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Six out of seven crystal systems are optically anisotropic
and birefringent. We review recent insight that biaxial
crystals generally exhibit four singular axes (or excep-
tional points) which can pairwise degenerate for spe-
cial cases. Planar anisotropic microcavities are discussed
as effectively biaxial systems and we predict excep-
tional points and demonstrate partially coalesced eigen-
states. Also the general form of the dielectric function
of anisotropic crystals based on individual dipole oscil-
lators for phonon and electronic resonance is discussed.
The impact of birefringence on Raman scattering inten-
sities has been historically either ignored or modeled in-
correctly. A recent theory for uniaxial and biaxial crys-
tals explains experimental Raman scattering intensities
for excitation off the principal directions without free
parameters, allowing the unambiguous determination of
the Raman tensor components. The above points are
demonstrated and relevant in particular for the currently
technologically important materials GaN, ZnO (uniax-
ial) and β-Ga2O3 (biaxial).

Formula for the Raman scattering intensity as a function of in-

coming and outgoing polarization and the Raman tensor seen

through birefringent crystal (calcite).

Copyright line will be provided by the publisher

1 Introduction There exist seven crystal systems, cu-
bic, tetragonal, hexagonal, trigonal, orthorhombic, mono-
clinic and triclinic. It is well known that the dielectric ten-
sor for a suitable high symmetry choice of coordinate sys-

tem has the forms given in Table 1; the optical character
is denoted as isotropic, uniaxial (for tetragonal, hexagonal,
trigonal crystals) or biaxial (for orthorhombic, monoclinic
and triclinic crystals) [1]. Optically isotropic (cubic) crys-

Copyright line will be provided by the publisher



2 M. Grundmann et al.: Optically anisotropic Crystals

Table 1 General form of the dielectric tensor ǫ for the 7 crys-

tal systems, maximum number of optic axes N (for complex ǫ,
indices ’s’ and ’n’ denote singular and normal optic axes) and

number of different indices of refraction of these axes ν.

crystal optical ǫ examples N ν

system symmetry

cubic isotropic





a 0 0

0 a 0

0 0 a





Si,GaAs,

MgO,CuI
∞n 1

tetragonal

hexagonal

trigonal

uniaxial





a 0 0

0 a 0

0 0 c





CuGaSe2
GaN,ZnO

Bi2Se3

1n 1

orthorhombic biaxial





a 0 0

0 b 0

0 0 c





Sb2Se3,

SrSO4

4s 1

monoclinic biaxial





a 0 d

0 b 0

d 0 c





β−Ga2O3,

anthracene
4s 2

triclinic biaxial





a d e

d b f

e f c





K2Cr2O7,

tetracene
4s 4

tals can also become optically anisotropic (uniaxial or bi-
axial) in the presence of non-hydrostatic strain or in the
presence of (anisotropic) surface layers.

Here we review recent insights into the optical prop-
erties of anisotropic crystals. The general form of the di-
electric tensor and its deconstruction into the dipole con-
tributions of lattice and electronic oscillators oriented in
different directions is discussed. Also we point out that in
general biaxial materials possess four ”singular” optic axes
which can pairwise degenerate for special cases, in particu-
lar when the dielectric tensor is real (transparency regime).
The presence of four ”Singularitäts- oder Windungsaxen”
in biaxial, absorbing crystals has been pointed out first by
W. Voigt [2] (Fig. 1) in 1902 [8–10]. For these directions
the eigenstate is left- or right-circular polarized and accord-
ingly allows the propagation of so-called Voigt waves.

The case of transparent biaxial crystals is still very
interesting [11], historically well-known for the effect of
conical refraction [12,13], an optical singularity [14] due
to the double cone structure of the index of refraction
around the optic axes. Recent experiments also discuss the
spin and angular momentum control of beams using coni-
cal refraction [15]. Here, however, we focus on the regime
where the imaginary part of the dielectric function cannot
be neglected.

The discovery of singular axes was preceeded by
Laspeyres who stated in 1880 that (in modern terms) the
main axes of the real and imaginary parts of the dielec-
tric tensor generally do not coincide [16,17]. Before that
Babinet had worked on the relation of the direction of

fastest wave and strongest absorption [18]. Voigt’s work of
1884 [19] on weakly absorbing (biaxial) crystals is writ-
ten in a pre-Maxwell formulation. For weak absorption it
was stated that two optic axes exist with different attenu-
ation of two elliptically polarized waves. The orientation
of absorption axes and their symmetry for orthorhombic
and monoclinic crystals was also discussed in 1887 by
Becquerel [20]. The problem was then approached in the
well known paper of Drude [21], summarizing his thesis
as Voigt’s doctoral student, on reflection and refraction at
the interface of absorbing crystals. Here Drude develops
a general treatment but states that optic axes do not exist
in absorbing crystals of the orthorhombic system [22]. A
summary of early crystal optics around this time can be
found in [23].

Figure 1 Woldemar Voigt (1850–1919) [24].

Finally in [8] Voigt uses the ”Maxwell-Hertz” formulas
and states that the main axes of the real and the imaginary
parts are differently oriented in general, naming them
polarization and absorption axes. The general case for a
symmetric dielectric tensor and weak absorption is treated.
Experimental observations on orthorhombic (andalusite),
monoclinic (epidote) and triclinic (axinite) crystals are
discussed and explained. He revisited this topic several
times [25–29].

Further work on singular axes has been reported e.g.
in [30–41], but we feel that parts of the optics community
have largely forgotten about singular axes. A recent analy-
sis provided an in depth view of the spectral dispersion and
possible degeneracies of the singular axes [42] for mono-
clinic gallia as model system.

We note that in a more general framework such de-
generacies of non-Hermitian Hamiltonians [43–46] with
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pss header will be provided by the publisher 3

chiral and coalesced eigenfunctions are termed exceptional

points [47–52] and have been found in coupled dissipa-
tive dynamical systems [53], mechanical problems [54],
electronic circuits [55], microwave cavities [56], gyroki-
netics of plasmas [57], coupled fiber-ring resonators [58],
atomic spectra [59,60], coupled quantum cascade mi-
crodisk lasers [61], photonic crystals [62], inhomogeneous
gain media [63], optical lattices of driven cold atoms [64]
and plasmonic waveguides [65]. We also point to litera-
ture on exceptional points with a degeneracy larger than
two [62,66–68].

