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Abstract

There is an ongoing debate about which rule we ought to use for scoring probability
estimates. Much of this debate has been premised on scoring-rule monism, according
to which there is exactly one best scoring rule. In previous work, I have argued against
this position. The argument given there was based on purely a priori considerations,
notably the intuition that scoring rules should be sensitive to truthlikeness relations if,
and only if, such relations are present among whichever hypotheses are at issue. The
present paper offers a new, quasi-empirical argument against scoring-rule monism.
This argument uses computational simulations to show that different scoring rules can
have different economical consequences, depending on the context of use.

1. Introduction. Weather forecasts commonly refer to probabilities. There is going to be
rain tomorrow with a probability of x, snow with a probability of y, but it may also stay dry,
with a probability of 1 – x – y. The media may sometimes report such forecasts in strictly
qualitative terms, by stating that there is going to be rain tomorrow (if the probability for rain
is over 95 percent, say), or that they expect tomorrow to be windy (perhaps if the probability
for strong winds is over 75 percent). But that is only because such qualitative reports are
easier to interpret for the general public.

There is an ongoing debate about how weather forecasts, and probabilistic forecasts
generally, are to be assessed. Participants to this debate share the conviction that probabilistic
forecasts can be accurate to different degrees. The debate is about how to measure such
degrees. Most authors agree on the “extreme” kind of case, in which one possible outcome
is forecasted with certainty. Such a forecast is usually taken to be maximally accurate or
maximally inaccurate, depending on whether the predicted outcome occurred or not. What
to say about the intermediate cases is more contentious. For instance, there has beenmuch
discussion about whether the accuracy of a forecast should depend on anything other than
what it predicted about the event thatmaterialized. If tomorrow is rainy, then—some authors
hold—there is no need to look at what the forecast said about the probability of snow.

Muchof thedebatehasproceededon theassumption that there is exactly onebestmeasure
of accuracy for probabilistic forecasts, or one best scoring rule, to use the by now standard
name for such measures. It has been said, plausibly, that scoring rules should reward the

*The Supplementary Materials for this paper, containing the R code used for the simula-
tions to be reported, can be retrieved from this repository: https://osf.io/n8e2g/?view_only=
72d468e2eabe4100b9409985c4a10950.
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features that we would like to see in forecasts (Cooke 1991, p. 121). But there is no unanimity
about which those features are. As a result, there is no unanimity about which of the many
scoring rules in the literature is the right one.

In previous work (Douven 2020, 2021, Ch. 5), I have argued against the near-consensus
of scoring-rule monism.1 My argument started from the observation that forecasts may
concern events, or equivalently hypotheses, which exhibit some kind of order. In particular,
if one hypothesis turns out to be true, the others need not all be “equally false”: some false
hypotheses may still be closer to the truth than others. Such relations of “truthlikeness” need
not obtain, and—I argued—depending on whether they do, we should use different scoring
rules.

While much of the debate about scoring rules has centered around the notion of accu-
racy, with proponents of different scoring rules emphasizing different intuitions about that
notion,Murphy (1993) has been one of the few authors to draw attention to other aspects of
a probabilistic forecast’s goodness. For one, such a forecast should—inMurphy’s view—be
“based on the forecaster’s rational distillation of the information contained in her knowledge
base” (p. 282). The argument given in Douven (2020) was that, by ignoring information about
truthlikeness relations among the hypotheses to which the to-be-scored probabilities are
assigned, the standard scoring rules (see below) fail precisely on this count, at least in some
contexts: in those contexts, they leave out relevant information about the hypotheses at issue
even though this information is readily available to the forecaster.

Another aspect of a forecast’s goodness highlighted byMurphy is that of value, bywhich he
means that userswho base their decisions on the forecast should benefit from it, economically
or otherwise. As Murphy (1993, p. 286) notes, forecasts are not intrinsically valuable: “They
acquire value through their ability to influence the decisions made by users of the forecasts.”
How scoring and value are connected is, as he also notes (p. 291), a still relatively unexplored
question.

The present paper focuses on specific cases in which the scoring–value connection is
easy to grasp, and uses them to argue again for the claim that in different contexts different
scoring rules may be called for. Depending on the context, one scoring rule may be better
at identifying valuable forecasts than another,meaning that using the former may lead to
economicallywiser choices thanusing the latter. This is illustratedby showing that, in contexts
in which they apply, scoring rules sensitive to truthlikeness often—though not always—have
a greater tendency to assign better (i.e., lower; see below) scores to more valuable forecasts
than scoring rules not of that kind. My previous argument against scoring-rule monism
was intuition-based: When we are scoring probabilities assigned to hypotheses that stand
in certain relations of truthlikeness to each other, it makes pre-theoretically good sense to use
a rule that is able to take such relations into account, while doing so makes no sense when
truthlikeness relations are absent. By contrast, the new argument to be presented is quasi-
empirical: I use computational simulations to show that the same scoring rules can be of
different value in different contexts, in Murphy’s sense. Before laying out the argument, I
provide some background on scoring rules and the debate they have given rise to.

1For other dissenters, see Joyce (2009), Levinstein (2017), and Schurz (2019).
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2. Theoretical background. This section states the main scoring rules and provides some
detail about my previous reason for believing scoring-rule monism to be false.

