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 31 

 32 

Abstract 33 

Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism 34 

presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin 35 

pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite 36 

manner. This paper reviews the opposing interplay of these systems and their metabolic-37 

reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances 38 

the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of 39 

vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is 40 

partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This 41 

phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP 42 

production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the 43 

overproduction of intracellular lactate. This mechanism is partially due to the injury of 44 

mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists 45 

downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, 46 

such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and 47 

innovative way of counteracting the canonical WNT pathway. 48 
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Introduction 61 

Atherosclerosis is a chronic inflammatory and age-related disease [1,2]. The origin of the 62 

atherosclerosis process is found in a dysfunction of the endothelial cells (ECs) through the 63 

secretion of several inflammatory cytokines/chemokines, leading to the recruitment of peripheral 64 

monocytes. Adherence and then aggregation of these monocytes into the subendothelial space of 65 

the arterial wall enhance the differentiation of monocytes into macrophages and then into foam 66 

cells through the modification of low-density lipoprotein [3]. This accumulation of cholesterol-67 

engorged macrophages, known as foam cells [4], is a major factor in atheromatous plaque 68 

formation [5]. The process of atherosclerosis is a complex mechanism that presents a 69 

dysregulation of vessel structures. The process is initiated during childhood and progressively 70 

develops with age. Three layer structures make up the artery, i.e, tunica intima, media and 71 

adventitia. The intima is formed by subendothelial collagen and a single layer of endothelial 72 

cells. Endothelial cells are key factors in determining vascular pattern and the recruitment of 73 

smooth muscle cells (SMCs) during embryogenesis [6,7]. The intima is particularly important 74 

during atherosclerosis due to its physical properties. The media is composed of SMCs and elastin. 75 

The elasticity of arterial blood vessels is supported by elastin lamellae, a proteoglycan-rich 76 

extracellular matrix, SMCs and collagen fibers. The adventitia is made of a collagen-rich 77 

extracellular matrix produced by myofibroblasts [8]. The role of this structure is to prevent 78 

rupture of the vessel wall at very high pressures.  79 

During the initial stage of atherosclerosis, the accumulation of lipids, SMC infiltration, 80 

proliferation and deposition of the extracellular matrix (ECM) occur under the intima [9]. This 81 

accumulation leads to a gradual impairment of the vessel through a dysregulation between the 82 

three concentric layers. The intima is infiltrated by SMCs and then recruits lymphocytes and 83 

macrophages to become an inflammatory site. Inflammation and immunity reactions are then 84 

exacerbated by the increased accumulation of cholesterol-rich lipoproteins. An atheromatous 85 

plaque is gradually formed and then the vessel lumen can be encroached, leading to diminished 86 

blood flow and even myocardial infarction due to coronary artery thrombosis [10–12]. During the 87 

final stage, the atheromatous plaques are characterized by an increase in macrophages, the 88 

appearance of calcification and a reduction in extracellular matrix (ECM) deposition, which 89 

renders them unstable (Figure 1) [10,11]. 90 

The canonical WNT/β-catenin pathway controls numerous pathways involved in development 91 
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and tissue homeostasis. The pathway is modulated by transcriptional and post-transcriptional 92 

levels. The WNT/β-catenin pathway is upregulated in atherosclerosis and participates in different 93 

stages of this process, from endothelial dysfunction to vascular calcification [12]. Moreover, the 94 

canonical WNT/β-catenin pathway plays a key role in both cell fate decision and inflammation in 95 

the initiation of atherosclerosis [13–15]. 96 

In contrast, the peroxisome proliferator-activated receptor γ (PPARγ) is downregulated in 97 

atherosclerosis [16]. PPARγ agonists, by inhibiting inflammation and vascular smooth muscle 98 

cell (VSMC) proliferation, appear as an interesting therapeutic way of treating numerous 99 

diseases, especially cardiovascular diseases [17,18]. In several tissues, activation of the canonical 100 