The associated effects of birefringence in uniaxial and
biaxial crystals affect Raman scattering for crystal orien-
tations off the principal axes, a problem first posed by
Michalke in 1938 [69]. After several works, the topic was
dropped unresolved and Raman scattering intensities from
optically anisotropic crystals not oriented along a principal
direction where explained with the help of unphysical pa-
rameters, e.g. by including an ad hoc complex phase factor
into the technically real Raman tensor (in the transparency
regime) for hexagonal (and thus uniaxial) GaN [70] or
ZnO [71] or several phase factors for orthorhombic (and
thus biaxial) black phosphorus [72] or denoting the squares
of Raman tensor elements for (monoclinic) naphthalene
and anthracene [73]. Only recently, a theory was conceptu-
alized to explain Raman scattering intensities for all crys-
tal systems taking birefringence properly into account [74];
these results are for example highly relevant for the techno-
logically interesting non-polar and semi-polar orientations
of wurtzite materials [75].

From the materials ZnO and GaN microcavities have
been built that enable strong light-matter coupling and con-
densation of exciton-polaritons at elevated temperature and
thus macroscopic quantum states and new laser mecha-
nisms up to room temperature. A particularly interesting
case, related to the previously discussed biaxial crystal op-
tics problems, are cavities for which the optic axis is tilted
(typically perpendicular) to the cavity layer direction. Such
”effectively biaxial” inhomogeneous media are discussed
at the end of this review. We predict the occurrence of ex-
ceptional points and show first experimental evidence for
non-orthogonal (partially coalesced, elliptically polarized)
eigenstates in such cavity. We note that Voigt waves have
been discussed in composite media from two uniaxial ma-
terials with relative tilt of their optic axes in [37].

The calculations for this paper have been executed us-
ing Mathematica [76], except the calculations for the pla-
nar microcavities which have been executed using MAT-
LAB [77].

2 Dielectric Function Only for a few optically aniso-
tropic materials the dielectric function has been reported in
a wide wavelength range. For monoclinic gallia (β-Ga2O3)
the dielectric tensor has been determined using general-
ized spectroscopic ellipsometry in the energy range 0.5–
8.5 eV [78] on crystals purchased from Tamura Corpora-

tion [79]. An extension to the infrared phonon regime was
reported in [80] down to about 0.03 eV and in [81] down to
about 0.006 eV. In [82,83] a method in the infrared based
on external and total internal reflection was reported in or-
der to determine phonon oscillator parameters in mono-
clinic crystals from reflectivity spectra.

Extending an approach of [84–86] beyond Lorentz os-
cillators, the dielectric response is considered (in first or-
der) as the combined effect of various spectrally broadened
and spectrally overlapping oscillators with their dipoles
oriented with respect to the coordinate system of the (rela-
tive) dielectric tensor (generally ǫij = δij + χij ),

ǫ = 1+

N
∑

i=1

R(φi, θi)χ
′
iR

−1(φi, θi) , (1)

χ′
i being the susceptibility (tensor) of the ith excitation and

φi and θi denoting the Euler angles, which are in general
different for each excitation, and R being the rotation ma-
trix [80]. Eq. (1) is valid in general and necessary for a tri-
clinic material. Allowed dipole orientations are restricted
by crystal symmetry and allow to simplify (1) to

ǫ = 1+

Ny
∑

i=1

χi,y +

Nxz
∑

j=1

R(φj)χ
′
j,xz R

−1(φj) , (2)

for a monoclinic material (symmetry forcing dipoles to be
polarized either along y or perpendicular to y, in the (x, z)-
plane), and to

ǫ = 1+

Nx
∑

i=1

χi,x +

Ny
∑

j=1

χj,y +

Nz
∑

k=1

χk,z , (3)

for an orthorhombic material [80].
The validity of (2) for the application to β-Ga2O3 in the

phonon range [80,81] and for electronic transitions [80]
has been confirmed. In Fig. 2 the unit cell of β-Ga2O3 is
shown with the y-direction perpendicular to the (x, z)plane
containing the non-rectangular angle.

The experimentally found dipole orientations (visu-
alized in Fig. 3) coincide with theoretically calculated
ones very closely and allow deeper insights in the atom-
istic origin of the various lattice and electronic contribu-
tions [80]. For the phonon modes also the (relative) oscil-
lator strengths are well reproduced by theory. We note that
a modified Lyddane-Sachs-Teller relation for monoclinic
and triclinic materials has been proposed in [87].

In heteroepitaxy rotation domains can occur when the
symmetries of substrate and epilayer do not match [88,
89]. The associated averaging of the dielectric tensor
over various domain orientations can modify the effec-
tive optical properties. In the case of epitaxy of β-Ga2O3

on [00.1]-oriented (c-plane) Al2O3 six different (2̄01)-
oriented domains occur [90] and the resulting effective
medium (for measurement averaging over many domains)
is uniaxial [80,91].
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4 M. Grundmann et al.: Optically anisotropic Crystals

(201)

[100] [010]

[001]

Figure 2 Unit cell of β-Ga2O3 (oxygen atoms are shown in red,

gallium atoms as green (octahedral-like coordination) and blue

(tetrahedral-like coordination)) and its orientation in the coordi-

nate system chosen in Table 1: [100] ||x, [010] || y; the angle be-

tween z = x × y and [001] is 103.7◦ − π/2. The (2̄01) plane is

indicated.

1

0

-1

1

0

-1
-1 0 1 -1 0 1

Figure 3 Arrows depicting the orientation and relative ampli-

tudes (the strongest transitions is scaled to unit length) of the

dipole moments in the (x, z)-plane (x|| [100]) of β-Ga2O3 for

various UV electronic (excitonic) transitions (top row) and dif-

ferent IR phonon modes (bottom row). Labels refer to notation

in [80]. The left (right) column displays experimental (theoreti-

cal) results.

3 Singular Axes

3.1 Spectral Dispersion The analysis of the dielec-
tric function of Ga2O3 put forward in [42] allows to cal-
culate the angular position of the singular axes. In gen-
eral, the complex dielectric tensor of orthorhombic, mono-
clinic and triclinic crystals leads to four singular axes. Such
axes were first considered for orthorhombic material [8,30]

and have been named Windungsachsen initially [8] because
their eigenstates are circularly polarized. The analytical
treatment of the related problem from Maxwell’s equations
shows that orthorhombic, monoclinic and triclinic crystals
can generally be distinguished optically from the degen-
eracy of the (complex) indices of refraction for these axes,
exhibiting a single, 2 or 4 different values, respectively [42]
(see Table 1). The three uniaxial crystal systems (tetrago-
nal, hexagonal, trigonal) cannot be distinguished optically
since they possess the same form of the dielectric ten-
sor and remain uniaxial in the absorption regime [42]. We
note that also assemblies of nanocrystals [92] or rare-earth
doped crystals [39,93] represent examples of (effective)
birefringent absorptive media. Analytical solutions for or-
thorhombic and monoclinic crystals can be found in [42];
we point to previous discussions of the orientational de-
pendence of the complex index of refraction [94,95].