The scoring of probabilistic forecasts is nothing but a generalization of the simple scoring
of true/false-questions thatwehave been familiarwith sincewewerefirst-graders. In the case
of those questions, there was no way to do better than to assert, categorically, of something
true that it was true and of something false that it was false; and there was no way to do worse
than to assert, categorically, of something true that it was false and of something false that
it was true. When we assign probabilities, we can still assign probability 1 to one particular
hypothesis and probability 0 to any rival hypotheses. If we do and the hypothesis that we
expressed full confidence about is true indeed, then again there is no way we could have done
better. Scoring rules are usually taken to assign penalties, so in this case one would want to say
that zero penalty is incurred. If the hypothesis that receives probability 1 is in fact false, then
some would say there is no way we could have done worse, and so we should be maximally
penalized. As will be seen below, in the latter case one could also argue that how badly one
does by assigning probability 1 to a false hypothesis depends on how far from the truth that
hypothesis is, so that a non-maximal penalty might be more appropriate. Setting that aside
for now, the intermediate cases, in which we assign some positive probability to more than
one hypothesis, are the trickier ones when it comes to scoring.

Onemain question has beenwhether it shouldmatter at all what probability is assigned to
any hypothesis other than the truth. Proponents of the so-called log rule answer this question
in the negative.2 Let {Hi}ni=1 be a hypothesis partition, that is, a set of mutually exclusive
and jointly exhaustive hypotheses. Then, according to these authors, someone assigning
probability pi to hypothesisHi, for each i ∈ {1, . . . , n}, incurs a penalty of

L
(
{pi}ni=1, j

)
= – ln(pj),

on the assumption thatHj is the truth. Note that this means that the probabilities the person
assigns to the false hypotheses can be ignored.

The log rule is one of the twomost popular scoring rules, the other being the Brier score,
according to which the same person would incur a penalty of

B
(
{pi}ni=1, j

)
=

1
n

n∑
i=1

(
δij – pi

) 2,
with δij being 1 if i = j and 0 otherwise. For proponents of this rule, it clearly not only matters
what probability is assigned to the truth but also what probabilities are assigned to the rest of
the hypotheses.3 It can for instance be shown that, given that a person assigns probability p
to the truth, that personminimizes her Brier score by assigning one and the same probability
of (1 – p)/(n – 1) to each of the false hypotheses.

But on some occasions ignoring the probabilities assigned to hypotheses beyond the
truth—as the log rule does—and rewarding a flat assignment to those probabilities—as
the Brier score does—both seemwrong. Consider three hypotheses about the outcome of a

2See, for instance, Good (1952), Bernardo (1979), Bernardo and Smith (2000), Bickel (2007), andMcCutcheon
(2019). See also Fallis (2007) and Fallis and Lewis (2016).

3See, for instance, Brier (1950), Rosenkrantz (1981), and Selten (1998). Joyce (1998) also advocates the Brier
score as the one true scoring rule, but he abandons scoring-rule monism in his (2009).
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football match: the match ends in a home win (H), it ends in a draw (D), or it ends in an away
win (A). Suppose you believe the home team to be the stronger one and therefore deemH
most likely. A friend of yours thinks the other team is stronger and therefore deems Amost
likely. Another friend, finally, thinks the two teams are about equally strong and therefore
deems Dmost likely. Suppose the home teamwins. Then, it would seem, any scoring rule
that does not have you come out as receiving the lowest score (i.e., the lowest penalty) should
be rejected out of hand. But it equally seems that the friend who deemed a drawmost likely
should receive a lower score than the friend who deemed an away win most likely, given that
hypothesis D is in an intuitively clear sense closer to what turned out to be the truth than
hypothesis A. If necessary, the intuitively clear sense can even be formally explicated using
work on truthlikeness by authors such as Kuipers (2000, 2001, 2019), Niiniluoto (1984, 1998,
1999), and Schurz (1987, 1991, 2011).

While the log and Brier score do not allow us to take such truthlikeness relations into
account when scoring a probabilistic forecasts, there are scoring rules that do. In Douven
(2020), I introduced a family of (what I called) verisimilitude-sensitive scoring rules (VS rules,
for short), which assign weights to hypotheses based on their distance from the truth and
then let those weights determine howmuch the probabilities assigned to those hypotheses
contribute to the overall penalty. WhereHj is the truemember of hypothesis partition {Hi}ni=1,
a VS rule assigns a penalty of

V
(
{pi}ni=1, j

)
=

n∑
i=1

ωij
(
δij – pi

) 2
to someone whose probability forHi is pi, for all i ∈ {1, . . . , n}, and with δij as before. The
weightωij measures how far from the truthHi is, for i ∈ {1, . . . , n}. The only constraints on
the weights are that they must be positive, sum to 1, and reflect the truthlikeness relations
among the hypotheses at least to the extent that hypotheses further from the truth should be
weightedmore heavily than hypotheses closer to the truth. Needless to say, that leaves a lot
of freedom,meaning that there is a broad range of VS rules.

There is, however, a seeming problem with all of these rules, related to a property that
many regard as a desideratum for scoring rules, to wit, that of propriety. A scoring rule R
is said to be proper exactly if the expected R-score of any given probability assignment is
minimal relative to that same assignment. To illustrate, supposing I assign probabilities 2/3,
1/3, and 0 to the aforementioned hypotheses H, D, and A, then the R-score I expect to receive
is 2/3 of the R-score I receive if the home teamwins plus 1/3 of the R-score I receive in case of
a draw. If, and only if, R is proper, my expectation is that I cannot do better than this; relative
to my current probabilities, by adopting other probabilities I can only do worse. If, for any
probability assignment, the expected R-score is minimal only relative to that assignment—by
adopting other probabilities I will do worse, relative to my current probabilities—then R is
said to be strictly proper.