WNT/β-catenin pathway induces downregulation of PPARγ, while PPARγ activation inhibits 101 

expression of canonical WNT/β-catenin signaling [19]. Indeed, PPARγ agonists induce 102 

repression of canonical WNT/β-catenin signaling in several pathophysiological states. We focus 103 

this review on the opposing interplay between the canonical WNT/β-catenin pathway and PPARγ 104 

in the metabolic-reprogramming pathway during atherosclerosis.  105 

 106 

 107 

1. Canonical WNT/β-catenin pathway 108 

The term WNT refers to Wingless drosophila melanogaster and its mouse homolog, Int. WNT 109 

pathway, is involved in numerous signaling and regulating pathways, such as embryogenesis, cell 110 

proliferation, migration and polarity, apoptosis, and organogenesis [20]. However, during 111 

numerous pathological states, the WNT pathway can be dysregulated by developments such as 112 

inflammatory, metabolic and neurological disorders, tissue fibrosis and cancers [21]. Recent 113 

studies used the WNT pathway for cell therapy-bioengineering processes [22]. 114 

WNT ligands are lipoproteins that activate specific co-receptors. These WNT ligands activate the 115 

canonical WNT pathway through the action of β-catenin. WNT ligands activate Frizzled (FZD) 116 

receptor and low-density lipoprotein receptor-related protein 5 and 6 (LRP 5/6) [23]. The 117 

complex formed by extracellular WNT ligands and FZD/LRP5/6 stimulates intracellular 118 

Disheveled (DSH). This activation inactivates the destruction complex of β-catenin in the 119 

cytosol. Β-catenin accumulates in the cytosol and then translocates to the nucleus. Nuclear β-120 

catenin interacts with the T-Cell factor/lymphoid enhancer factor (TCF/LEF) to stimulate gene 121 

transcription, such as c-Myc and cyclin D1 [24]. 122 
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During the “off-state” of the WNT/β-catenin pathway, WNT ligands do not bind FZD and LRP 123 

5/6. The β-catenin destruction complex, which is formed by AXIN, APC (adenomatous polyposis 124 

coli) and GSK-3β (glycogen synthase kinase 3β), phosphorylates the β-catenin. Thus, 125 

phosphorylated β-catenin is degraded into the proteasome.  126 

Several WNT inhibitors inactivate the canonical WNT/β-catenin pathway. Activated GSK-3β is 127 

the major inhibitor of the WNT pathway. GSK-3β is a intracellular serine-threonine kinase which 128 

regulates several pathways such as inflammation, neuronal polarity or other cell membrane 129 

signaling [25]. GSK-3β inhibits β-catenin cytosolic stabilization and nuclear migration. Dickkopf 130 

(DKK) and soluble Frizzled-related proteins (SFRP) are also WNT inhibitors and bind FZD, 131 

LRP5 and LRP6 (Figure 2) [26]. 132 

 133 

 134 

2. PPARγ 135 

PPARs are ligand-activated transcription factors that bind PPRE (PPAR-response elements). In 136 

the nucleus, PPARs form a heterodimer with the retinoid X receptor (RXR) [27]. They are 137 

composed of a ligand-binding domain that interacts with a DNA-binding domain to modulate it 138 

[28]. PPARs are involved in numerous pathophysiological processes, such as cell differentiation, 139 

protein metabolism, lipid metabolism, carcinogenesis [29,30], adipocyte differentiation, insulin 140 

sensitivity and inflammation [31,32]. PPARs are subdivided into three isoforms PPARα, PPARγ 141 

and PPAR β/δ [33]. PPARγ is highly expressed in adipose tissue and macrophages [16]. PPARγ 142 

ligands can be synthetic or natural. PPARγ ligands have hypoglycemic and hypocholesterolemic 143 

roles, such as glitazones, which have been used in the treatment of type 2 diabetes [34]. PPARγ 144 

ligands, such as thiazolidinediones (TZDs), can also decrease inflammatory activity [34]. Natural 145 

ligands include prostaglandins and unsaturated fatty acids [35]. 146 

 147 

 148 

3. Opposing interplay between PPARγ and the WNT/β-catenin pathway 149 

In several diseases, PPARγ expression is decreased by β-catenin signaling over-activation [36–150 

38]. Indeed, PPARγ is considered as a negative β-catenin target gene [39,40].  The WNT/β-151 

catenin pathway and PPARγ interact through a TCF/LEF domain of β-catenin and a catenin-152 

binding domain within PPARγ [41,42]. Through this link, a decrease in the WNT/β-catenin 153 
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pathway enhances the stimulation of PPARγ [43], whereas PPARγ over-expression decreases the 154 

β-catenin signaling [44]. 155 

Numerous studies have shown that the canonical WNT/β-catenin pathway and PPARγ act in an 156 

opposing manner, such as in cancers, neurodegenerative diseases and fibrosis processes [45–47]. 157 

PPARγ agonists are considered to offer promising treatment through the action of this crosstalk 158 

