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A selection of theoretical results in the context of laser-plasma

interaction and inertial fusion

Patrick Mora

CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Abstract

I recall a selection of my results of the last 40 years. I first present a theoretical model
of absorption of laser light by a plasma, with an emphasis on its dependence on the laser
intensity and wavelength. A second topic concerns the nonlinear and nonlocal electron
transport in steep temperature gradients. Thirdly, I present the work on the propagation of
a short intense laser pulse in tenuous plasmas. Finally, I discuss the plasma expansion into
a vacuum, in particular the structure of the ion front and the prediction of the maximum
velocity attained by the ions in the expansion.

Keywords: laser-plasma interaction, inertial fusion, collisional absorption, thermal
conduction, plasma expansion

1. Introduction

In this Teller lecture I recall a selection of my results of the last 40 years. One of my
first work was a theoretical model of absorption of laser light by a plasma. This model
coupled the absorption itself, the energy transport, and the hydrodynamics [1]. The idea
was to understand the dependence of the laser light absorption on the laser intensity and5

wavelength. Secondly, an important problem in the early years of inertial confinement fusion
was the electron thermal transport in steep temperature gradients. With J.-F. Luciani, we
proposed in 1983 a nonlinear and nonlocal theory of electron transport which helped to
interpret experimental results showing a strong departure of the electron transport with
respect to the linear law of Spitzer and Härm [2]. Thirdly, with the outbreak of ultra-short10

laser pulses and the concept of fast ignition, the question of the propagation of a short
laser pulse in tenuous plasmas arose. In 1992, with T.M. Antonsen, we elaborated a model,
exhibiting its self focusing character and its tendency to develop Raman-like instabilities
[3, 4]. We developed a laser plasma simulation code (wake) [5] which is much quicker than
usual particle-in-cell codes when applied to numerous experimental situations. In particular,15

this code enabled the first simulation of the complete cavitation of the electron density in
the so-called bubble regime, which plays a crucial role in the obtainment of high energy
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quasi-monoenergetic electrons by laser-plasma acceleration [6]. Finally I worked on plasma
expansion into a vacuum, in order to give a complete understanding of the structure of
the flow, to elucidate the structure of the ion front, and to predict the maximum velocity20

attained by the ions in the expansion [7].

2. A theoretical model of absorption of laser light by a plasma

In the first decade of the studies on inertial confinement fusion, there has been a consid-
erable interest in experiments using short-wavelength radiation as a possible fusion driver
because of increased absorption and ablation pressure [8]. In a simple model [1], I tried to25

describe the behavior of quantities such as the absorption rate or the ablation pressure as
functions of the parameters of the experiments, such as the light intensity I and the laser
wavelength λ. In this lecture I briefly present the simplest version of this model. A more
detailed discussion can be found in Ref. [1].

The model is based on the following hypotheses.30

(1) The laser energy is absorbed by inverse bremsstrahlung.

(2) The electron density profile is described by an exponential function,

ne = nc exp
(

x

L

)

, (1)

where nc is the critical density associated with the laser wavelength λ, nc ∝ λ−2, and
where L is the density scalelength.

(3) The dependence of the Coulomb logarithm on the plasma density and temperature is35

neglected, so that one has νc ∝ nc/T
3/2, where νc is the collision frequency at the critical

density and T is the electron temperature at the critical density.

(4) The temperature is uniform in the underdense density profile, so that the collision
frequency ν is proportional to the electron density, ν = (ne/nc)νc, and the absorption
rate A is then given by [9]40

A = 1− exp
(

−8

3

νcL

c

)

. (2)

(5) The density scalelength L is supposed to be equal to the product csτ , where cs ∝ T 1/2

is the ion acoustic velocity at the critical density and τ the pulse duration.

(6) The electron temperature T is estimated by equating the absorbed energy flux AI to
the energy necessary to maintain a self-similar isothermal expansion from the critical
density to the vacuum,45

AI = 4ncTcs. (3)

Focusing on the wavelength dependence, one deduces from the first five hypotheses the
following scaling law,

T ∝ 1

λ2 ln[1/(1−A)]
. (4)
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Figure 1: Absorption rate A as a function of Iλ5.

On the other hand the last hypothesis implies

AI ∝ T 3/2/λ2. (5)

Eliminating the temperature T between these two equations results in

Iλ5 ∝ 1

A{ln[1/(1−A)]}3/2 , (6)

that is50

A = 1− exp

[

−
(

C

AIλ5

)2/3
]

, (7)

where C is a physical quantity which depends on the material and on the pulse duration [1].
The absorption rate A is represented in Fig. 1 as a function of the product Iλ5. An important
feature of the model is that it shows the strong dependence of the absorption rate on the
laser wavelength.