As proven in Douven (2020), VS rules are, without exception, improper. But while some
might find that reason to immediately reject these rules, in the same paper I argued that that
would be rash. Propriety is an important property of scoring rules when such rules are used to
elicit probabilities, given that an improper scoring rule could incentivize a person to lie about
her probabilities. But scoring rules can serve other purposes as well. Suppose, for instance,
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a broadcasting company intends to hire a new weather forecaster. There are a number of
candidates, and to assess them, the company scores all the forecasts these candidates made
in the past year. The company hopes to be using a scoring rule which helps themmake a good
hire. Whether that rule is proper, or strictly proper, is immaterial. After all, the forecasts are
already public and can no longer be altered. And there is no argument to the effect that the,
or a, scoring rule that helps the companymake the best hire must be proper.4

More importantly still, as also noted in Douven (2020), not all scoring rules that are
sensitive to truthlikeness are improper. In particular, the ranked probability score (RPS) is
not (Epstein 1969; Murphy 1969). According to this rule, if my probability forHi is pi, for all
i ∈ {1, . . . , n}, with {Hi}ni=1 again a hypothesis partition andHj being the truth,my ranked
probability score equals

R
(
{pi}ni=1, j

)
=

∑n
k=1

(
γkj –

∑k
i=1 pi

) 2
n – 1

,

where γkj = 1 if k > j, and 0 otherwise.
If a scoring rule is available that is both proper and sensitive to truthlikeness relations,

should we care at all about the VS family, or other scoring rules that are sensitive to truth-
likeness but at the expense of propriety? Wemight be inclined to say no, but that would not
necessarily be the right response. For VS rules have a seemingly desirable feature which the
RPS rule lacks.5

To see this, note that for the RPS rule there is no more to truthlikeness relations among
themembers of a hypothesis partition than their ordering in that partition. Now consider this
example: Two football teams that are about equally strong, and whose past five encounters
have all been draws, just played another match, in which neither team managed to score.
Then the prediction that the match would end in a 0 : 4 away win appears to be quite a bit
further from the truth than the prediction that the match would end in a 0 : 1win. After all,
the former muchmore than the latter would suggest a strongly dominant away team, which
would have been a surprise in view of the relative strengths of the teams and the outcomes
of their past encounters. On the other hand, a 0 : 24 away win prediction would hardly be
further from the truth than a 0 : 21 away win prediction: we would find these end results
about equally stunning andmight say that both are “about as far from the truth as can be.”6

4It is entirely consistent with everything said in the present paper, or in Douven (2020), that there are still
other purposes that scoring rules can serve, and that some of those may again require propriety. For instance,
Roche and Shogenji (2018) argue that we should measure informativeness in terms of inaccuracy reduction, and
that inaccuracy should then bemeasured by a proper scoring rule. There is no conflict here with the claimmade in
Douven (2020), which after all is merely that scoring rules can also serve purposes which do not require propriety.

5Thanks to Ilkka Niiniluoto for bringing this to my attention.
6An anonymous referee disagreed at this point, maintaining that we are to measure distance from the truth

here in terms of the difference in goals scored. In my opinion, it is more reasonable to look at how different the
various mentioned non-actual worlds (the world in which the match ends in a 0 : 1win, the world in which the
match ends in a 0 : 4win, and so on) are from the actual world. And given what we know about the teams, our
world would, as mentioned, have to be rather different from the actual world for the match to end 0 : 4while it
would not have to be very different for the match to end 0 : 1. By contrast, for the match to have ended 0 : 21,
something entirely out of the ordinary would have had to occur, and whatever that would have been, it would
have been about equally compatible with a 0 : 24 end result. For instance, if all players who normally play for the
home team had been suspended, and the coach of that team had to line up their most inexperienced players, then
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Or consider any value representable in a similarity space (in the manner of Gärdenfors
2000), say, a color shade. Wemight want to order different hypotheses about this value on
the basis of distances in color space (CIELAB space or CIELUV space; see Fairchild 2013 or
Douven et al. 2017), but while such distances correlate well with human judgments at a short
range, they stop doing so at a longer range (Shepard 1987). Thus, if the actual value of the
color we are looking for is some shade of red, then the hypothesis that it is a particular shade
of orange may be closer to the truth than the hypothesis that it is a particular shade of yellow,
but the hypothesis that it is a particular shade of blue would probably appear as far from the
truth as the hypothesis that it is particular shade of green, even if it turned out that, say, the
particular shade of blue is closer in color space to the actual shade than the particular shade
of green.

It is hard to see how one could accommodate the intuitions at play in these examples
just in terms of an ordering of hypotheses. However, one can find refined measures of
truthlikeness in the literature that do allow one to go beyond merely ordering hypotheses
in terms of truthlikeness and to express truthlikeness relations among the aforementioned
hypotheses in a way which does justice to the aforementioned intuitions (see, e.g., Niiniluoto
1984, Ch. 7, 1987, Ch. 12; Kuipers 2000, Ch. 12). And while the RPS rule cannot take such
refinedmeasurements into account, VS rules can.

As a further comment, I would like to point to what I regard as an open question concern-
ing VS rules. Oddie (2019) argues that a condition he terms “Proximity” is a desideratum for
any accuracy measure. According to this condition, your accuracy should not decrease if you
go from being certain thatH to being certain that a particularH-world is actual, provided the
latter is among theH-worlds closest to the actual world. As an anonymous referee observed,
VS rules fail to satisfy this condition, on the supposition that the relevant weights reflect
truthlikeness relations.7,8That is only a problem for VS rules insofar as we are committed

a devastating loss would be explainable—but the explanation would be about as good in the case of a 0 : 21 end
result as it would be in the case of a 0 : 24 end result. (Thanks toTheo Kuipers and Ilkka Niiniluoto for helpful
discussion here.)