[48–50]. Pioglitazone attenuates the expression of WNT/β-catenin signaling to prevent the 159 

development of left ventricular fibrosis [51]. PPARγ agonists stimulate synaptic plasticity by 160 

interacting with the WNT/β-catenin/PI3K/Akt pathway [52]. Troglitazone, a PPARγ agonist, can 161 

decrease c-Myc levels [53]. PPARγ agonists activate Dickkopf-1 (DKK1) activity to decrease the 162 

canonical WNT/β-catenin pathway and then inhibit fibroblast differentiation [54]. Furthermore, 163 

PPARγ agonists activate GSK-3β to decrease β-catenin expression [55]. In adipocytes, 164 

adiponectin increases PPARγ expression and then downregulates LPS-induced NF-�B 165 

expression and IL-6 production [56]. 166 

Conversely, β-catenin signaling activates the Akt pathway to decrease PPARγ expression in 167 

adipocytes and 2T2-L1 preadipocytes [44,57]. Several inflammatory cytokines, chemokines and 168 

intracellular signaling downregulate PPARγ expression, such as the canonical WNT/β-catenin 169 

pathway, TNF-α, interleukin (IL)-1 and IL-13 [58,59]. 170 

Another aspect is the regulation of PPARγ insulin sensitizing activity by the interaction with β-171 

catenin in bone marrow. Degradation of β-catenin positively correlates with increased expression 172 

of PPARγ-controlled markers of insulin signaling [60]. 173 

 174 

4. Canonical WNT/β-catenin pathway and the atherosclerosis process 175 

 176 

Inflammation (Figure 3) 177 

Inflammation plays a key role in the mediation of the different phases of the atherosclerosis 178 

process [61]. Several cytokines participate in atherosclerosis, such as interleukin (IL-1 and IL-4), 179 

interferon-gamma (IFN-γ) and TNF-α [62]. TNF-α activation leads directly to the process of 180 

calcification and to the proliferation and migration of VSMCs [63]. IL-1 is strongly expressed by 181 

macrophages and ECs [64], and IL-1 overexpression stimulates the atherosclerosis process [61]. 182 

TNF-α acts through bone morphogenetic protein (BMP2), a canonical WNT target [65] and by 183 

activating NF-�B [66] to facilitate multiplication of VSMCs and mineralization of the 184 
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extracellular matrix (ECM). Moreover, the overexpression of the WNT/β-catenin pathway in 185 

VSMCs increases inflammation by activating the NF-�B pathway and TNF-α [67]. 186 

 187 

Endothelial dysfunction (Figure 3) 188 

Dysfunction of ECs is observed at the onset of atherosclerosis. The boundary between the 189 

circulating tissue and the underlying tissue is constituted by ECs. ECs have a major role in 190 

hemodynamic regulation through the release of several vasoactive mediators. Lesions on these 191 

ECs induce the expression of inflammatory and pro-thrombotic genes leading to the enhanced 192 

recruitment of inflammatory cells to the subendothelial space, an important characteristic of the 193 

initiation of atherosclerosis [68]. 194 

In association with EC lesions, a high level of circulating LDLs infiltrates specific zones of the 195 

arterial wall. Although LRP5 is normally expressed in monocytes, macrophages, SMCs and ECs, 196 

the overexpression of LRP5 is only observed during inflammatory processes by modified lipids 197 

[12,23]. WNT pathway activation promotes the internalization of LDL by macrophages [23]. 198 

LRP5 is overexpressed by macrophages, aggregated LDLs enhancing lipid uptake, and foam cells 199 

[69]. 200 

The subendothelial space shows aggregation and/or oxidation of LDL, which triggers 201 

inflammation in response to the overexpression of cytokines/chemokines, leading to molecular 202 

adhesion. This phenomenon is characterized by the presence of immunity cells, such as 203 

macrophages, monocytes, T cells, neutrophils and dendritic cells, which participate in the 204 

development of the atherosclerotic plaque [11]. These proatherogenic processes increase the 205 

endothelial permeability turnover and then alter the interplay between ECs and VSMCs.  206 

ECs are the site of the expression of several WNT proteins and WNT receptors [70]. Proliferation 207 

of ECs is favored by the over-activation of the canonical WNT/β-catenin pathway [71]. 208 

Activation of the canonical WNT/β-catenin pathway is observed after stimulation of monocyte 209 

adhesion to endothelial cells (as opposed to unstimulated monocytes) [72]. Furthermore, the 210 