In the high intensity limit (A ≪ 1) one easily finds the scaling law Pa ∝ I2/5λ−2, where Pa55

is the ablation pressure. However, in this limit, it must be pointed out that other absorption
mechanisms may become important, such as resonance absorption at the critical density [12].

To treat the low intensity limit, (1 − A) ≪ 1, it is necessary to reconsider the model,
since the laser energy is in fact totally absorbed before reaching the critical density. If n0

denotes the electron density actually attained by the laser light, Eq. (3) should be replaced60

by I = 4n0Tcs (here T is the temperature in the part of the density profile below n0). The
density n0 is evaluated by assuming that the optical thickness from the vacuum to the point
of density n0 is of order 1. This is the self-regulating rarefaction as described for instance
in Ref. [10]. The following new scaling law, Pa ∝ I3/4λ−1/4, is then obtained. This regime is
of particular interest in the context of material processing [11].65

The model can be easily adapted to the case where the length L is limited, for instance
by the geometry of the laser-target interaction. In this case the relevant parameter becomes

3



the product Iλ4 which still exhibits a strong dependence on the laser wavelength. New
scaling laws can be deduced in this regime, leading to Pa ∝ I1/3λ−2 in the high intensity
limit and Pa ∝ I7/9λ−2/9 in the low intensity limit.70

3. Electron transport in steep temperature gradients

The second work described in this lecture concerns electron thermal transport in steep
temperature gradients. Experimental results in the context of laser-plasma interaction and
kinetic Fokker-Planck simulations [13] have shown that the electron heat flux predicted by
the Spitzer-Härm theory [14],75

qSH = −κ∇T, (8)

usually overestimates the actual heat flux in the case of strong temperature gradients (see
Fig. 2 for a typical result). The absolute value of the heat flux seems to be limited to a
fraction f ≈ 0.1− 0.2 of the free-streaming value

qFS = nemev
3

e , (9)

where ve = (kBT/me)
1/2 is the electron thermal velocity. On the other hand, a few tens

of thermal electron mean free paths away from the heat front, the conductivity exceeds80

the Spitzer-Härm conductivity because the flux has a nonlocal part due to the hot, nearly
collisionless electrons streaming away from the top of the heat front. In 1983, extending an
idea formulated in the context of electron energy transport in ion waves [15], we proposed a
nonlocal one-dimensional expression for the heat flux [2, 16],

qe(x) =
∫

qSH(x
′)w(x, x′)dx′, (10)
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Figure 2: Typical result of a Fokker-Planck simulation for a temperature profile with a steep gradient. The
temperature T is normalized to the temperature on the hot (left) side. qSH is the heat flux predicted by
the Spitzer-Härm theory and q is the actual heat flux. Both quantities are normalized to the free-streaming
value qFS calculated on the hot side. The position x is normalized to the thermal electron mean free path
λe determined on the hot side.
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where the kernel w(x, x′) is given by85

w(x, x′) =
1

2λ(x′)
exp

[

− X

λ(x′)

]

, (11)

with

X =
1

ne(x′)

∣

∣

∣

∣

∣

∫ x′

x
ne(x

′′)dx′′

∣

∣

∣

∣

∣

, (12)

and where λ(x′) is the effective range of the electrons coming from the part of the profile
corresponding to a temperature T(x′), and that carry the heat flux,

λ(x′) ≃ 30
√
Z + 1 λe(x

′), (13)

where λe(x
′) denotes the mean free path of thermal electrons corresponding to the temper-

ature T (x′). In this expression, the factor
√
Z + 1 comes from the fact that the electrons90

have to be slowed down by electron-electron collisions while they are deflected mainly by
electron-ion collisions.

The nonlocal expression (10) fits quite accurately the heat flow predicted by Fokker-
Planck simulations. It coincides with the Spitzer-Härm expression for gentle temperature
and density gradients, for which w(x, x′) behaves as a δ-function of x′ − x. On the other95

hand, for very steep temperature gradients, it predicts a maximum heat flux on the order
of 0.1 − 0.2 qFS, the numerical factor depending on Z. Finally it exhibits the nonlocal
character due to the hot, nearly collisionless, electrons streaming away from the hot part of
the plasma.

