of 
“long lived” parents in all the binary phenotypes by 
including participants who had responded to the 
question regarding the age of their parent if still alive. 
Participants with one long-lived and one short-lived 
parent were excluded from this analysis.  
 
Finally, we defined two further binary traits for 
sensitivity analyses testing the consistency of results 
using a non-linear definition: offspring of at least one 
long-lived parent vs. offspring of two intermediate-lived 
parents, and offspring of at least one long-lived parent 
vs. offspring of at least one short-lived parent (very low 
numbers of participants with either “both long” or “both 
short” meant we used the aforementioned “at least 
one…” definitions). Supplementary Figure 1 contains a 
flow-chart showing how the phenotypes are derived and 
the numbers included in each analysis. 
 
UK Biobank genetics data. We used genetic data 
available (autumn 2015) from 120,286 participants 
identified as ‘white British’ through self-report and 
verified through principal components analysis based on 
genotypes. Kinship coefficients were estimated and 
related individuals (3rd degree or higher) were removed 
to provide the maximal unrelated set of individuals. The 
central UK Biobank analysis team performed these 
analyses. Details of principal component analyses and 
kinship analyses can be found in the official UK 
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Biobank genotyping document (http://biobank.ctsu. 
ox.ac.uk/crystal/docs/genotyping_qc.pdf; accessed 1st 
December 2015). 
 
We used imputed genotypes available from the UK 
Biobank for association analyses. Briefly, phasing of 
individuals was carried out using SHAPEIT-2. 
Imputation was performed using IMPUTE2 and a 
combined 1000 Genomes / UK10K reference panel. 
Full details can be found in the official UK Biobank 
imputation document (http://biobank.ctsu.ox.ac.uk/ 
crystal/docs/impute_ukb_v1.pdf; accessed 1st 
December 2015). After filtering for variants with MAF 
≥1%, missingness <1.5%, imputation quality >0.4 and 
with Hardy-Weinberg equilibrium (HWE) P>1x10-6 
within the white British participants, 9,658,292 imputed 
autosomal variants were eligible for the analyses. 
 
We also utilized data directly from the microarrays for 
variants on the X (n=19,381) and Y (n=284) 
chromosomes, and on the mitochondrial genome 
(n=135), which were unavailable in the imputed dataset.  
 
Within “white British” principal components. We 
selected 95,535 independent SNPs (pairwise r2<0.1) 
directly genotyped with a minor allele frequency (MAF) 
≥ 2.5% and missingness <1.5% across all UK Biobank 
participants with genetic data available at the time of 
this study (n=152,732), and with HWE P>1x10-6 within 
the white British participants. Principal components 
were subsequently generated using FlashPCA and the 
first five adjusted for in all analyses [39]. 
 
Power calculations. Quanto software version 1.2.4 was 
utilized for power calculations with parameters: 
continuous, additive model, mean/SD of standardized 
outcome=0/1 [40]. 
 
Genome Wide Association Study. We used BOLT-
LMM to model the associations between imputed 
variants (dosages) and each phenotype [41], which uses 
a linear mixed effects model approach. We looked at the 
results for variants with imputation quality >0.4, HWE 
p-values >1x10-6 and minor allele frequencies >0.1% in 
the white/British subset used for all analyses. For 
variants on the X, Y and mitochondrial chromosomes 
only in the directly-genotyped data we used Plink (v1.9) 
[42] in linear (additive) or binary (fisher) models, as 
appropriate, adjusted for the same covariates as above 
including the first 5 principal components from 
FlashPCA. 
 
Independent testing of GWAS results. We obtained 
estimates of our genome wide significant results for 
fathers age at death GWAS in the Framingham Heart 

Study (FHS) generation 2 [43], with data on n=2033 
offspring available. The inclusion criteria and model 
specification were the same as described for Biobank, 
with the exception that family structure was taken into 
account (using R package ‘pedigreem’). 
 
Genetic heritability estimation. To estimate the variance 
in mean parental age at death (and age at death of 
mothers/fathers considered separately) explained by 
common genetic variants we utilized the BOLT-REML 
package [44]. This package uses Restricted Maximum 
Likelihood (REML) methods for variance component 
estimation, in this case on the genetics data. We used 
SNPs that met the following criteria in the 120,286 
individuals; variants were excluded if not in Hardy-
Weinberg Equilibrium (HWE) (P<1x10-6), or had a 
minor allele frequency <1%, or an overall missing rate 
>1.5% in any individual batch, or were on the Y 
chromosome. This resulted in 457,643 directly 
genotyped variants for inclusion. We also performed an 
additional sensitivity analysis relaxing the exclusion 
criteria to include all 845,997 variants. BOLT-REML 
determines the “heritability” of phenotypes based on the 
variance components of the genetics data provided. 
Prior to analyses, phenotypes are adjusted (by taking the 
residuals from a linear regression analysis) for 
confounding factors (age, sex, array type, assessment 
center, principal components 1-5). 
 
Genetic Risk Score (GRS) creation. For each trait we 
identified the most recent GWAS meta-analysis and 
downloaded the results tables. We selected the SNPs 
identified at genome wide significance (p<5x10-8) and 
extracted the corresponding genotype information from 
the imputed data in the UK Biobank data. For all SNPs 
included in a GRS we checked for high imputation 
quality (>0.9), no significant deviation from HWE 
(p>1x10-6) and low missingness (<5% sample missing). 
We used the imputed genotype (dosage) information 
and effect size (from the meta-analysis) with Plink 
(v1.9) function `scores` to generate the weighted GRS 
for each trait in each participant [42]. The Plink 
function uses genotype coding for each participant as 0, 
1 or 2 trait-increasing alleles, which is multiplied by the 
effect size (coefficient or odds ratio) from the published 
study. The resulting “weighted allele score” is summed 
for all variants associated with a particular trait. See the 
accompanying Supplementary Methods document for 
the definition of each genetic risk score, and 
Supplementary Table 1 for the variants and effect sizes 
used to create the scores.  
 
Statistical analysis of Genetic Risk Scores. Generalized 
linear regression models were used throughout (R 
v3.2.0), with adjustment for age, sex, array type 
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(‘axiom’ or ‘bileve’), assessment center (22 possible 
categories), and the first 5 genetic principal 
components. The regression linker functions `logit`  or 
‘Gaussian’ were used respectively for logistic and linear 
outcomes. Forest plots comparing the associations 
between different GRS’ and each outcome were 
generated using the R package ‘rmeta’ (v2.16). For 
these analyses the GRS was first z-transformed so that 
the statistics reported could be compared between each 
GRS on the forest plot. In the rest of the manuscript, we 
refer to the unstandardized, “per weighted allele” 
effects. In all respects except for the z-transformation 
the models were identical. Benjamini-Hochberg p-
values are calculated to correct for potential false-
positive associations (19 GRS against 4 primary 
longevity phenotypes). 
 
ApoE haplotype definition. The ApoE haplotype is 
defined using two genetic variants (rs429358 and 
rs7412). We created a binary phenotype “any ε4 alleles 
vs. rest” where ε3/ε4 and ε4/ε4 participants were 
grouped together (ε2/ε4 participants were excluded), 
and the ε2/ε2, ε2/ε3 and ε3/ε3 alleles were the control 
participants. A second phenotype “any ε2 alleles vs. 
rest” is defined correspondingly. 
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