
An Exact Algorithm for the Linear Tape Scheduling Problem

Valentin Honoré,1 Bertrand Simon,1 Frédéric Suter1,2

1 IN2P3 Computing Center / CNRS, Lyon - Villeurbanne, France
2 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

valentin.honore@cc.in2p3.fr, bertrand.simon@cc.in2p3.fr, frederic.suter@cc.in2p3.fr

Abstract

Magnetic tapes are often considered as an outdated storage technology, yet they are still used to store
huge amounts of data. Their main interests are a large capacity and a low price per gigabyte, which come at
the cost of a much larger file access time than on disks. With tapes, finding the right ordering of multiple file
accesses is thus key to performance. Moving the reading head back and forth along a kilometer long tape has
a non-negligible cost and unnecessary movements thus have to be avoided. However, the optimization of tape
request ordering has rarely been studied in the scheduling literature, much less than I/O scheduling on disks.
For instance, minimizing the average service time for several read requests on a linear tape remains an open
question.

Therefore, in this paper, we aim at improving the quality of service experienced by users of tape stor-
age systems, and not only the peak performance of such systems. To this end, we propose a reasonable
polynomial-time exact algorithm while this problem and simpler variants have been conjectured NP-hard.
We also refine the proposed model by considering U-turn penalty costs accounting for inherent mechanical
accelerations. Then, we propose low-cost variants of our optimal algorithm by restricting the solution space,
yet still yielding an accurate suboptimal solution. Finally, we compare our algorithms to existing solutions
from the literature on logs of the mass storage management system of a major datacenter. This allows us to
assess the quality of previous solutions and the improvement achieved by our low-cost algorithm. Aiming
for reproducibility, we make available the complete implementation of the algorithms used in our evaluation,
alongside the dataset of tape requests that is, to the best of our knowledge, the first of its kind to be publicly
released.

1 Introduction
Initially designed for media recording, the usage domain of magnetic tapes has broadened over the decades and
remains a real competitor to disk storage even for scientific data. The main advantages of this storage medium
are a large storage capacity for a reasonable price, a better data preservation, better security, and better energy
efficiency. Indeed, it has been estimated that total costs are reduced by an average factor of 6 when archiving
data on tape rather than disks [23].

Recent tape cartridges can store up to 20 terabytes of data on a one-kilometer-long physical storage, longi-
tudinally divided into few bands which are each also longitudinally divided into dozens of wraps. Wraps are in
turn divided into dozens of tracks. All tracks in a given wrap are read or written simultaneously. A tape is then
composed of hundreds of parallel wraps which are logically linked together in a linear serpentine. Intuitively,
the storage space can be seen as a single linear wrap coiled liked a serpent on the tape.

Thousands of such cartridges are usually stored on the shelves of robotic libraries, as books would be
stored in an actual library. Then, when data on a given cartridge is not needed, its storage does not induce any
power consumption, and it cannot be accessed by intruders. All these advantages of tape storage made it an

1

unavoidable candidate for the storage of the exabytes of data produced at CERN by the Large Hadron Collider
experiments [11] or data related to European weather forecast [22].

The huge amount of data stored in such tape libraries, typically hundreds of petabytes, is usually managed
by a Mass Storage Management System (e.g., IBM HPSS or HPE DMF) which keeps track of the exact location
of the files stored on tapes and answers to users’ requests. When a particular file is needed, the tape it is on
will be fetched by a robotic arm, brought to a tape drive, and loaded. Then, the reading head of the tape drive
is positioned to the beginning of the file to read, or to the first available space to write new data, and the I/O
operation eventually occurs.

The main drawback of tape storage is the high latency to access a given file. Mounting a tape into a tape
reader requires a delay of about a minute [5]. Moreover, seeking from one file to another adds more delay
to place the reading head on the correct wrap and adapt the longitudinal position of the tape in front of the
head. When accesses to multiple files are requested, finding the right ordering of these accesses is thus key to
performance. Moving the reading head back and forth along a kilometer long tape has a non-negligible cost and
unnecessary movements thus have to be avoided. However, the optimization of tape request ordering has rarely
been studied in the scheduling literature, much less than I/O scheduling on disks. For instance, minimizing the
average service time for several read requests, i.e., the average time at which each request is read, on a linear
tape remains an open question.

Therefore, in this paper, we aim at improving the quality of service experienced by users of tape storage
systems, and not only the peak performance of such systems. To this end, we consider a simplified model of
magnetic tape composed of a single linear track. This is a strong assumption as the serpentine nature of tapes
leads to important optimization decisions. However, it still reflects local batch requests which would target files
belonging to the same wrap. We also believe it is a fundamental model which should be deeply understood. In
this model, a tape can therefore be seen as a linear sequence of files which all have to be read from the left to
the right. The input of the problem we consider is a list of files that are requested, associated with a number of
requests for each file. The objective is to design a schedule (i.e., a trajectory of the reading head on the linear
tape) to read all the requested files when the reading head is initially positioned on the right of the tape. We
consider the average service time as a metric, to ensure a fair service among all requests. In order to model the
temporality of a given schedule, we assume that the speed of the tape movement is constant, although it is a
mechanical device with inertia. We moderate this inaccuracy by taking into account the deceleration induced
by a U-turn of the tape as a nominal penalty. Note that we do not consider write requests, which are usually
done separately, nor update requests, which are avoided as they damage nearby data. Following [6], we refer
to this problem as the Linear Tape Scheduling Problem (LTSP), noting that our model differs from theirs by
accounting for U-turn penalties.

LTSP has been previously studied by Cardonha and Real [6, 7] and conjectured to be impossible to be
solved efficiently. Indeed, even simpler variations restricting either file requests to be unique or file sizes to
be equal have been conjectured NP-hard [7]. We answer this open question in this paper by providing a poly-
nomial algorithm optimally solving the unrestricted LTSP problem, also considering U-turn penalties. More
precisely, we show that a carefully designed Dynamic Programming implementation (technique which has been
considered in [7] but was deemed not conclusive) allows us to compute an optimal schedule in a reasonable
polynomial time. We then provide faster suboptimal algorithms and compare the performance of these original
algorithms to that of existing algorithms on a dataset built from the recent history of the tape library of the
IN2P3 Computing Center. 1

The remainder of this paper is organized as follows. In Section 2, we review the literature on tape scheduling
and related optimization problems. In Section 3, we define and discuss precisely the model and the objective
function. In Section 4 we expose our algorithmic solutions to this problem. Finally, in Section 5, we present
the results of our simulations on a real-world dataset.

1We discuss the connections with a concurrent work [8] in Appendix A.

2

2 Related work
The closest works to the present paper [6, 7] study LTSP under the same tape model, but without U-turn
penalties. The authors note that the algorithm minimizing the maximal service time, i.e., the time at which all
files are read, can present an average service time arbitrarily far from the optimal. They show that the opposite
algorithm reading the rightmost files first is however a 3-approximation, and design a few greedy optimizations.
Finally, they provide several heuristics for the online variant and compare their solutions through simulations.

LTSP is related to several well-studied problems in theoretical computer science. The most famous is
probably the Traveling Salesperson Problem, where the goal is to visit n points as fast as possible following
given travel times between each pair of points. This problem is notoriously NP-hard in general metrics [18] so
approximation algorithms and special cases have been studied extensively. One of the most recent development
has been the design of an algorithm surpassing the long-standing approximation ratio of 1.5 [17]. LTSP is
closer to its restriction on the real line, for which it can be solved in O(n2) [3].

A key difference between LTSP and the Traveling Salesperson Problem resides in the objective function, as
LTSP aims at minimizing the average service time. This objective is captured by the Minimum Latency Prob-
lem (also called Traveling Repairperson Problem) for which the best known approximation ratio is 3.59 [9].
This problem is already strongly NP-hard on trees [26], although it admits a PTAS [27], but can be solved
polynomially on the line if there are no deadlines [1].

Keeping the average service time objective function but adding delays at every visited vertex leads to a
more general definition of the Traveling Repairperson Problem. This problem is strongly NP-hard on the line
when deadlines or release times are involved [4] but its complexity when requests can be served at any time is
still unknown.

A different kind of related problems has been studied under the name of Dial-A-Ride. Here, requests are
composed of a source and a destination and the goal is to move vehicles to transport all requests from their
source to their destination. Several variants of the problem exist, even restricted to the offline setting, depending
on the presence of release times or the number and capacities of the vehicles, see [12]. The Dial-A-Ride problem
can be seen as a generalization of LTSP but is often studied with the objective of minimizing the total service
time. A simpler variant, close to our problem, considers a single vehicle able to transport one request at a
time without being able to drop it before the destination, and is shown to be polynomially solvable [2] when
minimizing the total service time. A formulation aiming at minimizing the average service time has been shown
to be NP-hard, relying on request irregularities (overlapping trips in different directions) [12, Theorem 7] which
cannot happen in LTSP where requests are unidirectional and files are disjoint.

We did not cover all the work done on the online version of these problems, when future requests are
unknown, but we refer the reader to [3] for an overview of such results.

The literature on tape scheduling is rather scarce although the role of tape libraries is far from negligible
in modern computing centers. Contrarily to this paper, most studies consider a more complex tape geometry,
usually a serpentine. Hillyer and Silberschatz [15] focus on low-level hardware information (key points) to eval-
uate several heuristics. Sandsta and Midtstraum [24] propose a low-cost function to approximate the seeking
time between two points of the tape. More and Choudhary [21] design algorithms to schedule the mounts of
different tapes in a library. Melia [20] evaluates the seek times between any two points of a recent tape, data
which is used as input in a few heuristics to compare their performance. Software designed to optimize tape
usage appear to often sort read requests based on their tape position [25, 28]. A common point to these studies
is that the focus has mostly been on cost modeling due to the two-dimensional nature of the tape and low-level
hardware aspects, but publicly released scheduling algorithms are often greedy ones. A proprietary solution
used by some tape libraries, named Recommended Access Order (RAO), exploits such two-dimensional tape
information but its underlying algorithm is not available [16, Section 4.27].

3 Model and Problem Descriptions
We consider a linear tape of length m, divided successively in nf disjoint files (f1, . . . , fnf

) of integer size
s(fi). Let `(fi) be the length between the left of the tape and the left of the file fi and r(fi) = `(fi)+s(fi). We

3

say that fi < fj if file fi is located on the left of fj , i.e., `(fi) < `(fj). We assume that these file properties can
be queried in constant time by an algorithm. We are given a set of n requests on nreq files among the nf files
of the tape, with possible duplicates, where each request is a file. Let x(fi) be the number of requests allocated
to file fi.

