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Abstract

This paper provides a general and abstract approach to compute invariant distributions for Feller
processes. More precisely, we show that the recursive algorithm presented in [10] and based on
simulation algorithms of stochastic schemes with decreasing steps can be used to build invariant
measures for general Feller processes. We also propose various applications: Approximation of
Markov Brownian di�usion stationary regimes with a Milstein or an Euler scheme and approxima-
tion of a Markov switching Brownian di�usion stationary regimes using an Euler scheme.
Keywords : Ergodic theory, Markov process, Invariant measure, Limit theorem, Stochastic ap-
proximation.
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1 Introduction

In this paper, we propose a generic method to compute (recursively) the invariant distribution
(denoted ν) of an ergodic homogeneous Feller processes X = (Xt)t>0 with semi-group of transi-
tions (Pt)t≥0. Invariant distributions are crucial objects in the study of the long term behavior of
continuous dynamical systems like, among others, (mean-reverting) SDE with or without jumps,
regimes switching SDEs, PDMP, etc, which all share a homogeneous Markov property. We in-
vite the reader to refer to [9] and [5] for an overview of the subject. Usually, no closed forms for
invariant distributions are available with the noticeable exceptions of one dimensional Brownian
di�usions (see [6]), dissipative gradient di�usions with a constant di�usion coe�cient. Other exam-
ples, typically borrowed from Hamiltonian Mechanics, see [23], lead to explicit exact expressions of
the invariant density distribution for some solutions of Stochastic Di�erential Equations are given.
However, in many cases there is no explicit formula for ν and even there some, computing it by
remains a serious issue especially in higher dimension like for dissipative gradients SDEs.

For a continuous time ergodic Feller process (Xt)t≥0 with (unique) invariant distribution ν,
pointwise Birkho�'s ergodic theorem implies that

ν(dx)-a.s. P(dω)-a.s. νt(dx, ω) :=
1

t

∫ t

0
δXx

s (ω)(dx)ds
L1

(ν)−→ ν(dx)
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where Xx
t denotes the process starting from x at time 0. Under more stringent assumptions of

mean-reverting nature, one shows that this convergence holds for every x∈ Rd and not only ν(dx)-
a.s and, usually, one even obtains that, P(dω)-a.s., Wp(νt(ω, dx), ν) → 0 as t → +∞ for some
p ≥ 1. Such a property is often called stability of the Markov process. If the semi-group Pt is
strongly Feller, i.e. Ptf is continuous for every bounded Borel function f : Rd → R, then

P(dω)-a.s. νt(ω, f)→ ν(f) as t→ +∞.

For more details we refer to [15] and the references therein. As for the (weak) rate of this conver-
gence, let us me-cite in the framework of Brownian di�usions Bhattacharia's Central Limit Theorem
(CLT, see [2]) which shows that for functions fwhich are smooth enough ν-coboundaries of the in-
�nitesimal generator A of the di�usion � i.e. such that the Poisson equation Ag = f − ν(f) has a
solution � , the following CLT holds

√
t
(
νt(f)− ν(f)

)
=
√
t νt(Ag)

w−→ N
(

0,

∫
Rd
|σ∗g|2

)
where σ denotes the di�usion coe�cient of the di�usion.

A �rst natural approach to approximate ν, in a weak sense, that is through the integrals ν(f) for
a wide class of functions f , relies on the following two facts: Xx

t
w→ ν as t→ +∞ or, equivalently,

Pt(x, dy)
w→ ν. For weak convergence results of Xt toward ν (and rates) we refer e.g. to [7].

Then, for a large enough �xed T , on may assume that Xx
T

d' ν and perform a regular Monte Carlo
simulation to compute E[f(Xx

T )]. This approach introduces two errors: an approximation one and a
statistical one, not to mention the fact that exact simulation of Xx

t is non standard situation (think
about di�usions). If Xx

T is not simulable, it can be replaced by its Euler (or any other) scheme,
inducing a third source of error.

In [24], is introduced, still in a Brownian di�usion framework, a potentially more generic method
still based on a standard time discretization scheme (Euler or higher order schemes) (X̄γ0

n )n≥0 with
step γ0 (so that at iteration n, time is Γn = nγ0) but which takes advantage of the pathwise
properties of stability. If γ0 is small enough, it is shown that the scheme shares stability properties
properties with the di�usion (Xx

t )t≥0 so that

ν̄n(dx, ω) =
1

n

n∑
k=1

δX̄γ0
k (ω)(dx) =

1

Γn

n∑
k=1

γ0δX̄γ0
k (ω)(dx)

w−→ ν̄γ0(dx) P(dω)-a.s.

This means that, taking advantage of the ergodic properties of the dynamics (and of its time dis-
cretization), it is possible to approximate the invariant distribution ν using a long enough simulation
of a single path of the scheme and, with the possibility to do it recursively. Moreover, it is shown,
still in [24], that ν̄γ0(f) → ν(f) at a O(γ0)-rate (for the Euler scheme) for a wide class of smooth
test functions f . Then

ν̄n(f)− ν(f) =
(
ν̄n(f)− ν̄γ0(f)

)
+
(
ν̄γ0(f)− ν(f)︸ ︷︷ ︸

O(γ0)

)
.

If a CLT (and/or an L2-convergence) rules the convergence of the �rst bracket on the right hand
side at rate

√
Γn =

√
γ0n, then one has to make the balance between these two errors i.e. minimize

(in γ0) a term of the form

C1√
nγ0

+ C2γ0, with C1, C2 > 0 real constants.

This leads to set, n being �xed, γ0 � n−1/3 which of course annihilates the recursive feature of the
method.
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Another way to exploit the mean-reverting properties of a di�usion was proposed in [1], still
for Brownian di�usions, and can be used as a numerical method. The authors directly prove that
the Euler scheme with decreasing step (X̄γ

Γn
)n∈N, with step sequence γ = (γn)n∈N going to 0 and

Γn = γ1 + . . . + γn, weakly converges toward the invariant distribution ν, supposed to be unique,
of X. It avoids the asymptotic analysis between νγ1 and ν but the the resulting error is still made
of two terms. The �rst one is due to the rate of this weak convergence and the second one to the
Monte Carlo error involved in the computation of the law of X̄γ

Γn
, for a �xed large enough n and

the recursiveness is lost. For recent result of convergence in total variation of X̄γ
Γn

toward ν in the
case of the Langevin over damped di�usion, we refer to e.g. [4].

In the above two approaches the results are established under a strong mean-reversion assump-
tion of the form AV 6 β−αV (α > 0) where A denotes the in�nitesimal generator of the di�usion
and V : Rd → R+ is an essentially sub-quadratic C2 function with a bounded Hessian going to
in�nity at in�nity often called Lyapunov function of the dynamics (here a di�usion).

To take full advantage of both the ergodicity/stability properties and preserve the recursiveness
of the algorithm, it was necessary to have ν � in practice ν(f) � as a direct target of the procedure
and consider a single path. In the early 2000's, emerged the idea to directly mimic the Ergodic
theorem by considering the empirical/occupation measure of this Euler scheme with decreasing
step. Doing so, one preserves this recursiveness like in [24] and has now ν itself as a target instead
of νγ0 . This lead to investigate the a.s. convergence properties of the weighted empirical measure
of the Euler scheme with decreasing step (X̄γ

Γn
)n∈N at discretization times, namely

∀ω∈ Ω, ∀n ≥ 1, νγn(ω, dx) =
1

Γn

n∑
k=1

γkδX̄γ
Γk−1

(ω)(dx) =
1

Γn

∫ Γn

0
δX̄γ

s (ω)(dx)ds,

where Γn =
n∑
k=1

γk and s = Γk−1 on [Γk−1,Γk). Then, the stability of this non-homogeneous

Markov chain is proved under various mean-reverting assumptions and frameworks. This approach
was �rst introduced for strongly mean-reverting di�usions in [10] and then developed in a series of
papers [11] (weakly mean-reverting setting of the form AV 6 β−αV a, a∈ (0, 1)), [13] (exponential
convergence), [19] (jump di�usions), [16] (functional versions), [17] (functional convergence rate)
or [14] (regime switching di�usions), see also [15] for a review... One important asset of this
approach is that it does not require uniqueness of the invariant measure since it is shown that,
under appropriate mean-reverting assumptions, νn(dx, ω) always a.s. weakly converges to the non
empty set weakly compact V of invariant distributions of the underlying SDE, proc-bing on its
way the existence of at least an invariant distributions, all sharing some moment �niteness of
polynomial of even exponential nature (see [13]). In case of uniqueness of ν, making these power
moments converge implies the above (a.s.) weak convergence holds for the Lp-Wasserstein distance
for some p ≥ 1.

The aim of this paper is to extend the above purely ergodic approach based on a Langevin Monte
Carlo estimator to a wider class of Feller processes. To this end, we will establish a somewhat
abstract version inspired by the the above convergence result of the empirical measure of an Euler
scheme with decreasing step.

The starting idea is to consider a non-homogeneous discrete time Markov process which can be
simulated using a family of simulable transitions kernels (Qγ)γ>0 approximating the transitions Pγ
of the Feller process X as γ → 0 in a sense involving its in�nitesimal generator A to be speci�ed
later on. Usually � think about the Euler transitions with step γ > 0 � the price to be paid for the
simulability of Qγ(x, dy) is that the family (Qγ)γ>0 no longer makes up a semi-group.

Then, we introduce the weighted empirical measure

νγn(dx) =
1

Γn

n∑
k=1

γkδX̄γ
Γk−1

(dx), Γn =

n∑
k=1

γk, (1)
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and aim at proving its a.s. weak/Wasserstein convergence toward the set V of invariant distributions
of X under some mean-reverting assumptions. For convenience (see further on), this condition will

be speci�ed on the pseudo-in�nitesimal generators Aγ =
Qγ−Id
γ associated to the family (Qγ)γ>0

rather than on the generator A of X itself. In fact we will introduce more general weights ηn than
γn and deal with the random measures νη in prevision on future works on the (weak) convergence
rate which require the convergence of such random measures for weights of the form ηn = γrn for
some r ≥ 0.

The paper is organized as follows. In a �rst step, we present an abstract framework adapted to
the computation of invariant distributions for Feller processes under general mean-reverting assump-
tions (including weakly mean-reverting assumptions). Then, we establish a.s weak convergence of
(νγn)n∈N∗ . Moreover, when the invariant distribution ν is unique we obtain lim

n
νγnf = νf a.s. for a

generic class of continuous test functions f (adapted among other to polynomial and exponential
test functions f).

Then, in a second step, we apply this abstract results to concrete cases and obtain original results.
Notice that the existing results mentioned above can be recovered from our abstract framework. We
begin by providing Wasserstein convergence results concerning Euler and Milstein schemes of Brow-
nian di�usion processes in a weakly mean-reverting setting. Then, we propose a detailed application
concerning the Euler scheme of a Markov Switching di�usion for test functions f with polynomial
growth (Wasserstein convergence) or exponential growth. Here, we extend the convergence results
from [14] where the authors adapted the algorithm from [10] under strong ergodicity assumptions
for the Wasserstein convergence. Notice that this generic aproach is used in the companion paper
[18] where we study the Milstein scheme for Brownian di�usions and the Euler scheme for Jump
di�usion processes with censored jumps (that extend Levy jump processes). The Milstein study
is the �rst one out of the scope of the Euler scheme while the censored jump study extends re-
sults from [20] concerning the Levy processes. A main interest of censored jump di�usions is that,
controversly to Levy processes, the intensity of jumps may depend on the spatial position of the
underlying process.

Notations.

• Let (E, |.|) be a locally compact separable metric space. C(E) will denote the set of continuous
functions on E and C0(E) the set of continuous functions that vanish at in�nity. We equip this
space with the sup norm ‖f‖∞ = supx∈E |f(x)| so that (C0(E), ‖ · ‖∞) is a Banach space. B(E)
will denote the σ-algebra of Borel subsets of E and P(E) the family of Borel probability measures
on E. We will denote by KE the set of compact subsets of E.
• Convergence of a Borel function f : E → R at in�nity should be understood with respect to the
convergence �lter base made up with complements of compact sets.

2 Convergence to invariant distributions: a general ap-

proach

In this section, we present the framework devised to show that the empirical measures formally
de�ned by (1) and built from a numerical scheme with decreasing step (X̄γ

Γn
)n∈N of a Feller process

(Xt)t>0 (which are not speci�ed explicitly), where the step sequence γ = (γn)n∈N∗ converges to 0,
a.s. weakly converges to the set V of the invariant distributions of (Xt)t>0. To this end, we will
provide as weak as possible mean-reverting assumptions on the pseudo-generator of (X̄γ

Γn
)n∈N on

the one hand and appropriate rate conditions on the step sequence (γn)n∈N∗ on the other hand.
We �rst develop an abstract framework. Then, we establish the abstract convergence results

of the empirical measures. Finally, we provide convergence results for the speci�c but nevertheless
classic case of the Euler scheme of a SDE.
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2.1 Presentation of the abstract framework

2.1.1 Construction of the random measures

Let (Ω,G,P) be a probability space. We consider a Feller process (Xt)t>0 (see [6] for details) on
(Ω,G,P) taking values in a locally compact and separable metric space E. We denote by (Pt)t>0

the Feller semi-group (see [21]) of this process. We recall that (Pt)t>0 is a family of linear operators
from C0(E) to itself such that P0f = f , Pt+sf = PtPsf , t, s > 0 (semi-group property) and
lim
t→0
‖Ptf − f‖∞ = 0 (Feller property). Using this semi-group, we can introduce the in�nitesimal

generator of (Xt)t>0 as a linear operator A de�ned on a subspace D(A) of C0(E), satisfying: For
every f ∈ D(A),

Af = lim
t→0

Ptf − f
t

exists for the ‖.‖∞-norm. The operator A : D(A) → C0(E) is thus well de�ned and D(A) is
called the domain of A. From the Echeverria-Weiss theorem (see Theorem 2.1), the set of invariant
distributions for (Xt)t>0 can be characterized in the following way:

V = {ν ∈ P(E), ∀t > 0, Ptν = ν} = {ν ∈ P(E),∀f ∈ D(A), ν(Af) = 0}.

The starting point of our reasoning is thus to consider an approximation of A. First, we introduce
the family of transition kernels (Qγ)γ>0 from C0(E) to itself. Now, let us de�ne the family of linear

operators Ã := (Ãγ)γ>0 from C0(E) into itself, as follows

∀f ∈ C0(E), γ > 0, Ãγf =
Qγf − f

γ
.

The family Ã is usually called the pseudo-generator of the transition kernels (Qγ)γ>0 and is an
approximation of A as γ tends to zero. From a practical viewpoint, the main interest of our
approach is that we can consider that there exists γ̄ > 0 such that for every x ∈ E and every
γ ∈ [0, γ̄], Qγ(x, dy) is simulable at a reasonable computational cost. We use the family (Qγ)γ>0,
to build (X̄Γn)n∈N (this notation replaces (X̄γ

Γn
)n∈N from now on for clarity in the writing) as the

non-homogeneous Markov approximation of the Feller process (Xt)t>0. It is de�ned at times grid

Γn =
n∑
k=1

γk, n∈ N with the sequence γ := (γn)n∈N∗ of time steps satisfying

∀n∈ N∗, 0 < γn 6 γ̄ := sup
n∈N∗

γn < +∞, lim
n
γn = 0 and lim

n
Γn = +∞.

Its transition probability distributions are given by Qγn(x, dy), n ∈ N∗, x ∈ E, i.e. :

P(X̄Γn+1 ∈ dy | X̄Γn) = Qγn+1(X̄Γn , dy), n ∈ N.