7The referee helpfully provided a proof: Suppose we have worlds {w1,w2,w3}, where w2 and w3 are H-
worlds and w1, the only ¬H-world, is actual. Now compare probability assignments p and p∗ to these worlds:
p(w1) = p(w3) = 0 and p(w2) = 1; p∗(w1) = 0, p∗(w2) = 1 – x, and p∗(w3) = x. Furthermore, let the distances among
the worlds be given simply by their ordering in the set. Then if your current degrees of belief are given by p, you
incur a VS score of ω11 + ω21, while if they are given by p∗, your VS score equals ω11 + ω21(1 – x)2 + ω31x2. And(
ω11 +ω21(1 – x)2 +ω31x2

)
–
(
ω11 +ω21

)
= –ω21 +ω21(1 – x)2 +ω31x2, which is negative for small values of x. Hence,

your VS score can go up by becoming certain of the closestH-world, while previously youwere only certain thatH.
8Incidentally, this is not a reason to think the RPS rule is more attractive after all, because that rule fails to

satisfy Oddie’s Proximity condition as well. To see this, consider a set of worlds {w1,w2,w3,w4}, where w1,w3,
w4 areH-worlds and w2 is the only ¬H-world and is actual. Again, the distances among the four worlds are given
by their order in the set, meaning that w1 and w3 are theH-worlds closest to the actual world. Now let p and p∗ be
such that p(w1) = p(w3) = .5 and p(w2) = p(w4) = 0, while p∗(w1) = 1 and p∗(wi) = 0 for i ∈ {2, 3, 4}. Suppose your
current degrees of belief are given by p. Then if a scoring rule is to satisfy Proximity, it should not make you come
out less accurate if you replace those degrees of belief by ones given by p∗. But according to the RPS rule, doing so
wouldmake you less accurate. Given your current degrees of belief, the rule assigns you a penalty of 1/6. But if you
switch to p∗, your RPS penalty doubles, becoming 1/3. Oddie (2019) proves that, given certain mild restrictions on
the semantics, any additive scoring rule that satisfies his condition is improper, where a scoring rule is additive if
it can be written as the sum of local inaccuracies, which look only at what probability is assigned to a world and
whether or not that world is actual. (For a similar result, see Levinstein 2019.) That the RPS rule does not satisfy
Proximity, as just shown,might be thought to follow already fromOddie’s formal result. That is not so, however.
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to Proximity, and Schoenfield (2021) andMcCutcheon (2021) have recently argued that the
principle is to be rejected for being too strong. I must confess to have no clear intuitions
either way. I will proceed on the assumption that McCutcheon and Schoenfield are right,
but—as said—consider the issue to be open.9

Note that nothing in the foregoing constitutes a general argument against either the log
or the Brier score. If truthlikeness relations among the hypotheses at issue are absent, then
we may do best to use one of the standard scoring rules. But if such relations are present,
then, at least intuitively, a scoring rule should take them into account. Hence, scoring is
context-sensitive.

A weakness of this argument is that it relies heavily on our intuitions about truthlikeness
and its relevance to scoring. Enthusiasm for intuition-based approaches has considerably
waned over the past decade or so, as philosophers came to digest findings like those reported
in Machery et al. (2004) andWeinberg et al. (2010), which call into question the reliability
of philosophers’ intuitions. In the following, I aim to go beyond an appeal to intuition by
looking at the practical consequences of scoring. In doing so, I am taking on board Murphy’s
(1993) suggestion that, in assessing and comparing scoring rules, we should also look at the
potential economic benefits of using a particular rule. If, by using one scoring rule rather
than another, I am generally able to make better business deals, hire better people, figure out
more profitable investment strategies, or whatever, then, ceteris paribus, that is good reason
to go with the first rule and not with the second. Again, the argument will not be that there is
one scoring rule that does better than all the others in this respect. Rather, the claim to be
argued for is that, in some contexts, relying on a scoring rule that is sensitive to distance from
the truth leads to economically better decisions than, for instance, the Brier or log scores,
while in other contexts, the former type of scoring rules offer no such benefit.

3. Scoring and value: Illustrating the connection. Suppose a hospital considers hiring a
new engineer who is going to be responsible for the purchase of instruments used in the
hospital laboratories. After a first selection, three candidates remain. As a final test, the
head of the human resources department, who is going to decide about the hire, wants the
candidates to determine as best they can the reliability of a kind of device for measuring
certain blood values. All three candidates are given an instrument of this sort. To figure
out how reliable it is, they can work with it for a while: makemeasurements, take the thing
apart—do anything that might help them figure out how reliable the instrument is. They
are asked to report their estimate in the form of a probability assignment to the members of
{Hi}11i=1, whereHi is the hypothesis that the device has a reliability of (i – 1)/10.

For although the RPS rule is proper, it is not additive: it is not enough to know of each world whether it is actual
and what probability it gets assigned; its place in the ordering, and the probabilities assigned to the other worlds,
matter, too.