WNT co-receptor LRP5 is involved in the differentiation of monocytes into macrophages [69]. 211 

The migration of monocytes and macrophages is modulated by activation of the WNT/β-catenin 212 

pathway [23,73,74]. The release of inflammatory factors, such as interleukin 18 (IL-18) during 213 

the atherosclerosis process inhibits the activity of GSK-3β and then increases the expression of 214 

WNT target genes to initiate SMC proliferation [75,76]. 215 
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 216 

VSMC proliferation (Figure 3) 217 

Due to EC dysfunction, VSMCs proliferate and migrate toward the intima. They then induce 218 

thickening of the subendothelial space [77]. VSMC migration from the media towards the intima 219 

is considered as one of the main characteristics of the atherosclerosis process [78]. Thus, the 220 

proliferation of VSMCs also contributes to the production of cytokines/chemokines and 221 

deposition of ECM [79]. 222 

Activation of WNT/β-catenin signaling by WNT2 and WNT3a ligands, β-catenin accumulation 223 

and inactivation of GSK-3β, induces VSMC proliferation [80–82]. The up-regulated WNT/β-224 

catenin pathway enhances in-vitro pathways of arterial VSMC remodeling [83]. Inhibition of the 225 

WNT co-receptor LRP 5/6 reduces arterial VSMC proliferation [84]. The WNT target gene, 226 

cyclin D1, is overexpressed after the denudation of the carotid artery [85,86]. Dysregulation of 227 

cell adhesion mechanisms releases β-catenin from its nuclear translocation and then, through the 228 

activation of cyclin D1, activates the proliferation of VSMCs [85,86]. 229 

 230 

ECM deposition (Figure 3) 231 

Proliferated and migrated VSMCs synthesize an abundant array of ECM elements, such as 232 

collagen and metalloproteinases, which leads to a fibrosis process encroaching on the vessel 233 

lumen [87]. One of the key drivers of ECM deposition is TGF-β signaling, which enhances the 234 

secretion of ECM proteins. In the endothelium, activated TGF-β signaling enhances the 235 

transformation of fibroblasts into α-SMA-expressing myofibroblats [46]. Myofibroblasts are 236 

contractile non-muscle cells that present bundles of α-SMA actin filament [88]. During 237 

differentiation into protomyofibroblasts, these cells synthesize ECM and collagen proteins [89] 238 

that contain α-SMA and non-muscle myosin II, responsible for myofibroblast retraction [90]. 239 

TGF-β signaling interacts with fibronectin extra domain A (EDA) leading to differentiation of 240 

fibroblasts into myofibroblasts [89]. Moreover, TGF- β interacts with the Smad pathway in 241 

myofibroblasts by phosphorylating Smad2 and SMad3 through TGF-β receptor 1 (TGF-βR1). 242 

Thus, the formed dimer interacts with TGF-β R2 (receptor 2) to create a heterotetramer for 243 

Smad2 and 3 phosphorylation. The complex formed by Smad2/3 binds Smad4 and translocates to 244 

the nucleus and then activates a Smad binding element (SBE) responsible for the fibrosis process 245 

[91]. In parallel, TGF-β signaling activates the PI3K/Akt pathway [92] and participates in 246 
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collagen synthesis. By activating the epidermal growth factor receptor (EGFR) and thus the 247 

PI3K/Akt pathway, TGF-β signaling enhances the expression of PAI-1 (potent fibrotic 248 

matricellular plasminogen activator inhibitor). PAI-1 is responsible for the encoding of ECM 249 

elements, i.e. collagen, metalloproteinases and fibronectin. Matrix cellular elements accumulate 250 

in the endothelium through activation of PAI-1, one of the main precursors of the fibrosis process 251 

[46]. 252 

The WNT/β-catenin pathway, through the inhibition of GSK-3β activity, is a well-known 253 

upstream path of the PI3K/Akt pathway [46]. The WNT/β-catenin pathway activates TGF-β 254 

expression through a β-catenin dependent Smad2 signal responsible for the differentiation of 255 

myofibroblasts [93]. Stimulation of TGF-β signaling leads to inactivation of the WNT inhibitor, 256 

DKK1 [94]. 257 

 258 

Vascular calcification (Figure 3) 259 

Vascular calcification is a major factor in cardiovascular morbidity and mortality. The 260 

overexpression of WNT ligands promotes the WNT target gene BMP2. BMP2 is induced by ECs 261 

that are oxidized by LDL and TNF-α [95]. BMP2 activation promotes vascular calcification by 262 

acting through the osteogenic transcription factor Msh Homeobox 2 (MSX2), which induces 263 

