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A B S T R A C T

We present a combined experimental and numerical modeling study that addresses two principal questions: (i) is
any particular Eulerian-based method used to solve the classical advection-dispersion equation (ADE) clearly
superior (relative to the others), in terms of yielding solutions that reproduce BTCs of the kind that are typically
sampled at the outlet of a laboratory cell? and (ii) in the presence of matches of comparable quality against such
BTCs, do any of these methods render different (or similar) numerical BTCs at locations within the domain? To
address these questions, we obtained measurements from carefully controlled laboratory experiments, and
employ them as a reference against which numerical results are benchmarked and compared. The experiments
measure solute transport breakthrough curves (BTCs) through a square domain containing various configura-
tions of coarse, medium, and fine quartz sand. The approaches to solve the ADE involve Eulerian-Lagrangian and
Eulerian (finite volume, finite elements, mixed and discontinuous finite elements) numerical methods. Model
calibration is not examined; permeability and porosity of each sand were determined previously through se-
parate, standard laboratory tests, while dispersivities are assigned values proportional to mean grain size. We
find that the spatial discretization of the flow field is of critical importance, due to the non-uniformity of the
domain. Although simulated BTCs at the system outlet are observed to be very similar for these various nu-
merical methods, computed local (point-wise, inside the domain) BTCs can be very different. We find that none
of the numerical methods is able to fully reproduce the measured BTCs. The impact of model parameter un-
certainty on the calculated BTCs is characterized through a set of numerical Monte Carlo simulations; in cases
where the impact is significant, assessment of simulation matches to the experimental data can be ambiguous.

1. Introduction

Quantification of contaminant transport in porous media often re-
lies on models based on various forms of the advection-dispersion
equation (ADE) (e.g., Bear, 1972; Berkowitz et al., 2000). Careful as-
sessments of this model, however, in the context of comparison to
carefully controlled laboratory measurements, are surprisingly limited
in the literature (e.g., Silliman and Simpson, 1987; Berkowitz et al.,
2002; Levy and Berkowitz, 2003; Jose and Cirpka, 2004; Loyaux-
Lawniczak et al., 2012). Historically, laboratory experiments on dis-
persion have focused on column experiments with one-dimensional (on
average) flow, yielding temporal breakthrough curve (BTC) measure-
ments at the column outlet (see for example Klotz et al., 1980 who
reported experimental results for 4000 column tests). Significantly, too,
these columns have traditionally contained macroscopically

homogeneous packings of porous material.
Transport experiments in rectangular flow cells with two-dimen-

sional flow fields and heterogeneous packing arrangements with dif-
ferent types of porous media are particularly scarce (e.g. Silliman et al.,
1998; Levy and Berkowitz, 2003; Konz et al., 2009; Chiogna et al., 2010
and references therein). Controlled transport experiments in fully three-
dimensional flow fields and domain are even scarcer (Danquigny et al.,
2004; Oswald and Kinzelbach, 2004).

And yet, notwithstanding the paucity of such studies, the need for
careful study of the ability of popular models to reproduce or match
measurements from controlled experiments seems clear. In particular,
such analyses should be a prerequisite to application of these models at
larger field scales, for which information on the structural and hy-
draulic properties of the domain, and on initial and boundary condi-
tions, is often scarce and/or uncertain. Moreover, it should be
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recognized that high-resolution, laboratory-scale experiments are par-
ticularly critical for numerical method verification when analytical
solutions are not available.

Here, we present a combined experimental and numerical modeling
study of transport in fully water-saturated, heterogeneous porous
media. We address two principal questions: (i) is any particular
Eulerian-based method (i.e., finite volume, mixed and discontinuous
finite element, Eulerian-Lagrangian finite element) used to solve the
classical advection-dispersion equation (ADE) clearly superior (relative
to the others), in terms of yielding solutions that reproduce BTCs of the
kind that are typically sampled at the outlet of a laboratory cell? and
(ii) in the presence of matches of comparable quality against such BTCs,
do any of these methods render different (or similar) numerical BTCs at
(point-wise) locations within the domain?

