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ADDITIONAL NUMERICAL AND GRAPHICAL EVIDENCE TO SUPPORT
SOME CONJECTURES ON DISCRETE SCHRÖDINGER OPERATORS

WITH A MORE GENERAL LONG RANGE CONDITION

SYLVAIN GOLÉNIA AND MARC-ADRIEN MANDICH

Abstract. This document contains additional numerical and graphical evidence to support
some of the conjectures mentioned in [GM3]. We give more evidence for κ “ 3, 4 in dimension
2. As mentioned in that article we still don’t quite understand the sets µκp∆q and Θκp∆q on
p0, 1{2q for κ “ 3 in dimension 2. Here we give a bunch more threshold energies for κ “ 3 in
dimension 2.
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1. Introduction

The notation in this document is 100% consistent with that of [GM3]. We start by listing the 2
Conjectures of [GM3] for which the material presented in this document is relevant. The first has
to do with the rate of convergence of the thresholds En P J2 “ J2pκq :“ p2 cospπ{κq, 1` cospπ{κqq.

Conjecture 1.1. Let tEnu be the sequence in [GM3, Theorem 1.7]. Then En´ inf J2 “ cpκq{n2`
op1{n2q, @κ ľ 3, where cpκq means a constant depending on κ.

For this conjecture, see section 2. The second conjecture has to do with the existence of a
conjugate operator giving a strict Mourre estimate on bands pEn, En´1q Ă J2.
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Mourre theory, Chebyshev polynomials, polynomial interpolation, threshold.
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Conjecture 1.2. Fix κ ľ 2. Let tEnu be the sequence in [GM3, Theorem 1.7]. For each interval
pEn, En´1q, n ľ 1, D a conjugate operator Apnq “

řNpnq
q“1 ρjqκpnqAjqκ, Ajqκ “

ř

1ĺiĺ2Aipjq, κq,
such that the Mourre estimate for ∆ holds wrt. Apnq, @E P pEn, En´1q. Apnq is typically not
unique. It can be chosen so that Npnq “ 2n. In particular, tEnu “ J2 XΘκp∆q, @κ ľ 2.

For this conjecture, see sections 5, 6, 7 and 8. Section 4 lists some thresholds P Θm“1,κ“4p∆q in
dimension 2, and section 9 gives a graphical illustration of some thresholds P Θm,κ“3p∆qXp0, 1{2q
in dimension 2, m ľ 1.

2. More evidence for the conjecture on the rate of convergence of En
Figure 1 illustrates solutions E2npκq of [GM3, Proposition 7.2] for κ “ 5, 6, 8. In these graphs

the slope of the orange trend line is close to ´2, and this is our rationale behind [GM3, Conjecture
1.9].

Figure 1. Graphs with logpnq on x-axis and logpE2npκq ´ 2 cospπ{κqq on y-axis.
Left : κ “ 5 ; Middle : κ “ 6, Right : κ “ 8. Green dots are 1 ĺ n ĺ 400
; black dots are n “ 400, 800, 1200, ..., 4800. Orange line is trend line based on
linear regression of black dots.

3. Energy solutions in J2pκq :“ p2 cospπ{κq, 1` cospπ{κqq

Table 1 below lists the first few energy solutions for κ P t2, 3, 4u in [GM3, Theorem 1.7]. In
particular we have some exact expressions for κ “ 4.
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κ E5 E4 E3 E2 E1 E0
2 2/7 1/3 2/5 1/2 2/3 1

3 » 1.112 » 1.137 » 1.173 9`
?
33

12 » 1.228 5`3
?
2

7 » 1.320 3/2
4 (7.4) » 1.476 » 1.491 (7.3) » 1.512 (7.2) » 1.545 8/5 1` 1{

?
2 » 1.707

Table 1. First values of tEnu in [GM3, Theorem 1.7]. ∆ in dimension 2. κ “
2, 3, 4.

4. Thresholds in dimension 2, for κ “ 4, m “ 1 (the brute force approach)

In [GM3, subsection 4.2], we listed Ansatzes (1) – (6) to find threshold solutions P Θ1,κp∆q, and
in [GM3, Lemma 4.2] we listed those solutions for κ “ 3. Table 2 below lists the corresponding
solutions for κ “ 4. We recall that these solutions belong toΘ1,κ“4p∆q, but it is an open question
for us if they constitute all of Θ1,κ“4p∆q.