We can canonically extend (X̄Γn)n∈N into a càdlàg process by setting X̄(t, ω) = X̄Γn(t)
(ω) with

n(t) = inf{n ∈ N,Γn+1 > t}. Then (X̄Γn)n∈N is a simulable (as soon as X̄0 is) non-homogeneous
Markov chain with transitions

∀m 6 n, P̄Γm,Γn(x, dy) = Qγm+1 ◦ · · · ◦ Qγn(x, dy),

and law

L(X̄Γn | X̄0 = x) = P̄Γn(x, dy) = Qγ1 ◦ · · · ◦ Qγn(x, dy).

We use (X̄Γn)n∈N to design a Langevin Monte Carlo algorithm. Notice that this approach is generic
since the approximation transition kernels (Qγ)γ>0 are not explicitly speci�ed and then, it can be
used in many di�erent con�gurations including among others, weak numerical schemes or exact



2 CONVERGENCE TO INVARIANT DISTRIBUTIONS: A GENERAL APPROACH 6

simulation i.e. (X̄Γn)n∈N = (XΓn)n∈N. In particular, using high weak order schemes for (Xt)t>0

may lead to higher rates of convergence for the empirical measures. The approach we use to build
the empirical measures is quite more general than in (1) as we consider some general weights which
are not necessarily equal to the time steps. We de�ne this weight sequence. Let η := (ηn)n∈N∗ be
such that

∀n∈ N∗, ηn > 0, lim
n
Hn = +∞, with Hn =

n∑
k=1

ηk.

Now we present our algorithm adapted from the one introduced in [10] designed with a Euler scheme
with decreasing steps (X̄Γn)n∈N of a Brownian di�usion process (Xt)t>0. For x ∈ E, let δx denote
the Dirac mass at point x. For every n ∈ N∗, we de�ne the random weighted empirical random
measures as follows

νηn(dx) =
1

Hn

n∑
k=1

ηkδX̄Γk−1
(dx). (2)

This paper is dedicated to show that a.s. every weak limiting distribution of (νηn)n∈N∗ belongs
to V. In particular when the invariant measure of (Xt)t>0 is unique, i.e. V = {ν} so that P-
a.s. lim

n
νηnf = νf , for a generic class of continuous test functions f .

2.1.2 Assumptions on the random measures

In this part, we present the necessary assumptions on the pseudo-generator Ã = (Ãγ)γ>0 in order
to prove the convergence of the empirical measures (νηn)n∈N∗ .
Our approach consists in two parts. First, we consider a mean-reverting control assumption satis�ed
by the pseudo-generators Ãγ and a Lyapunov function to show the a.s. tightness of the empirical
measures. Secondly, we consider an in�nitesimal generator approximation assumption used to
characterize these weak limiting distributions as invariant distributions of the Markov process of
interest X. To be more precise, we will show that any such limiting distribution, say ν, satis�es∫
Agdν = 0 for test functions g ∈ D(A) which is a characterization of invariant distributions

following Echeveria-Weiss Theorem (see [5], Theorem 2.1). In both steps, it is necessary to prove
convergence of martingale which will be obtain using growth control and step-weight assumptions
presented at the end of this section.

Mean-reverting recursive control The mean-reverting assumption reads as follows: There
exists a Borel function V such that

LV ≡ V : E → [v∗,+∞), v∗ > 0 and lim
x→∞

V (x) = +∞. (3)

Let γ̄ > 0, s > 1 and let ψ, φ : [v∗,∞)→ (0,+∞) Borel functions, let α > 0 and β ∈ R. We assume

RCQ,V (ψ, φ, α, β, s) ≡


(i) Ãγψ ◦ V exists for every γ ∈ (0, γ̄],

(ii) ∀x ∈ E, supγ∈(0,γ̄] Ãγψ ◦ V (x) 6 ψ◦V (x)
V (x) (β − αφ ◦ V (x)),

(iii) lim
v→+∞

φ(v)ψ(v)1/s

v = +∞ and lim inf
v→+∞

φ(v) > β/α.

(4)

A function V is a Lyapunov function for transitions (Qγ)γ>0 if it satis�es AssumptionRCQ,V (ψ, φ, α, β),
which in turn is called the (weakly) mean-reverting recursive control assumption of the pseudo-
generators (by V ).

Comments.

• The assumption RCQ,V (ψ, φ, α, β, s) is devised to be directly checked on the transitions of the
time discretization schemes with decreasing steps γn of the Feller process X. This can be seen as a
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variant of an a.s. tightness criterion for the occupation measure 1
t

∫ t
0 δXx

s
ds in which (ii) would be

replaced by

∀x ∈ E, sup
γ∈(0,γ̄]

Aψ ◦ V (x) 6
ψ ◦ V (x)

V (x)

(
β − αφ ◦ V (x)

)
. (5)

which appears as a very general tightness criterion for the above continuous time empirical measure
(see [15] for a review). Thus if we set ψ = Id[v∗,+∞) and φ(v) = va, for some a∈ (0, 1], then the
mean-reverting condition (5) reduces to

AV 6 β − αV a,

which is a classical mean-reverting condition (see [9], [5] or [15], for a review) to establish the
existence of an invariant distribution for a Feller process. It is also extensively used to control
the Euler scheme with decreasing steps of Brownian di�usions with in�nitesimal generator A and
its weighted empirical measures : see, when a = 1, the seminal paper [10] when a = 1 (see
also [1]) and [11] when a∈ (0, 1)). When a = 1 this condition is known as a strong mean-reverting
assumption, whereas it is called weak when a∈ (0, 1) or, more generally when limv→+∞ φ(v)/v = 0.

In fact, in these papers the measures νn are investigated under (5) rather than (4). It turns out
that RCQ,V (ψ, φ, α, β, s) is more convenient for an abstract result and more �exible to cope with
a wide range of examples. However, under the generator approximation condition (7) given later,
one easily checks that (4) follows from (5).

• The condition RCQ,V (vp, Id, α, β, s)(ii), p, s > 1, is considered � for A � in the seminal paper [10]
(and then in [11] with φ(v) = va, a ∈ (0, 1], v∈ [v∗,∞)) concerning the Wasserstein convergence of
the weighted empirical measures of the Euler scheme with decreasing steps of a Brownian di�usions.
When φ = Id, the Euler scheme is also studied for Markov switching Brownian di�usions in [14].
Notice also that RCQ,V (Id, φ, α, β, s)(ii) with φ concave appears in [3] to prove sub-geometrical
ergodicity of Markov chains. In [12], a similar hypothesis to RCQ,V (Id, φ, α, β, s)(ii) (with φ not

necessarily concave and Ãγ replaced by A), is also used to study the Wasserstein but also exponential
convergence of the weighted empirical measures (2) for the Euler scheme of a Brownian di�usions.
Finally, in [20] similar properties as RCQ,V (vp, va, α, β, s)(ii), a ∈ (0, 1], p > 0, are developed in the
study of the Euler scheme for Lévy processes.

• The function ψ is related to the set of possibly unbounded (ν-a.s.) continuous functions f for
which the convergence νηn(f) → ν(f) a.s. holds, when ν is the unique invariant distribution of the
underlying Feller process. Let us be more speci�c on that point: for an s > 1 � which is related to
step-weight assumption on the sequences γ and η � we will prove in Theorem 2.4 point B. that the
sets of functions for which this above a.s. convergence holds contains:

C
Ṽψ,φ,s

(E) =
{
f ∈ C(E), |f(x)| = o

x→∞
(Ṽψ,φ,s(x))

}
, (6)

where Ṽψ,φ,s : E → R+ is de�ned by Ṽψ,φ,s(x) :=
φ ◦ V (x)ψ ◦ V (x)1/s

V (x)
.

In�nitesimal generator approximation We present now the main assumption that enables
to characterize the limiting distributions of the a.s. tight sequence (νηn(dx, ω))n∈N∗ . The strategy
is to show that, a.s., any limiting distribution ν∞(ω, dx) of the sequence of random measures
(νn(ω, dx))n≥1 satis�es

∫
Ãγnf(x)νn(ω, dx) → 0, then derive that

∫
Ãγnf(x)ν∞(ω, dx) = 0 for

every f in a dense subspace of the domain of A and conclude by the Echeveria-Weiss Theorem that
ν∞(ω, dx) is invariant for the semi-group (Pt)t≥0.

We thus introduce a hypothesis concerning the distance between (Ãγ)γ>0, the pseudo-generator
of (Qγ)γ>0, and A, the in�nitesimal generator of (Pt)t>0. We assume that there exists D(A)0 ⊂ D(A)
with D(A)0 dense in C0(E) such that:

E(Ã, A,D(A)0) ≡ ∀γ ∈ (0, γ̄], ∀f ∈ D(A)0,∀x∈ E,

|Ãγf(x)−Af(x)| 6 Λf (x, γ), (7)
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where Λf : E × R+ → R+ can be represented in the following way: Let (Ω̃, G̃, P̃) be a probability

space. Let g : E → Rq+, q ∈ N, be a locally bounded Borel measurable function and let Λ̃f :

(E × R+ × Ω̃,B(E)⊗ B(R+)⊗ G̃)→ Rq+ be a measurable function such that

sup
i∈{1,...,q}

Ẽ
[

sup
x∈E

sup
γ∈(0,γ̄]

Λ̃f,i(x, γ, ω̃)
]
< +∞,

and

∀x∈ E,∀γ ∈ (0, γ̄], Λf (x, γ) =
〈
g(x), Ẽ[Λ̃f (x, γ, ω̃)]

〉
Rq .

Moreover, we assume that for every i ∈ {1, . . . , q}, supn∈N∗ ν
η
n(gi, ω) < +∞, P(dω)− a.s., and that

Λ̃f,i satis�es one of the following two properties:

There exists a measurable function γ : (Ω̃, G̃)→ ((0, γ̄],B((0, γ̄])) such that:

I) P̃(dω̃)−a.s


(i) ∀K ∈ KE , lim

γ→0
sup
x∈K

Λ̃f,i(x, γ, ω̃) = 0,

(ii) lim
x→∞

sup
γ∈(0,γ(ω̃)]

Λ̃f,i(x, γ, ω̃) = 0,
(8)

or

II) P̃(dω̃)− a.s lim
γ→0

sup
x∈E

Λ̃f,i(x, γ, ω̃)gi(x) = 0. (9)

Remark 2.1. Notice that assumption E(Ã, A,D(A)0) I) (i) (see (8)) controls the behavior of the
error function Λ̃f as the time goes to zero. It is crucial to obtain weak convergence towards the
expected target. Hypothesis (7) may indeed be seen as a small time weak approximation that will
lead to the result using concatenation techniques. In some speci�c cases we can obtain the assumption
in a uniform way (for the space variable) that is E(Ã, A,D(A)0) II) (see (9)). However in most
cases, it is only possible to obtain this convergence on compact sets (for the space variable) that
is E(Ã, A,D(A)0) I) (i) (see (8)). In this case, it is necessary to introduce the supplementary
assumption E(Ã, A,D(A)0) I) (ii) (see (8)) in order to control the behavior of the error outside
those compact sets.

Remark 2.2. Let (F,F , λ) be a measurable space. Using the exact same approach, the results
we obtain hold when we replace the probability space (Ω̃, G̃, P̃) by the product measurable space
(Ω̃×F, G̃ ⊗F , P̃⊗ λ) in the representation of Λf and in (8) and (9) but we restrict to that case for
sake of clarity in the writing. This observation can be useful when we study jump process where λ
can stand for the jump intensity.

This representation assumption bene�ts from the fact that the transition functions (Qγ(x, dy))γ∈(0,γ̄],
x ∈ E, can be represented using distributions of random variables which are involved in the com-
putation of (X̄Γn)n∈N∗ . In particular, this approach is well adapted to stochastic approximations
associated to a time grid such as numerical schemes for stochastic di�erential equations with a
Brownian part or/and a jump part. We propose in Appendix A an example of checking of condi-
tion E(Ã, A,D(A)0)(I) to a (scalar) Brownian di�usion. This case already solved in the original
paper [10] can be viewed as a �rst user guide. In the companion paper [18] devoted to applica-
tions of our results to the di�usion processes with switching regimes and to jump di�usions which
extend [14] and [20] respectively. However, we can describe a standard approach that can be used
to check this assumption. Assume A is local operator of order m (meaning Af involves derivatives
of order m of the function f) with form Af(x)

∑m
l=1 T`(x)∂lf(x). Assume E = R and (X̄Γn)n∈N

follows the same law under P, as the Markov chain de�ned by the random recurrence

X̄Γn+1 = F (X̄Γn , ζγn+1), n ∈ N, P̃− a.s.
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under P̃, with F a smooth function (at least continuous) satisfying F (x, 0) = x,x ∈ E, and (ζγn)n∈N∗

a sequence of i.i.d random variable distributed under the law of ζγn with (ζγ)γ>0 a random process

satisfying limγ→0 ζγ = 0 P̃ − a.s. with appropriate uniform integrability conditions (for Brownian

di�usions one may set ζγ =
√
γZ̃, Z̃ ∼ N (0; 1)). Then we have, for f smooth enough with compact

support (e.g. C2
K for Brownian di�usions corresponding to m = 1 in what follows),

Ẽ
[
f ◦ F (x, ζγ)

]
= f(x) + Ẽ

[ m∑
`=1

(F (x, ζγ)− x)`

`!
f (`)(x)

+

∫ 1

0

(F (x, ζγ)− x)m

(m+ 1)!
f (m+1)

(
x+ u(F (x, ζγ)− x)

)
du
]

and then, we have the following writing

Ãγf(x)−Af(x) = Ẽ
[ m∑
l=1

(F (x, ζγ)− x)`

γ`!
f (`)(x)

+

∫ 1

0

(F (x, ζγ)− x)m

γ(m+ 1)!
f (m+1)(x+ u(F (x, ζγ)− x))du

]
−Af(x)

=

m∑
l=1

( Ẽ[(F (x, ζγ)− x)`
]

γ`!
− T`(x)

)
f (`)(x)

+ Ẽ
[ ∫ 1

0

(F (x, ζγ)− x)m

γ(m+ 1)!
f (m+1)(x+ u(F (x, ζγ)− x))du

]
=

m+1∑
`=1

Ẽ
[((F (x, ζγ)− x)l−1`≤m+1

γ`!
− 1`≤m+1T`(x)

)
f (`)
(
x+ 1`=m+1Θ̃(F (x, ζγ)− x)

)]
where Θ̃ is uniformly distributed on the interval [0, 1] under P̃. Now, we have this representation that
is well adapted to our framework we check E(Ã, A,D(A)0) I) (see (8)). To prove E(Ã, A,D(A)0) I)

(i), the idea is to show that P̃(dω̃)− a.s., (F (x,ζγ)−x)`−1`=m+1

γ`! − 1`=m+1T`(x) (when the expectation
of this term is not null) converges to 0 as γ tends to 0 as soon as the approximation is well chosen
and using the fact that limγ→0 F (x, ζγ) = x, P̃(dω̃) − a.s.. The assumption E(Ã, A,D(A)0) I) (ii)

can then be checked studying f (`)(x + 1`=m+1Θ̃(F (x, ζγ) − x)). As f is vanishing at in�nity, it is

trivial when ` ∈ {1, . . . ,m}. When ` = m+ 1 the idea is to introduce γ(ω̃) such that P̃(dω̃)− a.s.,
limx→∞ supγ6γ(ω̃) x+ Θ̃(ω̃)(F (x, ζγ(ω̃))− x) = +∞ and to conclude using the fact that f vanishes

at in�nity. This is possible as soon as we can �nd ζ̄ > 0 such that sup|ζ|<ζ̄ |F (x, ζ)−x| 6 (1− ε)|x|,
for every x ∈ E and some ε ∈ (0, 1).

Growth control and step-weight assumptions We conclude with hypothesis concerning
the control of the martingale part of one step of our approximation. Those will be crucial to prove
the convergence of the martingale array terms which appear in the study of the weak error.