At the beginning, the reading head is positioned on the right of the tape. A request is fulfilled when its file
has been traversed from the left to the right by the reading head. We assume the reading head moves at constant
speed (the tape is actually moving and the head is fixed, but switching roles helps the exposure), a time unit
being necessary to traverse a file chunk of size 1 in either direction. We also consider a time penalty U for each
U-turn performed by the head.

The main limitation of this model concerns the track geometry. Modern tapes are not constituted of a single
linear track, and being aware of their serpentine geometry is essential to optimize the reading sequence and
seeking costs. However, this simpler model is able to emulate accurately local considerations when files written
in the same period are located in a single track. It is also fundamental to deeply understand the complexity of
such a model knowing that the serpentine model is much closely related to NP-hard problems such as the
Traveling Salesperson Problem.

The assumption of the tape moving at a constant speed in front of the reading head is obviously inaccurate
due to acceleration and deceleration inherent to mechanical devices. However, the cruise speed is typically
reached fast enough so this approximation is satisfactory apart from U-turns. The nominal U-turn penalty used
to take into account these slow-downs therefore improves the model accuracy.

Other limitations of the model such as the undifferentiated reading speed or the forced starting position of
the head are discussed as extensions in the conclusion.

The objective is to provide a schedule, i.e., a trajectory of the reading head on the tape, that serves all
requests and minimizes the sum of service times of requests, i.e., the sum of the times needed before each
request is satisfied. Note that we formally define the objective as minimizing the sum, but it is more intuitive
in terms of a quality of service to speak about the average service time, an objective which is completely
equivalent.

A simple lower bound VirtualLB on the optimal solution is achieved by using n virtual heads serving each
request optimally, i.e., each reading head moves directly to the left of its assigned file then reads it.

VirtualLB =
∑
f

x(f) · (m− `(f) + s(f) + U).

Minimizing the average service time is one of the most classic scheduling objective functions with the
maximal service time. The latter has been the main focus of studies on the serpentine model as it minimizes
the time spent using the tape which decreases wear and delay of other tapes reads. However, in the linear tape
model, minimizing the maximal service time is trivial while minimizing the average service time leads to more
fairness among users. This is especially true in a case of low tape usage in which tapes are rarely waiting to be
mounted.

Note that we follow the definition of the problem from [6, 7] as the input consists of a list of requests
rather than the set of requested files associated with their multiplicity. The motivation comes from practice,
where a set of read requests has to be satisfied, and it may happen that several read requests target the same
file. The consequence is that polynomial-time algorithms are allowed to have a complexity polynomial in n
and nreq and not only in log n and nreq . This makes a difference if the number of requests is not bounded by a
polynomial in the number of requested files. It is natural to study first this variant of the problem, as so-called
high-multiplicity problems are notoriously much harder to solve [14].

4 Algorithm
This section presents the main contribution of this paper, the DP algorithm solving LTSP in time O(n3req · n).
Before describing DP, we start with giving useful definitions, preliminary remarks, and brief descriptions of
existing solutions. We then also present the LOGDP variant algorithm, which limits the search space of DP to
provide a suboptimal solution with a smaller time complexity of O(nreq · n · log2 nreq).

4

4.1 Preliminaries
In this section, we study the structure of optimal solutions to provide a simple description of such schedules.

In any optimal solution, the reading head will move to the leftmost request, then to the rightmost still unread
request. Before reaching the leftmost request, the head may move back and forth in possibly intricate patterns
to read relevant files first. We say that the solution includes the detour (a, b), with a and b being two requested
files such that a ≤ b, if the head goes directly to r(b) then back to `(a) after first attaining `(a). As shown
previously [6] and later stated formally in our setting (see Lemma 1), there always exists an optimal solution
which can be described only via a set of detours. Furthermore, a detour can be totally surrounded by a later one
(i.e., (a1, b1) and (a2, b2) with a1 < a2 < b2 < b1) but otherwise two detours cannot intersect each other (i.e.,
(a1, b1) and (a2, b2) with a1 ≤ a2 ≤ b1 ≤ b2).

Requested files

f1 f2 f3 f4 f5 f6

Reading
Head

Tape

time

Figure 1: Example of schedule for reading six files described by the [(f6, f6), (f4, f4), (f3, f5)] detour list.
Note the delays caused by U-turn penalties.

Reading
Head

Tape

time

Figure 2: Example of non-optimal schedule. In the second detour, the movement in thick dotted lines is useless
as these files have already been read earlier (thick solid line).

Figure 1 illustrates a possible solution while Figure 2 shows detours overlapping in a suboptimal manner.
We denote this property on the set of detours in any optimal solution as being strictly laminar, following

a definition of laminar used in the scheduling literature, see for instance [10]. We consider that all solutions
contain the detour (fn1 , fnf

), which reads all skipped files, even if the last movements may not count towards
the objective as the rightmost requests may have already been served.

An unread file at the right of the current reading head position is called skipped. It will be read later when
the head moves back to the right, possibly after the head read the leftmost file. For instance, on Figure 1, when
f4 is first reached by the head, f5 is skipped, but when the head first reaches f2, no file is skipped.

4.2 Existing algorithms
One of the simplest algorithm would be to make no detour. The head simply moves to the leftmost requested
file and then reads all files left-to-right. Despite minimizing the makespan, it can be arbitrarily far from the
optimal solution in our model [6]. We refer to this algorithm as NODETOUR.

5

The opposite strategy would be to perform a detour on each requested file. This algorithm, named GS for
Greedy Scheduling, has been proved to be a 3-approximation without U-turn penalties [6]. The worst-case
instance is simply composed of a small file with many requests located on the left of a large file with a single
request. But of course harsh penalties can arbitrarily degrade its guarantees.

To improve the basic solution offered by GS, the FGS algorithm [7] detects detrimental detours in multiple
evaluation passes and Filters them out.

As FGS does not benefit from multi-file detours, the same authors designed the NFGS algorithm, allowing
Non-atomic detours. In essence, for each pair of files a < b starting from the left, it tests whether it would be
beneficial to add the detour (a, b), after removing the detour starting from a if it existed. Despite its relatively
large time complexity, NFGS remains greedy in nature, definitely sealing any detour that seems beneficial. A
variant exploring only detours spanning over O(log nreq) requested files, LOGNFGS, has been proposed to
trade search space for running time.

Note that the FGS, NFGS, and LOGNFGS algorithms can be adapted to take into account the U-turn
penalty in their decisions, although losing their approximation factor of 3 which was inherited from GS. We
provide a description in Appendix B for completeness.

The structure of existing solutions, relying on greedy evaluation passes, illustrates the difficulty of the
problem. The decision of making a detour or not depends on what happens before (a detour increases the delay
on skipped files) and after (subsequent detours will increase the delay on files that have been skipped). Detours
can also be intricate, as shown by Figure 1. It thus seems hardly possible to take correct decisions on detours
when each decision may influence the others. Consequently, Cardonha and Real [7] only considered a very
restricted model (identical file sizes and a single request per file) in which the exact solution is simple but did
not otherwise get any algorithm with an approximation ratio below 3.

4.3 Algorithm
Here, we describe the DP dynamic programming algorithm. It uses carefully selected memoization to store the
cost of specific solutions used to build an optimal schedule.

The dynamic program cells have a number and three parameters: two requested files a and b and a number
nskip < n. The objective for each cell is to compute the best possible strategy for the reading head between r(b)
and `(a) knowing that:

1. there is a detour (a, f) for some file f ≥ b,

2. there is no detour (f1, f2) for any files f1, f2 satisfying a < f1 < b < f2,

3. when the reading head reaches r(b), exactly nskip file requests have been skipped.

The content of the cell describes the impact on the total cost of the movement made by the reading head
between the first time it reaches r(b) and the first time it reaches r(b) after having read a. In other words, it
equals the sum of the lengths for all requests on any file f of the “unnecessary” paths traversed by the head in
this time interval and before serving the file f . Unnecessary means that we do not count the cost that would
also be incurred to VirtualLB on a file f between a and b, as it is inevitable and this simplifies the formulas.
The U-turn penalty on a is therefore not counted as VirtualLB would also have one U-turn penalty, but other
U-turn penalties in this interval are counted.

We define n`(b) as the number of requests on files located on the left of b, excluding b, and let left(b) be the
closest requested file located to the left of b.

The value of cell T [a, b, nskip] is then defined as follows:

• If b = a, then there is a detour from `(b) to at least r(b) so we delay all pending requests by 2s(b), and
incur no additional cost to b, see Figures 3 and 4. Therefore,

T [b, b, nskip] = 2 · s(b) · (nskip + n`(b)).

6

b f

Reading
Head

Tape

time

Figure 3: Cost incurred by a detour over file b to a skipped file f . The solid line represents the shortest path to
serve f . The red dotted line represents the delay incurred by this detour to the service time of f . Other detours
are not illustrated here. Subsequent figures follow the same logic.

bf

Reading
Head

Tape

time

Figure 4: Cost incurred by the detour over b to a left file f .

• Otherwise, let Fa,b be the set of requested files located between a and b excluding a. There are several
possibilities to consider to determine the value of the cell: either b is skipped (it will be read with the
detour starting from a), or read sooner than by the detour starting from a. In the latter case, it is read on
a detour ending on b as there is no detour going to the right of b starting righter than a. This detour can
start from any file in Fa,b. Then, we have:

skip(a, b, nskip) := T [a, left(b), nskip + x(b)]

+ 2 · (r(b)− r(left(b))) · (nskip + n`(a))

+ 2 · (`(b)− r(left(b))) · x(b)

detourc(a, b, nskip) := T [a, left(c), nskip] + T [c, b, nskip]

+ 2 · (r(b)− r(left(c))) · (nskip + n`(a))

+ 2 · U · (nskip + n`(c))

T [a, b, nskip] = min
(

skip(a, b, nskip) ;

min
c∈Fa,b

detourc(a, b, nskip)
)

In the first case, we recurse on a smaller window skipping file b, hence increasing nskip. We also account
for the cost of the detour starting from a over the files between left(b) and b for the requests that will be
fulfilled later. The differences with earlier are that (1) we also have to account for the cost to traverse the
unrequested files at the left of b and (2) requests between a and left(b) are served before the head comes
back to the right, hence there are n`(a) delayed files and not n`(b). See Figures 5 and 6.

Finally, we account for the additional cost to serve b not covered by the recursive call: the path over the
unrequested files directly at the left of b, see Figure 7.