κ 4

(1) E “ 1{2` 1{p2
?

2q » 0.853, Y1 “
?

2{2

E “ 2`
?
2`
?

2`4
?
2

4 » 1.545, Y1 “
?

2{2

E “ 2`
?
2´
?

2`4
?
2

4 » 0.161, Y1 “
?

2{2

E “ 1{2´ 1{p2
?

2q » 0.146, Y1 “ ´
?

2{2

E “ 8{5 “ 1.6, Y1 “ E{2 “ 0.8

(2)

(3) E “
a

2{5 » 0.632, Y1 “ 3{
?

10 » 0.948

E “
?

2{3 » 0.471, Y1 “
?

2{2

(4) E “ 2{
?

5 » 0.894, Y1 “ 0, Y0 “ E{2 » 0.447

E “ 1{
?

5 » 0.447, Y1 “ 0, Y0 “ 2E » 0.894

E “ p
?

3´ 1q{p2
?

2q » 0.258, Y1 “ 0, Y0 “ ´
?

2{2

E “ 1{p2
?

2q » 0.353, Y1 “ 0, Y0 “ 1{
?

2

E “ p
?

2`
?

6q{4 » 0.965, Y1 “ 0, Y0 “ 1{
?

2

E “ 3
?

2{5 » 0.848, Y1 “ 1{
?

2, Y0 “ 7{p5
?

2q » 0.989

E “
?

2{5 » 0.282, Y1 “ ´1{
?

2, Y0 “ E{2 » 0.141

(5)

(6)

Table 2. Solutions to piq, 1 ĺ i ĺ 6, in [GM3, subsection 4.2] for κ “ 4.

5. Polynomial Interpolation for the case κ “ 2 in dimension 2, 5 ĺ n ĺ 9

In [GM3, section 13] we gave numerical evidence of bands of a.c. spectrum for bands n “
1, 2, 3, 4, for κ “ 2 in dimension 2. We briefly mention that :
‚ For the 5th band, we checked that Σ “ r2, 4, 6, 8, 10, 12, 14, 16, α, βs is also valid for pα, βq “

p18, 20q, p20, 24q, p22, 24q, p24, 28q, p24, 32q, p28, 32q whereas it is not valid for pα, βq “ p18, 24q,
p18, 26q, p18, 28q.
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‚ For the 6th band we checked that Σ “ r2, 4, 6, 8, 10, 12, 14, 16, 18, 20, α, βs is valid for pα, βq “
p22, 28q, p22, 30q but not valid for pα, βq “ p22, 24q, p22, 26q.
‚ For the 7th band we checked that Σ “ r2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, α, βs is valid for

pα, βq “ p26, 28q but not valid for pα, βq “ p28, 36q.
‚ For the 8th band we checked that Σ “ r2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, α, βs is

valid for pα, βq “ p30, 38q, p30, 40q but not valid for pα, βq “ p30, 32q, p30, 36q.
‚ For the 9th band we checked Σ “ r2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36s

is valid.

6. Polynomial Interpolation for the case κ “ 3 in dimension 2, n “ 5

In [GM3, section 14] we gave numerical evidence of bands of a.c. spectrum for bands n “
1, 2, 3, 4, for κ “ 3 in dimension 2. We briefly give the numerical details for n “ 5, i.e. the 5th

band. X3 “ E5{2 and

$

’

&

’

%

T3pE5 ´ 1q “ T3pE5 ´X1q

T3pX1q “ T3pE5 ´X2q

T3pX2q “ T3pE5{2q
ñ

$

’

&

’

%

4
“

pE5 ´ 1q2 ` pE5 ´ 1qpE5 ´X1q ` pE5 ´X1q
2
‰

“ 3

4
“

X2
1 `X1pE5 ´X2q ` pE5 ´X2q

2
‰

“ 3

4
“

X2
2 `X2pE5{2q ` pE5{2q2

‰

“ 3.