Let ρ ∈ [1, 2] and let εI : R+ → R+ be an increasing function. For F ⊂ {f, f : (E,B(E)) →
(R,B(R))} and g : E → R+ a Borel function, we assume that, for every n ∈ N,

GCQ(F, g, ρ, εI) ≡ P-a.s. ∀f ∈ F,
E[|f(X̄Γn+1)− Qγn+1f(X̄Γn)|ρ|X̄Γn ] 6 Cf εI(γn+1)g(X̄Γn), (10)

with Cf > 0 a �nite real constant which may depend on f .

Remark 2.3. The reader may notice that GCQ(F, g, ρ, εI) holds as soon as (10) is satis�ed with

an F X̄n := σ(X̄Γk , k 6 n)-adapted sequence (Xn)n∈N∗ instead of Qγn+1f(X̄Γn), since Qγn+1f(X̄Γn) =
E[f(X̄Γn+1)|X̄Γn ] and

E[|f(X̄Γn+1)− Qγn+1f(X̄Γn)|ρ|X̄Γn ] 6 2ρE[|f(X̄Γn+1)− Xn|ρ|X̄Γn ] for every Xn ∈ L2(F X̄n ).
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We will combine this assumption with the following step-weight related ones:

SWI,γ,η(g, ρ, εI) ≡ P-a.s.
∑
n≥1

∣∣∣ ηn
Hnγn

∣∣∣ρεI(γn)g(X̄Γn) < +∞, (11)

and

SWII,γ,η(F ) ≡ P-a.s. ∀f ∈ F,
∑
n≥0

(ηn+1/γn+1 − ηn/γn)+

Hn+1
|f(X̄Γn)| < +∞, (12)

with the convention η0/γ0 = 1. Notice that this last assumption holds as soon as the sequence
(ηn/γn)n∈N∗ is non-increasing.

2.2 A.s. weak convergence of the empirical measures

In the beginning of this Section, we present some general results that we use in our approach. Then,
we provide convergence results through Theorem 2.3 and Theorem 2.4. The �rst one establishes
almost sure tightness and then the existence of a weak limit for the empirical measures. In The-
orem 2.4, we establish the identi�cation of every weak limit with an invariant distribution of the
Feller process (Xt)t>0 with in�nitesimal generator A.

2.2.1 Background and preliminary results

In this section, we recall standard general results we employ to study the convergence. Our approach
will rely on a speci�c version of the Martingale problem characterizing the existence of a Feller
Markov process which directly provides the existence of a steady regime i.e. an invariant distribution.
This is the object of the Echeverria-Weiss theorem.

Theorem 2.1. (a) (Echeverria-Weiss (see [5], Theorem 9.17)). Let E be a locally compact and
separable metric space and let A : D(A) ⊂ C0(E)→ C0(E) be a linear operator satisfying the positive
maximum principle1, such that D(A) is dense in C0(E) and that there exists a sequence of functions
ϕn ∈ D(A) such that lim

n
ϕn = 1 and lim

n
Aϕn = 0 with supn∈N ‖Aϕn‖∞ < +∞.

If ν∈ P(E) satis�es

∀f ∈ D(A),

∫
E
Afdν = 0, (13)

then there exists a stationary solution to the martingale problem (A, ν).

(b) (Hille-Yoshida (see [22] (Chapter VII, Propositions 1.3 and 1.5) or [5] (Chapter IV, Theorem
2.2))). The in�nitesimal generator of a Feller process satis�es the hypothesis from item (a) except
for (13).

This paper is devoted to the proof of the existence of a measure ν which satis�es (13). Using
this result, property (13) is su�cient to prove that ν is an invariant measure for the process with
in�nitesimal generator A. To be more speci�c, the measure ν is built as the limit of a sequence
of random empirical measures (νηn)n∈N∗ . When (13) holds for this limit, we say that the sequence
(νηn)n∈N∗ converges towards an invariant distribution of the Feller process with generator A. We
begin with some preliminary results.

Lemma 2.1 ((Kronecker). Let (an)n∈N∗ and (bn)n∈N∗ be two sequences of real numbers. If (bn)n∈N∗

is non-decreasing, strictly positive, with lim
n
bn = +∞ and

∑
n>1

an/bn converges in R, then

lim
n

1

bn

n∑
k=1

ak = 0.

1∀f ∈ D(A), f(x0) = sup{f(x), x ∈ E} > 0, x0 ∈ E ⇒ Af(x0) 6 0.
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Theorem 2.2 (Chow, (see [8], Theorem 2.17)). Let (Mn)n∈N∗ be a real valued martingale with
respect to some �ltration F = (Fn)n∈N. Then

lim
n
Mn = M∞ ∈ R a.s. on the event

⋃
r∈[0,1]

{ ∞∑
n=1

E[|Mn −Mn−1|1+r|Fn−1] < +∞
}
.

2.2.2 Almost sure tightness

From the recursive control assumption, the following Theorem establish the a.s. tightness of the
sequence (νηn)n∈N∗ and also provides a uniform control of (νηn)n∈N∗ on a generic class of test functions.

Theorem 2.3. Let s > 1, ρ ∈ [1, 2], v∗ > 0, and let us consider the Borel functions V : E → [v∗,∞),
g : E → R+, ψ : [v∗,∞) → R+ and εI : R+ → R+ an increasing function. We have the following
properties:
A. Assume that Ãγn(ψ◦V )1/s exists for every n∈ N∗, and that GCQ((ψ◦V )1/s, g, ρ, εI) (see (10)),
SWI,γ,η(g, ρ, εI) (see (11)) and SWII,γ,η((ψ ◦ V )1/s) (see (12) hold. Then

P-a.s. sup
n∈N∗

− 1

Hn

n∑
k=1

ηkÃγk(ψ ◦ V )1/s(X̄Γk−1
) < +∞. (14)

B. Let α > 0 and β ∈ R. Let φ : [v∗,∞) → R∗+ be a continuous function such that Cφ :=
supv∈[v∗,∞) φ(v)/v <∞. Assume that (14) holds and

(i) RCQ,V (ψ, φ, α, β, s) (see (4)) holds.
(ii) LV (see (3)).

Then,
P-a.s. sup

n∈N∗
νηn(Ṽψ,φ,s) < +∞. (15)

with Ṽψ,φ,s de�ned in (6). Therefore, the sequence (νηn)n∈N∗ is P-a.s. tight.

Proof. A. For n∈ N∗, we write

−
n∑
k=1

ηkÃγk(ψ ◦ V )1/s(X̄Γk−1
) =−

n∑
k=1

ηk
γk

((ψ ◦ V )1/s(X̄Γk)− (ψ ◦ V )1/s(X̄Γk−1
))

+

n∑
k=1

ηk
γk

((ψ ◦ V )1/s(X̄Γk)− Qγk(ψ ◦ V )1/s(X̄Γk−1
)).

We study the �rst term of the r.h.s. First, an Abel transform yields

− 1

Hn

n∑
k=1

ηk
γk

((ψ ◦ V )1/s(X̄Γk)−(ψ ◦ V )1/s(X̄Γk−1
))

=
η1

Hnγ1
(ψ ◦ V )1/s(X̄0)− ηn

Hnγn
(ψ ◦ V )1/s(X̄Γn)

+
1

Hn

n∑
k=2

(ηk
γk
− ηk−1

γk−1

)
(ψ ◦ V )1/s(X̄Γk−1

).

We recall that (ψ ◦ V )1/s is non negative. From SWII,γ,η((ψ ◦ V )1/s) (see (12)), we have

E
[

sup
n∈N∗

n∑
k=1

1

Hk

(ηk
γk
− ηk−1

γk−1

)
+

(ψ ◦ V )1/s(X̄Γk−1
)
]
< +∞,



2 CONVERGENCE TO INVARIANT DISTRIBUTIONS: A GENERAL APPROACH 12

so that

P-a.s. sup
n∈N∗

n∑
k=1

1

Hk

(ηk
γk
− ηk−1

γk−1

)
+

(ψ ◦ V )1/s(X̄Γk−1
) < +∞.

By Kronecker's lemma, we deduce that

P-a.s. lim
n

1

Hn

n∑
k=2

(ηk
γk
− ηk−1

γk−1

)
+

(ψ ◦ V )1/s(X̄Γk−1
) = 0.

This concludes the study of the �rst term and now we focus on the second one. From Kronecker
lemma, it remains to prove the almost sure convergence of the martingale (Mn)n∈N∗ de�ned by
M0 := 0 and

Mn :=
n∑
k=1

ηk
γkHk

(
(ψ ◦ V )1/s(X̄Γk)− Qγk(ψ ◦ V )1/s(X̄Γk−1

)
)
, n∈ N∗.

Using the Chow's theorem (see Theorem 2.2), this a.s. convergence is a direct consequence of the
a.s. �niteness of the series

∞∑
n=1

( ηn
γnHn

)ρ
E
[
|(ψ ◦ V )1/s(X̄Γn)− Qγn(ψ ◦ V )1/s(X̄Γn−1)|ρ | X̄Γn−1

]
,

which follows from GCQ((ψ ◦ V )1/s, g, ρ, εI) (see (10)) and SWI,γ,η(g, ρ, εI) (see (11)).
B. Using RCQ,V (ψ, φ, α, β, s)(ii) (see (4)), there exists n0 ∈ N∗, such that for every n > n0, we have

E
[ψ ◦ V (X̄Γn+1)

ψ ◦ V (X̄Γn)

∣∣∣X̄Γn

]
6 1 + γn+1

β − αφ ◦ V (X̄Γn)

V (X̄Γn)
.

Since the function de�ned on R∗+ by v 7→ v1/s is concave and Cφ := supv∈[v∗,∞) φ(v)/v < +∞, for
n large enough we use the Jensen's inequality and we derive

E
[(ψ ◦ V (X̄Γn+1)

ψ ◦ V (X̄Γn)

)1/s∣∣∣X̄Γn

]
6
(

1 + γn+1
β − αφ ◦ V (X̄Γn)

V (X̄Γn)

)1/s

61 +
γn+1(β − αφ ◦ V (X̄Γn))

sV (X̄Γn)
.

Now when β > 0, byRCQ,V (ψ, φ, α, β, s)(iii) (see (4)), there exists λ ∈ (0, 1) and vλ ∈ (0,+∞) such
that for every v > vλ, then φ(v) > β/(λα). It follows that the Borel function Cλ,s : [v∗,+∞) →
R, v 7→ Cλ,s(v) := v−1ψ(v)1/s(β − λαφ(v)) is locally bounded on [v∗,+∞) and non positive on
[vλ,+∞), hence C̄λ,s := supv∈[v∗,+∞)Cλ,s(v) < +∞. When β < 0, since φ and ψ are positive
functions, then the function Cλ,s is non positive and it follows that

Qγn+1(ψ ◦ V )1/s(X̄Γn) 6(ψ ◦ V )1/s(X̄Γn)

+
γn+1

s
(Cλ,s ◦ V (X̄Γn)− (1− λ)αṼψ,φ,s(X̄Γn)),

which yields,

Ṽψ,φ,s(X̄Γn) 6 − s

α(1− λ)
Ãγn+1(ψ ◦ V )1/s(X̄Γn) +

C̄λ,s ∨ 0

α(1− λ)
.

Consequently (15) follows from (14). The tightness of (νηn)n∈N∗ is a straightforward consequence

of (15) and lim
v→+∞

φ(v)ψ(v)1/s

v = +∞ (seeRCQ,V (ψ, φ, α, β, s)(iii)) since we then have lim
x→∞

Ṽψ,φ,s(x) =

+∞.
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2.2.3 Identi�cation of the limit

In Theorem 2.3, we obtained the tightness of (νηn)n∈N∗ . It remains to show that every limiting point
of this sequence is an invariant distribution of the Feller process with in�nitesimal generator A. This
is the interest of the following Theorem which relies on the in�nitesimal generator approximation.

Theorem 2.4. Let ρ∈ [1, 2]. We have the following properties:
A. Let D(A)0 ⊂ D(A), with D(A)0 dense in C0(E). We assume that Ãγnf exists for every

f ∈ D(A)0 and every n ∈ N∗. Also assume that there exists g : E → R+ a Borel function
and εI : R+ → R+ an increasing function such that GCQ(D(A)0, g, ρ, εI) (see (10)) and
SWI,γ,η(g, ρ, εI) (see (11)) hold and that

lim
n

1

Hn

n∑
k=1

∣∣ηk+1/γk+1 − ηk/γk
∣∣ = 0. (16)

Then

P-a.s. ∀f ∈ D(A)0, lim
n

1

Hn

n∑
k=1

ηkÃγkf(X̄Γk−1
) = 0. (17)

B. We assume that (17) and E(Ã, A,D(A)0) (see (7)) hold. Then

P-a.s. ∀f ∈ D(A)0, lim
n
νηn(Af) = 0.

It follows that, P-a.s., every weak limiting distribution νη∞ of the sequence (νηn)n∈N∗ belongs to
V, the set of the invariant distributions of (Xt)t>0. Finally, if the hypothesis from Theorem 2.3
point B. hold and (Xt)t>0 has a unique invariant distribution, i.e. V = {ν}, then

P-a.s. ∀f ∈ C
Ṽψ,φ,s

(E), lim
n
νηn(f) = ν(f), (18)

with C
Ṽψ,φ,s

(E) de�ned in (6).

In the particular case where the function ψ is polynomial, (18) also reads as the a.s. convergence
of the empirical measures for some Lp-Wasserstein distances, p > 0, that we will study further in
this paper for some numerical schemes of some di�usion processes. From the liberty granted by
the choice of ψ in this abstract framework, where only a recursive control with mean-reverting is
required, we will also propose an application for functions ψ with exponential growth.

Proof. A. We write

−
n∑
k=1

ηkÃγkf(X̄Γk−1
) =−

n∑
k=1

ηk
γk

(f(X̄Γk)− f(X̄Γk−1
))

+
n∑
k=1

ηk
γk

(f(X̄Γk)− Qγkf(X̄Γk−1
)).

We study the �rst term of the r.h.s. We derive by an Abel transform that

− 1

Hn

n∑
k=1

ηk
γk

(f(X̄Γk)− f(X̄Γk−1
)) =

η1

Hnγ1
f(X̄0)− ηn

Hnγn
f(X̄Γn)

+
1

Hn

n∑
k=2

(ηk
γk
− ηk−1

γk−1

)
f(X̄Γk−1

).
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Since f is bounded and lim
n
ηn/(Hnγn) = 0, we deduce that lim

n
ηnf(X̄Γn)/(Hnγn)

a.s.
= 0 and, on the

other hand, we deduce from (16) that

lim
n

1

Hn

n∑
k=1

ηk
γk

(f(X̄Γk)− f(X̄Γk−1
)) = 0.

This completes the study of the �rst term. To treat the second term, the approach is quite sim-
ilar to the one in the proof of Theorem 2.3 point A. using GCQ(D(A), g, ρ, εI) (see (10)) with
SWI,γ,η(g, ρ, εI) (see (11)). Details are left to the reader.

B. First we write

1

Hn

n∑
k=1

ηkÃγkf(X̄Γk−1
)− νηn(Af) =

1

Hn

n∑
k=1

ηk
(
Ãγkf(X̄Γk−1

)−Af(X̄Γk−1
)
)
.

Now we use the short time approximation E(Ã, A,D(A)0) (see (7)) and it follows that,∣∣∣ 1

Hn

n∑
k=1

ηk(Ãγkf(X̄Γk−1
)−Af(X̄Γk−1

))
∣∣∣ 6 1

Hn

n∑
k=1

ηkΛf (X̄Γk−1
, γk).