WNT3a and WNT7a activation and DKK1 downregulation [96]. 264 

Moreover, the chondrogenic differentiation of pericytes is observed at sites of calcification in the 265 

intima and media of arteries. This suggests a relationship between pericytes and vascular cell 266 

calcification, indicating that pericytes play a role in the different stages of vascular diseases [97]. 267 

The WNT pathway increases osteogenic and chondrogenic differentiation and decreases 268 

adipogenic differentiation of pericytes [98]. Thus, over-activation of the canonical WNT pathway 269 

can stimulate progenitor cell differentiation in the vascular wall, leading to cartilage deposition 270 

and bone in vessels [97]. Indeed, the WNT/β-catenin pathway plays a major role in the 271 

remodeling and formation of bone [99]. 272 

 273 

 274 

5. Metabolic reprogramming: the Warburg effect 275 

The Warburg effect, also called aerobic glycolysis, was discovered in 1930 by Otto Warburg 276 

[100]. It was initially observed in cancer cells, which were found to have a high glycolytic rate 277 
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compared with normal cells, even in a normoxic environment. This phenomenon involves a shift 278 

in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading 279 

to an overproduction of intracellular lactate. This mechanism is partially due to injury of 280 

mitochondrial respiration and an increase in the glycolytic pathway [101]. A heightening of 281 

glycolytic activity is typically indicative of a metabolic response to oxygen privation. However, 282 

in cancer cells, this occurs in the presence or absence of oxygen and then leads to the 283 

accumulation of lactic acid. Metabolites produced through this phenomenon also participate, far 284 

beyond ATP production, in the regulation of cell proliferation, apoptosis, autophagy and 285 

extracellular matrix production [101]. Thus, through activation of several glycolytic enzymes and 286 

related metabolic markers, the Warburg effect induces numerous processes such as fibrosis [46], 287 

cancers [45], neurodegenerative disease [47] and atherosclerosis [102]. 288 

Per unit of glucose, aerobic glycolysis is an inefficient means of generating adenosine 289 

triphosphate (ATP) compared to the amount obtained by mitochondrial chain respiration [103]. 290 

Nevertheless, the rate of glucose metabolism by aerobic glycolysis is higher such that the lactate 291 

production from glucose occurs 10 to 100 times faster than the complete oxidation of glucose in 292 

mitochondria [104]. Cells with a higher rate, but lower yield, of ATP production could gain a 293 

selective advantage when competing for shared and limited energy resources [105]. Moreover, 294 

when ATP demand increases by altering the demand of ATP-dependent membrane, aerobic 295 

glycolysis is rapidly stimulated [106]. 296 

 297 

Biosynthetic aspects of the Warburg effect 298 

The Warburg Effect has been considered as an adaptation mechanism to support the biosynthetic 299 

requirements of uncontrolled proliferation. Aerobic glycolysis generates amount of metabolites 300 

involved in the regulation of cellular functions, such as proliferation, extracellular matrix 301 

production, autophagy and apoptosis [107]. The increase in glucose consumption is used as a 302 

carbon source for anabolic processes needed to support cell proliferation [108]. This excess 303 

carbon is used for the de novo generation of proteins, lipids and nucleotides. Thus, this excess is 304 

diverted into numerous branching pathways that emanate from glycolysis. Proliferating cells have 305 

a rate-limiting demand for ATP and a greater need of reducing equivalents in the form of 306 

nicotinamide adenine dinucleotide phosphate (NADPH). The increase in glucose uptake allows 307 

for greater synthesis of these reducing equivalents in the oxidative branch of pentose phosphatase 308 
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pathway, which are then used in reductive biosynthesis, most notably in de novo lipid synthesis 309 

[103,109].  310 

Moreover, the regeneration of NAD+ from NADH in the pyruvate to lactate step completes the 311 

aerobic glycolysis signaling. NADH, produced by glyceraldehyde phosphate dehydrogenase 312 

(GAPDH), is consumed to generate NAD+ to keep glycolysis active.  313 

 314 

Mechanisms involved in the Warburg effect (Figure 4) 315 

Glycolysis is induced by the WNT/β-catenin pathway activation via direct stimulation of WNT 316 

target genes (as pyruvate dehydrogenase kinase 1 (PDK1) and mono-carboxylate transporter 1 317 