(100)

(010)

(001)

A

C
B

(201)

D

E (eV)

Figure 4 Stereographic projection of the angular positions of the

singular axes in β-Ga2O3 as a function of photon energy. Crys-

tallographic planes (marked by open circles) are labelled.

In Fig. 4 the spectral dispersion of the direction of the
singular axes in monoclinic Ga2O3 is depicted. We note
that the angular position of optic axes over a wider spec-
tral range (in the transparency regime) has been reported
previously, e.g. [96], but Ref. [42] represents the first re-
port of the spectral dispersion of singular axes (in the ab-
sorption regime). The (x, z) symmetry plane perpendicu-
lar to the [010]- (y-) direction is obvious. At the onset of
absorption (point ’A’ in Fig. 4, E = 4.78 eV) the two op-
tic axes from the transparency regime start to exhibit sig-
nificant splitting into the four singular axes. ’B’ denotes
a range (E ≈ 7.23–7.33eV) of ”almost” uniaxial degen-
eracy close to the [100]-direction. At two spectral points
(points ’C’, E = 8.14 eV and ’D’, E = 8.37 eV) one pair
of singular axes degenerates, forming a ”normal” (but ab-
sorptive) optic axis, rendering the material triaxial [42], a
case also considered in [41]. A more detailed discussion
can be found in [42].

Copyright line will be provided by the publisher
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(a)

(b)

(c)

Figure 5 The Stokes vector component S3 (circular polarization)

in the (φ, θ)-plane (in units of π) in false colors. The singular axes

are at |S3| = 1. The contour with S3 = 0 (linear polarization) is

shown as thick black lines. (b) depicts the situation for monoclinic

(ǫxz 6= 0) β-Ga2O3 at photon energy E = 6.20 eV. (a) depicts

a fictitious triclinic material with the same dielectric tensor but

additionally ǫxy = ǫxz . (c) depicts a fictitious orthorhombic ma-

terial with the same dielectric tensor but ǫxz = 0. The white dots

indicate the angular position of the singular axes.

3.2 Eigenstates The angular distribution of the cir-
cular polarization component of the eigenmodes (Stokes
vector component S3) is depicted in Fig. 5b for β-Ga2O3

at a particular photon energy (E = 6.20 eV) [97]. The an-
gles θ and φ denote the rotation of the crystal around the
y- and z-axis, respectively, as defined in [42]. At the po-
sition of the singular axes, it is ±1, along the thick black
lines it is zero (linear polarization). In terms of the notation
of [98–100] the singular axes are ’C-points’ and the lines
of linear polarization are ’L-lines’.

The additional symmetry changes for a biaxial mate-
rial that is less symmetric and triclinic (Fig. 5a) or more
symmetric and orthorhombic (Fig. 5c) is shown for com-
parison, by setting ǫxy = ǫxz and ǫxz = 0, respectively, for
a fictitious similar material.

In Fig. 6 the situation is depicted for the crystallo-
graphic y-direction. At E = 6.59 eV, the Stokes vector
component is S3 = −0.997, i.e. the direction represents
’almost’ a singular axis. The spectral dependence of the
projection of the Stokes vector on the (S1, S2)-plane is
shown in Fig. 6a. In Fig. 6b, the spectral dependence of
S3 is shown together with the real and imaginary part of
the index of refraction and |n1 − n2| (n1 and n2 refer to
the complex indices of the two eigenmodes for a given di-
rection and energy). At the energy E = 6.59 eV the real
parts of n are identical while the imaginary parts of n are
only close. A more detailed discussion and Stokes vector
analysis for eigenstates in other directions can be found
in [42].

The change of the eigenvectors of the (transverse)
fields Da and Db from orthogonal to parallel (at exactly

the singular axis, Da and Db are degenerate (coalesced)
and circularly polarized) is continuous. This can be seen
from the (absolute value of the complex) scalar vector
product (dot product) Db

∗ · Da as depicted in Fig. 7.
Its maximum at the singular axes is conical. For the case
ℑ ǫ = 0, Db

∗ · Da vanishes for all orientations, which is
well known. We note that non-orthogonal states that are
not completely coalesced (0 ≤ Db

∗ ·Da ≤ 1) correspond
to elliptically polarized states (cmp. Figs. 5b and 7a).

For the absorption case, the polarizing properties of
the biaxial crystal change with orientation from a homo-
geneous Jones matrix (with orthogonal eigenvalues) to an
inhomogeneous Jones matrix, described with the inhomo-
geneity parameter η = |Eb

∗ ·Ea| ≤ 1 as defined in [101].
We note that the orientational dependence of η looks prac-
tically identical to Fig. 7a.

3.3 Complex Index of Refraction The angular ana-
lysis of the two complex indices of refraction shows that
besides ℜn1 − ℜn2 = 0 and ℑn1 − ℑn2 = 0 at the
angular positions of the singular axes, ℜn1 − ℜn2 is
zero along continuous angular arcs limited by two singular
axes (Fig. 8a) and ℑn1 − ℑn2 vanishes along differ-
ent arcs, connecting two different singular axes (Fig. 8b).
The ℜn1 − ℜn2 = 0 arcs run in the vicinity of the re-
lated optic axis for the case ℑ ǫ = 0 (cmp. also Fig. 11e)

Copyright line will be provided by the publisher



6 M. Grundmann et al.: Optically anisotropic Crystals

(a)

E (eV)

(b)
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Figure 6 (a) Energy dependence of the Stokes vector (stereo-

graphic projection (S1, S2), S3 = ±1 is in the center of the

graph) for the y-direction ([010]) (same color scale as in Fig. 4).

(b) Spectral dependence of the real and imaginary parts of the

index of refraction, their absolute difference and of the Stokes

vector component S3 for this direction. The energy E = 6.59 eV,

where |n1 −n2| is close to zero and S3 is close to −1, is denoted

with a vertical dashed line.

as pointed out in [28]. The ℑn1 − ℑn2 = 0 arcs run
in the vicinity of the related ”absorption” axis for the
case ℜ ǫ = 0. Another visualization of this situation are
the three-dimensional representations of ℜn and ℑn in
Fig. 9a,b which look as described by Drude [102] like
”eine Fläche mit zwei Schalen [..., die] längs gewisser
Kurvenstücke, die bei monoklinen und triklinen Krystallen
unsymmetrisch zu den Coordinatenebenen liegen, zusam-
menhängen.” [103]. A modern theory of this phenomenon
is formulated with Hamiltonians in [104]. It was shown
for (monoclinic) Nd:YCOB (YCa4O(BO3)3), prepared in
the form of a spherical crystal, a geometry already studied
for ruby [105] and used by Raman [106], that there exists
an angular range for which the absorption coefficient is
independent of the polarization [39].