7

a left(b) b f

Reading
Head

Tape

time

Figure 5: Impact of skip(a, b, nskip) on a skipped file f . The thin dotted line represents the recursively computed
impact (which may include subsequent detours), and the dashed line the impact directly accounted for.

a left(b) bf

Reading
Head

Tape

time

Figure 6: Illustration of the impact of skip(a, b, nskip) on a left file f .

a left(b) b

Reading
Head

Tape

time

Figure 7: Impact of skip(a, b, nskip) on b.

In the second case, we have a detour (c, b) for some c in Fa,b. Hence, all these files will be read when
the head reaches left(c) so we do not change nskip in the recursive calls. We still need to account for the
cost of the detour starting from a over the interval (r(left(c)), b). See Figures 8 and 9. We also charge
here the U-turn penalties for all requests who will be served after the head reaches a, i.e., for all pending
requests for which the U-turn at c is not the last one before they get served (the second U-turn penalty
charged is for the U-turn occurring at b after the detour (c, b)).

Then, the overall solution can be computed through the call to T [f1, fnf
, 0]. The structure of the recursive

calls minimizing this value leads to the detours taken by the underlying optimal solution.

4.4 Proof of the algorithm
First, we need a structural result to guarantee that the restriction to strictly laminar detours preserves the optimal
solution. A similar result has been established in [6]. We state it here for self-consistency and a more precise
result.

Lemma 1. There exists an optimal solution composed only of strictly laminar detours.

Proof. Consider an optimal solution. Once the leftmost file is reached, it must go straight to the rightmost
unread file. We now consider the part of solution before the leftmost file is reached.

Each time the head turns to the right at position x, it has to turn back to the left later at point y. It cannot
turn again to the right before reaching x as this is suboptimal: no new file between x and y can be read this way.
Furthermore, x must be the left of a requested file a and y the right of a requested file b or this is suboptimal.

8

a left(c) c b f

Reading
Head

Tape

time

Figure 8: Impact of detourc(a, b, nskip) on a skipped file f .

a left(c) c bf

Reading
Head

Tape

time

Figure 9: Impact of detourc(a, b, nskip) on a left file f .

So the solution made a detour (a, b). Continuing this analysis, we can decompose the optimal solution as a set
of detours, counting again a global detour (f1, fnf

). Note that we have shown that all detours start and end at
the same position x, so detours are done in a non-increasing order of the left file.

We now show that these detours are strictly laminar. Assume there are two detours (a1, b1) and (a2, b2)
with a1 ≤ a2 ≤ b1 ≤ b2. After the first detour (a2, b2) is done, all files between a2 and b2, so between a2 and
b1 are read. So the second detour (a1, b1) can be shortened to (a1, left(a2)) if a1 < a2 or removed if a1 = a2:
no file is read later and the cost does not increase for any file.

This concludes the lemma.

We are now ready to prove the correctness of DP. This proof relies on an induction involving several case
distinctions ensuring every cost is counted once. It requires some technical care to precisely define which cost
is counted at each step.

Theorem 1. DP solves optimally LTSP in time O(n3req · n).

Proof sketch. The complexity follows from the dynamic programming definition: there are O(n2req · n) cells
which are each computed in time O(nreq).

We show for all a, b, nskip by induction on b− a that the computation of cell T [a, b, nskip] is correct. Specif-
ically, our induction hypothesis considers any best solution Sa,b,nskip of the problem given three additional con-
straints: (1) there is a detour starting from a and going to b or a righter file; (2) there is no detour starting between
r(a) and `(b) and going to a file righter than b; and (3) when the reading head first reaches r(b), exactly nskip

files have been skipped. Let t1 be the time when the reading head first reaches r(b) and t2 be the first time the
reading head reaches r(b) (before performing a potential U-turn) after having read a in Sa,b,nskip . For each file f ,
let t(f) the time when it is served in Sa,b,nskip . For each file f ≤ b, let VirtOPTb(f) = r(b)− `(f) + s(f) +U
be the minimum cost to serve f by a virtual head starting at r(b) and VirtOPTb(f) = 0 for b > f . See
Figure 10.

The hypothesis is that cell T [a, b, nskip] is equal to the sum for all files f of the impact Delayt1,t2(f) of
what happens between t1 and t2 in Sa,b,nskip on the service time of f , with a basis corresponding to VirtualLB,
i.e.,

9

a f b

Reading
Head

t1

t2
t(f)

VirtOPTb(f)

Delayt1,t2(f)

Tape

time

Figure 10: Illustration of t1, t2, t(f), VirtOPTb(f) and Delayt1,t2(f) for f ≤ b.

T [a, b, nskip] =
∑
f

x(f) ·Delayt1,t2(f) (1)

with : Delayt1,t2(f) := 0 if t(f) ≤ t1
Delayt1,t2(f) := t2 − t1 − U if t(f) > t2

Delayt1,t2(f) := t(f)− t1 −VirtOPTb(f) if t1 < t(f) ≤ t2.

Intuitively, for files served after t2, the reading head comes back at the place it had in t1 at time t2, with
the opposite orientation. The delay is however not equal to t2 − t1 because we should not to count the U-turn
penalty here if a skipped file on the right of b is read within the same detour starting on a. Therefore, the delay
equals t2 − t1 − U . Counting the cost based on VirtualLB allowed to simplify the computations in several
places, but in this definition it leads to a less intuitive value of the delay. For files served between t1 and t2,
the file is served at t(f) and we subtract VirtOPTb(f) to obtain the additional cost on top of the virtual lower
bound.

We now show by induction on b−a that Equation (1) is correct. First, consider T [b, b, nskip] for any b, nskip.
There are four types of files to consider.

• f = b: we have t(f) = t1 + 2s(b) + U and VirtOPTb(f) = 2s(b) + U so Delayt1,t2(f) = 0,

• f > b and is not skipped: we have t(f) ≤ t1 so Delayt1,t2(f) = 0,

• f > b and is skipped: we have t(f) > t2 so Delayt1,t2(f) = 2s(b) + U − U ,

• f < b: we have t(f) > t2 so Delayt1,t2(f) = 2s(b).

Overall, there are nskip + n`(b) files who have a delay equal to 2s(b) so:

∑
f

x(f) ·Delayt1,t2(f) = 2 · s(b) · (nskip + n`(b)) = T [b, b, nskip].

This completes the base case of the induction (b− a = 0).

Now, consider T [a, b, nskip] for any values of a, b and nskip such that a < b and assume the induction
hypothesis. We want to show that:

T [a, b, nskip] =
∑
f

x(f) ·Delayt1,t2(f). (2)

We consider two cases on the structure of Sa,b,nskip : either b is served after a or before a.
Assume first b is served after a. We want to show that in this case, we have:

10

∑
f

x(f) ·Delayt1,t2(f) = skip(a, b, nskip) (3)

= T [a, left(b), nskip + x(b)] + 2 · (r(b)− r(left(b))) · (nskip + n`(a))

+ 2 · (`(b)− r(left(b))) · x(b).

Let t′1 (resp. t′2) be the first time when the reading head reaches r(left(b)) (resp. reaches r(left(b)) after
having read a). See Figure 11. So t′1 = t1 + r(b)− r(left(b)) and t′2 = t2 − r(b) + r(left(b)). By the induction
hypothesis, as (1) there is a detour from a to a file righter than left(b) (2) there is no detour starting between r(a)
and `(left(b)) and going to a file righter than left(b) (because of the definition of Sa,b,nskip and the assumption
that b is served after a) and (3) exactly nskip + x(b) files are skipped at time t′1, we have by the induction
hypothesis:

T [a, left(b), nskip + x(b)] =
∑
f

x(f) ·Delayt′1,t′2(f).

a left(b) b

Reading
Head

t1

t2

t′1

t′2

Tape

time

Figure 11: Illustration of t′1 and t′2 when b is skipped. The detour on left(b) is not required but clarifies the
definition of t′2.

We again consider several types of files f to determine Delayt1,t2(f) in function of Delayt′1,t′2(f).

• f = b: we have t(f) = t′2 + r(b)− r(left(b)) + U and VirtOPTb(f) = 2s(b) + U so we have

Delayt1,t2(f) = t(f)− t1 −VirtOPTb(f)

= t′2 + r(b)− r(left(b)) + U − (t′1 − (r(b)− r(left(b))))− 2s(b)− U
= t′2 − t′1 + 2 · (r(b)− r(left(b))− s(b))
= Delayt′1,t′2(f) + 2 · (`(b)− r(left(b))).

• f > b and is not skipped: t(f) < t1 so Delayt1,t2(f) = Delayt′1,t′2(f) = 0.

• f > b and is skipped: we have Delayt1,t2(f) = t2 − t1 − U = Delayt′1,t′2(f) + 2 · (r(b)− r(left(b))).

• f < a: same as the previous case.

• a ≤ f ≤ left(b): we have VirtOPTb(f) = VirtOPTleft(b)(f) + r(b)− r(left(b)) so

Delayt1,t2(f) = t(f)− t1 −VirtOPTb(f)

= t(f)− t1 −VirtOPTb(f) + Delayt′1,t′2(f)− (t(f)− t′1 −VirtOPTleft(b)(f))

= Delayt′1,t′2(f) + (t′1 − t1)− (r(b)− r(left(b)))

= Delayt′1,t′2(f).

11

a left(c) c b

Reading
Head

t1

t02

t2

t′1

t′2

Tape

time

Figure 12: Illustration of t02, t′1 and t′2 when b is not skipped.

Therefore, we obtain Equation (3).

Now, assume b is served before a. This means that there is a detour from some file c > a to a file at least
as right as b. Furthermore, as we assumed that Sa,b,nskip has no detour from such a file c to a file righter than b,
this means that there is a detour (c, b). Therefore, by the laminar property of Lemma 1, and the optimality of
Sa,b,nskip , there is no detour from a file lefter than c to a file in [c, b]. We want to show that in this case, we have:

∑
f

x(f) ·Delayt1,t2(f) = detourc(a, b, nskip) (4)

= T [a, left(c), nskip] + T [c, b, nskip]

+ 2 · (r(b)− r(left(c))) · (nskip + n`(a))

+ 2 · U · (nskip + n`(c)).

First we argue that Sa,b,nskip is a solution compatible with the two cells queried in the expression above.
Regarding T [a, left(c), nskip], we have:

1. a detour from a to a file righter than left(c),

2. no detour from a file in [a, left(c)] to a file righter than left(c) as there is none righter than b by definition
of Sa,b,nskip and there is none between c and b because detours are laminar and there is a detour (c, b),

3. exactly nskip files have been skipped when reaching r(left(c)) as all files between c and b are read during
the detour (c, b).