Using Python’s fsolve we get rE5, X1, X2s » r1.112, 0.307, 0.441s. For an analytical solution
or perhaps more precise, expand the equations and get rid of the X2

1 and X2
2 terms. One ends

up with 4
`

9E2
5 {4´ 4E5X1 `X1X2 ´ 3E5 ` 1` 5E5X2{2`X1

˘

“ 3. Then use the fact that

X1 “ ´
1

2
`

3E5
2
´

?
3

2

a

E5p2´ E5q, X2 “ ´
E5
4
`

?
3

4

b

4´ E2
5 .

(signs are chosen based on numerical solution). We get an equation in E5 only, which is

0 “ ´p35E2
5 q{8`

´

3E5 ´
?

3
a

p2´ E5qE5 ´ 1
¯

ˆ

p1{8q
?

3
b

4´ E2
5 ´ E5{8

˙

` p5{8q
?

3E5
b

4´ E2
5 ` 2

?
3E5

a

p2´ E5qE5 ` E5{2´ 1{2
?

3
a

p2´ E5qE5 ´ 1{4.

E5 is a root of

mppEq “ 372775E8´750010E7`536359E6´270784E5`128593E4´36442E3`4333E2´220E`4.

and we suspect it’s its minimal polynomial. E5 » 1.11207. We are not aware of a closed formula
for E5. It follows that X1 » 0.30753, X2 » 0.44178, X3 » 0.55603, X4 » 0.67028, X5 » 0.80453.

Next we suppose Σ “ r3, 6, 9, 12, 15, 18, 21, 24, 27, 30s. We fill the matrix M with floats.
Python says the solution to Mρ “ 0 is rρ3, ρ6, ρ9, ρ12, ρ15, ρ18, ρ21, ρ24, ρ27, ρ30sT equals

» r1, 1.599931, 1.645307, 1.27734, 0.77838, 0.37292, 0.13741, 0.03703, 0.00657, 0.00058sT .

Graphically it seems x ÞÑ GEκ pxq ą 0 for E P pE5, E4q, x P rE ´ 1, 1s. So Σ is valid.

7. Polynomial Interpolation for the case κ “ 4 in dimension 2, 1 ĺ n ĺ 6

This section is the analogue of [GM3, section 13] and [GM3, section 14], but for κ “ 4.
First we note that

(7.1) T4pxq “ 8x4 ´ 8x2 ` 1 and T4pxq “ T4pyq ô 8px´ yqpx` yqrx2 ` y2 ´ 1s “ 0.

Let En be the energy solutions of [GM3, Proposition 7.1] and [GM3, Proposition 7.2], for
κ “ 4. We have : En P J2pκ “ 4q “ p2 cospπ{4q, 1` cospπ{4qq “ p

?
2, 1`

?
2{2q, and

En ´ 1 “ X0 ă X1 ă X2 ă ... ă Xn ă Xn`1 :“ 1.
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7.1. n “ 1 : 1st band. On the left, E1 “ 8{5, X1 “ 4{5. On the right, E0 “ 1`cospπ4 q “ 1`
?
2
2 .

We choose Σ “ r4, 8s and get ρ “ rρ4, ρ8sT “ r1, 625{1054sT . The function x ÞÑ GEκ pxq is strictly
positive for E P pE1, E0q, x P rE ´ 1, 1s.

Figure 2. GEκ“4pxq. x P rE ´ 1, 1s. From left to right: E “ E1, E “ 1.65,
E “ E0. GEκ“4pxq ą 0 in the middle picture, but not in the other two.

7.2. n “ 2 : 2nd band. X1 “
?

2{2. Then we solve T4pE2 ´ 1q “ T4pE2 ´
?

2{2q which has 2
solutions E2 “ p2`

?
2˘

a

2` 4
?

2q{4. Using the context, it must be that

(7.2) E2 “
2`

?
2`

a

2` 4
?

2

4
» 1.54532.

It follows that X2 “ E2 ´ X1 “ p2 ´
?

2 `
a

2` 4
?

2q{4. We suppose Σ “ r4, 8, 12, 24s.
The solution to Mρ “ 0 is rρ4, ρ8, ρ12, ρ24sT » r1, 0.81070, 0.21647,´0.06593sT . The function
x ÞÑ GEκ pxq is plotted in Figure 3 for some values E P rE2, E1s.