For comparison the situation for artificially setting
ℑ ǫ = 0 is depicted in Fig. 9c,d, displaying the double
cone (diabolic) structure around one of the (two conven-
tional) optic axes. We note that a similar structure has

(a)

(b)

Figure 7 (a) The dot product |Db
∗ · Da| of the eigenvectors;

while small for most directions, it becomes 1 on the singular axes.

The white dots indicate the angular positions of the singular axes.

(b) 3D visualization around one of the singular axes.

been found for heavy and light hole dispersions in strained
materials [107].

In Fig. 10 the typical bifurcations [108] at an excep-
tional point are shown by varying artificially the imaginary
part of the dielectric function. Also the analogue excep-
tional point for negative imaginary part appears (γ = −1
in Fig. 10a) that would occur in the presence of gain.

3.4 Reflection and Transmission The problem of
reflection and transmission of circularly polarized waves
from a crystal cut perpendicular to a singular axis has al-
ready been brought up in [29]. In the Appendix 7.1 the
current treatment of reflection (and transmission) from a
planar interface of a biaxial material is sketched and the
result shall be shown here for β-Ga2O3 at the energy E =
6.20 eV. The reflection coefficients for circularly polarized
light, defined via

(

lr
rr

)

=

(

Rll Rlr

Rrl Rrr

) (

li
ri

)

, (4)

Copyright line will be provided by the publisher



pss header will be provided by the publisher 7

(a)

(b)

Figure 8 The difference of the two indices of refraction as (a)

|ℜn1−ℜn2| and (b) |ℑn1−ℑn2| as a function of propagation

direction for β-Ga2O3 at a photon energy of E = 6.20 eV. The

white lines indicate the zeros, the white dots denote the angular

positions of the singular axes, the yellow (red) dots the related

optic axes for the case ℑ ǫ = 0 (ℜ ǫ = 0).

where li, ri (lr, rr) denote the incoming (reflected/out-
going) left- and right-circular polarized waves, are depicted
(absolute values) in Fig. 11a–c.

A left-circularly polarized wave is mostly reflected as
right-polarized wave and vice versa, the related reflection
coefficients are termedRlr andRrl and are found identical
for all angles (Fig. 11a). A small part suffers mode con-
version and comes back for incoming left-circular wave as
left-circular reflected wave, its reflectivity denoted by Rll

(Fig. 11b); Rrr is defined accordingly (Fig. 11c). For each
of the left or right incoming waves four singular directions
lead to fully circularly polarized light (either Rll or Rrr

are zero and |S3| = 1). In particular, when a left-circular
wave (S3 = −1) falls onto a singular axis with S3 = +1
(cmp. Fig. 5b), Rll = 0 and the reflected wave is purely
right-circular (S3 = +1). If (artificially) the absorption is
set to zero (ℑ ǫ = 0),Rll = Rrr with its zeros on the optic
axes as visualized in Fig. 11d–f.

We note that the exact angular positions of the singu-
lar axes are strictly never numerically evaluated. However,
the eigenvectors of the (transverse) fields Da and Db, i.e.
ǫEa and ǫEb with the fields in (9), change continuously
from orthogonal to parallel (at exactly the singular axis Da

and Db are degenerate) (cmp. Fig. 7). We note that at ex-

actly the singular axis the equations (14) and (15) are un-
determined, but already in the vicinity of the singular axes,
the eigenvectors are non-orthogonal and the transmission
coefficients derived from the boundary conditions (14) and
(15) are unphysical.

Instead a matrix approach for the propagation (Ap-
pendix 7.2) can be used that completely avoids the (tech-
nically unnecessary) vector decomposition into eigenstates
within the biaxial medium. The electric field entering the
biaxial medium is subject to ”unconventional” propaga-
tion (see next section). The results for the reflection co-
efficients, as depicted in Fig. 11, remain valid and for the
transmission physically reasonable values are obtained.

3.5 Propagation From the previous section, it is clear
that a left- and a right-circularly polarized wave can enter
the biaxial crystal when they fall onto a singular axis. Let
us look at a singular axis that is right-polarized (S3 = +1).
Then the polarization of the right-circular wave, which is
the eigenstate, remains unchanged while the wave prop-
agates through the crystal (Voigt wave, Fig. 12a). The
left-circular wave is asymptotically converted into a right-
circular wave as also depicted in Fig. 12a. From Fig. 12b
it can be seen that left-circular wave actually suffers the
smaller absorption. This behavior has been already dis-
cussed in [32,109] and experimental results have been
reported for KGd(WO4)2:Nd [110]. Here it becomes clear
that the left-circular fraction suffers the same attenuation
as the right-circular, i.e. Tll = Trr, their definition being
similar to (4),

(

lt
rt

)

=

(

Tll Tlr
Trl Trr

) (

li
ri

)

, (5)

lt, rt denoting the circularly polarized transmitted waves;
for the calculation of the matrix elements in (5) the ma-
trix T (28) from Appendix 7.2 is used. For the left-circular
incoming wave additionally a right-circular wave exists
(Trl 6= 0) which enhances the transmittance for the initially
left-circular wave (Fig. 12b). We note that since the right-
circular wave passes without mode conversion, Tlr = 0.
At the thickness (d ≈ 0.537µm) where S3 = 0, also
Tll = Trl.

In Fig. 13 shows the Stokes vector of transmitted light
propagating in the crystallographic y-direction at E =
6.59 eV when this direction is close to a S3 = −1 sin-
gular axis (cmp. Fig. 6). Mode conversion occurs for both
left- and right-circular waves but the incident left-circular
polarized light remains at least within the range of negative
S3.

Copyright line will be provided by the publisher



8 M. Grundmann et al.: Optically anisotropic Crystals

(a) 0.00.0 (c) 0.0 0.0

(b) 0.00.0 (d)

Figure 9 Three-dimensional plot of (a) ℜn and (b) ℑn as a function of propagation direction (for clarity only for the hemisphere

0 ≤ φ ≤ π) for β-Ga2O3 at a photon energy of E = 6.20 eV. The connections of the upper and lower branch correspond to the white

lines in Fig. 8. (c) Three-dimensional plot of n = ℜn when the imaginary part of the dielectric function for β-Ga2O3 at a photon energy

of E = 6.20 eV is artificially set to zero as a function of propagation direction. (d) Same as (c) but zoomed to one of the optic axes,

displaying the diabolic point.
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Figure 10 (a) Real and (b) imaginary values of the squares of the indices of refraction for the orientation of a singular axis (same as

in Fig. 7) in β-Ga2O3 at a photon energy of E = 6.20 eV and setting artificially the dielectric function to ǫ̃ = ℜ ǫ + γℑ ǫ. (c) depicts

the two indices in the complex plane depending parametrically on γ. γ = 1 represents the actual dielectric function and the exceptional

point is indicated by the arrows; negative values of γ or ℑn2 denote gain regime.