(MCT-1)) and via the stabilization of the hypoxia-inducible factor 1 alpha (HIF-1α) [110–112]. 318 

HIF-1α stabilization is sustained in a hypoxia-independent manner through the activation of 319 

WNT/β-catenin target genes (c-Myc and cyclin D1), the PI3K/Akt pathway and β-catenin-320 

induced c-Myc [113]. 321 

HIF-1α is a heterodimeric nuclear transcription factor which is composed by two subunits: HIF-322 

1alpha and HIF-1β. HIF-1α stabilization results in its nuclear translocation, dimerization with 323 

HIF-1β, and the transcription of genes encoding glycolysis enzymes [114].  Aberrant HIF 324 

signaling involves a metabolic reprogramming by increasing glycolysis and then decreasing the 325 

entry of glucose-derived carbons into the Krebs cycle leading to reduce the mitochondrial 326 

oxidative phosphorylation metabolism [115].  327 

HIFs also promotes glutamine metabolism. HIF-1α stabilization increases glycolysis by the 328 

stimulation of glucose transporters (Glut) mediating increased glucose uptake and the stimulation 329 

of glycolytic enzymes including HK2, PKM2, LDH-A, and PDK1 [116,117]. Thus, HIF-1α leads 330 

to promote lactate production by increasing LDH-A activity and decreasing the conversion of 331 

pyruvate into acetyl-CoA through the upregulation of PDK1 and then the decrease of PDH 332 

activity [118]. PI3K/Akt signaling is stimulated by cytosolic accumulation of β-catenin [119]. 333 

Activation of PI3K/Akt pathway induces HIF-1α stabilization to increase the rate of  glucose 334 

metabolism [120]. 335 

After glucose entered the cell, the final step of glycolysis is the conversion of the 336 

phosphoenolpyruvate (PEP) and ADP into pyruvate and ATP, a reaction catalyzed by the enzyme 337 

pyruvate kinase M2 (PKM2). PKM2 presents low affinity with PEP [121]. Under high glucose 338 

concentration, PKM2 is acetylated and translocated to the nucleus through the action of the 339 
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peptidyl-prolyl isomerase 1 (Pin1) [122], reducing its activity and targeting PKM2 towards a 340 

lysosome-dependent degradation [123]. Nuclear PKM2 binds nuclear β-catenin and then induces 341 

c-Myc-mediated expression of glycolytic enzymes in a positive feedback loop, thus strengthening 342 

aerobic glycolysis [124].  343 

The shunting of glucose carbons far from the Krebs cycle results in glutamine metabolism 344 

reprogramming. c-Myc stimulates glutaminolysis and drives glutamine uptake into the cytosol 345 

and the mitochondria [125]. c-Myc-activated HIF shifts from oxidative decarboxylation to 346 

reductive carboxylation of glutamine to generate citrate and acetyl-CoA for lipid synthesis [126–347 

128]. c-Myc-induced glutamine enhances aspartate and nucleotide synthesis [125]. Then, a minor 348 

part of the pyruvate is converted into acetyl-CoA which enters the Krebs cycle and then become 349 

citrate for promoting protein and lipid synthesis. Through this complex mechanism, the Warburg 350 

effect supports a metabolic environment that allows for the rapid biosynthesis to support growth 351 

and proliferation [129].  352 

 353 

 354 

6. Interaction between WNT/β-catenin pathway and the Warburg effect 355 

A partial explanation of the contrast observed between proliferating and quiescent metabolism 356 

may be the level of glucose uptake controlled by the growth factor signal transduction [130]. 357 

Activation of the WNT pathway largely suppresses the pyruvate oxidation in the Krebs cycle 358 

[131]. In parallel, the PI3K/Akt pathway rewires the glucose metabolism to enhance protein 359 

synthesis [103], leading to inhibition of the oxidative metabolism and protection against ROS 360 

stress by activation of HIF-1alpha [132]. The WNT pathway synergizes with the PI3K/Akt 361 

pathway to enhance cell proliferation [133]. PDK-1 (pyruvate dehydrogenase kinase 1), HK-2 362 

(hexokinase 2) and MCT-1 (monocarboxylate transporter 1) are considered as important WNT 363 

targets, and activation of the LDH-A (lactate dehydrogenase A) gene diverts glycolytic pyruvate 364 

away from the Krebs cycle through the conversion of pyruvate into lactate [133].  365 