9Schoenfield (2021) proposes a number of principles weaker than Proximity but still strong enough—
according to her—to capture truthcloseness intuitions. McCutcheon (2021) argues for a stronger replacement
for Proximity that he calls “Proxvexity.” The referee who brought to my attention that VS rules fail to satisfy
Proximity also pointed out to me that they do satisfy McCutcheon’s Proxvexity condition. It is worth noting that
McCutcheon (2021) proposes a set of scoring rules that satisfy the same condition but that in addition are proper.
However,McCutcheon’s rules build on the log score and shares with that the unboundedness problem (Carvalho
2016, p. 226), which somemay find serious enough to reject those rules.
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Figure 1:Three probability distributions on {Hi}11i=1.

The candidates come up with the somewhat different probability assignments given in
Figure 1, with D1 the probabilities of the first candidate, and so on. We see that while all three
give the same probability of .4 to the hypothesis that the device has a reliability of .7 and also
all assign a probability of .3 to two other hypotheses, these other two hypotheses are not the
same for the three of them.

The type of device they were given in the test has long been used in the hospital. It is
known to the head of human resources that it outputs the correct blood values in 70 percent
of the applications, meaning that H8 is in fact the true hypothesis. So she can score the
probability assignments D1–D3. Which rule should she use for that? Does it evenmatter?

Before turning to these questions, it is to be noted that, in the following, we will, for
purposes of illustration, pick one VS rule and stick to it. The particular instance we will
assumemeasures distance from the truth simply as “distance” in the ordering of whichever
hypothesis partition is at stake. Specifically, where the truth receives a weight of 0, we first
assign the hypothesis or hypotheses whose index is equal to the truth’s plus or minus k a
weight of k and then normalize the weights to make them sum to 1. That appears to yield a
reasonable weighting function for the cases considered in this paper. But for the main line of
argument in this paper, the exact form of the weighting function is immaterial.

To see, then, why it may matter which scoring rule the head of human resources uses,
assume—plausibly—that how valuable for the hospital a device of the sort at issue is depends
on how reliable it is. For concreteness, suppose the value of this type of device is given by
the function r(x) = x4, where x ∈ [0, 1] is the reliability of the device. Then consider Table 1,
which gives the Brier, log, ranked probability, and VS scores for D1–D3 on the supposition
thatH8 is true. It also shows the absolute difference or divergence (denoted by∆) between the
actual value of the device (given its reliability of .7 and supposing that its value is represented
by the function r) and the expected value conditional on each of D1–D3. For instance, for D1
this divergence equals |r(.7) – ÅD1[r]|, where ÅD1[r] :=

∑11
i=1 D1(Hi)r

(
(i – 1)/10

)
is the expected

value given D1 (withD1(Hi) the probability ofHi in D1).
The truth—H8, we are assuming—receives the same probability in all three of D1–D3

while the remaining probability is divided equally over two false hypotheses. In D1, however,
the false hypotheses that receive positive probability are almost at maximum distance from
the truth, while in D3 they are as close to the truth as can be; D2 presents an intermediate
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Table 1: Brier, log, ranked probability, and VS scores, as well as∆-values, for the distributions shown
in Figure 1, on the supposition thatH8 is true.

Brier log RPS VS ∆

D1 0.049 0.916 0.189 0.029 0.144
D2 0.049 0.916 0.072 0.021 0.053
D3 0.049 0.916 0.018 0.005 0.018

case. It is thus no surprise that the two truthlikeness-sensitive rules penalize D1more heavily
than D2, and D2 more heavily than D3. By contrast, the Brier and log scores, which are
insensitive todistance fromthe truth,penalize all threedistributions equally. More surprising,
perhaps, is that the RPS and VS rankings correspond to how the∆-values rank the probability
assignments: D1 leads to the greatest absolute difference between real and expected value
and D3 to the smallest such difference. This suggests that probability assignments which
score better on either the RPS or the VS rule will yield more accurate estimates of the value of
a kind of device the hospital may well consider purchasing in the future.

Naturally, it is in the hospital’s interest that the person they put in charge of buying
measuring devices is able to make as accurate as possible estimates of the value of such
equipment. The hospital does not want to overpay—asmight well have happened with the
device for measuring blood values if the second candidate had been in charge of making the
deal—or decide not to buy a device because it is deemed too expensive, where in fact it offers
good value for the money, as might well have happened with the present device if the deal
had been up to the first candidate. Thus, they are hoping to hire someone who will be able to
come up with an assessment of the probabilities of the relevant reliability hypotheses which
makes the expectation about the value of whichever device they consider buying match that
device’s real value within reasonable bounds. As the current example suggests, the head of
human resources might then do best to use one of the scoring rules sensitive to truthlikeness
rather than the log or Brier score (which might earn the third candidate a job offer).

But this is only a suggestion. The example itself gives no reason to hold that ranked
probability scores, or VS scores, track divergences between expected and actual value, let
alone that a lower rankedprobability score, or a lowerVS score, guarantees a smaller divergence
between expected and actual value. The correlation exhibited in Table 1 might be attributable
to the fact that we are making a particular assumption about which reliability hypothesis
is true and are considering only three probability distributions. Indeed, if we calculate the

Table 2: Brier, log, ranked probability, and VS scores, as well as∆-values, for the distributions shown
in Figure 1, on the supposition thatH7 is true.

Brier log RPS VS ∆

D1 0.122 ∞ 0.169 0.031 0.033
D2 0.122 ∞ 0.112 0.028 0.163
D3 0.067 1.204 0.058 0.011 0.128
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scores and divergences for the same probability assignments, but now assuming that the
reliability of the device is .6 and soH7 is true, we obtain the values shown in Table 2. It now
appears that all rules, including the two rules sensitive to truthlikeness, penalizemost heavily
the distribution which in fact gives rise to the smallest divergence.