Similarly, regarding T [c, b, nskip], we have (1) a detour (c, b) by assumption, (2) no detour from a file in [c, b] to
a file righter than b by definition of Sa,b,nskip , and (3) exactly nskip files skipped.

We denote by t02 the first time r(b) is reached after having read c (before the U-turn penalty), t′1 = t02 +U +
r(b) − r(left(c)) the first time r(left(c)) is reached and by t′2 = t2 − r(b) + r(left(c)) the first time r(left(c))
is reached after having read a. Note that t1 < t02 < t′1 < t′2 < t2, see Figure 12. Therefore, we obtain by the
induction hypothesis:

T [a, left(c), nskip] =
∑
f

x(f) ·Delayt′1,t′2(f) and T [c, b, nskip] =
∑
f

x(f) ·Delayt1,t02(f).

We again consider several types of files f to determine Delayt1,t2(f):

• f > b and is not skipped: all delays equal zero as t(f) < t1.

• c ≤ f ≤ b: we have Delayt1,t2(f) = t(f) − t1 − VirtOPTb(f) = Delayt1,t02(f) as t(f) ≤ t02 and
Delayt′1,t′2(f) = 0 as t(f) < t′1.

12

• a ≤ f ≤ left(c): we have:

Delayt1,t2(f) = t(f)− t1 −VirtOPTb(f)

= t(f)− t′1 + t′1 − t1 −VirtOPTleft(c)(f)− (r(b)− r(left(c))) + t02 − t02 − 2U + 2U

=
(
t(f)− t′1 −VirtOPTleft(c)(f)

)
+
(
t′1 − t02 − U

)
− (r(b)− r(left(c)))

+
(
t02 − t1 − U

)
+ 2U

= Delayt′1,t′2(f) + 0 + Delayt1,t02(f) + 2U.

• f < a: we have:

Delayt1,t2(f) = t2 − t1 − U + 2U − 2U + t′2 − t′2 + t′1 − t′1 + t02 − t02
= (t′2 − t′1 − U) + (t2 − t′2) + (t′1 − t02 − U) + (t02 − t1 − U) + 2U

= Delayt′1,t′2(f) + 2 · (r(b)− r(left(c))) + Delayt1,t02(f) + 2U.

• f > b and is skipped: same as the previous case.

Therefore, we get Equation (4).

We now conclude the proof of the induction.
As Sa,b,nskip must either serve b before a or include a detour (c, b) as argued earlier, we have:

cost(Sa,b,nskip) ≥ min
(

skip(a, b, nskip) ; min
c∈Fa,b

detourc(a, b, nskip)
)

= T [a, b, nskip].

And we get the equality by optimality of Sa,b,nskip .

Finally, we get by induction, for all a, b, nskip and Sa,b,nskip :

T [a, b, nskip] :=
∑
f

x(f) ·Delayt1,t2(f).

Note that Sf1,fnf
,0 is equal to the optimal solution of the problem. So, denoting by t0 the starting time of

the solution and tmax the time at which the reading head would reach back the right of the tape in Sf1,fnf
,0 (it

may stop earlier if the rightmost file is not skipped), we get that the content of the cell T [f1, fnf
, 0] is equal to:

T [f1, fnf
, 0] =

∑
f

x(f) ·Delayt0,tmax
(f)

=
∑
f

x(f) · (t(f)− t0 −VirtOPTfnf
(f))

= cost(Sf1,fnf
,0)− VirtualLB.

Therefore, we obtain that the optimal cost is equal to OPT = T [f1, fnf
, 0] + VirtualLB, which completes

the proof.

4.5 Efficient heuristics
The complexity of DP may be prohibitive for an input containing hundreds of requested files. We address this
issue by providing two lighter algorithms named LOGDP and SIMPLEDP. Both restrict the dynamic program
search space, in two different ways, in order to propose a suboptimal solution in a shorter time.

13

Restricting the detours length: LOGDP

LOGDP is equal to DP except that when computing detourc(a, b, nskip), c is restricted to be at most λ · log nreq
requested files apart from b, for a constant parameter λ. This reduces both the table dimensions and complexity
to query a single cell ans thus leads to a time complexity of O(nreq · n · log2 nreq). Only detours of span at
most λ · log nreq are then considered, and the solution returned is optimal among this class of schedules. The
parameter λ can be adjusted to trade accuracy for computing time. As this solution is by definition at least as
good as GS, it is also a 3-approximation if U = 0.

We remark that the approximation ratio of LOGDP is actually equal to 3 if U = 0, no better than the one
of GS. Indeed, consider an arbitrarily large integer z and an instance with z requested files. The leftmost file f1
is small and non-urgent, `(f1) = 0, s(f1) = 1 and x(f1) = 1. The z − 1 other files are located far on the right
and are contiguous, `(f2+i) = 2z3 + i for all i < z − 1. All these files have a unit size except the rightmost
one which is large: s(f2+i) = 1 for all i < z − 2 and s(fz) = z2. Finally, f2 is urgent, x(f2) = z2, fz is less
urgent, x(fz) = z and all other files have exactly one request. The optimal solution has a single detour (f2, fz)
before reading f1 and has then a cost equal toCOPT = z4+O(z3), the z4 coefficient coming from the requests
associated to f2. If detours spanning z− 1 files are forbidden, then we study two complementary cases. If fz is
read before f2, then f2 is read after a time larger than 3s(fz) which incurs a cost of 3z4 = 3·COPT−o(COPT).
Otherwise, fz is read after f1, so after a time at least 2`(f2) which incurs a cost of 4z4. Hence, LOGDP cannot
have an approximation ratio smaller than 3. With an arbitrary value of U , the approximation ratio is infinite as
the restriction on the detours length can lead to having to resort to many detours, consider the example above
with equivalent files for f2, . . . , fz .

Forbidding intertwined detours: SIMPLEDP

SIMPLEDP simplifies DP in another aspect to reduce its complexity. It restricts the search space to solutions
in which all detour intervals are disjoint: no file is traversed from the left to the right after having being read,
except possibly at the last phase after the leftmost file has been read. The implementation of this modification
is done by simply modifying the detourc(a, b, nskip) function. Instead of using a recursive call to compute the
optimal strategy between c and b if there is a detour (c, b), it is now possible to directly incur the cost of the
detour (c, b) as no subsequent detour is allowed inside this interval. This cost corresponds to the length of the
detour for requests on the left of c and to the distance between c and f for any file f requested between c and b:

detourc(a, b, nskip) := T [a, left(c), nskip]

+ 2 · (r(b)− r(left(c))) · (nskip + n`(a))

+ 2 · (U + r(b)− `(c)) · (nskip + n`(c))

+
∑
c<f≤b

2 · (`(f)− `(c)) · x(f).

Consequently, the first index (a) of the dynamic program table becomes useless as it is always equal to f1,
the leftmost requested file. The complexity of this algorithm is then in O(n · n2req).

Contrarily to LOGDP, we conjecture that the approximation ratio of SIMPLEDP is better than the factor 3
inherited from the greedy algorithm GS when U = 0. Specifically, we exhibit an example showing that the
approximation ratio is at least 5/3 and show that for any value of U , it is at most 3. We believe that the
approximation ratio actually equals 5/3.

Lemma 2. The approximation ratio of SIMPLEDP belongs to [5/3, 3] for any value of U .

Proof. We first provide an instance on which the solution of SIMPLEDP approaches 5OPT/3. We then prove
that it never exceeds 3OPT for any value of U .

Consider an instance parameterized by a large integer z with four requested files f1, f2, f3, and f4. Let
`(f1) = 0, s(f1) = 1 and x(f1) = 1, this file is used to “force” the rightmost files to be read using detours
before reaching f1. The three other files are located far on the right, `(f2) = 3z2. The files f2 and f3 are urgent,
small, and separated: s(f2) = s(f3) = 1, x(f2) = x(f3) = z2 and `(f3) = r(f2) + z. Finally, the file f4

14

is large, less urgent, and contiguous to f3: `(f4) = r(f3), s(f4) = z, and x(f4) = z. The right end of the
tape corresponds to the right of f4. One solution involving intertwined detours is to read first the small file f3,
then f2 and f4 in the same detour before reading f1, see Figure 13 for an illustration. The cost of this solution
equals:

COPT := x(f2) · (r(f4)− `(f2)) + x(f3) · s(f4) +O(z2) = 3z3 +O(z2).

x(f1) = 1 x(f2) = z2 x(f3) = z2 x(f4) = z

Reading
Head

Tape

time

3z2 z z

Figure 13: Instance exhibiting a lower bound on the approximation ratio of SIMPLEDP.

We then show that all solutions without intertwined detours have a cost of at least 5
3COPT + O(z2) =

5z3 +O(z2). We do a case analysis based on which detour f4 is read on.

• f4 is read in the detour (f4, f4): f3 is read after 3s(f4) = 3z and f2 after r(f4)− `(f2) + 2s(f4) > 4z
so the cost exceeds 7z3.

• f4 is read in the detour (f3, f4): f3 is read after s(f4) = z and f2 after r(f4)− `(f2) + 2s(f4) > 4z so
the cost exceeds 5z3.

• f4 is read in the detour (f2, f4): f3 must be read in that same detour as intertwined detours are forbidden.
So f3 is read after r(f4) − `(f2) + r(f3) − `(f2) > 3z and f2 after r(f4) − `(f2) > 2z so the cost
exceeds 5z3.

• f4 is read in the detour (f1, f4): the cost associated to the requests on f4 exceeds x(f4) · 2 · `(f2) = 6z3.

As z grows, this shows that the approximation ratio of SIMPLEDP is at least 5/3.

We now prove the second part of the lemma: for all values of U , the approximation ratio of SIMPLEDP is
at most 3. As noted above, this result is already known for U = 0, as the solution is at least as good as the one
taking all atomic detours.

Consider any instance of LTSP and an optimal solution of cost OPT described by a list of strictly laminar
intertwined detours L, such as the one returned by DP. We iteratively modify the solution L, reducing the
portion of tape witnessing intertwined detours while guaranteeing that the final cost does not exceed 3OPT .
We again assume that the final detour (f1, fnf

) is not explicitly present in L.
We say that a detour (a, b) ∈ L is major if there exists a detour (fi, fj) ∈ L such that a < fi ≤ fj < b.

Any such detour (fi, fj) is said to be inside (a, b). Among the major detours of L, consider the one with the
rightmost right endpoint. Let this detour be (a, b). Then, among the detours inside (a, b), consider the one with
the rightmost left endpoint. Let this detour be (c, d). We then have a < c ≤ d < b.