Figure 3. GEκ“4pxq. x P rE ´ 1, 1s. From left to right: E “ E2, E “ 1.57,
E “ E1. GEκ“4pxq ą 0 in the middle picture, but not in the other two.

Moreover it would appear that the combinations Σ “ r4, 8, 12, 28s, r4, 8, 12, 32s, r4, 8, 16, 24s
are equally valid, whereas Σ “ r4, 8, 12, 16s, r4, 8, 12, 20s, r4, 8, 16, 20s are not valid. The linear
dependency between rows of M seems to rely (at least partly) on the relations

U4j´1p1{
?

2q “ 0, and U4j´1p
?

2{
?

3q “ ´
?

2U4j´1p1{
?

3q, j P N˚.

7.3. n “ 3 : 3rd band. X2 “ E3{2 and T4pE3 ´ 1q “ T4pE3 ´X1q, T4pX1q “ T4pE3{2q. Taking
the context into account and applying (7.1) leads to pE3´1q2`pE3´X1q

2 “ 1 and X2
1`E2

3 {4 “ 1.
So
(7.3)

E3 “
28

65
`

2

65t
`

1

2

c

4256

12675
`

368

195s
´

16

195
s`

121088t

4225
» 1.51271, t :“

d

3

133´ 1495
s ` 65s



LAP FOR DISCRETE SCHRÖDINGER OPERATOR 6

and s :“ p629`48
?

177q1{3. The minimal polynomial for E3 is mppEq “ 65E4´112E3`56E2´

64E`16. AlsoX1 » 0.65415, X2 » 0.75635. We choose the combination Σ “ r4, 8, 12, 16, 24, 36s.
The solution to Mρ “ 0 is

rρ4, ρ8, ρ12, ρ16, ρ24, ρ36s
T » r1, 1.18290, 0.68875, 0.18594,´0.00794,´0.00288sT .

The function GEκ pxq is plotted in Figure 4 for some values E P rE3, E2s. The linear dependency
between rows of M seems to rely (at least partly) on the relation

”

U4j´1pxq, U4l´1

´

a

1´ x2
¯ı

“ 0, @j, l P N˚,

where r¨, ¨s is the Bezoutian defined by [GM3, (2.3) of section 2].

Figure 4. GEκ“4pxq. x P rE ´ 1, 1s. From left to right: E “ E3, E “ 1.525,
E “ E2. GEκ“4pxq ą 0 in the middle picture, but not in the other two.

The combination Σ “ r4, 8, 12, 16, 20, 24s is equally valid and it gives

rρ4, ρ8, ρ12, ρ16, ρ20, ρ24s
T » r1, 1.37002, 1.06973, 0.53992, 0.16964, 0.02655sT .

7.4. n “ 4 : 4th band. X2 “
?

2{2. Then we have to solve pE4 ´ 1q2 ` pE4 ´ X1q
2 “ 1,

X2
1 ` pE4 ´

?
2{2q2 “ 1. This leads to 1´ pE4 ´

?
2{2q2 “ pE4 ´

a

E4p2´ E4qq2. Thus E4 is the
root of

mppEq “ 5E4 ´ p2
?

2` 4qE3 ` p5´ 4
?

2qE2 ` p
?

2´ 2qE ` 1{4 “ 0.

The closed form formula of E4 is horrendous; but E4 » 1.49137. In turn, X1 » 0.62042.
The simplest valid combination of indices we have found is Σ “ r4, 8, 12, 16, 20, 24, 28, 52s.

The solution to Mρ “ 0 is ρ “ rρ4, ρ8, ρ12, ρ16, ρ20, ρ24, ρ28, ρ52sT »

r1, 1.46864, 1.29941, 0.80098, 0.34657, 0.09808, 0.01417, 0.000030sT .

Graphically x ÞÑ GEκ pxq is strictly positive for E P pE4, E3q, x P rE ´ 1, 1s.