To address these questions, we obtained measurements from care-
fully controlled laboratory “benchmarking” experiments, and then ex-
amined the ability of various numerical solutions of the ADE to simulate
the transport behavior measured in these domains. Experimental data
are well suited for numerical code benchmarking if (i) the related un-
certainties on experimental data are estimated, and (ii) simulations can
be performed with limited calibration when model parameters have
been estimated independently together with their associated un-
certainty. Furthermore, experimental data are essential when analytical
solutions are not available. Because field experiments cannot avoid
model calibration due to unknown aquifer heterogeneity and the dif-
ficulty and uncertainty in handling boundary and initial conditions,
laboratory scale experiments are a valuable tool for numerical bench-
marking. This is true especially under non-uniform flow conditions, due
to boundary conditions, structural heterogeneity of the porous medium
and/or a combination thereof.

The experimental setup and the mathematical model and numerical
methods are described in Section 2. The benchmarking of the numerical
codes is detailed in Section 3 and the ability of the ADE to capture the
salient features of the observed data, employing various solution
techniques, is discussed in Section 4.

2. Materials and methods

2.1. Experimental set-ups

The experiments were conducted in flow cells of internal dimen-
sions 24.9 × 24.9 × 1.5 cm. Two reservoirs contained two solutions:
fresh water and saline water. The fresh solution contained 75% tap
water and 25% double deionized water. The saline solute contained the
same ratio of fresh and saline water with an additional 500 mg/L of
NaCl; chloride was considered as the tracer to be measured.

Three grain sizes were used in this study, and the cell was packed
three times with various configurations of these sands: once with
medium grain sand (uniformly), and twice with various arrangements
of fine, medium and large grain sizes (non-uniform). These sands are
clean, sieved and well-rounded quartz sands (UNIMIN, USA) with
minimal surface coatings (99.8% pure SiO2, as reported by UNIMIN).
The experiments were conducted with different porous medium struc-
tures; interfaces between the different sands were relatively dis-
continuous (sharp). The hydraulic conductivity and porosity of each of
the three sands were estimated previously from constant head column
experiments (Levy and Berkowitz, 2003). For each configuration, the
flow cell was carefully packed with the sand being added under water,
with shaking, stirring and pressing, to eliminate any bubbles and to
achieve as uniform a packing as possible. This method reduces the
possible occurrence of preferential pathways and channeling; the re-
sulting flow patterns (see, for example, Fig. 4 below, with similar results
for the other configurations) indicate that the packings were uniform.

The parameter set is listed in Table 1 and the different sand packing
arrangements are shown in Fig. 1. Detailed geometries of the hetero-
geneous domain are given in Figs. 2 and 3, for sand packing

arrangements 2 and 3, respectively. These figures also show the ex-
perimental set-up: the inlet and outlet for the fresh water and saline
solutions are near the upper left and lower right sides, respectively, as
indicated in Figs. 2 and 3. Visualization of a typical resulting flow
pattern is shown in Fig. 4.

At initial time, injected saline solution replaced fresh water at the
inlet point of the flow cell that contained fresh water with a constant
discharge of 4 mL/min. Samples were collected from the outlet over set
time intervals. The samples were then measured by an electrical con-
ductivity (EC) meter (TWIN, Japan), with maximum measurement error
of 1%, and then converted to tracer concentration values by using ca-
libration curves. Each tracer experiment was repeated to confirm re-
producibility and to obtain a first approximation of experimental errors.
Experiments were performed in steady-state flow conditions without
sink/source terms. Qualitative information is also provided by pictures
taken at regular time intervals as shown in Fig. 4 for packing 3.

2.2. Mathematical model

Under steady-state flow conditions without sink/source terms, and
assuming that the fluid density remains constant and that the porous
medium can be considered as rigid, the flow is modeled by the equa-
tion:

∇⋅ ∇ =hT( ) 0 (1)

where T is the transmissivity tensor (L2/T) and h the hydraulic head (L).
Transmissivity is computed by multiplying the hydraulic conductivity
of the porous material by the flow cell thickness (1.5 cm). A constant
flux (Neumann condition) was prescribed at the flow cell inlet whereas
a constant hydraulic head (Dirichlet condition) was prescribed at the
flow cell outlet.