We can then split the schedule induced by L into three time periods. First, the files on the right of b are read
using non-major detours or skipped until the final detour (f1, fnf

). Then, the files located between a and b are
all read: the first one to be read is c by definition and the last one is b. Then, the files on the left of a are read,
and finally the remaining ones on the right of b are read.

We modify L as follows: the detour (a, b) is replaced by (a, left(c)) and the detour (c, d) is replaced by
(c, b), where left(c) represents the closest requested file located at the left of c. The consequences are the
following:

15

• files in [c, d] are read at the same time as the original solution.

• files in [d, b] \ {d} are read sooner as part of the detour (c, b).

• files read after a in the original solution are read sooner as the number of detours did not change but the
distance traversed decreased.

• for files in [a, left(c)], the reading head now performs the detour (c, b) instead of (c, d) before reading
them. This incurs an additional time of 2(r(b)− r(d)).

• there is no major detour going over the file c or a file on its right.

A simple upper bound is that the cost increases by at most n`(c) · 2 · (r(b)− r(d)), where n`(c) represents
the number of file requests located on the left of c, excluding c.

Consider successive applications of this process until no major detour is left. This is always possible as,
after each step, the rightmost right endpoint of a major detour is moved to the left. This leads to the following
sequence of files involved in the modified detours: {(ai, ci, di, bi)}i∈[1,nd]. After each application at step i, the
new rightmost right endpoint of a major detour, bi+1, is located on the left of ci, so of di. This means that the
intervals {[di, bi]}i∈[1,nd] are all pairwise disjoint. Therefore, the additional cost is at most:

nd∑
i=1

n`(ci) · 2 · (r(bi)− r(di)) ≤ 2 ·
nf∑
j=1

x(fj) · (m− r(fj)) ≤ 2 ·OPT .

The first inequality comes from the fact that, for each file request, the union of the relevant intervals [bi, di]
represents a subset of the part of the tape located on the right of this file.

Therefore, the final cost of the solution obtained, free of intertwined detours, is at most 3 · OPT , which
proves the lemma.

5 Performance evaluation
In this section, we evaluate the performance, as the sum of service times of its generated sequence of detours, of
our exact algorithm, DP, and its suboptimal versions SIMPLEDP and LOGDP with a reduced complexity on a
real-world dataset. We also compare the performance of these algorithms to existing ones [7] (see Section 4.2).
Aiming for reproducibility, the source code used in this section2 and the dataset3 are freely available online.

5.1 Evaluated algorithms
We consider SIMPLEDP and two variants of LOGDP with different values of the λ parameter, 1 and 5, that
we denoted by LOGDP(1) and LOGDP(5). Then, we adapted the FGS, NFGS, and LOGNFGS algorithms
from [7] to take U-turn penalties into account. We further modified NFGS on three points which we believe
were intended by the original authors as otherwise NFGS may not be as good as FGS, a property which was
claimed in the paper. Details concerning our implementation can be found in Appendix B and in the source
code. All these algorithms were implemented in a single-thread Python program.

For each tape, each algorithm needs the following inputs:

• an ordered list of indices of the files requested on the tape

• the number of requests for each requested file

• the size of all files on the tape

• the cost of the U-turn penalty

2https://figshare.com/s/80cee4b7497d004dbc70
3https://figshare.com/s/a77d6b2687ab69416557

16

https://figshare.com/s/80cee4b7497d004dbc70
https://figshare.com/s/a77d6b2687ab69416557

The output of an algorithm is a list of detours where a detour is a couple (a, b) which means that the head goes
to the left of file a then to the right of file b ≥ a. A value of a = 0 corresponds to the leftmost requested file
on the tape. Then, we compute the sum of service times for each file request following the sequence of detours
given by each algorithm.

5.2 Inputs from production logs
The IN2P3 Computing Center, from which our dataset comes, uses tape storage for long-term projects in High
Energy Physics and Astroparticles physics. Its tape library is currently composed of 48 TS1160 drives and can
store up to 6,700 20TB IBM Jaguar E tapes.

The raw dataset covers two weeks of activity. It contains millions of lines of reading, writing, and update
requests with their associated timestamp. We applied several filtering steps to obtain the inputs needed by the
algorithms. We restricted to reading requests, and selected a set of 169 tapes of interest storing 3, 387, 669
files. Each tape is divided into segments whose size and number depend on the tape. In a segment, files and
aggregates of files are described by several features such as a position and a size. An aggregate is a batch of
related files that can be written sequentially. A segment contains an aggregate if there is more than one file
referenced in this segment. Within an aggregate, the position of a file is described a couple (position, offset)
where the position corresponds to the beginning of the aggregate, thus the beginning of a segment, and the
offset is the relative position of the file within the aggregate. Note that an aggregate can span across several
segments. We discarded such aggregates and their associated requests to focus on aggregates lying on a single
segment. Reading files inside an aggregate is not straightforward and generates a non-negligible overhead as
the head is required to go to the start of the aggregate before reading a file.

Finally, we decided to consider that requesting a file within an aggregate will be treated as a request to read
the whole aggregate. While this simplifies log filtering process, this assumption also corresponds to a common
optimization strategy. Read aggregates are stored on disks when a file it contains is read for the first time. Then,
all the subsequent accesses to files in this aggregate will avoid the large delays induced by tapes and benefit
of the smaller latency of disks. Consequently, we replace all the file requests in a given aggregate by a single
request for a file of the size of this aggregate. Then we associate to this file a number of requests equal to the
number of requested files in that aggregate.

To summarize, the processed dataset corresponds to a total of 119, 877 files stored on the 169 tapes. We
provide more details and statistics on this dataset in Appendix C.2. To the best of our knowledge, this is the first
time that a realistic dataset for magnetic tape storage is made publicly avaible. In the context of the evaluation
of the considered algorithms, this dataset corresponds to 169 distinct instances of LTSP to solve.

5.3 Simulation results
The evaluations presented in this section have been performed on a single server with two Intel Xeon Gold
6130 CPUs with 16 cores each. To compare the performance of the different algorithms, we use the generic
performance profile tool [13]. We compute the cost of each algorithm on each instance of the dataset, normalize
it by the optimal (DP), and report an empirical cumulative distribution function. For a given algorithm and an
overhead τ expressed in percentage, we compute the fraction of instances for which the algorithm has a cost
at most (1 + τ) · cost(DP), and plot these results. Therefore, the higher the curve, the better the method. For
instance, for an overhead of τ = 10%, the performance profile shows how often the performance of a given
algorithm lies within 10% of the optimal solution.

We evaluate the algorithms on each of the 169 instances for three different values of the U-turn penalty U :
(i) no penalty (ii) a penalty equals to half of the average size of a segment in the 169 considered tapes, and
(iii) a penalty equivalent to the average size of a segment. While we have not yet modeled seeking and reading
speeds of the head, such penalties whose values are extracted from features of the input instances are useful to
evaluate the impact of increasing U on the performance of the algorithms.

Algorithms Performance Figure 14 shows the performance profiles of the algorithms without U-turn penalty.
As expected, GS and NODETOUR show poor performance, with an overhead of more than 10% for NODE-

17

TOUR over 60% of the instances. The FGS, NFGS, and LOGNFGS heuristics exhibit very similar perfor-
mance, with an overhead of less than 2.5% over 80% of the test cases. Both variants of LOGDP heuristic
slightly outperform the other heuristics, and SIMPLEDP is the best solution by a greater margin. As expected,
the higher λ, the closer to optimal the solution is. NFGS is better than LOGDP(1) on 11% on the instances, and
worse in 85%. It performs better when a single long detour is largely beneficial, and out of reach of LOGDP.
NFGS is slightly better than SIMPLEDP on < 4% of the instances, where a large intertwined detour is more
beneficial.

0.00

0.25

0.50

0.75

1.00

0.0% 2.5% 5.0% 7.5% 10.0%
Maximal overhead

Fr
ac

tio
n

of
te

st
ca

se
s

SimpleDP

LogDP(5)

LogDP(1)

FGS

NFGS

LogNFGS

GS

NoDetour

Figure 14: Performance of the different algorithms, when U = 0.

Figure 15 illustrates the algorithms performance with a U-turn penalty equal to the average size of a seg-
ment. We see that U increases the discrepancy between the FGS-like heuristics and LOGDP and SIMPLEDP.
Here, these heuristics cause at least 5% more overhead on half of the instances than LOGDP(1), and 10% more
overhead than SIMPLEDP. The suboptimal solutions of DP variants are more robust to the increase of U , with
an overhead of less than 1% for SIMPLEDP when compared to DP for 97% of the inputs. Similar trends can
be observed with a halved value of U on Figure 16.

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30% 40% 50%
Maximal overhead

Fr
ac

tio
n

of
te

st
ca

se
s

SimpleDP

LogDP(5)

LogDP(1)

FGS

NFGS

LogNFGS

GS

NoDetour

Figure 15: Performance of the different algorithms, when U is equal to the average segment size.

Time to solution The median running times for the algorithms DP, LOGDP(5), SIMPLEDP, LOGDP(1),
NFGS and LOGNFGS are around 281, 47, 21, 5, 0.4 and 0.1 seconds respectively. The other algorithms have

18

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30%
Maximal overhead

Fr
ac

tio
n

of
te

st
ca

se
s

SimpleDP

LogDP(5)

LogDP(1)

FGS

NFGS

LogNFGS

GS

NoDetour

Figure 16: Performance of the different algorithms, when U is equal to half the average segment size.

insignificant running times (<1ms). However, our single-thread Python implementation was not designed with
performance in mind. Estimations based solely on the documented maximum speed of the reading head leads to
an average duration of 500s to schedule the requests on one tape of the dataset with an average service time of
80s. The observed gains thus have to be nuanced by the required computing times of the algorithms. It should
also be noticed that the schedule computation can be done in parallel to robot operations mounting the tape,
so the start of the schedule is not directly delayed by the computation time. The characteristics of the data set
(a median n > 2, 600 much larger than nreq < 150) also explain the longer running times of DP variants as
the FGS-like algorithms complexity does not depend on n, see more details in the supplementary material.
The λ parameter can be used to obtain a faster version of LOGDP at the cost of lower performance. On large
inputs (i.e., list of requested files greater than 100), the cost of DP becomes prohibitive in a production context,
making LOGDP variants good replacement candidates.