4 Planar microcavities with anisotropic media
A planar microcavity is a layered system consisting of a

cavity medium (typically of thickness (2n + 1) × λ/2,
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(a) (d)

(b) (e)

(c) (f)

Figure 11 The reflection coefficients of circularly polarized light for normal incidence from β-Ga2O3 at E = 6.20 eV, (absolute values)

(a) Rlr = Rrl, (b) Rll and (c) Rrr . The white dots indicate the angular positions of the singular axes. (d)–(f) show the same quantities

for setting (artificially) ℑ ǫ = 0 (leading to Rll = Rrr); in this case the white dots indicate the angular positions of the conventional

optic axes.

n = 0, 1, . . .) sandwiched between two distributed Bragg
reflector (DBR) mirrors. This way the growth direction per
se introduces a preferred direction and rotational symme-
try. The dispersion of the cavity mode is a fundamental

property of such cavity. In [111] the effect of an uniaxial
cavity material and the orientation of its optic axis relative
to the cavity axis was investigated theoretically. If the optic
axis and the cavity axis are aligned no particular effects are
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Figure 12 (a) The Stokes vector of the transmitted light (normal

incidence, E = 6.20 eV) from a Ga2O3 slab cut perpendicular

to a S3 = +1 singular axis (same as in Fig. 7) as a function of

the slab thickness for incoming right- (left-) circularly polarized

light shown as red solid (blue solid) curve. For incoming left-

circular light, the Stokes vector components S1 and S2 are shown

as dashed and dashed-dotted lines, respectively. (b) Transmitted

intensity for right-circular light (Trr, red curve) and left-circular

light exiting as left-circular (Tll = Trr, blue curve) and right

circular (Trl, black curve). We note that Tlr = 0. The vertical

dashed line indicates the thickness for which Tll = Trl.

present. For a general orientation of the optic axis, when
it is tilted with respect to the stacking direction, the rota-
tional symmetry of the system does not hold anymore. In
this case the medium contains two distinguished directions
and is effectively biaxial.

This results at least in the TE- and TM-polarized
cavity-photon mode(s) not coinciding at normal propa-
gation angle (Fig. 14). Such effect has been observed
experimentally for microresonators with nonpolar GaN-
based [112–114] and ZnO-based [115] cavities (Fig. 15).
The typical setup of such cavity is a homoepitaxial bottom
DBR, e.g. [112̄0] (a-plane) oriented [112] or [101̄0] (m-
plane) oriented [113] (Al,Ga)N/GaN or m-plane oriented
(Mg,Zn)O/ZnO [115], a cavity with the wurtzite c-axis
in-plane and a top mirror (dielectric or epitaxial); such
system is effectively orthorhombic. Generally, also a tilted
c-axis (unless parallel to the growth direction) results in
a case of reduced symmetry. For the epitaxial growth of
such structures, strain relaxation is important due to the
lattice mismatch between the various layers due to the
dependence of the lattice constants of (AlxGa1−x)N or
(MgxZn1−x)O on the alloy concentration. We note that
the said nitride and oxide alloy systems behave rather
differently since ∂c/∂x × ∂a/∂x is positive or negative,
respectively [75].

(a)
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3
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Figure 13 (a) Stokes vector component S3 of the transmitted

light (normal incidence, E = 6.59 eV) from a Ga2O3 slab cut

perpendicular to the y-axis (cmp. Fig. 6) as a function of the slab

thickness d for incoming right- (left-) circularly polarized light

shown as red (blue) curves. (b) Stokes vector of transmitted light

for incoming right- (left-) circularly polarized light shown as red

solid (blue solid) curves and d = 0–4µm.

Based on a Maxwell approach to the propagation of
electromagnetic waves with complete polarization treat-
ment, complex mode energies can be numerically deter-
mined as singularities of the system and the respective po-
larization is obtained from the matrix kernel [116]. A cav-
ity photon mode is found to be split into two modes, whose
polarization states are generally elliptical and thus non-
orthogonal to each other. Depending on the cavity thick-
ness, those two modes can be degenerate (same energy and

broadening) at finite in-plane wave vectors which corre-
spond to propagation nearly but not exactly along or per-
pendicular to the projection of the optic axis in the cavity
plane. While the modes have linear orthogonal polariza-
tions at zero in-plane wave vector (vertical emission), these
degeneracy points are circularly co-polarized and repre-
sent exceptional points [117]. In particular, the degeneracy
points of energy and broadening occur pair-wise (Fig. 16).
The connecting line between them reveals a discontinuity
of the mode broadening and polarization. Starting from the
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Figure 14 Dispersion versus propagation angle of the TE- (black

lines) and TM- (red lines) polarized cavity-photon mode for two

different directions of the optic axis of the uniaxial cavity mate-

rial within the cavity plane. The cavity-photon mode which is

connected to the ordinary wave within the cavity is shown as

solid line whereas the extraordinary one is shown as dashed line

(for positive birefringence) or as dotted line (for negative birefrin-

gence).

exceptional points, arcs of constant energy and broadening
(shown as solid red lines in Fig. 16, cmp. Fig. 8) extend in
the k||-plane. The linear polarization is predicted to exhibit
a vortex-like structure (Fig. 17) in the momentum space
around the degeneracies [117].

For a m-plane (Mg,Zn)O/ZnO λ-microcavity we have
measured polarized transmission (Fig. 15c). The Stokes
vector as a function of energy and angle of incidence is
depicted for two in-plane orientations of the c-axis (rotated
by ±30◦ relatively to the situation in Fig. 14a). The finite
circular component (S3) of about ±0.15 at its extrema in-
dicates non-orthogonal, partially coalesced eigenstates as
predicted. Further design of cavity parameters, in partic-
ular of the cavity thickness, should move the exceptional
points into the light cone and make fully circularly polar-
ized states observable.

We like to mention here that chiral modes at excep-
tional points have also been found for whispering gallery
resonators [118,119].