Moreover, we have the following decomposition:

∀f ∈ D(A)0,∀x∈ E,∀γ ∈ [0, γ̄], Λf (x, γ) = 〈g(x), Ẽ[Λ̃f (x, γ)]〉Rq

with g : (E,B(E))→ Rq+, q ∈ N, a locally bounded Borel measurable function and Λ̃f : (E ×R+ ×
Ω̃,B(E)⊗B(R+)⊗G̃)→ Rq+ a measurable function such that supi∈{1,...,q} Ẽ

[
supx∈E supγ∈(0,γ̄] Λ̃f,i(x, γ)

]
<

+∞. Since for every i ∈ {1, . . . , q}, supn∈N∗ ν
η
n(gi, ω) < +∞, P(dω)− a.s., the P(dω)− a.s. conver-

gence of 1
Hn

∑n
k=1 ηkΛf (X̄Γk−1

, γk) towards zero for every f ∈ D(A)0, will follow from the following

result: Let (X̄n)n∈N ∈ E⊗N. If

sup
i∈{1,...,q}

sup
n∈N∗

1

Hn

n∑
k=1

ηkgi(X̄k−1) < +∞,

then, for every f ∈ D(A)0, lim
n

1
Hn

∑n
k=1 ηkΛf (X̄k−1, γk) = 0. In order to obtain this result, we �rst

show that, for every f ∈ D(A)0, every i ∈ {1, . . . , q}, and every (X̄n)n∈N ∈ E⊗N, then

P̃(dω̃)− a.s. lim
n

1

Hn

n∑
k=1

ηkΛ̃f,i(X̄k−1, γk, ω̃)gi(X̄k−1) = 0,

and the result will follow from the Dominated Convergence theorem since, for every n∈ N∗,

1

Hn

n∑
k=1

ηkΛ̃f,i(X̄k−1, γk, ω̃)gi(X̄k−1) 6 sup
x∈E

sup
γ∈(0,γ̄]

Λ̃f,i(x, γ, ω̃) sup
n∈N∗

1

Hn

n∑
k=1

ηkgi(X̄k−1) < +∞.

with Ẽ[supx∈E supγ∈(0,γ̄] Λ̃f,i(x, γ, ω̃)] < +∞ and supn∈N∗
1
Hn

∑n
k=1 ηkgi(X̄k−1) < +∞. We �x

f ∈ D(A)0, i ∈ {1, . . . , q} and (X̄n)n∈N ∈ E⊗N and we assume that E(Ã, A,D(A)0) I) (see (8))
holds for Λ̃f,i and gi. If instead E(Ã, A,D(A)0) II) (see (9)) is satis�ed, the proof is similar but sim-

pler so we leave it to the reader. By assumption E(Ã, A,D(A)0) I)(ii) (see (9)), P̃(dω̃) − a.s,
for every R > 0, there exists KR(ω̃) ∈ KE such that supx∈Kc

R(ω̃) supγ∈(0,γ(ω̃)] Λ̃f,i(x, γ, ω̃) <

1/R. Then from E(Ã, A,D(A)0) I) (i)(see (8)), we derive that, P̃(dω̃) − a.s, for every R > 0,
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lim
n

Λ̃f,i(X̄n−1, γn, ω̃)1KR(ω̃)(X̄k−1) = 0, Then, since gi is a locally bounded function, as a straight-

forward consequence of Césaro's lemma, we obtain

P̃(dω̃)− a.s. ∀R > 0,

lim
n

1

Hn

n∑
k=1

ηkΛ̃f,i(X̄k−1, γk, ω̃)gi(X̄k−1)1KR(ω̃)(X̄k−1) = 0

Let n(ω̃) := inf{n∈ N∗, supk>n γk 6 γ(ω̃)}. By the assumption E(Ã, A,D(A)0) I)(ii) (see (8)), we

have, P̃(dω̃)− a.s, lim
|x|→+∞

supn>n(ω̃) Λ̃f,i(x, γn, ω̃) = 0, Moreover,

sup
n>n(ω̃)

1

Hn

n∑
k=n(ω̃)

ηkΛ̃f,i(X̄k−1, γk, ω̃)g(X̄k−1)1Kc
R(ω̃)(X̄k−1)

6 sup
x∈Kc

R(ω̃)
sup

γ∈(0,γ(ω̃)]
Λ̃f,i(x, γ, ω̃) sup

n∈N∗

1

Hn

n∑
k=1

ηkgi(X̄k−1).

We let R tends to in�nity and since supn∈N∗
1
Hn

∑n
k=1 ηkgi(X̄k−1) < +∞, the l.h.s. of the above

equation converges P̃(dω̃)− a.s. to 0. Finally, since n(ω̃) is P̃(dω̃)− a.s. �nite, we also have

P̃(dω̃)− a.s. ∀R > 0,

lim
n

1

Hn

n(ω̃)−1∑
k=1

ηkΛ̃f,i(X̄k−1, γk, ω̃)g(X̄k−1)1Kc
R(ω̃)(X̄k−1) = 0.

Applying the same approach for every i ∈ {1, . . . , q}, the Dominated Convergence Theorem yields:

∀(X̄n)n∈N ∈ E⊗N,∀f ∈ D(A)0, lim
n

1

Hn

n∑
k=1

ηkΛf (X̄k−1, γk) = 0,

and since for every i ∈ {1, . . . , q}, supn∈N∗ ν
η
n(gi, ω) < +∞, P(dω)− a.s., then

P(dω)− a.s. ∀f ∈ D(A)0,
1

Hn

n∑
k=1

ηk(Ãγkf(X̄Γk−1
)−Af(X̄Γk−1

)) = 0.

It follows that, P(dω)-a.s., for every f ∈ D(A)0, lim
n
νηn(Af) = 0. The conclusion follows from

the Echeverria-Weiss theorem (see Theorem 2.1). Simply notice that we maintain the assumptions
of this theorem when D(A) is replaced by D(A)0, since D(A)0 ⊂ D(A) and D(A)0 is dense in
C0(E).

2.3 About growth control and step-weight assumptions

The following Lemma presents a L1-�niteness property that can be obtained under recursive con-
trol hypothesis and strongly mean-reverting assumptions (φ = Id). This result is thus useful to
prove SWI,γ,η(g, ρ, εI) (see (11)) or SWII,γ,η(F ) (see (12)) for well chosen F and g in this speci�c
situation.

Lemma 2.2. Let v∗ > 0, V : E → [v∗,∞), ψ : [v∗,∞)→ R+, such that Ãγnψ ◦ V exists for every
n∈ N∗. Let α > 0, β ∈ R and s > 1. We assume that RCQ,V (ψ, Id, α, β, s) (see (4)) holds and that
E[ψ ◦ V (X̄Γn0

)] < +∞ for every n0 ∈ N∗. Then

sup
n∈N

E
[
ψ ◦ V (X̄Γn)

]
< +∞. (19)
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In particular, let ρ ∈ [1, 2] and let εI : R+ → R+ be an increasing function. It follows that if∑∞
n=1

∣∣∣ ηn
Hnγn

∣∣∣ρεI(γn) < +∞, then SWI,γ,η(ψ◦V, ρ, εI) holds and if
∑

n≥0
(ηn+1/γn+1−ηn/γn)+

Hn+1
< +∞,

then SWII,γ,η(ψ ◦ V ) is satis�ed

Proof. First, we deduce from RCQ,V (ψ, Id, α, β, s)(ii) that there exists n0 ∈ N such that for n > n0,
we have

E[ψ ◦ V (X̄Γn+1)|X̄Γn ] 6ψ ◦ V (X̄Γn) + γn+1
ψ ◦ V (X̄Γn)

V (X̄Γn)
(β − αV (X̄Γn)).

Now, let λ ∈ (0, 1) and vλ = v∗ ∨ (β/(λα)). It follows that the Borel function Cλ : [v∗,+∞) → R,
v 7→ Cλ(v) := v−1ψ(v)(β − λαv) is locally bounded on [v∗,+∞) and non positive on [vλ,+∞),
hence C̄λ := supv∈[v∗,vλ)Cλ(v) < +∞ (with the convention supv∈∅Cλ(v) = 0) and

E[ψ ◦ V (XΓn+1)|XΓn ] 6ψ ◦ V (X̄Γn) + γn+1(Cλ ◦ V (X̄Γn)− (1− λ)αψ ◦ V (X̄Γn)),

6ψ ◦ V (X̄Γn)(1− γn+1(1− λ)α) + γn+1C̄λ.

Applying a simple induction we deduce that E[ψ ◦ V (XΓn)] 6 E[ψ ◦ V (Xn0)] ∨ C̄λ
(1−λ)α .

Now, we provide a general way to obtain SWI,γ,η(g, ρ, εI) and SWII,γ,η(F ) for some speci�c g
and F as soon as a recursive control with weakly mean reversion assumption holds.

Lemma 2.3. Let v∗ > 0, V : E → [v∗,∞), ψ, φ : [v∗,∞) → R+, such that Ãγnψ ◦ V exists
for every n ∈ N∗. Let α > 0, β ∈ R and s > 1. We also introduce the non-increasing sequence
(θn)n∈N∗ such that

∑
n>1 θnγn < +∞. We assume that RCQ,V (ψ, φ, α, β, s) (see (4)) holds and that

E[ψ ◦ V (X̄Γn0
)] < +∞ for every n0 ∈ N∗. Then

∞∑
n=1

θnγnE[Ṽψ,φ,1(X̄Γn−1)] < +∞

with Ṽψ,φ,1 de�ned in (6). In particular, let ρ ∈ [1, 2] and let εI : R+ → R+ be an increasing
function. If we also assume

SWI,γ,η(ρ, εI) ≡
(
γ−1
n εI(γn)

( ηn
Hnγn

)ρ)
n∈N∗

is non-increasing and

∞∑
n=1

( ηn
Hnγn

)ρ
εI(γn) < +∞, (20)

then we have SWI,γ,η(Ṽψ,φ,1, ρ, εI) (see (11)). Finally,if

SWII,γ,η ≡
( ηn+1

(γn+1
− ηn

γn
)+

γnHn

)
n∈N∗

is non-increasing and

∞∑
n=1

(ηn+1/γn+1 − ηn/γn)+

Hn
< +∞, (21)

then we have SWII,γ,η(Ṽψ,φ,1) (see (12)).

Proof. First assume that β > 0. By RCQ,V (ψ, φ, α, β, s)(iii) (see (4)), there exists λ ∈ (0, 1) and
vλ ∈ (0,+∞) such that for every v > vλ, then φ(v) > β/(λα). It follows that the Borel function
Cλ : [v∗,+∞) → R, v 7→ Cλ(v) := v−1ψ(v)(β − λαφ(v)) is locally bounded on [v∗,+∞) and non
positive on [vλ,+∞), hence C̄λ := supv∈[v∗,+∞)Cλ(v) < +∞. When β < 0, since φ and ψ are
positive functions, then the function Cλ is non positive. Using the same approach as in the proof of
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Theorem 2.3 point B., we deduce that there exists n0 ∈ N such that we have the following telescopic
decomposition:

∀n > n0, θn+1γn+1Ṽψ,φ,1(X̄Γn) 6θn+1
ψ ◦ V (XΓn)− E[ψ ◦ V (X̄Γn+1)|X̄Γn ]

α(1− λ)

+ γn+1θn+1
C̄λ

α(1− λ)

6
θnψ ◦ V (X̄Γn)− θn+1E[ψ ◦ V (X̄Γn+1)|X̄Γn ]

α(1− λ)

+ γn+1θn+1
C̄λ

α(1− λ)
,

where the last inequality follows from the fact that the sequence (θn)n∈N∗ is non-increasing. Taking
expectancy and summing over n yields the result as ψ takes positive values and E[ψ◦V (Xn0)] < +∞
for every n0 ∈ N∗.

This result concludes the general approach in a generic framework to prove convergence. The
next part of this paper is dedicated to various applications.

2.4 Example: the decreasing step Euler scheme of a di�usion

Using this abstract approach, we can recover the results obtained in [10] and [11] for the Euler scheme
of a d-dimensional Brownian di�usion. We do not provide proof in this example, but it is actually
similar, though less technical, to the Markov Switching case (see Section 3.2. Notice however, that
the approach to obtain in�nitesimal approximation assumption is explained in Appendix A for the
one-dimensional case. In this part of the paper, our aim is to illustrate how the generic assumptions
�t in our general framework.

We consider an N -dimensional Brownian motion (Wt)t>0. We are interested in the strong
solution - assumed to exist and to be unique - of the d-dimensional stochastic equation

Xt = x+

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs (22)

where b : Rd → Rd, σ : Rd → Rd×N . Let V : R → [1,+∞), the Lyapunov function of this system
such that LV (see (3)) holds with E = Rd, and

|∇V |2 6 CV V, ‖D2V ‖∞ < +∞.

Moreover, we assume that for every x ∈ R, |b(x)|2 + Tr[σσ∗(x)] 6 V a(x) for some a ∈ (0, 1].
Finally, for p > 1, we introduce the following Lp-mean-reverting property of V ,

∃α > 0, β∈ R, ∀x∈ R, 〈∇V (x), b(x)〉+
1

2
‖λp‖∞2(2p−3)+Tr[σσ∗(x)] 6 β − αV a(x)

with for every x ∈ Rd, λp(x) := sup{λp,1(x), . . . , λp,d(x), 0}, with λp,i(x) the i-th eigenvalue of the
matrix D2V (x) + 2(p − 1)∇V (x)⊗2/V (x). We now introduce the Euler scheme of (Xt)t>0. Let
ρ∈ [1, 2] and εI(γ) = γρ/2 and assume that (16), SWI,γ,η(ρ, εI) (see (20)) and SWII,γ,η (see (21))
hold. Let (Un)n be a sequence of RN -valued centered independent and identically distributed
random variables with covariance identity and bounded moments of order 2p. We de�ne the Euler
scheme with decreasing steps (γn)n∈N∗ , (X̄Γn)n∈N of (Xt)t>0 (22) by

∀n ∈ N, X̄Γn+1 =X̄Γn + γn+1b(X̄Γn) +
√
γn+1σ(X̄Γn)Un+1, X̄0 = x,

where Γn =
∑n

k=1 γk, n ∈ N. We consider (νηn(dx, ω))n∈N∗ de�ned as in (2) with (X̄Γn)n∈N de�ned
above. Now, we specify the measurable functions ψ, φ : [1,+∞) → [1,+∞) as ψ(v) = vp and
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φ(v) = va. Moreover, let s > 1 such that a pρ/s 6 p+a−1, p/s+a−1 > 0 and Tr[σσ∗] 6 CV p/s+a−1.
Then, we can show that E(Ã, A, C2

K(Rd)) (see (7)) holds (the proof is similar but simpler than its
counterpart (see Proposition 3.3 for the one state case in the Markov Switching framework) with
Ãγ and A denoting respectively the in�nitesimal generator of the di�usion (22) and the pseudo-
generators of the Euler scheme. Then, it follows from Theorem 2.4 that there exists an invariant
distribution ν for (Xt)t>0. Moreover, (νηn(dx, ω))n∈N∗ a.s. weakly converges toward V, the set of
invariant distributions of (Xt)t>0 and when it is unique i.e. V = {ν}, we have

lim
n
νηn(f) = ν(f),

for every ν-a.s. continuous function f ∈ C
Ṽψ,φ,s

(Rd) de�ned in (6). Notice that this result was

initially obtained in [10] when a = 1 and in [11] when a ∈ (0, 1] and in both cases s = ρ = 2.
Afterwards, the study was extended in the case function ψ with polynomial growth in [13]. We do
not recall this result. However, in the sequel we prove the convergence of the empirical measures for
both polynomial growth and exponential growth of ψ for the Euler scheme of a Brownian Markov
switching di�usions and those mentioned results can be recovered from a simpli�ed version of our
approach.