6 Conclusion
In this article we studied the Linear Tape Scheduling Problem, aiming at minimizing the average service time
for read requests on a linear magnetic tape. We proposed an exact polynomial-time dynamic programming
algorithm, solving this problem whose complexity was open until now. Then, we derived a low-cost suboptimal
algorithm, whose performance outperforms existing heuristics on a realistic dataset extracted from the tape
library logs of the IN2P3 Computing Center, a dataset we make publicly available.

This dataset could also be used for related problems such as k-server on the line for which few relevant
datasets are available [19]. The remaining question on the theoretical side of LTSP resides in the possible
improvements in the running time of an exact algorithm. Notably, as discussed in Section 3, the input of LTSP
is defined as a list of requests, possibly on duplicate files. If the number of requests is not bounded by a
polynomial in the number of requested files, this is not the best representation of the input. It would be more
compact to define the input as a set of requested files associated with the number of requests on each file. The
algorithms DP, LOGDP and SIMPLEDP would then be only pseudo-polynomial in this setting as they are
not polynomial in log n. Therefore, the complexity of this problem is still open. Another interesting question
resides in the determination of the approximation ratio of SIMPLEDP, which belongs in [5/3, 3] for any value
of U . In other words, the question is to determine the exact gain of using intertwined detours. The obvious
generalization of the problem would be to consider the two-dimensional tape geometry, but we expect that
such a model would quickly become intractable. We also discuss below how DP can be adapted to handle two
minor extensions: arbitrary starting position of the head and a different reading speed.

19

Arbitrary starting position. The starting position of the reading head could be chosen at an arbitrary position
X and the algorithm DP can be adapted to find the optimal solution: simply prevent any detour to start on the
right of X . Indeed, this emulates a schedule in which the head initially moves from the rightmost file to X . No
detour starting on the right of X would ever be needed later thanks to Lemma 1.

Different reading speed. We do not differentiate seeking speed, where the tape is required to move to a
specific location, and reading speed, where data is actually output. The model could be tuned to accept such
two different speeds, but we chose to keep it simpler by using a unique speed. This choice is motivated by
the observation that reading times are much smaller than seeking times in the tapes operated in the studied
computing center. DP could be easily transformed to account for such different speeds. The only limitation
being that DP would require to read each file the first time it is traversed from left to right, which means that
the solution returned would not be optimal on adversarial inputs requiring multiple back-and-forth seeks over
a file before reading it.

Acknowledgments
We thank Pierre-Emmanuel Brinette for fruitful discussions. Experiments presented in this paper were carried
out using the Grid’5000 testbed, supported by a scientific interest group hosted by Inria and including CNRS,
RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).

References
[1] Foto Afrati, Stavros Cosmadakis, Christos H Papadimitriou, George Papageorgiou, and Nadia Pa-

pakostantinou. The Complexity of the Travelling Repairman Problem. RAIRO-Theoretical Informatics
and Applications-Informatique Théorique et Applications, 20(1):79–87, 1986.

[2] Mikhail J Atallah and S Rao Kosaraju. Efficient Solutions to Some Transportation Problems with Appli-
cations to Minimizing Robot Arm Travel. SIAM Journal on Computing, 17(5):849–869, 1988.

[3] Antje Bjelde, Jan Hackfeld, Yann Disser, Christoph Hansknecht, Maarten Lipmann, Julie Meißner,
Miriam Schlöter, Kevin Schewior, and Leen Stougie. Tight Bounds for Online TSP on the Line. ACM
Transactions on Algorithms, 17(1):1–58, 2020.

[4] Stefan Bock. Solving the Traveling Repairman Problem on a Line with General Processing Times and
Deadlines. European Journal of Operational Research, 244(3):690–703, 2015. ISSN 0377-2217. doi:
10.1016/j.ejor.2015.02.009.

[5] Eric Cano, Vladimı́r Bahyl, Cédric Caffy, Germán Cancio, Michael Davis, Oliver Keeble, Viktor Kotlyar,
Julien Leduc, and Steven Murray. Cern tape archive: a distributed, reliable and scalable scheduling system.
In EPJ Web of Conferences, volume 251, page 02037. EDP Sciences, 2021.

[6] Carlos Cardonha and Lucas C Villa Real. Online Algorithms for the Linear Tape Scheduling Problem.
In Proceedings of the Twenty-Sixth International Conference on Automated Planning and Scheduling,
London, UK, June 2016.

[7] Carlos Cardonha and Lucas Correia Villa Real. Theoretical and practical aspects of the linear tape
scheduling problem. CoRR, abs/1810.09005v1, 2018. URL http://arxiv.org/abs/1810.09005v1.

[8] Carlos Henrique Cardonha, André Augusto Ciré, and Lucas Correia Villa Real. On exact and approximate
policies for linear tape scheduling in data centers. CoRR, abs/2112.07018, 2021. URL https://arxiv.org/
abs/2112.07018.

20

https://www.grid5000.fr
http://arxiv.org/abs/1810.09005v1
https://arxiv.org/abs/2112.07018
https://arxiv.org/abs/2112.07018

[9] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours. In 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages 36–45, 2003.
doi: 10.1109/SFCS.2003.1238179.

[10] Lin Chen, Nicole Megow, and Kevin Schewior. An O(m)-Competitive Algorithm for Online Machine
Minimization. SIAM Journal on Computing, 47(6):2057–2077, 2018.

[11] Michael C Davis, Vladı́mir Bahyl, Germán Cancio, Eric Cano, Julien Leduc, and Steven Murray. CERN
Tape Archive – from Development to Production Deployment. In Proceedings of the 23rd International
Conference on Computing in High Energy and Nuclear Physics, volume 214 of EPJ Web of Conferences,
page 04015. EDP Sciences, 2019. doi: 10.1051/epjconf/201921404015.

[12] Willem E de Paepe, Jan Karel Lenstra, Jiri Sgall, René A Sitters, and Leen Stougie. Computer-Aided
complexity Classification of Dial-a-Ride Problems. INFORMS Journal on Computing, 16(2):120–132,
2004.

[13] D. Elizabeth Dolan and J. Jorge Moré. Benchmarking Optimization Software with Performance Profiles.
Mathematical Programming, 91(2):201–213, 2002. doi: 10.1007/s101070100263.

[14] Michael Gabay. High-multiplicity Scheduling and Packing Problems : Theory and Applications. Theses,
Université de Grenoble, October 2014. URL https://tel.archives-ouvertes.fr/tel-01551807.

[15] Bruce K Hillyer and Avi Silberschatz. On the Modeling and Performance Characteristics of a Serpentine
Tape Drive. ACM SIGMETRICS Performance Evaluation Review, 24(1):170–179, 1996.

[16] IBM. IBM System Storage Tape Drive 3592 SCSI Reference. IBM, 2019.

[17] Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation algorithm
for metric tsp. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 32–45, 2021.

[18] E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The traveling salesman
problem: a guided tour of combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics,
1985.

[19] Alexander Lindermayr, Nicole Megow, and Bertrand Simon. Double coverage with machine-learned
advice. arXiv preprint arXiv:2103.01640, 2021.

[20] German Cancio Melia. Lto experiences at cern. https://indico.cern.ch/event/730908/contributions/
3153156/, 2018. Accessed: 2022-03-26.

[21] Sachin More and Alok Choudhary. Scheduling queries for tape-resident data. In European Conference
on Parallel Processing, pages 1292–1301. Springer, 2000.

[22] Markus Mäsker, Lars Nagel, Tim Süß, André Brinkmann, and Lennart Sorth. Simulation and Perfor-
mance Analysis of the ECMWF Tape Library System. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 252–263, Salt Lake city, UT,
November 2016. doi: 10.1109/SC.2016.21.

[23] David Reine and Mike Kahn. Continuing the Search for the Right Mix of Long-term Storage Infrastruc-
ture – a TCO Analysis of Disk and Tape Solutions. Technical Report TCG2015006, The Clipper Group,
Inc., 2015. [Online, Dec. 2021]www.clipper.com/research/TCG2015006.pdf.

[24] Olav Sandsta and Roger Midtstraum. Improving the Access Time Performance of Serpentine Tape Drive.
In Proceedings 15th International Conference on Data Engineering, pages 542–551, Sydney, Australia,
March 1999. IEEE.

21

https://tel.archives-ouvertes.fr/tel-01551807
https://indico.cern.ch/event/730908/contributions/3153156/
https://indico.cern.ch/event/730908/contributions/3153156/
www.clipper.com/research/TCG2015006.pdf

[25] Jonathan Schaeffer and Andrés Gómez Casanova. Treqs: The tape request scheduler. In Journal of
Physics: Conference Series, volume 331, page 042040. IOP Publishing, 2011.

[26] René Sitters. The Minimum Latency Problem is NP-hard for Weighted Trees. In Proceedings of the
9th International Conference on Integer Programming and Combinatorial Optimization, pages 230–239,
Cambridge, MA, May 2002. Springer.

[27] René Sitters. Polynomial Time Approximation Schemes for the Traveling Repairman and Other Minimum
Latency Problems. SIAM Journal on Computing, 50(5):1580–1602, 2021.

[28] Xianbo Zhang, David Du, Jim Hughes, Ravi Kavuri, and Sun StorageTek. Hptfs: A high performance
tape file system. In Proceedings of 14th NASA Goddard/23rd IEEE conference on Mass Storage System
and Technologies. Citeseer, 2006.

A Relationship with the concurrent work [8]
Concurrently to this study, Cardonha, Ciré and Real [8] achieved similar results on the same Linear Tape
Scheduling Problem. They also provide a polynomial-time quartic algorithm based on dynamic programming
which resolves the complexity status of the problem. However, our results differ in several points:

• their model considers a single request per file,

• we introduced the U-turn penalty U to account for mechanical deceleration,

• their dynamic programming formulation relies on two inter-connected tables whereas our algorithm uses
a single table,

• they propose different heuristics: an approximate variant of the dynamic programming with lower con-
stant factors and a greedy heuristic to exchange some files read order based on their size,

• they compare heuristic performances on synthetic data to determine if some parameters used in the
instances generation influences the results,

• the realistic dataset they use has a very low variance per file and one request per file. This means that any
heuristic based on Greedy Scheduling is optimal [7]. The dataset we use presents a broad spectrum of
file size variance and number of requests per file.

B Precise description of the algorithms adapted from [7]
Each algorithm considered in this section takes the following inputs:

• an ordered list F of indices of the files requested on the tape,

• the number of requestsR for each requested file,

• the size of all files on the tape T ,

• the cost of the U-turn penalty U .

The output of an algorithm is a list of detours where a detour is a couple (a, b) which means that the reading
head goes to the left of file a then to the right of file b ≥ a. A value of a = 0 corresponds to the leftmost
requested file on the tape.