5 Raman Scattering

5.1 Treatment of Birefringence The problem of
Raman scattering in anisotropic crystals has been real-
ized early on [69] and the failure of the conventional
approach in birefringent materials (off a principal axis)
has been corroborated in [120] 50 years ago. The analysis
of such Raman scattering intensities was deemed ”point-
less” [121] and the effect of birefringence ”predictably
catastrophic” [122]. However, we attribute this only to the
lack of including correct crystal optics into Raman the-
ory. The closest to a solution is the work of Rulmont et
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Figure 15 (a) Cross-section scanning electron microscopy im-

age of m-plane n1×[ZnO/MgxZn1−xO] DBR / ZnO / n2×
[ZnO/MgxZn1−xO] DBR microcavity (n1 = 18, n2 = 22,

x ≈ 0.22). (b) Macroreflectivity measurements of a m-plane cav-

ity (n1 = 15, n2 = 16) for normal incidence, unpolarized (black,

vertically shifted for clarity) and linear polarization resolved (red,

polarization perpendicular to the c-axis, and blue parallel to the

c-axis) spectra. (c) (Normalized) Stokes vector components for

the angular dispersion of polarized transmission through a non-

polar m-plane (Mg,Zn)O/ZnO λ-microcavity. The c-axis is in-

plane and azimuthally rotated by φ = ±30◦ as labelled with re-

spect to the direction normal to the angular scan (φ = 0◦ relates

to the configuration in Fig. 14a).
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Figure 16 Dispersion of energy E and broadening γ depending

on the in-plane wave vector k||. The cavity is uniaxial with the

optic axis along y and the optical cavity thickness (along z) is

larger than half the central wavelength of the surrounding Bragg

mirrors. The mode degeneracies of E and γ are shown as red dots

in the projection, the arcs of constant energy and broadening are

shown as solid red lines.
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Figure 17 Polarization Stokes vector components of one cavity

photon mode depending on the in-plane wave vector k||. The cav-

ity is uniaxial with the optic axis along y and the optical cavity

thickness (along z) is larger than half the central wavelength of

the surrounding Bragg mirrors. The mode degeneracies are the

four circularly polarized spots (S3) which are accompanied by a

discontinuity of the linear polarization (see S1).

al. [123,124]. In [125] the effect of birefringence on the
Raman scattering from black phosphorus was modeled for
a special scattering geometry. The concept of our reported
theory [74] is to consider for a crystal of arbitrary symme-
try the mode conversion from linear incoming polarization
to varying elliptical/circular polarization along the path
of the exciting radiation into the sample and likewise for
the path of the scattered radiation back out of the sam-
ple. The Raman scattering event in between is correctly
described (in the transparency regime) with a real-valued
Raman tensor. Averaging is necessary over the excitation
laser intensity distribution and excitation depth (or sample
thickness). This scheme allows to determine the elements
of the Raman tensor and their (relative) signs.

5.2 Uniaxial Crystals The effect of birefringence
∆n is visualized for (optically uniaxial) wurtzite GaN and
ZnO in Fig. 18. Both Raman experiments have been ex-
ecuted similarly in the transparency regime (532 nm) on
a-oriented single crystals. The response stems from within
the focus depth which is large compared to λ/∆n; in this
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Figure 18 (a) Raman scattering intensity for a-oriented GaN

(A1-mode) in parallel-polarized configuration as a function of an-

gle of incoming polarization. Experimental data (symbols) taken

from [126] and fits (solid lines) for ξ = 0, π/2 and π, π/2 de-

scribing obviously correctly the limit of large excitation depth.

(b) Same for a-ZnO, experimental data from [74].

case the apparent angle between (in short) the effective
Raman tensor elements a and b, which is more precisely
defined in [74], is ξ = π/2. This apparent angle has the
same effect on the Raman intensity as the ad hoc phase pa-
rameters introduced in some publications [70–72], but has
a strict physical meaning. An important and yet unexplored
point is that for thin films, ξ takes values between 0 (or π,
depending of the relative signs of the tensor elements) and
around π/2 [74], and experiments allow to determine ei-
ther the film thickness for known birefringence or ∆n for
known film thickness.

5.3 Biaxial Crystals The approach with ad hoc phase
parameters completely fails for optically biaxial crystals.
We demonstrate this for monoclinic Ga2O3 [127]. Despite
up to three additional free parameters introduced by the rel-
ative phases, the agreement to experimental data is worse
than for using the physically correct model [128]. If differ-
ent crystal cuts are considered, the discrepancy becomes
even more striking since the ad hoc parameters cannot ex-
plain the different intensities observed for identical polar-
ization directions (indicated by colored lines in Fig. 19).
For known dielectric tensor at the excitation wavelength
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Figure 19 Raman scattering intensity for two selected phonon modes of β-Ga2O3 in various crystal orientations for parallel polarized

(black) and cross-polarized (red) configurations; experimental data (symbols) and fits (solid lines). The maximum intensity for each

phonon mode is scaled to 1. The vertical green and blue lines indicate the [102]- and [001]-direction, respectively

(532 nm, from [78]), these angular intensity patterns can
be modeled consistently without additional parameters, al-
lowing to determine the Raman tensor elements and their
(relative) signs [128].

6 Summary and Outlook We have reviewed recent
advances in the understanding of optically anisotropic
crystals, namely the recently solved problem of modeling
and interpreting Raman scattering intensities for excitation
off a principal axis for arbitrary crystals, the dipole-based
structure of the dielectric function due to lattice and elec-
tronic contributions and the dispersion of singular axes in
the absorption regime. The transmission at an interface
to a biaxial medium cannot be described with the current
theory decomposing the wave in the biaxial medium into
eigenstates.

Also particularities of microcavities with anisotropic
cavity material, as composite systems from non-collinear
uniaxial media, have been discussed. In such effectively
biaxial system the complex energy dispersion has gener-
ally elliptically polarized eigenstates. We have predicted
that modes in planar, anisotropic micro-cavities exhibit ex-
ceptional points (for suitable cavity thickness) and have
demonstrated that in a (non-optimal) λ-cavity formed by
a m-plane (Mg,Zn)O/ZnO heterostructure the two modes
are non-orthogonal and partially coalesced.

We foresee these insights to bear fruit in the under-
standing of complex materials and the characterization of
thin films and the modeling of photonic devices from opti-
cally anisotropic materials.

In the light of the literature review compiled here,
W. Voigt should be given credit for the first description and
analysis of what is now called exceptional point.
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7 Appendix

7.1 Formalism with Eigenstates in Biaxial Medium
The problem of reflection and transmission of planar waves
at the planar interface to a biaxial medium has been treated,
e.g. in [129–134], and also for computer graphics/ray trac-
ing [135,136], however without paying special attention to
the singular directions. We consider here a wave incoming
from vacuum. The dielectric tensor is rotated to describe
the orientation of the biaxial medium and the components
of the rotated tensor shall be denoted by ǫij .