3 Applications

In this section, we propose some concrete applications which follow from the results presented in
Section 2. We �rst give Wasserstein convergence results concerning the Milstein scheme of a weakly
mean-reverting Brownian di�usion. Then, we propose a detailed application for the Euler scheme
of a Markov Switching di�usion for test functions with polynomial or exponential growth. As a
preliminary, we give some standard notations and properties that will be used extensively in the
sequel.

Notations.

• For α ∈ (0, 1] and f an α-Hölder function we denote [f ]α = supx 6=y |f(y)− f(x)|/|y − x|α.
• Let d ∈ N. For any Rd×d-valued symmetric matrix S, we de�ne λS := sup{λS,1, . . . , λS,d, 0}, with
λS,i the i-th eigenvalue of S.

3.1 Wasserstein convergence for the Milstein scheme

In this section, we provide Wasserstein convergence results for the empirical measures (2) built with
the Milstein approximation scheme of a one-dimensional weakly mean-reverting Brownian di�usion.
The framework presented in Section 2 is well suited this scheme and we present the result that we
obtain in this case.

The Milstein scheme has not been investigated until now but the convergence results are similar
to the Euler case that is why, even if the proofs are more technical, we simply state them. Moreover,
looking at E(Ã, A,D(A)0) (see (7)), the approximation of A seems to rely on the weak order of the
scheme. As a consequence, even from a rate of convergence viewpoint, intuitively, it is not possible
to achieve a better rate of convergence of (νηn)n∈N∗ with the Milstein scheme than with the Euler
scheme. We will give the proof of this result in a further paper.

We consider a one dimensional Brownian motion (Wt)t>0. We are interested in the strong
solution - assumed to exist and to be unique - of the one dimensional stochastic equation

Xt = x+

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dWs (23)

where b, σ, ∂xσ : R→ R. Moreover, we assume that for every x ∈ R, |b(x)|2 + |σ(x)|2 + |σσ′(x)|2 6
C(1 + |x|2a) for some a ∈ (0, 1]. Finally, for p > 1, we introduce the following Lp-mean-reverting
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property:

∃α > 0, β ∈ R, ∀x∈ R, 2xb(x) + (4p− 3)2(2p−3)+σ2(x) 6 β − α|x|2a.

We now introduce the Milstein scheme for (Xt)t>0. Let ρ ∈ [1, 2] and εI(γ) = γρ/2 and assume
that (16), SWI,γ,η(ρ, εI) (see (20)) and SWII,γ,η (see (21)) hold. Let (Un)n be a sequence of
centered independent and identically distributed random variables with variance one and bounded
moments of order 2p. We de�ne the Milstein scheme with decreasing steps (γn)n∈N∗ , (X̄Γn)n∈N of
(Xt)t>0 (23) by: X̄0 = x, ∀n ∈ N,

X̄Γn+1 =X̄Γn + γn+1b(X̄Γn) +
√
γn+1σ(X̄Γn)Un+1 + γn+1σσ

′(X̄Γn)(|Un+1|2 − 1).

Then V : R → [1,+∞), x 7→ 1 + x2 is a Lyapunov function for this scheme. We consider
(νηn(dx, ω))n∈N∗ de�ned as in (2) with (X̄Γn)n∈N de�ned above. Now, we specify the measurable
functions ψ, φ : [1,+∞) → [1,+∞) as ψ(v) = vp and φ(v) = va. Moreover, let s > 1 such that
apρ/s 6 p + a − 1 and p/s + a − 1 > 0. Then, it follows from Theorem 2.4 that there exists an
invariant distribution ν for (Xt)t>0. Moreover, (νηn(dx, ω))n∈N∗ a.s. weakly converges toward V, the
set of invariant distributions of (Xt)t>0 and when it is unique i.e. V = {ν}, we have

lim
n
νηn(f) = ν(f),

for every ν-a.s. continuous function f : R → R such that, for every x ∈ R, |f(x)| 6 C(1 + |x|p̄),
with p̄ < p/s+ a− 1. In other words (νηn)n∈N∗ converges towards ν (as n tends to in�nity) for the
LP̄ Wasserstein distances.

3.2 The Euler scheme of a Markov switching di�usion

In this part of the paper, we study invariant distributions for Markov switching Brownian di�usions.
The framework presented in Section 2 is well suited to this case. Our results extend the convergence
results obtained in [14] and inspired by [10]. More particularly, in [14], the convergence of (νηn)n∈N∗

is established under a strongly mean-reverting assumption that is φ = Id. In this paper, we do not
restrict to that case and consider a weakly mean-reverting setting, namely φ(v) = va, a ∈ (0, 1] for
every v ∈ [v∗,∞). As a �rst step, we consider polynomial test functions that is ψ(v) = vp, p > 1
for every v ∈ [v∗,∞) like in [14] (where p > 4 is required). As a second step, still under a weakly
mean-reverting setting (but where φ is not explicitly speci�ed), we extend those results to functions
ψ with exponential growth which enables to obtain convergence of the empirical measures for much
wider class of test functions.

Now, we present the Markov switching model, its decreasing step Euler approximation and the
hypothesis necessary to obtain the convergence of (νηn)n∈N∗ . We consider a d-dimensional Brownian
motion (Wt)t>0 and (ζt)t>0 a continuous time Markov chain taking values in the �nite state space
{1, . . . ,M0}, M0 ∈ N∗ with generator Q = (qz,w)z,w∈{1,...,M0} and independent from W . We are
interested in the strong solution - assumed to exist and to be unique - of the d-dimensional stochastic
equation

Xt = x+

∫ t

0
b(Xs, ζs)ds+

∫ t

0
σ(Xs, ζs)dWs

where for every z ∈ {1, . . . ,M0}, b(., z) : Rd → Rd and σ(., z)→ Rd×d are locally bounded functions.

We recall that qz,w > 0 for z 6= w, z, w ∈ {1, . . . ,M0} and
M0∑
w=1

qz,w = 0 for every z ∈ {1, . . . ,M0}.
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The in�nitesimal generator of this process reads

Af(x, z) =〈b(x, z),∇xf(x, z)〉+
1

2

d∑
i,j=1

(σσ∗)i,j(x, z)
∂2f

∂xi∂xj
(x, z)

+

M0∑
w=1

qz,wf(x,w),

for every (x, z) ∈ E := Rd × {1, . . . ,M0}. Moreover, the domain D(A) of A contains D(A)0 =
{f de�ned on E,∀ z ∈ {1, . . . ,M0}, f(., z) ∈}. Notice that D(A)0 is dense in C0(E). The reader
may refer to [25] for more details concerning Markov switching di�usion processes where properties
such as recurrence, ergodicity and stability are established. We consider the Euler genuine scheme
of this process for every n ∈ N and every t ∈ [Γn,Γn+1], de�ned by

X̄t =X̄Γn + (t− Γn)b(X̄Γn , ζΓn) + σ(X̄Γn , ζΓn)(Wt −WΓn). (24)

We will also denote ∆X̄n+1 = X̄Γn+1 − X̄Γn and

∆X̄1
n+1 = γn+1b(X̄Γn , ζΓn), ∆X̄2

n+1 = σ(X̄Γn , ζΓn)(WΓn+1 −WΓn), (25)

and X̄i
Γn+1

= X̄Γn +
∑i

j=1 ∆X̄i
n+1. In the sequel we will use the notation Un+1 = γ

−1/2
n+1 (WΓn+1 −

WΓn). Finally, we consider a Lyapunov function V : Rd × {1, . . . ,M0} → [v∗,∞), v∗ > 0, which
satis�es LV (see (3)) with E = Rd × {1, . . . ,M0}, and

|∇xV |2 6 CV V, sup
(x,z)∈E

‖D2
xV (x, z)‖ < +∞. (26)

Its mean-reverting properties will be de�ned further depending on the set of `test functions' f . We
also de�ne

∀x∈ Rd, z ∈ {1, . . . ,M0}, λψ(x, z) := λD2
xV (x,z)+2∇xV (x,z)⊗2ψ′′◦V (x,z)ψ′◦V (x,z)−1 . (27)

When ψ(v) = ψp(v) = vp, p > 0, we will also use the notation λp instead of λψ. We suppose that
there exists C > 0 such that b and σ satisfy

B(φ) ≡ ∀x∈ Rd,∀ z∈ {1, . . . ,M0}, |b(x, z)|2 + Tr[σσ∗(x, z)] 6 Cφ ◦ V (x, z) (28)

Test functions with polynomial growth.
Having in mind Wasserstein convergence, we introduce a weaker assumption on the sequence

(Un)n∈N∗ than Gaussian distribution. Let q ∈ N∗, p > 0. We suppose that (Un)n∈N∗ is a sequence
of i.i.d. random variables such that

MN ,q(U) ≡ ∀n∈ N∗, ∀q̃ ∈ {1, . . . , q}, E[(Un)⊗q̃] = E[(N (0, Id))
⊗q̃] (29)

Mp(U) ≡ sup
n∈N∗

E[|Un|2p] < +∞. (30)

We assume that

∃ cV > 1,∀x∈ Rd, sup
z∈{1,...,M0}

V (x, z) 6 cV inf
z∈{1,...,M0}

V (x, z). (31)

Let α > 0 and β ∈ R. We introduce the mean-reverting property of the scheme for the Lyapunov
function V . We assume that lim inf

v→+∞
φ(v) > β/α and that there exists ε0 > 0, such that we have

Rp(α, β, φ, V ) ≡ ∀x∈ Rd, ∀ z∈ {1, . . . ,M0},

〈∇V (x, z), b(x, z)〉+
1

2
χp(x, z) 6 β − αφ ◦ V (x, z), (32)
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with

χp(x, z) =‖λp‖∞2(2p−3)+Tr[σσ∗(x, z)]

+ V 1−p(x, z)

M0∑
w=1

(qz,w + ε0)V p(x,w). (33)

Theorem 3.1. Let p > 1 ,a∈ (0, 1], s > 1, ρ∈ [1, 2], ψp(v) = vp, φ(v) = va and εI(γ) = γρ/2. Let
α > 0 and β∈ R.

Assume that (Un)n∈N∗ satis�es MN ,2(U) (see (29)) and Mp(U) (see (30)).
Also assume that (26), B(φ) (see (28)), Rp(α, β, φ, V ) (see (32)), LV (see (3)), SWI,γ,η(ρ, εI)
(see (20)), SWII,γ,η (see (21)), (16) and (31) hold and that pρ/s 6 p+ a− 1.

Then, if p/s+ a− 1 > 0, (νηn)n∈N∗ (built with (X̄t)t>0 de�ned in (24)) is P-a.s. tight and

P-a.s. sup
n∈N∗

νηn(V p/s+a−1) < +∞. (34)

Assume also that for every z ∈ {1, . . . ,M0}, b(., z) and σ(., z) have sublinear growth and Tr[σσ∗(x, z)] 6
CV p/s+a−1(x, z). Then every weak limiting distribution ν of (νηn)n∈N∗ is an invariant distribution
of (Xt)t>0 and when ν is unique, we have

P-a.s. ∀f ∈ C
Ṽψp,φ,s

(E), lim
n
νηn(f) = ν(f), (35)

with C
Ṽψp,φ,s

(E) de�ned in (6).

Test functions with exponential growth.
We modify the hypothesis concerning the Lyapunov function V in the following way. First, we

assume that

∀ z∈ {1, . . . ,M0},∀x∈ Rd V (x, z) = V (x, 1), (36)

and we will use the notation V (x) := V (x, 1). We assume that

∀x∈ Rd,∀ z∈ {1, . . . ,M0},
Tr[σσ∗(x, z)]|b(x)|

(
|∇V (x)|+ |b(x, z)|

)
6 CV 1−p(x)φ ◦ V (x). (37)

Now let p 6 1 and let α > 0 and β ∈ R. We assume that lim inf
v→+∞

φ(v) > β+/α, β+ = 0 ∨ β, and

Rp,λ(α, β, φ, V ) ≡ ∀x∈ Rd,∀ z∈ {1, . . . ,M0},

〈∇V (x), b(x, z) + κp(x, z)〉+
1

2
χp(x, z) 6 β − αφ ◦ V (x), (38)

with

κp(x, z) = λp
V p−1(x)

φ ◦ V (x)
σσ∗(x, z)∇V (x)

and

χp(x, z) = − V 1−p(x)

φ ◦ V (x)Cσ(x, z)
ln(det(Σ(x, z)))

with Σ : Rd × {1, . . . ,M0},→ Sd+,∗, Sd+,∗ being the set of a positive de�nite matrix, de�ned by

(x, z) 7→ Σ(x, z) := Id − ‖D2V ‖∞Cσ(x, z)V p−1(x)σ∗σ(x, z), where Cσ : Rd × {1, . . . ,M0} → R∗+
satis�es infx∈Rd infz∈{1,...,M0}Cσ(x, z) > 0.
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Theorem 3.2. Let p ∈ [0, 1], λ > 0, s > 1, ρ∈ [1, 2], let φ : [v∗,∞)→ R+ be a continuous function
such that Cφ := supv∈[v∗,+∞) φ(v)/v < +∞ and lim inf

v→+∞
φ(v) = +∞, let ψ(v) = exp(λvp), y ∈ R+

and let εI(γ) = γρ/2 and ε̃I(γ) = γρ(p∧1/2). Let α > 0 and β ∈ R.
Assume that ρ < s, (36), (26), B(φ) (see (28)), Rp,λ(α, β, φ, V ) (see (38)) and LV (see (3)) hold.

Also suppose that SWI,γ,η(ρ, εI), SWI,γ,η(ρ, ε̃I) (see (20)), SWII,γ,η (see (21)), (16) and (37) hold.

Then (νηn)n∈N∗ (built with (X̄t)t>0 de�ned in (24)) is P-a.s. tight and

P-a.s. sup
n∈N∗

νηn

(φ ◦ V
V

exp
(
λ/sV p)

)
< +∞. (39)

Assume also that for every z ∈ {1, . . . ,M0}, b(., z) and σ(., z) have sub-linear growth. Then, every
weak limiting distribution ν of (νηn)n∈N∗ is an invariant distribution of (Xt)t>0 and if ν is unique,

P-a.s. ∀f ∈ C
Ṽψ,φ,s

(E), lim
n
νηn(f) = ν(f), (40)

with C
Ṽψ,φ,s

(E) de�ned in (6).

3.2.1 Proof of the recursive mean-reverting control

Test functions with polynomial growth

Proposition 3.1. Let v∗ > 0, and let φ : [v∗,∞) → R∗+ be a continuous function such that
Cφ := supv∈[v∗,∞) φ(v)/v < +∞. Now let p > 1 and de�ne ψp(v) = vp, v∈ R+.

Assume that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (29)) and Mp(U) (see (30)).

Also suppose that (26), (31), B(φ) (see (28)), Rp(α, β, φ, V ) (see (32)) for some α > 0 and
β ∈ R, are satis�ed.

Then, for every α̃ ∈ (0, α), there exists n0 ∈ N∗, such that

∀n > n0, ∀x∈ Rd,∀ z∈ {1, . . . ,M0},

Ãγnψp ◦ V (x, z) 6
ψp ◦ V (x, z)

V (x, z)
p
(
β − α̃φ ◦ V (x, z)

)
. (41)

Then RCQ,V (ψp, φ, pα̃, pβ, s) (see (4)) holds for every α̃ ∈ (0, α) and s > 1 such that lim inf
v→+∞

φ(v) >

β/α̃ and lim
v→+∞

v−1φ(v)ψp(v)1/s = +∞. Moreover, when φ = Id, we have

sup
n∈N

E[ψp ◦ V (X̄Γn , ζΓn)] < +∞. (42)

Proof. First we write

V p(X̄Γn+1 , ζΓn+1)− V p(X̄Γn , ζΓn) =V p(X̄Γn+1 , ζΓn)− V p(X̄Γn , ζΓn) (43)

+ V p(X̄Γn+1 , ζΓn+1)− V p(X̄Γn+1 , ζΓn).