7.5. n “ 5 : 5th band. We have X3 “ E5{2, pE5 ´ 1q2 ` pE5 ´X1q
2 “ 1, X2

1 ` pE5 ´X2q
2 “ 1,

and X2
2 ` pE5{2q2 “ 1. This leads to 1´

´

E5 ´
`

1´ E2
5 {4

˘1{2
¯2
“

´

E5 ´ E1{2
5 p2´ E5q1{2

¯2
. The

solution is

(7.4) E5 “
16

1275

ˆ

42`
w

32{3
´

32533w´1

31{3

˙

» 1.47650, w :“ p13025367` 208250
?

6294q1{3

and its minimal polynomial is mppEq “ ´32768 ` 22784E ´ 6048E2 ` 3825E3. In turn X1 »

0.59734, X2 » 0.67452, X3 » 0.73825, X4 » 0.80198 and X5 » 0.87916. We choose Σ “

r4, 8, 12, 16, 20, 24, 28, 32, 36, 40s. Mρ “ 0 gives rρ4, ρ8, ρ12, ρ16, ρ20, ρ24, ρ28, ρ32, ρ36, ρ40sT »

r1, 1.58691, 1.60962, 1.22543, 0.72779, 0.33759, 0.11956, 0.03071, 0.00514, 0.00042sT .

It appears graphically that x ÞÑ GEκ pxq is strictly positive for E P pE5, E4q, x P rE ´ 1, 1s.
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7.6. n “ 6 : 6th band. X3 “
?

2{2, pE6 ´ 1q2 ` pE6 ´ X1q
2 “ 1, X2

1 ` pE6 ´ X2q
2 “ 1 and

X2
2 ` pE6 ´

?
2{2q2 “ 1. Performing elementary operations shows that E6 » 1.46568 is a root of

the polynomial

mppEq “ 384E6
`p´448´224

?
2qE5

`p200`128
?

2qE4
`p´72´52

?
2qE3

`p16`12
?

2qE2
`p´2´

?
2qE`1{8.

In turn X1 » 0.58072, X2 » 0.65158, X3 » 0.70710, X4 » 0.75857, X5 » 0.81409, X6 » 0.88495.

8. Application of Polynomial Interpolation for the first band (n “ 1), 2 ĺ κ ĺ 9

This section is about the first band (n “ 1) in the interval J2pκq. For the 1st band we suppose
only 2 terms in the linear combination [GM3, (1.6) of Introduction] are required. In other words,
we suppose Σ “ rj1κ, j2κs. According to [GM3, section 12] we look to solve the system

(8.1)

$

’

’

’

’

’

&

’

’

’

’

’

%

gE1j1κpxq ` ρj2κ ¨ g
E1
j2κ
pxq “ 0, at x “ X0 “ E1 ´ 1,

gE1j1κpxq ` ρj2κ ¨ g
E1
j2κ
pxq “ 0, at x “ X1,

d
dxg

E1
j1κ
pxq ` ρj2κ ¨

d
dxg

E1
j2κ
pxq “ 0, at x “ X1,

gE0j1κpxq ` ρj2κ ¨ g
E0
j2κ
pxq “ 0, at E0 “ 1` cospπ{κq, x “ E0 ´ 1.

Note we are assuming ρj1κ “ 1. By [GM3, Remark 5.2], X1 “ E1{2. So the 3rd line of (8.1) is
trivially true, by [GM3, Lemma 3.4]. The 4th line is also always true, by [GM3, Lemma 1.4].
Assuming E1 ‰ 0,˘2, the system (8.1) is equivalent to

(8.2)

$

’

&

’

%

rUj1κ´1pE1 ´ 1q, Uj2κ´1pE1{2qs “ 0,

X1 “ E1{2,
ρj2κ “ ´Uj1κ´1pE1 ´ 1q{Uj2κ´1pE1 ´ 1q “ ´Uj1κ´1pE1{2q{Uj2κ´1pE1{2q.

LetX2 :“ 1, X0 “ E1´X2 “ E1´1. From the 3rd line of (8.2) we see that we want Ujκ´1pX0q ‰ 0
and Ujκ´1pX1q ‰ 0, in particular Uκ´1pX0q, Uκ´1pX1q ‰ 0. Thus, by [GM3, Corollary 2.3] we
see that (8.2) is equivalent to

(8.3)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

X2 “ 1,

X0 “ E1 ´X2,

X1 “ E1{2,
TκpX0q “ TκpX1q,

ρj2κ “ ´Uj1κ´1pE1 ´ 1q{Uj2κ´1pE1 ´ 1q “ ´Uj1κ´1pE1{2q{Uj2κ´1pE1{2q.