Analytical justifications of the nonlocal formula (10) were established in the ’80. Various100

delocalization propagators have also been proposed by different authors. A review and more
references are given in [16]. Such nonlocal formulas have been introduced in fluid codes to
model heat transport. One of the most recent model is the one by Schurtz et al. [17] which
extends formula (10) to two or three dimensions of space. Such models are essential in the
physics of targets of inertial fusion [18, 19].105

4. Propagation of a short laser pulse in tenuous plasmas

The technique of chirped pulse amplification (CPA) for amplifying an ultrashort laser
pulse was introduced by D. Strickland and G. Mourou in 1985 [20]. With the outbreak of
ultrashort intense laser pulses, various applications were proposed, such as the fast ignition
of thermonuclear targets [21] or the acceleration of electrons to high energies [22, 23, 24].110

In these contexts, the question of the propagation of short laser pulses in tenuous plasmas
arose. While particle-in-cell simulations are relevant for studying such a question, they
are time-consuming and do not allow to scan a large range of parameters. On the other
hand, a ponderomotive approach is made possible when two conditions are fulfilled [5], (i)
the laser frequency ω0 is much larger than the electron plasma frequency ωp, and (ii) the115

quasistatic approximation is valid, i.e., the electron transit time through the laser pulse is
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Figure 3: Bubble regime. The electron density is represented in gray scale (saturated to 2.5 times initial
density). The laser pulse corresponds to the following parameters, a2max = 12.5, ωpτ0 = 6/π, and kpw0 =
2.5. The longitudinal axis corresponds to the range kpz − ωpt = [−7,+3], and the transverse axis to
kpr = [−5.5,+5.5].

short compared with the characteristic laser pulse deformation time (this approximation is
valid for plasma electrons of sufficiently low energy).

The laser radiation is described in terms of the high-frequency vector potential A⊥,
which can be written in the form of an envelope Â⊥ modulating a plane wave traveling at120

the speed of light. The envelope depends on time and space and is determined by
[

2

c

∂

∂t

(

ik0 +
∂

∂ζ

)

+∇2

⊥

]

Â⊥ =
e2

mǫ0c2

〈

n

γ

〉

Â⊥, (14)

where k0 ≈ ω0/c is the wave number of the plane wave and ζ = z − ct measures the
distance back from the head of the pulse. The right-hand side of Eq. (14) represents the
dielectric response of the plasma. The angular bracket represents an ensemble average over
a distribution of particles, each member of which has a density, n, and a relativistic factor,125

γ, where the overbar on each quantity signifies that it is slowly varying in time.
The motion of the particles is due to the combined effect of the electromagnetic fields of

the wake and of the ponderomotive potential of the laser pulse,

dp

dt
= −e

(

E+ v ×B
)

− e2

2γm
∇A2

⊥
, (15)

while the average relativistic factor is given by

γ =

√

1 +
1

m2c2

(

p2 + e2A2

⊥

)

. (16)

We have solved the set of Eqs. (14-16) and the equations for the fields of the wake on130

two-dimensional Cartesian or cylindrical grid with the computer code wake [5]. Such a
code can be useful to describe laser self-focusing and Raman-type instabilities [3, 4, 6].

Here we show an example of simulation in a case corresponding to the so-called cavitation
or bubble regime [6, 25, 26, 27, 28]. To simplify the presentation, we introduce the following
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normalized vector potential: a = eA⊥/mc. We also define the time τ = ζ/c and the plasma135

wavevector kp = ωp/c, where ωp is the plasma frequency. Figure 3 shows the electron density
in the wake of a laser pulse of the form

a2(τ, r⊥) = a2max exp
(

−2 r2
⊥
/w2

0

)

cos2 (τ/τ0) , (17)

with |τ | < (π/2)τ0 (the pulse is limited to one arch), with the following parameters, a2max =
12.5, ωpτ0 = 6/π, and kpw0 = 2.5. The laser pulse (not shown) has its front on the right
side of the figure. One observes the total electron cavitation in the wake and a transverse140

wavebreaking responsible of the two black lines escaping from the bubble. It is important to
point out that, though the code enables the identification of the cavitation regime, it does
not have the capacity of exhibiting the longitudinal electron acceleration and trapping at
the back of the bubble [25], where the quasistatic approximation becomes invalid for those
electrons.145

5. Plasma expansion into a vacuum

Ultrashort and ultraintense laser pulses can also be used to accelerate ions to high energy.
Experiments about 20 years ago produced such high-energy ion jets from the interaction of
short laser pulse with solid targets (see [29] and [30] for a list of references). Though widely
used in the interpretation of the experimental results [31], at this time the freely expanding150

plasma model [32, 33, 34] has not been fully explored in terms of charge separation effects
and structure of the ion front. The objective of this last work was to fill this gap [7].

