New Caledonia Ophiolite, Marginal Rifting to Fore‐arc Evolution
Abstract
The New Caledonia Ophiolite (Peridotite Nappe), represents about one third of the island's surface (i.e. 5 500 km 2). The ophiolite is composed of harzburgites, dunites, lherzolites, minor mafic-ultramafic cumulates, and various dykes and sills. The mantle section underwent a polyphase evolution, which involved prominent depletion and re-fertilization. The oldest events are probably recorded by abyssal-type lherzolites of the northern massifs, which bear traces of moderate partial melting. Plagioclase lherzolites were formed by shallow entrapment of highly depleted MORB melt in residual spinel lherzolites. Nd isotope compositions are consistent with derivation from an asthenospheric mantle source that experienced a recent MORB-producing depletion. This evolution was most likely accomplished during the late Cretaceous breakup of the eastern Australian margin. The harzburgite-dunite association, which forms the bulk of Peridotite Nappe was probably formed through a multistage magma-producing process. Harzburgites composition may have be obtained by a first phase of ~15% dry fractional melting, followed by 15%-18% hydrous melting in a supra-subduction zone setting. Variable Nd negatively correlate with 87 Sr/ 86 Sr,