Thus, we shall have to investigate more systematically whether rankings of probability
assignments by score reflect accuracy rankings of value estimates better if the scores come
from the RPS or VS rule than if they come from the Brier or log rule. We will do so in the next
section, where we report the outcomes of running computer simulations withmany different
probability distributions, systematically working through the various locations where the
truth may be found in the space of possibilities.

4. Scoring and value: Computer simulations. Tomake the investigationmore systematic
still, and to avoid the impression that we are capitalizing on what may just be a peculiarity
of the value function r from the previous section, we will consider three further, rather
“differently-shaped” value functions, all of which have, like r, a natural interpretation.

For the first additional function, suppose we are considering paying someone for advice
on stock trading. For any given stock on any given day, the price is about as likely to go
up as it is to go down. So, a stock advisor becomes valuable only if she does better than
guessing—but then she quickly becomes very valuable (though from some point onwards,
the increase in value may taper off somewhat, because of the decreasing marginal utility of
money). Specifically, we suppose that her value as stock advisor is a function of her success
rate, as follows:

s(x) =


0 if 0 6 x 6 .5,
8(x – .5)2 if .5 < x 6 .75,
1 – 8(x – 1)2 if .75 < x 6 1,

with x ∈ [0, 1] indicating that her recommendation is profitable 100 · x percent of the time.
The second additional value function concerns a software package for detecting Trojan

horses that you consider purchasing for themainframe computer of your company. The value
of this package depends entirely on how likely it is to miss Trojans that have infected the
device, and it is specified by the function t(x) =

(
cos(πx) + 1

)
/2, with x ∈ [0, 1] the probability

of missing a Trojan.
For our final function, we may imagine that a casino owner is about to acquire a new

roulette table. The table should be fair, or balanced, in that it yields equal chances for a ball to
land on red and to land on black. A roulette table that is 100 percent fair—that has a bias of .5,
as wemight say—may be hard to manufacture; even the most carefully crafted roulette tables
are likely to have a slight bias one direction or the other. Nevertheless, we can say that roulette
tables are most valuable when they have a bias of .5 and that their value quickly diminishes
the further the bias deviates from .5. Where pdf(x | µ,σ) is the probability density function of
the normal distribution with mean µ and standard deviation σ, we suppose that the value of
a roulette table for the casino owner is given by u(x) = pdf(x | 0.5, 0.075)/pdf(0.5 | 0.5, 0.075),
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Figure 2: Graphs of value functions.

with x the bias or (as we might say for mnemonic reasons) “unbalance” of the table.10 To get a
better impression of this and the previous value functions, see their graphs in Figure 2.

In ourmedical device example, we assumed that there were elevenmutually exclusive and
jointly exhaustive reliability hypotheses. But when truthlikeness relations are involved, we
should reckon with the possibility that scoring rules which are sensitive to such relationsmay
outperform other rules themore strongly, themore finely we canmeasure distances from the
truth. For this reason,we considered in our simulations not only the casewhere the possibility
space was divided evenly into 11 hypotheses but also the cases where the space was divided
evenly into 21, 51, and 101 hypotheses, respectively. In other words, we assumed hypothesis
partitions {Hni }

n
i=1 for n ∈ {11, 21, 51, 101}, whereHni is the hypothesis that the reliability of

the medical device/the success rate of the stock advisor/the probability of missing a Trojan
horse/the bias of the roulette table equals (i – 1)/(n – 1).

In the simulations, we sampled, for each n ∈ {11, 21, 51, 101}, 1000 distributions from a
uniform Dirichlet distribution11; calculated for each of those distributions the Brier score,
log score, ranked probability score, and VS score for every possible location of the truth;
calculated for each combination of distribution, possible location of the truth, and value
function—one of r, s, t, and u—the divergence between actual and expected value; and finally
calculated the correlations between the scores and the divergences.

Let pn = (p1, . . . , pn) be a probability assignment to {Hni }
n
i=1, with pi being the probability

assigned toHi, for all i. Then,more exactly, the simulations proceeded as follows:

(1) For all n ∈ {11, 21, 51, 101}, sample 1000probability distributions,pn,1, . . . , pn,1000,with,
for all i 6 1000, pn,i ∼ Dir(1).

10We are dividing by pdf(0.5 | 0.5, 0.075) to make 1 the maximum value of the function, so as to make it more
easily comparable to the value functions in the other examples. Most probably, to obtain themonetary value of the
commodities figuring in our examples, each of r, s, t, and uwould have to be multiplied by a different constant.
Doing so would be immaterial to the results of the simulations, however, given that these concern correlations,
and given that correlations are unaffected by linear transformations of the variables.

11To sample a probability distribution on an n-element hypothesis partition from a uniformDirichlet distri-
bution essentially means that each point in the (n – 1)-dimensional probability simplex has the same chance of
being selected.
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Table 3: Coefficients for correlations between∆-values and scores, averaged over all possible locations
of the truth; standard deviations appear in brackets.