The solute transport is modeled by the classical ADE, given by:

∂

∂
+ ∇⋅ − ∇⋅ ∇ =

C
t

C Cu D( ) ( ) 0 (2)

where C(x,t) [M/L3] is the unknown concentration at vector location x
and time t, and D [L2/T] is the dispersion tensor defined by:
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where u [L/T] is the pore water velocity of components ui, αL and αT [L]
are the longitudinal and transverse dispersivities, respectively, δij is the
Kronecker delta function, and De [L2/T] is an effective molecular dif-
fusion coefficient in the porous medium.

Solute concentration was set to zero in the domain, as the initial
condition. The concentration was prescribed at the flow cell inlet and
the usual dispersion-free boundary condition was applied at the flow
cell outlet.

The dispersivity coefficients are often assumed to depend mainly on
the grain size and on the uniformity coefficient of the grain size dis-
tribution (Klotz et al., 1980). The sand in the packing has a grain size
distribution very similar to that of the sand used by Danquigny et al.
(2004). Therefore, in all simulations considered in this study, long-
itudinal and transverse dispersivities are set to the average grain size
and to one tenth of the average grain size for the longitudinal and
transverse dispersivities, respectively (Table 1). The factor of about 1/

Table 1
Porous medium properties and assumed dispersivities based on average grain size.

Sand type “Coarse” “Medium” “Fine”

Average grain size (m) 1.1 × 10−3 0.53 × 10−3 0.23 × 10−3

Hydraulic conductivity (m/s) 5.0 × 10−3 1.5 × 10−3 0.20 × 10−3

Porosity (−) 0.35 0.35 0.35
Longitudinal dispersivity (m) 1.1 × 10−3 0.53 × 10−3 0.23 × 10−3

Transverse dispersivity (m) 1.1 × 10−4 0.53 × 10−4 0.23 × 10−4
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10 between both dispersivities is a modeling choice adopted from a
variety of practical applications. It has also been estimated from dif-
ferent 2D laboratory scale experiments (e.g., Ballarini et al., 2012).

2.3. Numerical methods and computational codes

Numerical solution of the transport equation, for advective-domi-
nated transport, remains far from trivial. Numerical methods are still
under development for accurate solutions that avoid artificial disper-
sion and/or numerical oscillation with reasonable space and time dis-
cretization, i.e., computational costs. Here, we examine different grid-
based numerical methods to reproduce the experiments presented in
Section 2.1: Eulerian methods (finite difference, finite element, mixed
hybrid and discontinuous finite element) and Eulerian-Lagrangian
methods (characteristic methods and Eulerian-Lagrangian localized
adjoint). Adaptive mesh techniques are not considered in the present
analysis, although they were already applied to the homogeneous
benchmark (packing 1) used here (Esfandiar et al., 2015). We focus on
Eulerian methods for two reasons: (i) they are very common and widely
used in research and engineering, (ii) fully Lagrangian methods such as
random walks are prone to fluctuations in concentration due to the
computation of the dispersive term (Thomson et al., 1984) and are
therefore not well suited for solving non-linear problems such as den-
sity driven flow and/or reactive transport.