The wave vector of the incoming wave is k =
(− sinα sinψ, sinα cosψ, cosα) (omitting the factor
k0 = ω/c0, and working with |k| = 1), α being the
angle of incidence relative to the interface normal z, ψ
being the azimuthal angle. The incoming wave shall be
of type s (v- or TM-type) or type p = k × s (h- or
TE-type) polarization. The reflected wave has the wave
vector k′ = (kx, ky,−kz) and the vectors s′ = s and
p′ = −k′ × s, the transmitted wave has the wave vectors
ka and kb of the eigenstates and the related electrical field
vectors a and b.
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14 M. Grundmann et al.: Optically anisotropic Crystals

One can follow the approach of [137] where the z-
component of the a- and b-waves in the biaxial medium
is found from |G| = 0 with

G =

(

−[byx + bzx byz/cxyz] cxzy − bzy byz/cxyz
−[cyzx − bzx bxz/cxyz] bxy + bxz bzy/cxyz

)

,

(6)
and [138]

bij = ǫij + ki kj (7)

cijk = k2i + k2j − ǫkk . (8)

The four solutions of |G| = 0 represent two backward
and two forward waves, the latter are taken as those with
positive real parts ka,z and kb,z . For a given in-plane field
(Ex, Ey) the z-component of the electric field is then given
by [137]

Ez =
bzx Ex + bzy Ey

cxyz
. (9)

The eigenvectors a and b are the (normalized) fields Ea

(using ka,z) and Eb (using kb,z).
In the regions 1 (vacuum) and 2 (biaxial medium) the

fields are

Es
1
= s exp ıkr + (Rss s

′ +Rsp p
′) exp ık′r (10)

Es
2
= Xsa a exp ıkar +Xsb b exp ıkbr (11)

E
p
1
= p exp ıkr + (Rps s

′ +Rpp p
′) exp ık′r (12)

E
p
2
= Xpa a exp ıkar +Xpb b exp ıkbr . (13)

The interface matching conditions for the s- and p-fields
read

0 = z × (Eν
1
−Eν

2
) (14)

0 = z × [∇× (Eν
1
−Eν

2
)] , (15)

with ν = s, p. The action of ∇× on the exponentials is
of the type ık×. The x- and y-components of the two
equations (14) and (15) provide 4 equations for the 4 vari-
ables (Rss, Rsp, Xsa, Xsb) and (Rps, Rpp, Xpa, Xpb), re-
spectively.

Although put forward in [130,131] for non-absorbing
crystals, this scheme has been used and elaborated in, e.g.,
Refs. [135,137,139] also for absorbing crystals. We note
that for this case it fails on and in the vicinity of the sin-
gular axes since the vectors a and b are no longer orthog-
onal (cmp. Fig. 7). Thus the transmitted wave cannot be
properly projected and the transmission coefficients take
unphysically large values ≫ 1, eventually diverging on the
singular axes.

7.2 Propagation-Formalism In order to avoid the
problem of decomposing the field in the biaxial medium
into eigenmodes we first follow the idea of the Berreman
formalism [140,141]. We start from the Maxwell equations

(in the absence of currents and free charges) ∇×E = −Ḃ

and ∇×H = Ḋ together with the special material equa-
tions D = ǫ0 ǫE (The dielectric tensor ǫ is given in
the (x, y, z) coordinates of the reflection geometry) and

B = µ0 H (nonmagnetic material). The periodicity in
space and time of the fields shall be exp ı(kx x−ω t). The
curl operator is written as matrix C

C =







0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0






=







0 −∂z 0

∂z 0 −ıkx
0 ıkx 0






, (16)

using the substitutions ∂x = ıkx and ∂y = 0. We set up
equations for a six-component vector (E,H ′) with H ′ =
µ0 cH , and arrive at (in 3× 3 block matrix form)

(

0 C

−C 0

) (

E

H ′

)

=

(

ǫ 0

0 1

) (

E

H ′

)

. (17)

The algebraic third and sixth row yield Ez and H ′
z in

terms of the other field components. Eventually we find
for the four-component vector Ψ of the tangential field
components ET = (Ex, Ey) and H ′

T
= (H ′

x, H
′
y), Ψ =

(Ex, Ey, H
′
x, H

′
y):

∂

∂z
Ψ = ık0 Γ Ψ , (18)

with k0 = ω/c0, kx = k0 sinα, α being the angle of inci-
dence relative to the surface normal, and the matrix Γ =










ǫzx sinα
ǫzz

ǫzy sinα

ǫzz
0 1− sin

2 α
ǫzz

0 0 −1 0
ǫyzǫzx
ǫzz

− ǫyx sin2 α+
ǫyzǫzy
ǫzz

− ǫyy 0 −
ǫyz sinα

ǫzz

− ǫxzǫzx
ǫzz

+ ǫxx −
ǫxzǫzy
ǫzz

+ ǫxy 0 ǫxz sinα
ǫzz











,

(19)
similar to the result in [142]. Thus for a slab of homo-
geneous material and thickness d the fields between entry
(z = 0) and exit (z = d) are related by

Ψ (0) = exp (−ık0dΓ ) Ψ (d) = P Ψ (d) . (20)

The 4×4 propagation matrix P shall be written with 2×2
block matrices P i,

P =

(

P 1 P 2

P 3 P 4

)

. (21)

For the simulations executed in this paper the MatrixExp
function of Mathematica [76] has been used for the evalu-
ation of P .

The (normalized) electromagnetic wave impinging
from vacuum onto the surface has the wave vector
k = k0 (sinα, 0, cosα) = k0 k̂. The relation between the

electrical and magnetic fields in vacuum are Hi = k̂×Ei

and Ei = −k̂ ×H ′i, from which follows the impedance
matrix Z (detZ=1)

ET
i =

(

0 cosα

− 1

cosα
0

)(

H ′
x
i

H ′
y
i

)

= ZH ′

T

i
, (22)
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and at the top surface (z = 0):

ET
i(0) = ZH ′

T

i
(0) , (23)

accordingly for the reflected and transmitted waves [143]

ET
r(0) = −ZH ′

T

r
(0) (24)

ET
t(d) = ZH ′

T

t
(d) . (25)

We note that the theory is valid for all angles of incidence
α; in this paper only normal incidence is considered, obvi-
ously then

Z =

(

0 1

−1 0

)

. (26)

Reflection and transmission are described by the matri-
ces R and T ,

ET
r(0) = RET

i(0) (27)

ET
t(d) = T ET

i(0) , (28)

and from (20) eventually it is found [143]

R = [P 1Z + P 2 −Z(P 3Z + P 4)] (29)

[P 1Z + P 2 +Z(P 3Z + P 4)]
−1

(30)

T = 2Z [P 1Z + P 2 +Z(P 3Z + P 4)]
−1

. (31)

With varying slab thickness d, the transmission and re-
flection exhibit thickness (Fabry-Pérot type) oscillations.
In the case of absorption these die out if the thickness is
large compared to the absorption length. Then the reflec-
tivity value for a thick layer can be obtained. The trans-
mitted intensity contains the mode conversion during the
propagation in the slab.
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suchung der Elasticitätsverhältnisse des Steinsalzes”). 1883

he became professor in Göttingen where he stayed until his

death. He developed an early version of the Lorentz trans-

formation and contributed significantly to the field of crys-

tals, in particular piezoelectricity and crystal optics, and the

understanding of the Zeeman effect. For the ZnO commu-

nity it may be interesting that Voigt is the grandfather of

E. Mollwo [7] (son of Erika Maria Voigt).

[3] C. Runge, Woldemar Voigt (1850–1919), Physikal. Zeit-

schrift 21, 81–82 (1920).