Let us first recall the fundamentals of the model. At time t=0, a plasma is assumed to
occupy the half-space x < 0. The ions are cold and initially at rest with density ni = ni0

for x < 0 and ni = 0 for x > 0 with a sharp boundary, while the electron density ne is155

continuous and corresponds to a Boltzmann distribution,

ne = ne0 exp(eΦ/kBT), (18)

where ne0 is the electron density in the unperturbed plasma (i.e., for x = −∞), Φ is the
electrostatic potential, and T is the electron temperature, which may be in the relativistic
domain. The potential Φ satisfies the Poisson equation,

ǫ0∂
2Φ/∂x2 = e(ne − Zni), (19)

where Z is the ion charge number. At x = −∞ one has Φ = 0 and ne0 = Zni0.160

For t > 0 the electrons are assumed to stay in equilibrium with the potential Φ, so that
Eqs. (18) and (19) still hold, while the ion expansion into a vacuum is described by the
equations of continuity and motion

(∂/∂t + vi∂/∂x) ni = −ni∂vi/∂x, (20)

(∂/∂t + vi∂/∂x) vi = −(Ze/mi)∂Φ/∂x, (21)

7
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Figure 4: Charge separation at time ωpit = 50. The ion front stands at x/cst ≃ 5.59.

where vi is the ion velocity. For x+ cst > 0, a self-similar expansion is found if one assumes165

quasineutrality in the expanding plasma, with ne = Zni = ne0 exp(−x/cst−1), vi = cs+x/t,
and

Ess = kBT/ecst = E0/ωpit, (22)

where ss stands for self-similar, cs = (ZkBT/mi)
1/2 is the ion acoustic velocity, E0 =

(ne0kBT/ǫ0)
1/2, and ωpi = (ne0Ze

2/miǫ0)
1/2 is the ion plasma frequency. The self-similar

field corresponds to a positive charge surface σ = ǫ0Ess per unit surface at position x = −cst,170

and a negative charge surface −σ at the plasma edge.
First, the self-similar solution has no meaning as long as the initial Debye length, λD0 =

(ǫ0kBT/ne0e
2)1/2, is larger than the self-similar density scale length, cst, i.e., for ωpit < 1.

Secondly, for ωpit ≫ 1, the self-similar model predicts a velocity increasing without limit
for x going to infinity. Physically the ion velocity is limited to a finite value and the ions175

originally at x = 0 form a well-defined ion front [33].
To clear up these issues, I have developed a Lagrangian code that takes into account

the charge separation effects and thus solves Eqs. (18), (19), (20) and (21). The numerical
methods are similar to that described in [35]. As an example of the results of the code,
Fig. 4 shows the charge separation as a function of space at time ωpit = 50, for which the180

ion front stands at x/cst ≃ 5.59. Three distinct nonneutral zones are clearly seen: a first
positive layer of total charge σ = ǫ0Ess per unit surface around the position x = −cst, where
the expansion starts, a second positive layer of same total charge σ just on the left of the
ion front, and a negative layer due to the electron cloud on its right, with charge −2σ. As
expected, the total charge around the ion front is −σ.185

The corresponding electric field is shown in Fig. 5 at the same time, showing the rapid
increase of the electric field in the vicinity of the ion front. Such a peak has been experi-
mentally observed in [36]. A precise analytical fit for the electric field at the ion front, valid
for any time, is

Efront ≃ 2E0/(2e+ ω2

pit
2)1/2. (23)

Accurate predictions can be made for the characteristics of the ion front. Integrating190
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dvfront/dt = ZeEfront/mi and dxfront/dt = vfront, one obtains successively the ion front
velocity and position as functions of time,

vfront ≃ 2cs ln
(

τ +
√
τ 2 + 1

)

, (24)

xfront ≃ 2
√
2eλD0

[

τ ln
(

τ +
√
τ 2 + 1

)

−
√
τ 2 + 1 + 1

]

, (25)

where τ = ωpit/
√
2e.

The preceding results apply for a semi-infinite plasma. Finite size effects manifest them-195

selves in a further limitation of the maximum ion energy due to electron cooling during the
plasma expansion [37, 38].

6. Conclusion

I reviewed some of my results obtained over the last 40 years on the physics of laser-
plasma interaction and applications. The main common feature of these works is that they200

always tried to give a picture of plasma effects, using simple tools, as opposed to many
theoretical works based upon large size computer codes.
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