number of hypotheses

11 21 51 101

r Brier .27 (.17) .18 (.13) .11 (.10) .08 (.07)
log .21 (.14) .15 (.11) .09 (.08) .06 (.06)
RPS .65 (.33) .64 (.37) .64 (.39) .64 (.40)
VS .54 (.23) .51 (.20) .50 (.23) .49 (.23)

s Brier .29 (.14) .20 (.11) .12 (.08) .09 (.06)
log .23 (.13) .16 (.09) .09 (.07) .07 (.05)
RPS .67 (.33) .66 (.37) .64 (.39) .65 (.41)
VS .55 (.24) .52 (.22) .50 (.25) .49 (.24)

t Brier .31 (.10) .21 (.08) .13 (.06) .09 (.05)
log .26 (.09) .17 (.08) .10 (.05) .07 (.05)
RPS .89 (.12) .88 (.16) .87 (.18) .88 (.19)
VS .67 (.14) .61 (.17) .61 (.18) .58 (.20)

u Brier .24 (.19) .19 (.13) .11 (.09) .08 (.07)
log .20 (.16) .14 (.12) .08 (.07) .06 (.06)
RPS .18 (.26) .19 (.28) .20 (.28) .21 (.27)
VS .07 (.29) .05 (.28) .06 (.27) .05 (.25)

(2) For all n ∈ {11, 21, 51, 101}, i 6 1000, j 6 n, and S ∈ {B,L,R,V}, calculate Sj(pn,i),
that is, the score, according to the given rule, on the assumption that Hj is the true
hypothesis.

(3) For all n ∈ {11, 21, 51, 101}, i 6 1000, j 6 n, and f ∈ {r, s, t, u}, calculate ∆(n, i, j, f ) :=
|f (j/n) – Åpn,i[f ]|.

(4) For all n ∈ {11, 21, 51, 101}, j 6 n, S ∈ {B,L,R,V}, and f ∈ {r, s, t, u}, calcu-
late the Pearson product–moment correlation coefficient between {Sj(pn,i)}1000i=1 and
{∆(n, i, j, f )}1000i=1 .

Table 3 displays the outcomes of the simulations, averaged over all values of j 6 n (i.e., over
all possible locations of the truth).

Themost general observation to be made is that in the first three examples—that is, for
value functions r, s, and t—there are vast differences in the correlation coefficients obtained
for the two truthlikeness-sensitive scoring rules and those obtained for the Brier and log
scores, where further the RPS rule tops the VS rule. We see that for those examples there
are, on average, and for all values of n, strong correlations between ∆-values and ranked
probability scores, moderately strong correlations between∆-values and VS scores, but only
weak (for n = 11) to very weak (for all other values of n) correlations between ∆-values and
Brier or log scores. The fourth example shows a different picture. Here, we see weak to very
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weak correlations for all scores, although with increasing n the results improve somewhat for
ranked probability scores, get worse for Brier and log scores, and stay at about 0 for the VS
rule.12

It merits emphasis that while in the initial medical device example, involving only distri-
butionsD1–D3,wehadaone-to-one correspondence between the rankings of thedistributions
by their∆-values and those by their ranked probability scores as well as their VS scores, the
coefficients in Table 3 show that, for that example as well as for the second and third example,
there is actually a close (for the RPS rule) to moderately close (for the VS rule) linear relation-
ship between ∆-values and both of those scores. This means that the extent to which one
ranked probability score is higher than another tightly co-varies with the extent to which the
∆-value corresponding to the first score is higher than that corresponding to the second score,
and that almost the same conclusion holds for the VS scores.

Practically speaking, the results so far confirm the earlier impression that one should
score the candidates’ assessments of the reliability of the medical device, in the example
from Section 3, via the RPS rule. The recommendation is the same if you head an investment
company and some of your staff members have the special task of hiring new stock advisors,
or if some of your IT staffers are to decide which anti-malware to buy for your mainframe
computer. By contrast, if you are a casino owner and are looking for someone to whom
you can delegate the purchase of new roulette tables, the results do not seem to suggest any
recommendation as to which scoring rule you should use in the selection process: none of
them appears to offer much help in this kind of case.

But there is a twist here. We have been considering average correlation coefficients. In
reality, however, we will typically have good reason to expect the bias of any given roulette
table to deviate only minimally from .5 (that is, from being perfectly fair). Analogous things
might hold with respect tomedical devices, stock advisors, and anti-malware. Wemight thus
want to lookmore closely at correlation coefficients for particular hypotheses. For the roulette
table example (and only for this example), doing so reveals a remarkable pattern, which is
exhibited by the graphs in Figure 3. Whereas the averaged results gave no reason to hope that
any of the scoring rules at issue might be useful for selecting whom to rely on to assess the
bias of a roulette table, the graphs show that, supposing that the bias of roulette tables tends
to be close to .5, all four scoring rules may be useful—as long as we are relying on a relatively
coarse-grained hypothesis partition. The top panel of Figure 3 presents the results for the
n = 11 case, which shows that in the case of fair tables, all four scoring rules yield outputs that
correlate moderately strongly to very strongly with the relevant∆-values. The bottom panel
shows the results for the n = 101 case, and there we see that, while the results for the RPS rule
are still excellent, and those for the VS rule still acceptable, correlations between ∆-values

12The procedure described in Meng, Rosenthal, and Rubin (1992) allows one to test for differences among so-
called correlated correlations,which are correlations betweenpairs of variableswhere oneof the variables is shared
by the pairs. For instance, we can test whether the correlation of the Brier scores for a given n ∈ {11, 21, 51, 101}
with the ∆-values for that n and a given value function differs significantly from the correlation of the ranked
probability scores for that nwith the same∆-values. Using this procedure, it was found that, for all n and each of
r, s, and t, the correlations for the ranked probability scores as well as for the VS scores are significantly higher (at
α = .0001) than those for the Brier and log scores, and the correlations for the ranked probability scores are also
significantly higher (at the same α level) than the VS scores. In the case of value function u, the differences among
the correlations are not significant for the cases n = 11 and n = 21, but for the remaining cases the correlations for
the ranked probability scores are significantly higher (at α = .001) than those for the other rules.
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Figure 3: Coefficients for correlations between∆-values based on value function u and scores for all
bias hypotheses, the top panel showing the results for the n = 11 case and the bottom panel those for
the n = 101 case.

and either Brier or log scores become weak to very weak. The results for the intermediate
cases n = 21 and n = 51 (not displayed) show “intermediate” patterns: the correlations for the
RPS rule, and to some extent also those for the VS rule, have virtually the same shape when
plotted, while those for the other two scoring rules gradually flatten out as we go from n = 11
to n = 101 via the intermediate steps.