[4] K. Försterling, Woldemar Voigt zum 100. Geburtstage, Die

Naturwissenschaften 38, 217–221 (1951).

[5] M. Päsler, Einiges aus der Geschichte der Kristallkunde.

Zur 50sten Wiederkehr des Todestages von Woldemar Voigt,

Physikalische Blätter 25, 542–546 (1969).

[6] D. Hoffmann, Paul Drude (1863–1906) Ann. Phys.

(Leipzig) 15, 449–460 (2006).

[7] E. Mollwo, Zur Vor- und Frühgeschichte der Festkörper-

physik in Deutschland, Wege in die Physikdidaktik, Band

3 (Verlag Palm & Enke, Erlangen, 1993), pp. 1–10.
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[62] Z. Lin, A. Pick, M. Lončar, A.W. Rodriguez, Enhanced

Spontaneous Emission at Third-Order Dirac Exceptional

Points in Inverse-Designed Photonic Crystals, Phys. Rev.

Lett. 117, 107402 (2016)
[63] G. Yoo, H.-S. Sim, H. Schomerus, Quantum noise and mode

nonorthogonality in non-Hermitian PT -symmetric optical

resonators, Phys. Rev. A 84, 063833 (2011).
[64] J.-H. Wu, M. Artoni, G.C. La Rocca, Non-Hermitian Degen-

eracies and Unidirectional Reflectionless Atomic Lattices,

Phys. Rev. Lett. 113, 123004 (2014).
[65] Y. Huang, G. Veronis, C. Min, Unidirectional reflectionless

propagation in plasmonic waveguide-cavity systems at ex-

ceptional points, Opt. Express 23, 29882–29895 (2015).
[66] J.-W. Ryu, S.-Y. Lee, S.W. Kim, Analysis of multiple ex-

ceptional points related to three interacting eigenmodes in

a non-Hermitian Hamiltonian, Phys. Rev. A 85, 042101

(2012).
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stern, H. Krauß, M. Grundmann, Dielectric function in the

NIR-VUV spectral range of (InxGa1−x)2O3 thin films, J.

Appl. Phys. 116, 053510 (2014).

[92] N.M. Lawandy, S.A. Johnston, J. Martorell, Birefringence

and polarization dependent absorption in sheared colloidal

crystals, Opt. Comm. 65, 425–429 (1988).

[93] M. Sabooni, A.N. Nilsson, G. Kristensson, L. Rippe, Wave

propagation in birefringent materials with off-axis absorp-

tion or gain, Phys. Rev. A 93, 013842 (2016).

[94] J.M. Virgós Rovira, S.A. Abrego, V.H. Rodrı́guez, C.M.

Pascual, Refractive indices and absorption coefficients as-

sociated with any propagation direction of a wave in ab-

sorbing biaxial materials, J. Optics 19, 187–192 (1988).

[95] C. Alberdi, J.M. Diñeiro, B. Hernández, C. Sáenz, General

expressions for the refractive indices of absorbing biaxial

media as a function of the angle of incidence, J. Opt. Soc.

Am. A 32, 228–237 (2015).

[96] R. Cattoor, I Manek-Hönninger, M. Tondusson, Ph. Veber,

T.K. Kalkandjiev, D. Rytz, L. Canioni, M. Eichhorn, Wave-

length dependence of the orientation of optic axes in KGW,

Applied Physics B - Laser and Optic 116, 831–836 (2014).

[97] The components of the dielectric tensor of β-Ga2O3 at E =
6.20 eV are (taken from [78]):

ǫxx = 4.366 + ı 1.592, ǫyy = 5.016 + ı 2.150,

ǫzz = 4.686 + ı 1.460, ǫxz = 0.094 + ı 0.017.

Copyright line will be provided by the publisher



18 M. Grundmann et al.: Optically anisotropic Crystals

[98] J.F. Nye, Lines of Circular Polarization in Electromagnetic

Wave Fields, Proc. Roy. Soc. A 389, 279–290 (1983).

[99] M.R. Dennis, Polarization singularities in paraxial vector

fields: morphology and statistics, Opt. Comm. 213, 201–221

(2002).

[100] F. Flossmann, U.T. Schwarz, M. Maier, M.R. Dennis, Po-

larization Singularities from Unfolding an Optical Vortex

through a Birefringent Crystal, Phys. Rev. Lett. 95, 253901

(2005).

[101] S.-Y. Lu, R.A. Chipman, Homogeneous and inhomoge-

neous Jones matrices, J. Opt. Soc. Am. A 11 766–773

(1994).

[102] P. Drude, Das Verhalten der Absorptionsco efficienten

Krystallen, Ann. Physik 276, 665–680 (1890).

[103] ”a surface with two shells [... that] are connect along certain

arcs that lie asymmetric with respect to the coordinate planes

for monoclinic and triclinic crystals.”

[104] W.D. Heiss, Repulsion of resonance states and exceptional

points, Phys. Rev. E 61, 929–932 (2000).

[105] R.M. Denning, J.A. Mandarino, Pleochroism in synthetic

ruby, American Mineralogist 40, 1055–1061 (1955).

[106] C.V. Raman, The birefringence patterns of crystal spheres,

Proc. Indian Acad. Sci. A 43, 1–3 (1956).

[107] P. Enders, A. Bärwolff, M. Woerner, D. Suisky, k · p the-

ory of energy bands, wave functions, and optical selection

rules in strained tetrahedral semiconductors, Phys. Rev. B

51, 16695–16704 (1995).

[108] S. Klaiman, U. Günther, N. Moiseyev, Visualization of

Branch Points in PT-Symmetric Waveguides, Phys. Rev.

Lett. 101, 080402 (2008).

[109] S. Pancharatnam, Light propagation in absorbing crystals

possessing optical activity – Electromagnetic theory, Proc.

Indian Acad. Sci. A 48, 227–244 (1958).

[110] A. Brenier, Voigt wave investigation in the KGd(WO4)2:Nd

biaxial laser crystal, J. Optics 17, 075603 (2015).

[111] C. Sturm, H. Hilmer, B. Rheinländer, R. Schmidt-

Grund, M. Grundmann, Cavity-photon dispersion in one-

dimensional confined microresonators with an optically

anisotropic cavity material, Phys. Rev. B 83, 205301 (2011).

[112] T. Zhu, A. Dussaigne, G. Christmann, C. Pinquier, E.
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