We study the �rst term of the r.h.s. of the above equality. From the second order Taylor expansion
and the de�nition of λψp = λp (see (27)), we derive

ψp ◦ V (X̄Γn+1 , ζΓn) = ψp ◦ V (X̄Γn , ζΓn) + 〈X̄Γn+1 − X̄Γn ,∇xV (X̄Γn , ζΓn)〉ψ′p ◦ V (X̄Γn , ζΓn)

+
1

2
D2
xV (Υn+1, ζΓn)ψ′p ◦ V (Υn+1, ζΓn)(X̄Γn+1 − X̄Γn)⊗2

+
1

2
∇xV (Υn+1, ζΓn)⊗2ψ′′p ◦ V (Υn+1, ζΓn)(X̄Γn+1 − X̄Γn)⊗2

6 ψp ◦ V (X̄Γn , ζΓn) + 〈X̄Γn+1 − X̄Γn ,∇xV (X̄Γn , ζΓn)〉ψ′p ◦ V (X̄Γn , ζΓn)

+
1

2
λp(Υn+1, ζΓn)ψ′p ◦ V (Υn+1, ζΓn)|X̄Γn+1 − X̄Γn |2. (44)
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with Υn+1 ∈ (X̄Γn , X̄Γn+1). First, from (26), we have supz∈{1,...,M0} supx∈Rd λp(x, z) < +∞. Now,
since (Un)n∈N∗ is i.i.d. and satis�es MN ,1(U) (see (29)), we compute

E
[
X̄Γn+1 − X̄Γn |X̄Γn , ζΓn

]
= γn+1b(X̄Γn , ζΓn)

E [|X̄Γn+1 − X̄Γn |2|X̄Γn , ζΓn ] = γn+1Tr[σσ
∗(X̄Γn , ζΓn)] + γ2

n+1|b(X̄Γn , ζΓn)|2.

We focus on the study of the last term of the r.h.s of (44), also called the �remainder�.

Case p = 1. Assume �rst that p = 1. Using B(φ) (see (28)), for every α̃ ∈ (0, α), there exists
n0(α̃) such that, for every n > n0(α̃),

1

2
‖λ1‖∞γ2

n+1|b(X̄Γn , ζΓn)|2 6 γn+1(α− α̃)φ ◦ V (X̄Γn , , ζΓn). (45)

From assumption Rp(α, β, φ, V ) (see (32) and (33)), we gather all the terms of (44) together and
we conclude that

γ−1
n+1E[V (X̄Γn+1 , ζΓn)− V (X̄Γn , ζΓn)|X̄Γn , ζΓn ]+

M0∑
z=1

(qζΓn ,z + ε0)V (X̄Γn , z)

6 β − α̃φ ◦ V (X̄Γn , ζΓn).

Case p > 1. Assume now that p > 1 so that ψ′p(v) = pvp−1. Since |∇V |2 6 CV V (see (26)),

then
√
V is Lipschitz. Now, we use the following inequality: Let l ∈ N∗. We have

∀α > 0, ∀ui ∈ Rd, i = 1, . . . , l,
∣∣ l∑
i=1

ui
∣∣α 6 l(α−1)+

l∑
i=1

|ui|α. (46)

It follows that

V p−1(Υn+1, ζΓn) 6
(√
V (X̄Γn , ζΓn) + [

√
V ]1|X̄Γn+1 − X̄Γn |

)2p−2

62(2p−3)+(V p−1(X̄Γn , ζΓn) + [
√
V ]2p−2

1 |X̄Γn+1 − X̄Γn |2p−2).

To study the `remainder' of (44), we multiply the above inequality by |X̄Γn+1 − X̄Γn |2. First, we
study the second term which appears in the r.h.s. and using B(φ) (see (28)), for any p > 1,

|X̄Γn+1 − X̄Γn |2p 6 Cγpn+1φ ◦ V (X̄Γn , ζΓn)p(1 + |Un+1|2p).

Let α̂ ∈ (0, α). Therefore, we deduce from Mp(U) (see (30)) that there exists n0(α̂) ∈ N such that
for any n > n0(α̂), we have

E[|X̄Γn+1 − X̄Γn |2p|X̄Γn , ζΓn ]

6 γn+1φ ◦ V (X̄Γn , ζΓn)p
α− α̂

Cp−1
φ ‖λp‖∞2(2p−3)+ [

√
V ]2p−2

1

.

To treat the other term of the `remainder' of (44), we proceed as in (45) with ‖λ1‖∞ replaced by
‖λp‖∞22p−3[

√
V ]2p−2

1 , α replaced by α̂ and α̃ ∈ (0, α̂). We gather all the terms of (44) together and



3 APPLICATIONS 24

using Rp(α, β, φ, V ) (see (32) and (33)), for every n > n0(α̃) ∨ n0(α̂), we obtain

E[V p(X̄Γn+1 , ζΓn)−V p(X̄Γn , ζΓn)|X̄Γn , ζΓn ]

+ V 1−p(X̄Γn , ζΓn)

M0∑
z=1

(qζΓn ,z + ε)V p(X̄Γn , z)

6 γn+1pV
p−1(X̄Γn , ζΓn)(β − αφ ◦ V (X̄Γn , ζΓn))

+ γn+1pV
p−1(X̄Γn , ζΓn)

(
φ ◦ V (X̄Γn , ζΓn)(α̂− α̃)

+ (α− α̂)
V 1−p(X̄Γn , ζΓn)φ ◦ V (X̄Γn , ζΓn)p

Cp−1
φ

)
6 γn+1V

p−1(X̄Γn , ζΓn)
(
βp− α̃pφ ◦ V (X̄Γn , ζΓn)

)
.

Now, we focus on the second term of the r.h.s. of (43). First, since ζ and W are independent, it
follows, with notations (25), that

E[V p(X̄Γn+1 , ζΓn+1)−V p(X̄Γn+1 , ζΓn)|X̄Γn , ζΓn ,∆X̄n+1]

= γn+1

M0∑
z=1

(qζΓn ,z + o
n→+∞

(γn+1))V p(X̄Γn+1 , z).

Now, using the same reasoning as for the �rst term of the r.h.s. of (43) and (31), since p > 1, we
derive, for every z ∈ {1, . . . ,M0},

|E[V p(X̄Γn+1 , z)−V p(X̄Γn , z)|X̄Γn , ζΓn ]|

6C(γ
1/2
n+1V

p−1(X̄Γn , z)φ ◦ V (X̄Γn , ζΓn) + γpn+1φ ◦ V (X̄Γn , ζΓn)p

+ γn+1V
p−1/2(X̄Γn , z)

√
φ ◦ V (X̄Γn , ζΓn))

6Cγ1/2
n+1V

p(X̄Γn , ζΓn)

where C > 0 is a constant which may change from line to line. We deduce that there exists
ε : R+ → R+ satisfying lim

γ→0
ε(γ) = 0, such that we have

E[V p(X̄Γn+1 , ζΓn+1)−V p(X̄Γn+1 , ζΓn)|X̄Γn , ζΓn ]

= γn+1

M0∑
z=1

(
qζΓn ,z + o(γn+1)

)
E[V p(X̄Γn+1 , z)|X̄Γn , ζΓn ]

6 γn+1

M0∑
z=1

(qζΓn ,z + ε(γn+1))V p(X̄Γn , z).

This yields (41) as a direct consequence of Rp(α, β, φ, V ) (see (32) and (33)). The proof of (42) is
a straightforward application of Lemma 2.2 as soon as we notice that the increments of the Euler
scheme (for Markov Switching di�usions) have �nite polynomial moments which implies (19).

Test functions with exponential growth
In this section we do not relax the assumption on the Gaussian structure of the increment as we

do in the polynomial case with hypothesis (29) and (30). In particular, it leads the following result:

Lemma 3.1. Let Λ ∈ Rd×d and U ∼ N (0, Id). We de�ne Σ ∈ Rd×d by Σ = Id − 2Λ∗Λ. Assume
that Σ ∈ Sd+,∗. Then, for every h ∈ (0, 1),

∀v ∈ Rd, E
[

exp
(√

h〈v, U〉+ h|ΛU |2
)]

6 exp
( h

2(1− h)
|v|2
)

det(Σ)−h/2. (47)
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Proof. A direct computation yields

E[exp(|ΛU |2)] =

∫
Rd

(2π)−d/2 exp
(
− 1

2
〈−2Λ∗Λu+ u, u〉

)
du = det(Σ)−1/2.

Now, (47) follows from the Hölder inequality since

E
[

exp(
√
h〈v, U〉+ h|ΛU |2)

]
6 E

[
exp

( √h
1− h

〈v, U〉
)]1−h

E[exp(|ΛU |2)]h

= exp
( h

2(1− h)
|v|2
)

det(Σ)−h/2.

Using those results, we deduce the recursive control for exponential test functions.

Proposition 3.2. Let v∗ > 0, and let φ : [v∗,∞) → R+ be a continuous function such that
Cφ := supv∈[v∗,∞) φ(v)/v < +∞. Now let p ∈ [0, 1], λ > 0 and de�ne ψ(v) = exp(λvp), y ∈ R+.

Suppose that (26), (36), B(φ) (see (28)) and Rp,λ(α, β, φ, V ) (see (38)) are satis�ed.

Then, for every α̃ ∈ (0, α), there exists β̃ ∈ R+ and n0 ∈ N∗, such that

∀n > n0,∀x∈ Rd, Ãγnψ ◦ V (x) 6
ψ ◦ V (x)

V (x)
p
(
β̃ − α̃φ ◦ V (x)

)
. (48)

Then, RCQ,V (ψ, φ, pα̃, pβ̃, s) (see (4)) holds for every s > 0, as soon as lim inf
v→+∞

φ(v) = +∞. More-

over, when φ = Id we have

sup
n∈N

E[ψ ◦ V (X̄Γn)] < +∞. (49)

Proof. When p = 0, the result is straightforward. Since p 6 1, the function de�ned on R+ by
y 7→ vp is concave. Using then the Taylor expansion at order 2 of the function V , we have, for every
x, y∈ Rd,

V p(y)− V p(x) 6pV p−1(x)
(
V (y)− V (x)

)
6pV p−1(x)

(
〈∇V (x), y − x〉+

1

2
‖D2V ‖∞|y − x|2

)
.

Using this inequality with x = X̄Γn and y = X̄Γn+1 = X̄Γn + ∆X̄1
n+1 + ∆X̄2

n+1, with notations (25),
we derive

V p(X̄Γn + ∆X̄n+1)− V p(X̄Γn)

6 pV p−1(X̄Γn)〈∇V (X̄Γn),∆X̄1
n+1 + ∆X̄2

n+1〉

+
1

2
pV p−1(X̄Γn)‖D2V ‖∞

(
|∆X̄1

n+1|2 + |∆X̄2
n+1|2 + 2〈∆X̄1

n+1,∆X̄
2
n+1〉

)
.

It follows that

E[exp(λV p(X̄Γn+1))|X̄Γn , ζΓn ] 6 Hγn+1(X̄Γn , ζΓn)Lγn+1(X̄Γn , ζΓn)

with, for every x ∈ Rd, every z ∈ {1, . . . ,M0} and every γ ∈ R∗+,

Hγ(x, z) = exp(λV p(x) + γλpV p−1(x)〈∇V (x), b(x, z)〉

+ γ2 1

2
λp‖D2V ‖∞V p−1(x)|b(x, z)|2)
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and

Lγ(x, z) =E[exp(
√
γλpV p−1(x)〈∇V (x) + γ‖D2V ‖∞b(x, z), σ(x, z)U〉

+
1

2
γλp‖D2V ‖∞V p−1(x)|σ(x, z)U |2)]

where U ∼ N (0, Id). In order to compute Lγ(x, z), we use Lemma 3.1 (see (47)) with parameters
h = Cσ(x, z)−1γλp, v =

√
Cσ(x)λpV p−1(x)σ∗(x, z)(∇V (x) + γ‖D2V ‖∞b(x, z)) and the matrix

Σ(x, z) = Id − ‖D2V ‖∞Cσ(x, z)V p−1(x)σ∗σ(x, z)

where infx∈Rd infz∈{1,...,M0}Cσ(x, z) > 0 and Σ(x, z) ∈∈ Sd+,∗. It follows from (47) and h/(2−2h) 6
h for h ∈ (0, 1/2], that for every γ 6 infx∈Rd infz∈{1,...,M0}Cσ(x, z)/(2λp),

Lγ(x, z) 6 exp
( γλpCσ(x, z)−1

2(1− γλpCσ(x, z)−1)
|v|2 − 1

2
γλpCσ(x, z)−1 ln(det(Σ(x, z)))

)
6 exp

(
γλpCσ(x, z)−1|v|2 − 1

2
γλpCσ(x, z)−1 ln(det(Σ(x, z)))

)
.

At this point, we focus on the �rst term inside the exponential. We have

|v|2 6Cσ(x, z)λpV 2p−2(x)
(
〈σσ∗(x, z)∇V (x),∇V (x)〉

+ Tr[σσ∗(x, z)](γ‖D2V ‖∞2〈∇V (x), b(x, z)〉+ γ2‖D2V ‖2∞|b(x, z)|2)
)

Using B(φ) (see (28)), (37) and Rp,λ(α, β, φ, V ) (see (38)), it follows that there exists C̄ > 0 such
that

Hγ(x, z)Lγ(x, z) 6 exp
(
λV p(x) + γλpV p−1(x)(β − αφ ◦ V (x)) + C̄γ2V p−1(x)φ ◦ V (x)

)
which can be rewritten

Hγ(x, z)Lγ(x, z) 6 exp
((

1− γpαφ ◦ V (x)

V (x)

)
λV p(x)

+ γpα
φ ◦ V (x)

V (x)
V p(x)

( λβ

αφ ◦ V (x)
+ γC̄/(αp)

))
.

Using the convexity of the exponential function, we have for every γpαCφ < 1,

Hγ(x, z)Lγ(x, z) 6 exp
(
λV p(x)

)
− γpαφ ◦ V (x)

V (x)
exp

(
λV p(x)

)
+ γpα

φ ◦ V (x)

V (x)
exp

(
V p(x)

( λβ

αφ ◦ V (x)
+ γC̄/(αp)

))
.

It remains to study the last term of the r.h.s of the above inequality. The function de�ned on
[v∗,+∞) by v 7→ exp(vp( λβ

αφ(v) + γC̄/(αp))) is continuous and locally bounded. Moreover, by

Rp,λ(α, β, φ, V ) (see (38)), we have lim inf
v→+∞

φ(v) > β+/α. Hence, there exists θ ∈ (0, 1) and vθ > v∗

such that φ(v) > β+/(αθ) for every v > vθ. Consequently, as soon as γ < θλαp/C̄, for every
α̃∈ (0, α) there exists β̃ > 0 such that

φ ◦ V (x)

V (x)
exp

(
V p(x)

( λβ

αφ ◦ V (x)
+ γC̄/(αp)

))
6
β̃

α

exp(λV p(x))

V (x)

+
α− α̃
α

φ ◦ V (x)

V (x)
exp(λV p(x))

and the proof of the recursive control (48) is completed. Finally (49) follows from (19), which follow
from the equation above, and Lemma 2.2.
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3.2.2 In�nitesimal control

Proposition 3.3. Suppose that the sequence (Un)n∈N∗ satis�es MN ,2(U) (see (29)). Also assume
that for every z ∈ {1, . . . ,M0}, b(., z) and σ(., z) have sublinear growth and that supn∈N∗ ν

η
n(Tr[σσ∗]) <

+∞, a.s.
Then, E(Ã, A,D(A)0) (see (7)) is ful�lled.