 366 

 367 

7. Warburg effect in atherosclerosis 368 

Several metabolic dysregulations have been observed in the atherosclerotic process [134]. The 369 

phenomenon of aerobic glycolysis is increased in atheromatous plaques of ApoE -/- mice [135] 370 
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and in rabbit atherosclerosis arteries [136]. Few recent studies have indicated that the process of 371 

the Warburg effect is involved in the proliferation of VSMCs, inflammation and dysregulation of 372 

ECs (Figure 3) [102]. 373 

 374 

Warburg effect and inflammation 375 

The process of atherosclerosis is largely associated with inflammation [137]. Recent studies have 376 

shown a relationship between inflammation and metabolic dysfunction in atherosclerosis [138]. 377 

The aerobic glycolysis drives the M1-like pro-inflammatory macrophage phenotype leading to 378 

the stimulation of inflammation and then atherosclerosis [139]. Several key integrators of 379 

inflammation, such as IL-1� are induced by aerobic glycolysis [140]. These integrators promote 380 

lipid plaque formation and their destabilization in ApoE -/- mice [141]. Moreover, HIF-1alpha 381 

activation during aerobic glycolysis promotes the differentiation of TH17 cells to aggravate the 382 

inflammatory process [142].  In atherosclerosis, the increase of glycolytic enzymes is associated 383 

with activation of circulating monocytes [143]. 384 

 385 

Warburg effect and the dysfunction of endothelial cells (ECs)  386 

EC dysfunction enhances the accumulation of lipids and thus the formation of atherosclerotic 387 

plaques [144]. The rate of aerobic glycolysis is high in normal ECs whereas the level of miR-143 388 

is very low. A recent study has shown that during the atherosclerotic process, the level of miR-389 

143 and mRNA levels of key enzymes (HK2, LDHA, PKM2) of aerobic glycolysis are increased 390 

[145]. The increase of miR-143 is associated with the dysfunction of ECs.  391 

 392 

Warburg effect and the promotion of VSMC proliferation 393 

Several studies have shown that increased glycolytic metabolism with a bioenergetics shift occurs 394 

during VSMC proliferation and migration [146,147]. The metabolism of aerobic glucose directly 395 

affects the proliferation of VSMCs [148] and increases the PDGF-BB (platelet derived growth 396 

factor brain barrier)-induced VSMC proliferation [149].  The PKK-1 (phosphofructokinase 1) 397 

could have a major role in this determination of glucose flux through the aerobic glycolysis 398 

process. VSMC proliferation is associated with an increase in energy demand [150]. This 399 

observation may be associated with ATP production by aerobic glycolysis. Upregulation of LDH-400 

A during aerobic glycolysis stimulates the proliferation and migration of VSMCs [151]. This 401 



 14 

upregulation is associated with an increase of lactate and ATP production.  402 

 403 

 404 

8. PPARγ agonists: potential therapeutic implications 405 

 406 

PPARγ and Warburg effect 407 

Few studies have examined the role of PPARγ in the regulation of the glycolytic pathway 408 

[45,152,153]. However, it has been found that the PPARγ shift, through a Ski oncogene, takes 409 

place through a glycolysis oxidative metabolic metabolism [154]. Administration of GW1929, a 410 

PPARγ agonist, increases the expression of PPARγ target genes involved in lipid oxidation in 411 

adipose tissue [155]. CD36 and FATP-1, two PPARγ target genes, enhance palmitate oxidation 412 

into mitochondria [156]. 413 

 414 

PPARγ and atherosclerosis 415 

Numerous studies have shown the beneficial effect of PPARγ agonists in the treatment of 416 

atherosclerosis by reducing inflammation, regulating endothelial function and improving the 417 

thrombosis process [157–159]. 418 

PPARγ regulates the process of change in the immune system by modifying macrophage 419 

polarization toward an anti- or pro-inflammatory (M2 or M1) phenotype [160]. PPARγ agonists 420 

inhibit M1 phenotype and decrease the expression of inflammatory cytokines, such as TNF-α, IL-421 

1 and IL-6 [161]. In contrast, the differentiation of M2 macrophages (with anti-inflammatory 422 

properties) results in increased expression of PPARγ [162]. The mechanism of macrophage 423 

polarization can be regulated by PPARγ agonists, underlying their anti-inflammatory and anti-424 

atherosclerosis activities [16]. Moreover, PPARγ regulates the inflammatory involvement of the 425 

immunogenicity of dendritic cells observed in atherosclerosis [163,164], but this mechanism is 426 

not yet fully understood [16]. TZDs can suppress thromboxane synthase and receptor expression 427 

in both macrophages and VSMCs [165,166]. Thromboxane, an arachidonic acid metabolite, plays 428 

a major role in the atherosclerosis process by acting on VSMC proliferation and the aggregation 429 

of platelets. PPARγ overexpression decreases VSMC proliferation [167,168] by arresting the 430 