We adapted FGS, NFGS and LOGNFGS from [7] to take into account U-turn penalties. We also modified
NFGS on three points which we believe were intended by the original authors as otherwise NFGS may not
be as good as FGS, a property which was claimed in the paper.

22

The pseudo-code depicted in this section is rather high-level, referring to mathematical inequalities without
expliciting how to maintain each term. We explain the time complexity of our implementation and the low-level
details can be checked directly in the source code.

B.1 Restating structural results
Before describing the algorithms, we need some preliminary definitions and results, on which the algorithms
rely.

We say that a file f belongs to list of detours L if and only if it is part of a detour of L:

f ∈ L ⇔ ∃(a, b) ∈ L | a ≤ f ≤ b.

We assume that the tape starts at a requested file on its left to simplify the formulas: the reading head will have
to go to the position 0, so at a distance `(f) from the left of any file f (this assumption allows to drop additive
−`(f1) terms).

The first result will be used by the algorithm FGS.

Lemma 3. Let L be a list of single-file detours (fi, fi) and f be a file such that (f, f) ∈ L. Then, cost(L \
{(f, f)}) < cost(L) if and only if:

2 · x(f) ·

`(f) +
∑

g<f | g∈L

(s(g) + U)

 < 2 · (s(f) + U) ·

∑
g<f

x(g) +
∑

g>f | g/∈L

x(g)

 . (5)

Proof. This equation with U = 0 corresponds to Corollary 4 in [7].
The left-hand side equals the delay added to the service time of f : for each request of f , the reading head

has to go the left of the tape (2`(f)) and through all the detours (g, g) ∈ L on the left of f , where each detour
adds a delay of 2(s(g) + U).

The right-hand side corresponds to the delay added to all other files than f by performing a detour of
duration 2(s(f) + U) to serve f . The impacted files are the ones at the left of f and the skipped files.

We now define the function ∆ required by the algorithm NFGS.

Definition 1. Let L be a list of detours and (a, b) be a detour such that no detour in L starts on a. We define:

∆(L, (a, b)) = 2 · (r(b)− `(a) + U) ·

∑
f<a

x(f) +
∑

f>b | f /∈L

x(f)


− 2

∑
f∈[a,b] | f /∈L

x(f) ·

`(a) +
∑

(f ′, g′)∈L | f ′<a

(r(g′)− `(f ′) + U)

 .

This definition corresponds to Equation 4 in [7]. The idea, similarly to Equation (5), was to represent the
difference between cost(L ∪ {(a, b)}) and cost(L). We will show below that it actually only represents an
upper bound on this difference. Assume first that (a, b) does not intersect with a detour of L starting on the left
of a. The first term corresponds to the right-hand-side of Equation (5) and equals the delay added to pending
files when executing the detour (a, b). The second term represents the reduction on the service time of the files
in (a, b) which were skipped in L: the time to go from `(a) to the left of the tape and come back, including all
subsequent detours. So, in this case, it indeed represents the intended difference.

The last sum of the definition of ∆ was indexed by f ′ < f instead of f ′ < a in the last line of Equation 4
of [7], but not on the previous steps. Having an index f ′ < f here would lead to an erroneously smaller value
of ∆ as every detour located between a and f would lead to a diminution of the value of ∆, while such detours
impact the service time of f in the exact same way in both L ∪ {(a, b)} and L.

23

Now, assume there exists a detour (a1, b1) in L such that a1 < a and b < b1. Then we must have ∆ ≥ 0
as no file f can be in [a, b] but not in L. Therefore, ∆ does not model accurately this case, remark which
contradicts the claim in [7] that ∆(L, (a, b)) = cost(L ∪ {(a, b)})− cost(L). This fact will require to correct
the algorithm NFGS, as it relied on it to exhibit an approximation factor of 3.

B.2 Greedy Scheduling (GS)
The first algorithm proposed by [7] is named GS for greedy scheduling. It returns a list of all detours (f, f)
such that f is a requested file. It is shown to be a 3-approximation when U = 0. Its time complexity isO(nreq).

Algorithm 1: Greedy Scheduling (GS)
Input: F ,R, T , U
Output: A list of detours

1: Let res = ∅.
2: for f ∈ F do
3: Append (f, f) to res
4: end for
5: return res

B.3 Filtered Greedy Scheduling (FGS)
The next algorithm, FGS, is an improvement over GS by filtering out detrimental detours. Such detours are
determined using Equation (5). As removing a detour may lead to another detour becoming detrimental, this
subroutine is run nreq times, for a time complexity in O(n2req) as the terms needed to evaluate Equation (5) can
be maintained in constant time per iteration.

Algorithm 2: Filtered Greedy Scheduling (FGS)
Input: F ,R, T , U
Output: A list of detours

1: Let res = GS(F ,R, T , U).
2: for ∈ F do
3: for (f, f) ∈ res do
4: if Equation (5) is true then
5: Remove (f, f) from res
6: end if
7: end for
8: end for
9: return res

B.4 Non-Atomic Filtered Greedy Scheduling (NFGS)
The next algorithm, NFGS [7], is an improvement over FGS by replacing some unique-file detours by more
beneficial multi-files detours. Therefore, it is claimed to also offer an approximation ratio of 3 when U = 0 as
its cost should be lower than GS.

On top of the small correction on ∆ described before, we also modified the algorithm in Line 6 and added
Lines 4, 7-9, and 12 in order to avoid cases in which the cost of FGS becomes larger than the one of GS.

First, Line 6, we replaced arg minf ′>f by arg minf ′≥f as, otherwise, unique-file detours cannot be kept
which increases the final cost compared to GS.

24

Then, the second issue is related to the false claim about ∆. As, when f is part of a detour started on the
left, the value of ∆ is never negative (and almost always positive), beneficial detours part of a longer detour
cannot be kept by the original algorithm, which increases the final cost compared to GS. Therefore, the added
lines recognize this case and never remove such a detour (f, f) by overwriting the value of f∗.

This algorithm has a time complexity of O(n3req), dominated by the O(n2req) evaluations of ∆ which re-
quires O(nreq) time to be computed.

Algorithm 3: Non-atomic Filtered Greedy Scheduling (NFGS)
Input: F ,R, T , U
Output: A list of detours

1: Let res = FGS(F ,R, T , U).
2: Let RightestDetour = 0
3: for f ∈ F do
4: Let WasADetour = True if (f, f) ∈ res else False
5: Let temp = res \ {(f, f)}
6: Let f∗ = arg minf ′≥f (∆(temp, (f, f ′)))
7: if ∆(temp, (f, f∗)) ≥ 0 and WasADetour and RightestDetour > f then
8: f∗ = f
9: end if

10: if ∆(temp, (f, f∗)) < 0 then
11: Add (f, f∗) to res
12: RightestDetour = max(RightestDetour , f∗)
13: end if
14: end for
15: return res

B.5 Logarithmic Non-Atomic Filtered Greedy Scheduling (LOGNFGS)
The last algorithm we present in this document is a restriction of NFGS where the detour lengths are bounded
by λ · log nreq requested files. The original algorithm [7] was written with a value of λ = 1 but we add this
parameter for a fair comparison with LOGDP. In the experiments, we use a parameter of 5 as our dataset
presents values of nreq smaller than in the dataset used in [7]. Its time complexity is O(n2req log nreq).

25

Algorithm 4: Logarithmic Non-atomic Filtered Greedy Scheduling (LOGNFGS)
Input: F ,R, T , U
Parameters: λ
Output: A list of detours

1: Let res = FGS(F ,R, T , U).
2: Let RightestDetour = 0
3: for f ∈ F do
4: Let WasADetour = True if (f, f) ∈ res else False
5: Let temp = res \ {(f, f)}
6: Let f∗ = arg minf ′≥f and f ′≤f+λ lognreq

(∆(temp, (f, f ′)))
7: if ∆(temp, (f, f∗)) ≥ 0 and WasADetour and RightestDetour > f then
8: f∗ = f
9: end if

10: if ∆(temp, (f, f∗)) < 0 then
11: Add (f, f∗) to res
12: RightestDetour = max(RightestDetour , f∗)
13: end if
14: end for
15: return res

26

C Reproducibility artifact and dataset
This section is dedicated to the reproducibility of the performance evaluation results presented in Section 5.
Section C.1 describes a dataset of reading requests on 169 tapes, associated to the description of all the files on
these tapes. This dataset is available at https://figshare.com/s/a77d6b2687ab69416557. The data are extracted
from real logs of a leading computing facility and is, to the best of our knowledge, the first one of its kind
publicly available. Section C.2 contains all the necessary material to reproduce the simulation results presented
in Section 5. This material is available in a reproducibility artifact freely accessible at https://figshare.com/
s/80cee4b7497d004dbc70. It contains all the instructions regarding the execution of the simulation code, the
output data of the different experiments, and the scripts to generate the figures.

C.1 A public dataset of magnetic tape file description and reading requests
In this section, we introduce a dataset containing the position and size of files on magnetic tapes, associated to
user reading requests on these tapes from a production system. The dataset is freely accessible online using the
following link: https://figshare.com/s/a77d6b2687ab69416557.

Context

The IN2P3 Computing Center, from which our dataset is extracted, uses tape storage for long-term projects in
the fields of High Energy Physics and Astroparticles Physics. In this context, we had access to logs of the tape
system from a period of high activity. The center uses the Spectra Tfinity library, and has 48 reading engines
TS1160 with 6700 Jaguar E magnetic tapes with a capacity of 20TB each.

The raw dataset covers three weeks of activity. It contains millions of lines of reading, writing, and update
requests with their associated timestamp. It also details positioning operations and delays for the device heads.
For obvious privacy issues, we cannot make the whole raw dataset public, but only some anonymized features.

In this work, we were interested in getting a description of magnetic tapes (position and size of files on
magnetic tapes), associated to user reading requests on these files. The former knowledge is accessed through
description files of the tapes, given by the system. The latter is obtained from the raw logs, after several steps
of filtering.