Proof. First we recall that D(A)0 = {f : Rd×{1, . . . ,M0},∀ z∈ {1, . . . ,M0}, f(., z) ∈ C2
K(Rd)} and

we write, for f ∈ D(A)0,

f(X̄Γn+1 , ζΓn+1)− f(X̄Γn , ζΓn) =f(X̄Γn+1 , ζΓn+1)− f(X̄Γn+1 , ζΓn)

+ f(X̄Γn+1 , ζΓn)− f(X̄Γn , ζΓn).

We study the �rst term of the r.h.s. of the above equation. Since U and ζ are independent, we
have, with notation (25),

E
[
f(X̄Γn+1 , ζΓn+1)− f(X̄Γn+1 , ζΓn)|X̄Γn , ζΓn ,∆X̄n+1

]
= γn+1

M0∑
z=1

(
qζΓn ,z + o(γn+1)

)
f(X̄Γn+1 , z).

Using Taylor expansions at order one and two, for every z ∈ {1, . . . ,M0} and the fact that the
sequence (Un)n∈N∗ is i.i.d., we obtain

E
[
f(X̄Γn+1 , z)− f(X̄Γn , z)|X̄Γn = x, ζΓn

]
= E

[
f(X̄Γn + ∆X̄1

n+1, z)− f(X̄Γn , z)|X̄Γn = x, ζΓn

]
+ E

[
f(X̄Γn+1 , z)− f(X̄Γn + ∆X̄1

n+1, z)|X̄Γn = x, ζΓn

]
6
∫ 1

0
|∇xf(x+ θb(x, ζΓn)γn+1, z)||b(x, ζΓn)γn+1|dθ

+

∫ 1

0
‖D2

xf(x+ b(x, ζΓn)γn+1 + θσ(x, ζΓn)
√
γn+1u, z)‖|

√
γn+1σ(x, ζΓn)u|2dθP̃U (du)

where P̃U denotes the distribution of U1. Combining the two last inequalities, we derive

γ−1
n+1E[f(X̄Γn+1 , ζΓn+1)− f(X̄Γn+1 , ζΓn)|X̄Γn , ζΓn ]

6
M0∑
z=1

qζΓn ,zf(X̄Γn , z) + o(γn+1)‖f‖∞

+

M0∑
z=1

(
|qζΓn ,z|+ o(γn+1)

)(
Λf,1(X̄Γn , ζΓn , γn+1)|b(X̄Γn , ζΓn)|

+ Λf,2(X̄Γn , ζΓn , γn+1) Tr[σσ∗(X̄Γn , ζΓn)]
)
.

We study each term in the r.h.s. of the above inequality. First, we have Λf,1(x, z, γ) = |b(x, z)|Ẽ[Λ̃f,1(x, z, γ)]

where Λ̃f,1(x, z, γ) = R̃f,1(x, z, γ,Θ) with Θ ∼ U[0,1] under P̃, and

R̃f,1 : Rd × {1, . . . ,M0} × R+ × [0, 1] → R+

(x, z, γ, θ) 7→ γ
M0∑
w=1
|∇xf(x+ θb(x, z)γ,w)|.

We are going to prove that E(Ã, A,D(A)0) I) (see (8)) holds.

Since b has sublinear growth w.r.t. its �rst variable, there exists Cb > 0 such that |b(x, z)| 6
Cb(1+|x|) for every x ∈ Rd and z ∈ {1, . . . ,M0}. Therefore, since f has a compact support, it follows
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that there exists γ0 > 0 and R > 0 such that we have sup|x|>R,z∈{1,...,M0} supγ6γ R̃f,1(x, z, γ, θ) = 0

for every θ ∈ [0, 1] which implies E(Ã, A,D(A)0) I)(ii).
Since ∇xf is bounded, it is straightforward that E(Ã, A,D(A)0) I) (i) holds.
Finally, b is locally bounded and de�ning and g1(x, z) = 1x6R|b(x, z)|, the couple (Λ̃f,1, g1) satis�es

E(Ã, A,D(A)0) I).

Now, we have Λf,2(x, z, γ) = g2(x, z)Ẽ[Λ̃f,2(x, z, γ)] where Λ̃f,2(x, z, γ) = R̃f,2(x, z, γ, U,Θ) with

U ∼ PU , Θ ∼ U[0,1] under P̃ and g2(x, z) = Tr[σσ∗(x, z)] and

R̃f,2 : Rd × {1, . . . ,M0} × R+ × Rd × [0, 1] → R+

(x, z, γ, u, θ) 7→ R̃f,2(x, z, γ, u, θ),

with R̃f,2(x, z, γ, u, θ) = |√γu|2
M0∑
w=1

‖D2
xf(x+ b(x, z)γ + θσ(x, z)

√
γu,w)‖.

We are going to prove that E(Ã, A,D(A)0) I) (see (8)) holds for the couple (Λ̃f,2, g2). We �x u ∈ RN
and θ ∈ [0, 1].

Since the functions b and σ have sublinear growth, there exists Cb,σ > 0 such that |b(x, z)| +
|σ(x, z)| 6 Cb,σ(1 + |x|) for every x ∈ Rd and z ∈ {1, . . . ,M0}. Therefore, since f has compact
support, there exists γ(u, θ) > 0 and R > 0 such that

sup
|x|>R,z∈{1,...,M0}

sup
γ6γ(u,θ)

|R̃f,2(x, z, γ, u, θ)| = 0.

It follows that E(Ã, A,D(A)0) I)(ii) holds.
Moreover since D2

xf is bounded, it is straightforward that E(Ã, A,D(A)0) I) (i) is also satis�ed.
Finally, we recall that supn∈N∗ ν

η
n(Tr[σσ∗]) < +∞, a.s. and U is bounded in L2 and then E(Ã, A,D(A)0) I)

holds for (Λ̃f,2, g2).

Moreover, it is straightforward to show that E(Ã, A,D(A)0) II) (see 9)) holds for every couple
of functions of the form ( o

n→+∞
(γn+1)‖f‖∞, 1) which concludes the study of the �rst term.

It remains to study E[f(X̄Γn+1 , ζΓn)−f(X̄Γn , ζΓn)|X̄Γn , ζΓn ]. Using once again Taylor expansions
at order one and two, we derive

γ−1
n+1

(
E
[
f(X̄Γn+1 , ζΓn)−f(X̄Γn , ζΓn)|X̄Γn = x, ζΓn = z

]
−〈∇xf(x, z), b(x, z)〉 − 1

2

d∑
i,j=1

(σσ∗)i,j(x, z)
∂2f

∂xi∂xj
(x, z)

)
6
∫ 1

0
|∇xf(x+ θb(x, z)γn+1, z)−∇xf(x)||b(x, z)|dθ

+

∫ 1

0
‖D2

xf(x+ b(x, z)γn+1 + θσ(x, z)
√
γn+1u, z)

−D2
xf(x)‖|σ(x, z)u|2dθpU (du).

Using a similar reasoning as before, one can show that E(Ã, A,D(A)0) I) holds for (Λ̃f,3, g1) and

(Λ̃f,4, g2) where Λ̃f,3(x, z, γ) = R̃f,3(x, z, γ,Θ) and Λ̃f,4(x, z, γ) = R̃f,4(x, z, γ, U,Θ) with U ∼ pU
and Θ ∼ U[0,1] under P̃,

R̃f,3 : Rd × {1, . . . ,M0} × R+ × [0, 1] → R+

(x, z, γ, θ) 7→ |∇xf(x+ θb(x, z)γ, z)−∇xf(x, z)|,
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and

R̃f,4 : Rd × {1, . . . ,M0} × R+ × Rd × [0, 1] → R+

(x, z, γ, u, θ) 7→ R̃f,4(x, z, γ, u, θ),

with

R̃f,4(x, z, γ, u, θ) = ‖D2
xf(x+ b(x, z)γ + θσ(x, z)

√
γu, z)−D2

xf(x)‖|u|2.

We gather all the terms together noticing that Λ̃f,q = Λ̃−f,q, q ∈ {1, . . . , 4}, and the proof is
completed.

3.2.3 Proof of Growth control and step-weight assumptions

Test functions with polynomial growth.

Lemma 3.2. Let p > 1, a∈ (0, 1], ρ∈ [1, 2], s > 1 and let ψp(v) = vp and φ(v) = va. We suppose
that the sequence (Un)n∈N∗ satis�es M(ρ/2)∨(pρ/s)(U) (see (30)). Then, for every n ∈ N, we have

∀f ∈ D(A)0, E[|f(X̄Γn+1 , ζΓn+1)−f(X̄1
Γn , ζΓn)|ρ|X̄Γn , ζΓn ]

6 Cfγ
ρ/2
n+11 ∨ Tr[σσ∗(X̄Γn , ζΓn)]ρ/2, (50)

with notations (25). In other words, we have GCQ(D(A)0, 1 ∨ Tr[σσ∗]ρ/2, ρ, εI) (see (10)) with
εI(γ) = γρ/2 for every γ ∈ R+.
Moreover, if (26), (31) and B(φ) (see (28)) hold and pρ/s 6 p+ a− 1, then, for every n ∈ N, we
have

E[|V p/s(X̄Γn+1 , ζΓn+1)− V p/s(X̄Γn , ζΓn)|ρ|X̄Γn , ζΓn ] 6 Cγ
ρ/2
n+1V

p+a−1(X̄Γn , ζΓn), (51)

In other words, we have GCQ(V p/s, V p+a−1, ρ, εI) (see (10)) with εI(γ) = γρ/2 for every γ ∈ R+.

Proof. We begin by noticing that, with notations (25),

|X̄Γn+1 − X̄1
Γn+1
| 6 Cγ

1/2
n+1 Tr[σσ∗(X̄Γn , ζΓn)]1/2|Un+1|

Let f ∈ D(A)0. We employ this estimation and since for f ∈ D(A)0 then f(., z) is uniformly
Lipschitz in z ∈ {1, . . . ,M0}, it follows that

E
[
|f(X̄Γn+1 , ζΓn)− f(X̄1

Γn , ζΓn)|ρ|X̄Γn , ζΓn

]
6 Cγ

ρ/2
n+1|σσ

∗(X̄Γn , ζΓn)|ρ/2.

Moreover,

E[|f(X̄Γn+1 , ζΓn+1)− f(X̄Γn+1 , ζΓn)|ρ|X̄Γn , ζΓn ]

= γn+1

M0∑
z=1

(qζΓn ,z + o
n→+∞

(γn+1))E[|f(X̄Γn+1 , z)− f(X̄Γn+1 , ζΓn)|ρ|X̄Γn , ζΓn ]

6 Cγn+1‖f‖ρ∞.

Gathering both terms concludes the study for f ∈ D(A)0.
We focus now on the case f = V p/s. We notice that B(φ) (see (28)) implies that for any n ∈ N,

|X̄Γn+1 − X̄Γn | 6 Cγ
1/2
n+1

√
φ ◦ V (X̄Γn , ζΓn)(1 + |Un+1|).
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We rewrite the term that we study as follows

V p/s(X̄Γn+1 , ζΓn+1)− V p/s(X̄Γn , ζΓn) =V p/s(X̄Γn+1 , ζΓn)− V p/s(X̄Γn , ζΓn)

+ V p/s(X̄Γn+1 , ζΓn+1)− V p/s(X̄Γn+1 , ζΓn).

We study the �rst term of the r.h.s. of the equality above. Using the following inequality

∀u, v ∈ R+,∀α > 1, |uα − vα| 6α2α−1(vα−1|u− v|+ |u− v|α), (52)

with α = 2p/s, it follows from (26) that
√
V (., z) is Lipschitz uniformly in z ∈ {1, . . . ,M0} and∣∣V p/s(X̄Γn+1 , z)−V p/s(X̄Γn , z)

∣∣
6 22p/sp/s

(
V p/s−1/2(X̄Γn , z)

∣∣√V (X̄Γn+1 , z)−
√
V (X̄Γn , z)

∣∣
+ |
√
V (X̄Γn+1 , z)−

√
V (X̄Γn , z)|2p/s

)
6 22p/sp/s

(
[
√
V ]1V

p/s−1/2(X̄Γn , z)|X̄Γn+1 − X̄Γn |

+ [
√
V ]

2p/s
1 |X̄Γn+1 − X̄Γn |2p/s

)
.

We use the assumption pρ/s 6 p + a − 1, a ∈ (0, 1], p > 1 and it follows from B(φ) (see (28))
and (31) when z 6= ζΓn , that

E[|V p/s(X̄Γn+1 , z)− V p/s(X̄Γn , z)|ρ|X̄Γn , ζΓn ] 6 Cγ
ρ/2
n+1V

p+a−1(X̄Γn , z).

In order to treat the �rst term, we put z = ζΓn in this estimation. It remains to study the second
term. We notice that since pρ/s 6 p+ a− 1, it is straightforward from the previous inequality that
for every z ∈ {1, . . . ,M0}, we have

E
[
V pρ/s(X̄Γn+1 , z)|X̄Γn , z

]
6 CV p+a−1(X̄Γn , z).

We focus on the term to estimate and using this inequality, we obtain

E[|V p/s(X̄Γn+1 ,ζΓn+1)− V p/s(X̄Γn+1 , ζΓn)|ρ|X̄Γn , ζΓn ]

= γn+1

M0∑
z=1

(
qζΓn ,z + o(γn+1)

)
× E[|V p/s(X̄Γn+1 , z)− V p/s(X̄Γn+1 , ζΓn)|ρ|X̄Γn , ζΓn ]

6 Cγn+1

M0∑
z=1

(
|qζΓn ,z|+ γn+1

)(
V p+a−1(X̄Γn , z) + V p+a−1(X̄Γn , ζΓn)

)
6 Cγn+1V

p+a−1(X̄Γn , ζΓn),

where the last inequality follows from (31). We rearrange the terms and the proof of (51) is
completed.

Test functions with exponential growth.

Lemma 3.3. Let p ∈ [0, 1], λ > 0, s > 1, ρ ∈ [1, 2] and let φ : [v∗,∞) → R+ be a continuous
function such that Cφ := supv∈[v∗,∞) φ(v)/v < +∞ and let ψ(v) = exp(λvp). We assume that
ρ < s, (26), (36) and B(φ) (see (28)) hold, and that

∀λ̃ 6 λ,∃C > 0,∀n ∈ N,

E[exp(λ̃V p(X̄Γn+1))|X̄Γn , ζΓn ] 6 C exp(λ̃V p(X̄Γn)). (53)
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Then, for every n ∈ N, we have

E[| exp(λ/sV p(X̄Γn+1))− exp(λ/sV p(X̄Γn))|ρ|X̄Γn , ζΓn ]

6Cγρ(p∧1/2)
n+1

φ ◦ V (X̄Γn)

V (X̄Γn)
exp(λV p(X̄Γn)). (54)

In other words, we have GCQ(exp(λ/sV p), V −1.φ◦V. exp(λV p), ρ, εI) (see (10)) and εI(γ) = γρ(p∧1/2)

for every γ ∈ R+.

Proof. When p = 0 the result is straightforward. We begin by noticing that B(φ) (see (28)) implies
that for every n ∈ N,

|X̄Γn+1 − X̄Γn | 6 Cγ1/2
n

√
φ ◦ V (X̄Γn)(1 + |Un+1|2).

Let x, y ∈ Rd. From Taylor expansion at order one, we derive,∣∣ exp(λ/sV p(y))− exp(λ/sV p(x))
∣∣

6
λ

s

(
exp(λ/sV p(y)) + exp(λ/sV p(x))

)∣∣V p(y)− V p(x)
∣∣. (55)

First, let p ∈ [1/2, 1] we use (52) with α = 2p and since
√
V is Lipschitz, we obtain

|V p(y)− V p(x)| 622pp(V p−1/2(x)|
√
V (y)−

√
V (x)|+ |

√
V (y)−

√
V (x)|2p)

622pp(V p−1/2(x)[
√
V ]1|y − x|+ [

√
V ]2p1 |y − x|

2p).