It is worth pointing out why these results are entirely unmysterious and have everything
to do with the shape of the value function u (see again Figure 2). Compare two probability
assignments to the hypotheses {Hi}11i=1 in the roulette example, both of which assign a proba-
bility of .45 toH4, with one assigning the same probability toH3 and the other assigning the
same probability toH5 and both dividing the remaining probability equally over the other
hypotheses. Now assume thatH4 is true (meaning that the table has a bias of .3). Then both
probability assignments put almost all probability at or close to the truth, the only difference
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being that the first puts a lot of probability “to the left” of the truth while the other puts that
same probability “to the right” of the truth. Accordingly, they receive very similar ranked
probability scores (0.0241 and 0.0280, respectively) and identical VS scores (.006). However,
the two assignments lead to very different divergences between expected and actual value
(0.005 and 0.185, respectively), due to the fact that while under the supposition thatH3 is true,
the table is basically worthless, it is at about half its maximum value under the supposition
that H5 is true. The same holds for the symmetrical situation in which H8 is true and two
probability assignments differ only in that one assigns a lot of probability mass toH7 while
the other assigns the samemass toH9. That is why we find the lowest correlations for biases
.3 and .7, as seen in Figure 3. By contrast, suppose that two probability assignments differ
only in that one assigns a lot of probability toH5 while the other assigns that same probability
toH7. Then if the table is well balanced (soH6 is true), the divergence between expected and
actual value will be the same under the two probability assignments, and the RPS and VS
scores will be close to each other or identical.13

The Supplementary Materials for this paper contain the code that was used for running
the simulations described above. Interested readers will have no difficulty re-using the
code for other value functions they might want to experiment with. Also, the code lets
readers experiment with value functions that associate random values with the members of
a hypothesis partition. As can easily be verified, such functions yield correlations between
scores and divergences not significantly different from 0, for all scoring rules. Again, there is
no mystery here. What led to the moderately high to high correlations for the truthlikeness-
sensitive scoring rules in our simulations was that hypotheses that were similar to each other
in terms of truthlikeness were also similar to each other with respect to associated value.
In such cases, concentrations of probability mass around the true hypothesis lead both to
low RPS and VS scores (which reward assigning high probabilities to truthlike hypotheses,
all else being equal) and to small divergences between expected and true values (given that
weighted sums of the values under the various hypotheses will be closer to the value under
the true hypothesis the higher the weights given to hypotheses under which the value is
similar to the true value, all else being equal). In the case of hypotheses that do not stand in
any truthlikeness relations to each other, there is nothing similar that could assure a close
connection between scores—given any scoring rule—and expected values.

5. Conclusion. Over the past fifty years or so, a welter of scoring rules have been proposed
in the literature. Much ink has been spilled over the question ofwhich of those rules is the true
measure of inaccuracy. I have previously argued against the implicit assumption underlying
that debate, to wit, that there is exactly one true scoring rule. In particular,my claimwas that
different contexts may call for different scoring rules.

My argument for this claim turned on the observation that, whenever truthlikeness
relations are present among the hypotheses of interest, we prefer forecasts that assign higher
probabilities to hypotheses close to the truth, all else being equal. Of better known scoring
rules, only the RPS rule is able to reflect that preference. The VS rules succeed in this respect

13Looking at the shapes of the other value functions, we can also understand the rest of the results reported in
Table 3. In particular, it is easy to see why the correlations between ranked probability scores and divergences are
particularly high for t, which has a more or less steady slope of about –1 across its entire domain.
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as well.14 That, often enough, we want to score probabilities assigned to hypotheses that do
not stand in any truthlikeness relation to each other—in which case it makes no sense to use
either of the two aforementioned rules—just went to underscore the case for scoring-rule
pluralism.

The findings in this paper provide further and independent support for that position. It
is not just that, in the kind of cases in which they apply, the RPS and VS rules offer scores
that better accord with intuition than do the scores we get from themore standard scoring
rules. Using either of these rules, and in particular the RPS rule, is likely to lead to better
decision-making. For instance, scoring the candidates in the medical device example by the
RPS rule is more likely to result in a hire fromwhich the hospital will benefit economically.
Such economic considerations are relevant to comparing scoring rules as well, as we said in
the introduction.

The same findings also show that scoring is evenmore context-sensitive than followed
from the earlier work. Not only the presence or absence of truthlikeness relationsmaymatter.
In the examples we looked at, the shape of the value function mattered, and in one example
even granularity—how finely we partition logical space—mattered.

Finally, it is to be noted that all our examples took some value function to be objectively
given. As Murphy (1993, p. 286) points out, however, value functions may not just vary from
one context to another, but also from one individual to another. But then, in light of the
foregoing, even different individuals in the same context could be advised to use different
scoring rules. That conclusion is about as far removed as can be from the scoring-rulemonism
that dominates the current literature.15
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