Among the numerous computational codes based on the Eulerian
approach, MODFLOW and FEFLOW are particularly popular. The

numerical methods we consider are embodied in the codes listed below.
MODFLOW (Harbaugh et al., 2000) is the U.S Geological Survey

modular finite difference flow model. Finite differences are used to
solve the flow equation, and the transport equation is solved by op-
erator splitting, which is a common approach. The ADE is split into two
equations: the first equation describes advection and the second, dis-
persion. This allows for use of a specialized scheme for solving the
advective term and a conventional scheme for solving the dispersive
term to improve the numerical accuracy. In MODLFOW, the advection
term can be solved with Eulerian-Lagrangian methods (method of
characteristics, modified characteristic method, and hybrid method of
characteristics), the standard finite-difference method, and the third
order of the total variation diminishing (TVD) scheme, while the dis-
persive part is computed by finite differences. The different schemes
were tested during the simulation of the flow cell experiments outlined
in Section 2.1. Eulerian-Lagrangian methods produce oscillations
whereas the upstream finite difference scheme leads to excessive nu-
merical dispersion. Therefore, only results provided by the TVD scheme
will be presented. The main idea of the TVD scheme is based on the so-
called “ultimate algorithm” proposed by Leonard (1988). It assumes
that the sum of concentration differences between adjacent nodes di-
minishes over successive transport steps. This scheme is mass con-
servative and generates limited numerical dispersion or unphysical
oscillations (Zheng and Wang, 1999; Zhang and Shu, 2010). TVD
schemes are generally much more accurate in solving advection-

Packing 1 Packing 2 Packing 3

Fig. 1. Sand packing arrangements used for the laboratory
experiments. Packing 1: homogeneous packing with
medium sand. Packing 2: heterogeneous packing arrange-
ment with coarse, medium and fine sand. Packing 3: het-
erogeneous packing arrangement with coarse, medium and
fine sand.

Fig. 2. Disposition of coarse (light grey), medium (grey) and fine (dark grey) sands in the
Packing 2. Decimal values within the domains denote the coordinates in meters of each
boundary (x and y dimensions are written vertically and horizontally, respectively). Inlet
and outlet in each domain are represented by the black rectangles at the upper left and
lower right sides, respectively. Red squares represent the locations where internal BTCs
are computed. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Disposition of coarse (light grey), medium (grey) and fine (dark grey) sands in the
Packing 3. Decimal values within the domains denote the coordinates in meters of each
boundary (x and y dimensions are written vertically and horizontally, respectively). Inlet
and outlet in each domain are represented by the black rectangles at the upper left and
lower right sides, respectively. Red squares represent the locations where internal BTCs
are computed. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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dominated problems, as compared to standard methods. In the ultimate
scheme, the interface concentrations are determined through a third-
order polynomial interpolation of nodal concentration, supplemented
by a flux limiter to minimize unphysical oscillations which may occur if
sharp concentrations fronts are involved.

FEFLOW (Finite Element subsurface FLOW) solves the governing
flow, mass and heat transport equations in porous and fractured media
using finite elements (Diersch, 2013). The advective part of the ADE
can be solved using full upwinding, no upwind (concentration is com-
puted by linear interpolation), least square upwinding, streamline up-
winding, or shock capturing. The two latter schemes add a second in-
terpolation function to the standard Galerkin function to stabilize the
solution in advection dominant problem. A set of preliminary runs re-
vealed that the full upwinding scheme provided the most accurate
match to the concentration data from the flow cell experiments.
Therefore, the different results showed here have been obtained by this
scheme.

TRACES (Transport of RadioACtive Elements in Subsurface, 2009)
is a computer program for the simulation of flow and reactive transport
in saturated porous media developed at Strasbourg University. The flow
equation is solved by mixed hybrid finite elements. The transport
equation is split into two parts: the advective part is solved by dis-
continuous finite elements (explicit scheme in time) and the dispersion
by the mixed hybrid finite element method. Mixed finite elements are
well suited for solving elliptic and parabolic partial differential equa-
tions, which are the mathematical representation of many problems, for
instance groundwater flow and dispersion of solutes (Younes et al.,
2010; Farhloul and Serghini Mounim, 2005). The Discontinuous Ga-
lerkin Finite Element method combined with a slope limiting procedure
can solve advective-dominant transport without oscillations and with
very limited numerical diffusion (Diaw et al., 2001). Discontinuous
Galerkin Finite Elements allow for the computation of sharp fronts due
to the discontinuity of the concentration function between adjacent
elements. Mass conservation is ensured by the upwind approximation of
the convective flux. A slope limiting procedure reduces the variation of
concentration within an element to avoid, if necessary, oscillations.
This procedure adds limited numerical dispersion at the element level.
The time discretization scheme used is explicit, which requires strict
adherence to the Courant criterion. This criterion is respected in regions

with significant concentration gradients only. To avoid the use of small
time steps due to high velocities (e.g., at the inflow or outflow), ad-
hering to this criterion is irrelevant within regions where local con-
centrations do not vary in time.