When p ∈ [0, 1/2]. We notice that from (26), the function V p is α-Hölder for every α ∈ [2p, 1] (see
Lemma 3. in [20]) and then V p is 2p-Hölder that is

|V p(y)− V p(x)| 6[
√
V ]2p|y − x|2p.

We focus on the case p ∈ [1/2, 1]. When p 6 1/2 the proof is similar and left to the reader.
Using (55), we derive from the Hölder inequality that

E
[
| exp(λ/sV p(X̄Γn+1))− exp(λ/sV p(X̄Γn))|ρ|X̄Γn , ζΓn

]
6 C exp(λρ/sV p(X̄Γn))

(
V pρ−ρ/2(X̄Γn)E

[
|X̄Γn+1 − X̄Γn |ρ|X̄Γn , ζΓn

]
+ E

[
|X̄Γn+1 − X̄Γn |2pρ|X̄Γn , ζΓn

])
+ CE

[
exp(λρ/sV p(X̄Γn+1))

(
V pρ−ρ/2(X̄Γn)|X̄Γn+1 − X̄Γn |ρ

+ |X̄Γn+1 − X̄Γn |2pρ
)∣∣∣X̄Γn , ζΓn

]
6 C exp(λρ/sV p(X̄Γn))

(
V pρ−ρ/2(X̄Γn)E

[
|X̄Γn+1 − X̄Γn |ρ|X̄Γn , ζΓn

]
+ E

[
|X̄Γn+1 − X̄Γn |2pρ|X̄Γn , ζΓn

])
+ CV pρ−ρ/2(X̄Γn)E

[
exp(λρθ/sV p(X̄Γn+1))|X̄Γn , ζΓn ]1/θ

× E[|X̄Γn+1 − X̄Γn |ρθ/(θ−1)|X̄Γn , ζΓn

](θ−1)/θ

+ CE
[

exp(λρθ/sV p(X̄Γn+1))|X̄Γn , ζΓn ]1/θ

× E[|X̄Γn+1 − X̄Γn |2pρθ/(θ−1)|X̄Γn , ζΓn

](θ−1)/θ
,

for every θ > 1. From (53) and since ρ < s, we take θ ∈ (1, ρ/s] and we get

E
[

exp(λρθ/sV p(X̄Γn+1)|X̄Γn , ζΓn

]
6C exp(λθρ/sV p(X̄Γn , ζΓn)).
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Rearranging the terms and since ρ < s, we conclude from B(φ) (see (28)) that

E[| exp(λ/sV p(X̄Γn+1))− exp(λ/sV p(X̄Γn+1))|ρ|X̄Γn+1 , ζΓn ]

6C exp(λρ/sV p(X̄Γn))
(
γρ/2n V pρ−ρ/2(X̄Γn)|φ ◦ V (X̄Γn)|ρ/2 + γpρn |φ ◦ V (X̄Γn)|pρ

)
6Cγρ/2n

φ ◦ V (X̄Γn)

V (X̄Γn)
exp(λV p(X̄Γn)),

and the proof of (55) is completed.

3.2.4 Proof of Theorem 3.1

This result follows from Theorem 2.3 and Theorem 2.4. The proof consists in showing that the
assumptions from those theorems are satis�ed.

Step 1. Mean-reverting recursive control First, we show that RCQ,V (ψp, φ, pα̃, pβ, s)
(see (4)) is satis�ed for every α̃ ∈ (0, α) and s > 1 such that p/s+ a− 1 > 0.

Since (26), B(φ) (see (28)) and Rp(α, β, φ, V, s) (see (32)) hold, it follows from Proposition 3.1
thatRCQ,V (ψp, φ, pα̃, pβ, s) (see (4)) is satis�ed for every α̃ ∈ (0, α) and s > 1 such that p/s+a−1 >
0 since we have then lim infv→+∞ φ(v) > β/α̃ and lim

v→+∞
v−1φ(v)ψp(v)1/s = +∞.

Step 2. Step-weight assumption Now, we show that SWI,γ,η(V p+a−1, ρ, εI) (see (11)) and
SWII,γ,η(V p+a−1) (see (12)) hold.

First we recall that RCQ,V (ψp, φ, pα̃, pβ, s) (see (4)) is satis�ed for every α̃ ∈ (0, α) and s >
1 such that p/s + a − 1 > 0. Then, using SWI,γ,η(ρ, εI) (see (20)) with Lemma 2.3 gives
SWI,γ,η(V p+a−1, ρ, εI) (see (11)). Similarly, SWII,γ,η(V p+a−1) (see (12) follows from SWII,γ,η
(see (21)) and Lemma 2.3.

Step 3. Growth control assumption Now, we prove GCQ(F, V a+p−1, ρ, εI) (see (10)) for
F = D(A)0 and F = {V p/s}.

This is a consequence of Lemma 3.2. We notice that ρ 6 2p and ρ/s 6 1. Consequently
M(ρ/2)∨(pρ/s)(U) (see (30)) follows from Mp(U). Now, we notice that Lemma 3.2 and the fact that
under B(φ) (see (28)) and p > 1, we have Tr[σσ∗] 6 CV p+a−1, imply that for F = D(A)0 and
F = {V p/s}, then GCQ(F, V a+p−1, ρ, εI) (see (10)) holds.

Step 4. Conclusion
i. The �rst part of Theorem 3.1 (see (34)) is a consequence of Theorem 2.3. Let us observe that

assumptions from Theorem 2.3 indeed hold.

On the one hand, we observe that from Step 2. and Step 3. the assumptions GCQ(V p/s, V a+p−1, ρ, εI)
(see (10)), SWI,γ,η(V p+a−1, ρ, εI) (see (11)) and SWII,γ,η(V p+a−1) (see (12)) hold which are
the hypothesis from Theorem 2.3 point A. with g = V p+a−1.

On the other hand, from Step 1. the assumptionRCQ,V (ψp, φ, pα̃, pβ, s) (see (4)) is satis�ed
for every α̃ ∈ (0, α) and s > 1 such that p/s+ a− 1 > 0. Moreover, since LV (see (3)) holds,
then the hypothesis from Theorem 2.3 point B. are satis�ed.

We thus conclude from Theorem 2.3 that (νηn)n∈N∗ (built with (X̄t)t>0 de�ned in (24)) is P-a.s.
tight and (34) holds which concludes the proof of the �rst part of Theorem 3.1.

ii. Let us now prove the second part of Theorem 3.1 (see (35)) which is a consequence of Theo-
rem 2.4.
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On the one hand,we observe that from Step 2. and Step 3. the assumptions GCQ(D(A)0, V
a+p−1, ρ, εI)

(see (10)) and SWI,γ,η(V p+a−1, ρ, εI) (see (11)) hold which are the hypothesis from Theo-
rem 2.4 point A. with g = V p+a−1.

On the other hand, since z ∈ {1, . . . ,M0}, b(., z) and σ(., z) have sublinear growth and
Tr[σσ∗] 6 CV p/s+a−1, so that P-a.s. supn∈N∗ ν

η
n(Tr[σσ∗]) < +∞, it follows from Proposi-

tion 3.3 that E(Ã, A,D(A)0) (see (7)) is satis�ed. Then, the hypothesis from Theorem 2.4
point B. hold and (35) follows from (18).

3.2.5 Proof of Theorem 3.2

This result follows from Theorem 2.3 and Theorem 2.4. The proof consists in showing that the
assumptions from those theorems are satis�ed.

Step 1. Mean-reverting recursive control First, we show that for every α̃ ∈ (0, α), there
exists β̃ ∈ R+ such that RCQ,V (ψ̃, φ, pα̃, pβ̃, s) (see (4)) is satis�ed for every function ψ̃ : [v∗,∞)→
R+ such that ψ̃(v) = exp(λ̃vp) with λ̃ 6 λ and every s > 1. Notice that this property and the fact
that φ has sublinear growth imply (53).

We begin by noticing that Rp,λ(α, β, φ, V ) (see (38)) implies R
p,λ̃

(α, β, φ, V ) for every λ̃ 6 λ.

Since (26), B(φ) (see (28)), Rp,λ(α, β, φ, V ) (see (38)) and (37) hold, it follows from Proposi-

tion 3.2 with limv→+∞ φ(v) = +∞, that that for every α̃ ∈ (0, α), there exists β̃ ∈ R+ such
that RCQ,V (ψ̃, φ, pα̃, pβ̃, s) (see (4)) is satis�ed for every function ψ̃ : [v∗,∞) → R+ such that

ψ̃(v) = exp(λ̃vp) with λ̃ 6 λ and every s > 1.

Step 2. Step-weight assumption Now, we show that SWI,γ,η(V −1.φ ◦ V. exp(λV p), ρ, ε̃I),
SWI,γ,η(V −1.φ ◦ V. exp(λV p), ρ, εI) (see (11)) and SWII,γ,η(exp(λ/sV p)) (see (12)) hold.

First we recall that that there exists α̃ ∈ (0, α) and β̃ ∈ R+ such that RCQ,V (ψ, φ, α̃, β̃, s)
(see (4)) is satis�ed for every s > 1. Then, using SWI,γ,η(ρ, ε̃I) and SWI,γ,η(ρ, εI) (see (20))
with Lemma 2.3 gives SWI,γ,η(V −1.φ ◦ V. exp(λV p), ρ, ε̃I) and SWI,γ,η(V −1.φ ◦ V. exp(λV p), ρ, εI)
(see (11)). Similarly, SWII,γ,η(V −1.φ ◦V. exp(λV p)) (see (12) follows from SWII,γ,η (see (21)) and
Lemma 2.3.

Step 3. Growth control assumption Now, we prove GCQ(F, V −1.φ ◦ V. exp(λV p), ρ, εI)
(see (10)) for F = D(A)0 and F = {exp(λ/sV p)}.

This is a consequence of Lemma 3.2 and Lemma 3.3. We notice indeed that B(φ) (see (28))
gives Tr[σσ∗]ρ/2 6 (φ ◦ V )ρ. Moreover, we have already shown that (53) is satis�ed in Step
1. These observations combined with (54) imply that GCQ(D(A)0, V

−1φ ◦ V exp(λV p), ρ, εI) and
GCQ(exp(λ/sV p), V −1.φ ◦ V. exp(λV p), ρ, ε̃I) (see (10)) hold.

Step 4. Conclusion
i. The �rst part of Theorem 3.2 (see (39)) is a consequence of Theorem 2.3. Let us observe that

assumptions from Theorem 2.3 indeed hold.

On the one hand, we observe that from Step 2. and Step 3. the assumptions GCQ(exp(λ/sV p), V −1φ◦
V exp(λV p), ρ, ε̃I) (see (10)), SWI,γ,η(V −1φ◦V exp(λV p), ρ, ε̃I) (see (11)) and SWII,γ,η(V −1φ◦
V exp(λV p)) (see (12)) hold which are the hypothesis from Theorem 2.3 point A. with g =
V −1φ ◦ V exp(λV p).

On the other hand, from Step 1. for every α̃ ∈ (0, α), there exists β̃ ∈ R+ such that
RCQ,V (ψ, φ, pα̃, pβ̃, s) (see (4)) is satis�ed for every s > 1. Moreover, since LV (see (3))
holds, then the hypothesis from Theorem 2.3 point B. are satis�ed.
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We thus conclude from Theorem 2.3 that (νηn)n∈N∗ (built with (X̄t)t>0 de�ned in (24)) is P-a.s.
tight and (39) holds which concludes the proof of the �rst part of Theorem 3.2.

ii. Let us now prove the second part of Theorem 3.2 (see (40)) which is a consequence of Theo-
rem 2.4.

On the one hand,we observe that from Step 2. and Step 3. the assumptions GCQ(D(A)0, V
−1φ◦

V exp(λV p), ρ, εI) (see (10)) and SWI,γ,η(V −1φ ◦V exp(λV p), ρ, εI) (see (11)) hold which are
the hypothesis from Theorem 2.4 point A. with g = V −1φ ◦ V exp(λV p).

On the other hand, since z ∈ {1, . . . ,M0}, b(., z) and σ(., z) have sublinear growth and
Tr[σσ∗] 6 CV −1φ ◦ V exp(λ/sV p), so that P-a.s. supn∈N∗ ν

η
n(Tr[σσ∗]) < +∞, it follows

from Proposition 3.3 that E(Ã, A,D(A)0) (see (7)) is satis�ed. Then, the hypothesis from
Theorem 2.4 point B. hold and (40) follows from (18).
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A In�nitesimal approximation: Example of a Brownian

di�usion and user guide

We consider a scalar Brownian di�usion (d = q = 1) with Lipschitz continuous drifts b and di�usion
coe�cient σ. Hence E = R and there exists a real constant C > 1 such that |b(x)| ∨ |σ(x)| 6 C(1 + |x|) (set
e.g. C = [b]Lip∨ [σ]Lip∨ |b(0)| ∨ |σ(0)| ∨1). We will show how to check Assumption E(Ã, A,D(A)0) (see (7)).
We de�ne the Euler operator with step γ > 0 by Eγ(x, z) = x+ γb(x) +

√
γσ(x)z and we consider the Euler

scheme with decreasing steps and and Brownian increments. We set D(A)0 = C2
K(R,R) (twice di�erentiable

functions with compact support). Let Z̃ : (Ω̃, G̃, P̃) → R and N (0, 1)-distributed random variable so that

Qγ(f)(x) = E
[
f
(
Eγ(x, Z̃)

)]
. Elementary computations based on a second order Taylor expansion with

integral remainder show that, for every f ∈ C2
K(R,R),

Ãγf(x)−Af(x) = Ẽω̃
[
Λ̃f (x, γ, ω̃)

]
with (note that g ≡ 1)

Λ̃f (x, γ, ω̃) =
(Eγ(x, Z̃)− x)2

γ

∫ 1

0

[
f ′′
(
x+ (Eγ(x, Z̃(ω̃))− x)u

)
− f ′′(x)

]
du.

We now check E(Ã, A,D(A)0) I).
(i). Let K be a compact set of R. For every γ∈ (0, γ̄], u∈ [0, 1] and x∈ K,∣∣Λ̃f (x, γ, ω̃)

∣∣ ≤ 2
(
γ̄b2K + σ2

KZ̃(ω̃)2
) ∫ 1

0

(2‖f ′′‖sup) ∧ w
(
f ′′, δ(x, u, γ, Z̃(ω̃))

)
du

where g
K

= supx∈K |g(x)| and w(g, δ), δ > 0, denotes the uniform continuity modulus of a function g : R→
R. One easily checks that, for every u∈ [0, 1] and x∈ K

0 < δ(x, u, γ, Z̃(ω̃)) 6
√
γ CbK ,σK ,γ̄

(
1 + |Z̃|

)
.

Consequently by Lebesgue's dominated convergence theorem

lim
γ→0

Ẽ
[

sup
x∈K

∣∣Λ̃f (x, γ, ω̃)
∣∣] = 0.

(ii). Set γ(ω̃) = 1

9(1+|Z̃(ω̃)|2)C2
. Then, one checks that for every x∈ R and u∈ [0, 1],

∣∣x+ u
(
Eγ(x, Z̃(ω̃))− x

)∣∣ > |x| − 2

3

(
1 + |x|

)
=
|x|
3
− 2

3
.

Hence, for every ω̃ such that Z̃(ω̃) is �nite,

lim
|x|→+∞

sup
γ∈(0,γ],u∈[0,1]

∣∣x+ u
(
Eγ(x, Z̃(ω̃))− x

)∣∣ = +∞.



A INFINITESIMAL APPROXIMATION: EXAMPLE OF A BROWNIAN DIFFUSION ANDUSERGUIDE36

Finally, as f ′′ has a compact support,

sup
γ∈(0,γ]

|Λ̃f (x, γ, ω̃)
∣∣ = 0 for |x| large enough.