We first removed all lines from the raw dataset that do not concern reading operations. This gives us a list of
169 tapes, covering a total of 3, 387, 669 files. Each tape is divided into segments containing files or aggregates
of files. The size and number of segments depend on the tape. In a segment, the files are described by several
features such as position and size. The current setup in the computing center allows to write aggregates of
files on the tapes, i.e., a batch of related files that can be written sequentially. A segment contains an aggregate
if there is more than one file referenced in this segment. Within an aggregate, the position of a file is given
as a couple (position,offset) here the position is actually the beginning of the aggregate, thus the beginning
of a segment. Note that an aggregate can span across several segments. We discarded such aggregates and
their associated requests to focus on aggregates lying on a single segment. Reading files inside an aggregate
is not straightforward and generates a non-negligible overhead as the head is required to go to the start of
the aggregate before reading a file. To ease the extraction of our sequences of requests, we considered that a
requested file inside an aggregate will be treated as a request to read the whole aggregate. Such a behavior
actually represents a strategy of buffering when aggregates are stored on disks after a file is requested within,
in order to avoid the costly operations of accessing a file in aggregates. Thus, all the file requests in the same
aggregate are replaced by a single request for a file of the size of this aggregate, and we associate to this file a
number of requests equal to the number of files in the aggregate.

Overall, the final processing of the logs gives us 169 tapes with a total of 119, 708 files stored on it after the
filtering of aggregates, according to the tape description files of the system at the considered period in the logs.
The exploitation of the system logs allowed us to extract 28, 853 unique file requests on these tapes, and a total
of 615, 324 user requests over these files.

This dataset is, to the best of our knowledge, the first publicly available dataset on magnetic tape storage.
In the next paragraphs, we describe the different files of the dataset.

27

https://figshare.com/s/a77d6b2687ab69416557
https://figshare.com/s/80cee4b7497d004dbc70
https://figshare.com/s/80cee4b7497d004dbc70
https://figshare.com/s/a77d6b2687ab69416557

Characteristics of the dataset

We provide in this section some statistics about the main characteristics of the dataset, to illustrate the diversity
of the represented instances (tapes and associated requests).

Tape size (nf) # Files Requested (nreq) # Total User Requests (n)

Maximum 4,142 852 15,477
Minimum 111 31 1,182
Median 490 148 2,669
Mean 709 170 3,640

Table 1: Overview of the instances characteristics related to the number of files.

0

200

400

600

800

0 1000 2000 3000 4000
Number of files in the tape (n)

N
um

be
ro

fu
ni

qu
e

fil
es

re
qu

es
te

d
(n
r
e
q
)

Figure 17: Illustration of the tape dataset with the number of files in each tape in function of the number of
unique requested files in it.

Statistics on the number of files and requests. Table 1 gives a brief summary of the dataset in terms of
tape size and number of requests. There is a large variety of tape sizes, from hundreds to thousands of files.
The same observation stands for the number of files requested and the total number of requests on those files.
Figure 17 represents the distribution of unique files requested in function of the size of the tapes. Most tapes
consist of less than a thousand of files and have at most 300 unique files requested, and there is no strong visible
correlation between these parameters, which ensures the diversity of the dataset. We display in Figure 18, for
each tape, the distribution of the total number of user requests with the number of unique files requested. We
also observe that the total number of user requests is varied even among tapes having a very similar number of
unique files requested.

Statistics on the sizes of the files. We now focus on the distribution of file sizes among the tapes. Table 2 first
shows the statistical summary of the average file size in a tape, ranging from 5 to 167GB with an average of
50GB. This information is slightly redundant as usually proportional to 1/nf , most tapes being full and of the
same capacity. The important information provided here concerns the coefficient of variation of the file sizes
in each tape (i.e., the standard deviation over the average file size in a tape, expressed as a percentage). We can
see that many tapes present varied file sizes, as the median coefficient of variation equals 56% and the average
is 94%. This corresponds to more difficult instances of the targeted problem, as greedy solutions are sufficient
to solve the problem with a variance of 0 and no request multiplicity. Figure 19 shows the relation between the

28

4000

8000

12000

16000

0 200 400 600 800
Number of unique files requested (nreq)

To
ta

ln
um

be
ro

fu
se

rr
eq

ue
st

s
(n
f

)

Figure 18: Illustration of the tape dataset with the number of unique requested files in each tape in function of
the total number of user requests in it.

mean file size and the coefficient of variation: a larger mean file size (hence a smaller nf) is related to lower
coefficients of variation, but again there is no direct dependency and a few clusters can be identified in this plot.

We therefore believe this dataset is heterogeneous and suitable for performance evaluation of a magnetic
tape storage system.

Average file size (GB) File size coefficient of variation

Maximum 167 379%
Minimum 4.9 6%
Median 40 56%
Mean 50 94%

Table 2: Overview on the file sizes present in each tape.

0

100

200

300

0 50 100 150
Mean file size (GB)

C
oe

ffi
ci

en
to

fv
ar

ia
tio

n
(%

)

Figure 19: Illustration of the tape dataset with the file sizes coefficient of variation in each tape in function of
the average file size of the tape.

29

Dataset content

We now describe the content of the public folder.

‘list of tape.txt’ This file lists the name of the 169 tapes in the dataset. For each tape, there is a file listing all
the user requests on this tape in the folder requests, and a file describing the content of the tape in the folder
tapes. The tapes are named under the format TAPEXXX.txt where XXX varies from 001 to 169.

requests folder For each tape, this folder contains a request file with two columns index and nb_requests.
The former refers to the index of the requested file on the tape (see tapes folder) associated to the number of
requests for this file. The maximum number of distinct files requested for one tape is equal to 852, and the
minimum number is 31. The median value is 148 unique files (for a tape with 531 files), and the mean is 170.
Regarding the total number of user requests on one tape, the maximum is 15,477 and the minimum is 1,182,
for a median value of 2,669 files and a mean of 3,640.

tapes folder This folder contains a description file of each tape in the dataset. From the left (position 0) to
the right of each tape, the file describes the different segments of the tape.
It contains four columns id,cumulative_position,segment_size,index. The id column corre-
sponds to the id number of the segment on the tape given by the system. The next two columns respectively
refer to the cumulative position of the segment from the left of the tape, and its size. Finally, the index column
is used as the id of the file on the tape starting from 1 for the leftmost file. This fourth column is used to match
the index column of the requests files. The largest tape contains 4,141 files, and the smallest one 111. The
median size is 489 files and the mean size is 708 files.

Perspectives

This dataset allowed us to evaluate several algorithms on realistic data extracted from the logs of a production
computing center. We expect this dataset to be a first step in the achievement of large-scale datasets of such
types. Logs from a larger time period can be envisioned as an extension to this dataset.

In this work, we only considered reading requests from users in the framework of the Linear Tape Schedul-
ing Problem. However, the raw logs contains much more information that one could expect to use. Knowledge
about time processing of reading operations and positioning operations performed by the multiple device heads
could be leveraged to better model seeking speed and reading speed. A rapid overview of the logs tends to show
that the positioning time seems to impact the performance much more than the reading time. Hence, modeling
the seeking speed of the device seems to be important to provide realistic cost models of the process. Temporal
aspects of the raw dataset could also be exploited for a usage in online problems, for instance.

C.2 Reproducibility artifact
This section provides all the details to reproduce the performance evaluation presented in Section 5. The com-
plete artifact can be downloaded online: https://figshare.com/s/80cee4b7497d004dbc70.

‘input’ folder

This folder contains the data described in Section C.1. The reader is invited to refer to this section for com-
prehensive details about the dataset used for the performance evaluation, and how it has been generated. The
folder requests contains the index of the files requested on a tape, associated to the number of requests of this
file. The folder tape describes the position and size of the files on a tape. Both folders are used as input of the
differnt algorithms presented in the paper (see code folder).

30

https://figshare.com/s/80cee4b7497d004dbc70

‘code’ folder

This folder contains a Python implementation of our algorithms and of those adapted from [7] used for baseline
comparison. We carefully implemented the different strategies in the algorithms.py file. The main.py file is
dedicated to the execution of all algorithms on all the instances of the input folder. It directly parses the
different files in the input folder to instantiate 4 different parameters of the algorithms:

• files requested: the list of requested files on the tape, comes from the index column in the input/re-
quests/TAPEXXX.txt files.

• request numbers: the number of requests of each file in the above list. Extracted from the nb_requests
column in the input/requests/TAPEXXX.txt files.

• tape: the list of all file sizes on the tape. Extracted from the segment_size column of the input/-
tapes/TAPEXXX.txt files/

• right: a list of the right ordinate of each file in tape. Obtained by computing the cumulative sum of the
tape parameter

We also provide in the draw.py file a visualization tool of the device head trajectory depending on the list of
detours produced by the algorithms. This tool is automatically called in main.py for each input and algorithm
pair.

To start the performance evaluation, one should just go into the code folder, and start the program using the
makefile:
1 cd code ; make

It requires to have python3 installed on the machine. It can easily be installed on any Ubuntu/Debian
machine using the following command
1 sudo apt-get install python3

The performance evaluation in Section 5 uses Python3 version 3.9.2. The code has been executed on a
compute node with two Intel Xeon Gold 6130 CPUs with 16 cores each. The execution of the algorithms has
been performed sequentially on a single core of a dedicated node to avoid external disturbances.

‘Run’ folder

This folder contains the performance results of the different strategies evaluated in Section 5 of the paper. For
each algorithm, we recorded the cost induced by the list of detours in output and the simulation time to get the
solution. We tested three different values of the U-turn penalty, that is a parameter:

• 0: no penalty

• 14,254,750,000: it represents half of the average size of a tape segment according to our 169 input tapes.

• 28,509,500,000: it represents the average size of a tape segment according to our 169 input tapes.

The results.csv file summarizes the cost of the list of detours induced by each algorithm, associated to the
time-to-solution to get this list for each of the three penalties above presented. We also record the lower bound
for each algorithm on each input.

‘Figure’ folder

This folder contains a R script that processes the run/results.csv to reproduce the figures presented in Section 5
of the paper.

31

	Introduction
	Related work
	Model and Problem Descriptions
	Algorithm
	Preliminaries
	Existing algorithms
	Algorithm
	Proof of the algorithm
	Efficient heuristics
	Restricting the detours length: LogDP
	Forbidding intertwined detours: SimpleDP

	Performance evaluation
	Evaluated algorithms
	Inputs from production logs
	Simulation results

	Conclusion
	Relationship with the concurrent work cardonha21
	Precise description of the algorithms adapted from cardonha2018
	Restating structural results
	Greedy Scheduling (GS)
	Filtered Greedy Scheduling (FGS)
	Non-Atomic Filtered Greedy Scheduling (NFGS)
	Logarithmic Non-Atomic Filtered Greedy Scheduling (LogNFGS)

	Reproducibility artifact and dataset
	A public dataset of magnetic tape file description and reading requests
	Context
	Characteristics of the dataset
	Dataset content
	Perspectives

	Reproducibility artifact
	`input' folder
	`code' folder
	`Run' folder
	`Figure' folder