VSMC re-entry cell cycle [169] and diminishes VSMC migration by reducing the mitogen-431 

activated protein kinase (MAPK) pathway [32]. PPARγ activation reduces inflammation by 432 
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inhibiting NF-kappaB activity [161]. Lobeglitazone and pioglitazone reduce NF-kappaB activity 433 

and then decrease VSMC proliferation [17]. 434 

 435 

 436 

Conclusion 437 

The canonical WNT/β-catenin pathway plays a key role in several pathophysiological 438 

mechanisms that are involved in cardiovascular diseases, such as inflammation, calcification, 439 

fibrosis and lipid infiltration. The dysregulation of this pathway in ECs results in damage to the 440 

arterial wall through a cascade of interactions between its molecular targets. Enhancing our 441 

knowledge of this pathway leads to a better understanding of the complex network of the 442 

different molecular components involved in the reprogramming of the metabolic pathway 443 

observed during the atherosclerosis process. This metabolic mechanism, known as the Warburg 444 

effect, appears to be a central element in the atherosclerosis process. Numerous studies have 445 

shown that the WNT/β-catenin pathway and PPARγ act in an opposing manner. Therefore, the 446 

development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis 447 

could be an interesting and innovative way to counteract the influence of the canonical WNT 448 

pathway.  449 

 450 

 451 
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 971 

 972 

Figure 1: Atherosclerosis process in blood vessel 973 

Endothelial cells present impaired conversion in vascular smooth cells (VSMCs), inflammatory 974 

processes, differentiation in monocytes and fibroblasts, and foam cell formation. 975 

 976 

Figure 2: Schematic representation of the canonical WNT pathway (‘activated’ state and 977 

‘inactivated’ state) 978 

 979 

Figure 3: Central role of the canonical WNT/beta-catenin pathway in atherosclerosis 980 

Abbreviations: EC: endothelial cell; ECM: extra matrix cellular; Glut: Glucose transporter; LDH: 981 

Lactate dehydrogenase; PDH: Pyruvate dehydrogenase complex; PDK: Pyruvate dehydrogenase 982 

kinase; PKM2: Pyruvate kinase M2; VSMC, vascular smooth cell 983 

 984 

Figure 4: Mechanisms involved in the Warburg effect. 985 

WNT target gene transcription is activated by cytosolic accumulation and then nuclear β-catenin 986 

(PDK, c-Myc, cyclin D1, MCT-1). MCT-1 favors lactate expulsion out of the cell. WNT/β-987 

catenin pathway activates tyrosine kinase receptors (TKRs) activity. Stimulation of HIF-1α 988 

activity, by PI3K/Akt and β-catenin, activates the expression of the glycolytic enzymes (GLUT, 989 

HK, PKM2, LDH-A). Aerobic glycolysis is observed with the increase of lactate production and 990 

the decrease of mitochondrial respiration. HIF-1α induced PDK phosphorylates PDH, which 991 

resulting in cytosolic pyruvate being shunted into lactate by inducing LDH-A activation. PDK 992 

inhibits the PDH complex into the mitochondria, thus pyruvate cannot be fully converted into 993 

acetyl-CoA and enter the Krebs cycle. c-Myc and cyclin D1 also stimulates LDH-A activity 994 

which converts cytosolic pyruvate into lactate. Activated PKM2 translocates to the nucleus to 995 
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bind β-catenin and then to induce the expression of c-Myc. Glucose metabolism over-activation 996 

leads to nucleotide synthesis; glutaminolysis to lipid and amino-acid synthesis and lactate release.  997 

Abbreviations: Acetyl-coA: Acetyl-coenzyme A; Glut: Glucose transporter; HIF-1α: Hypoxia 998 

induce factor 1 alpha; LDH: Lactate dehydrogenase; MCT-1: Monocarboxylate lactate 999 

transporter-1; PI3K-Akt: Phosphatidylinositol 3-kinase-protein kinase B; PDH: Pyruvate 1000 

dehydrogenase complex; PDK: Pyruvate dehydrogenase kinase; PKM2: Pyruvate kinase M2. 1001 
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