This is in agreement with [GM3, (5.1) of section 5] for n “ 1. In practice, our assessment is
that it is best to simply take Σ “ tj1κ, j2κu “ tκ, 2κu. Table 3 lists the results for κ P t2, ..., 9u.
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κ Solution to (8.3) κ Solution to (8.3)

2 E1 “ 2
3 3 E1 “ 5`3

?
2

7 » 1.3203

2 ρ4 “
9
14 » 0.6428 3 ρ6 “

170´81
?
2

92 » 0.6027

4 E1 “ 8
5 5 E1 “

49`12
?
10`
?

5p49`12
?
10q

62 » 1.7386

4 ρ8 “
625
1054 » 0.5929 5 ρ10 “

´4000073`2667375
?
2`225

?
5p25786331´6299370

?
2q

3122396 » 0.5889

6 E1 “ 1`
b

2
3 » 1.8164 7 E1 » 1.8642 (closed form unknown to us)

6 ρ12 “
27
46 » 0.5869 7 ρ14 » 0.5857

8 E1 “ 16`3
?
2`2
?

26`7
?
2

17 9 E1 » 1.9173 (closed form unknown to us)

8 E1 » 1.8956

8 ρ16 » 0.5850 9 ρ18 » 0.5844

Table 3. Solutions to (8.3). E1 “ 1st band’s left endpoint.

9. Energy thresholds in p0, 1{2q for κ “ 3 in dimension 2

Fix κ “ 3, in dimension 2. We construct graphically a bunch of thresholds in p0, 1{2q. Recall
that by [GM3, Lemma 5.3], Tn,κ “ ´Tn,κ, or by [GM3, Lemma 3.2], Θκp∆q “ ´Θκp∆q. So the
negative thresholds listed below have a positive counterpart.
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Figure 5
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Figure 6
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Figure 7
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1) E » 0.169.
2) E “ 0.25.
3) E “ ´0.25.
4) E » ´0.1028.
5) E » ´0.16019.
6) E » ´0.1202.
7) E » ´0.17911.
8) E » ´0.11608.
9) E » ´0.10796.
10) E » ´0.11385.
11) E » ´0.08425.
12) E » ´0.0917.
13) E » ´0.07143.
14) E » ´0.14325.
15) E » ´0.05169.
16) E » ´0.06615.
17) E » ´0.08424.
18) E » ´0.18726.
19) E » ´0.2857.
20) E » ´0.40824.
21) E » ´0.2857.
22) E » ´0.13911.
23) E » ´0.06805.
24) E » ´0.0813.
25) E » ´0.07704.
26) E » ´0.05406.
27) E » ´0.08014.
28) E » ´0.04594.
29) E » ´0.27129.
30) E » ´0.1082.
31) E » ´0.38229.
32) E » ´0.4467.
33) E » ´0.34518.
34) E » ´0.43085.
35) E » ´0.105384.
36) E » ´0.05659.
37) E » ´0.04657.
38) E » ´0.09839.
39) E » ´0.08979.
40) E » ´0.03862.
41) E » `0.05439.
42) E » `0.04135.
43) E » `0.13104.
44) E » `0.14092.
45) E » `0.14142.
46) E » `0.12009.
47) E » `0.14121.
48) E » `0.11771.
49) E » `0.13562.
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50) E » `0.34089.
51) E » `0.32821.
52) E » `0.31674.
53) E » `0.31404.
54) E » `0.31616.
55) E » `0.30948.
56) E » `0.36612.
57) E » `0.06397.
58) E » `0.07628.
59) E » `0.04454.
60) E » `0.05450.
61) E » `0.1001.
62) E » `0.08365.
63) E » `0.03773.
64) E » `0.03277.
65) E » `0.04901.
66) E » `0.05283.
67) E » `0.05445.
68) E » `0.02930.
69) E » `0.05402.
70) E » `0.04300.
71) E » `0.04030.
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