ELLAM (Eulerian Lagrangian Localized Adjoint Method), first in-
troduced by Celia et al. (1990), provides a methodology that maintains
the accuracy and efficiency of Eulerian and Lagrangian methods, while
also conserving mass and systematically treating any type of boundary
condition (Russell and Celia, 2002). The approach is based on test
functions (linear in this case) with full space time dependence that are
solutions to the formal adjoint operator defined on local space time
partitions of the domain. The definition of the adjoint operator avoids
treating explicitly the hyperbolic (advective) part of the equation in an
Eulerian framework. However, it requires the computation of some
integrals along the characteristics which can introduce some numerical
dispersion and/or oscillations. This drawback has been reduced by a
more accurate interpolation scheme (Younes et al., 2006). The integrals
are computed along characteristics using particle tracking, and the
other terms of the transport equation are solved by standard Galerkin
finite elements. The method is not limited by restrictions on Courant or
Peclet numbers and therefore should be useful for solution of advection-
dominated transport problems which generally cannot be solved ac-
curately by standard finite-difference and finite-element methods
(Healy and Russell, 1998). In this code, the velocity field is calculated
by the mixed hybrid finite element formulation of the flow equation
which ensures accurate computation of the characteristics.

3. Benchmarking of numerical methods

The simulation of solute transport in porous media requires ap-
propriate spatial and temporal discretizations that allow computation
of an accurate flow field and solute concentration map with negligible
numerical diffusion and/or oscillations. Numerical diffusion and oscil-
lations are often addressed in transport simulations through the grid
Péclet number (e.g., Kinzelbach, 1986). The accuracy of the computed
velocities related to the grid size employed for the solution of the
groundwater flow problem in the presence of a given (deterministic)
spatial distribution of hydraulic conductivity is addressed only in a
limited number of studies, an example being the work of Cainelli et al.

Fig. 4. Spatial evolution over time of tracer (blue dye) in-
jected into Packing 3. Photographs are taken at approxi-
mately uniform time intervals over approximately one
hour. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of
this article.)
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(2012).
The three laboratory experiments described in Section 2.1 were si-

mulated by the four computational codes described in Section 2.2. A
first set of simulations was performed to identify the required grid size
for an accurate flow field computation. The accuracy of the numerical
methods was then analyzed with (i) the BTCs at the experimental model
outlet, and (ii) comparison of model simulations of BTCs at some spe-
cific locations inside the flow cell. First, we compared the computed
flux-averaged BTCs to their measured counterparts taken at the outlet
of the flow cell. Second, we compared computed local BTCs, re-
presenting resident concentrations, as an additional metric upon which
we analyze the relative differences between the numerical methods.
Finally, we examined the sensitivity of the model outputs to grid size,
by comparing the spatial distribution of concentration inside the flow
cell for packing 3, determined from the different numerical methods
50 min from tracer injection. We also provide some information on the
code performance in terms of computation.

3.1. Optimization of the spatial and temporal discretizations

The accuracy of the velocity field is estimated through BTCs com-
puted by advective transport only with different grid sizes. These si-
mulations are based on particle tracking displaced along streamlines,
hereafter referred to as Advective Particle Tracking (APT). In each si-
mulation, 100,000 particles were initially distributed close to the inlet
over a rectangular domain whose opposite corners have the following
coordinates: (0.05, 21.0) cm and (0.50, 22.0) cm. The BTCs inside the
domain were computed by counting the particle located within a circle
of 0.5 cm radius and centered on the reference location (see Figs. 2 and
3 for each packing). Model parameters (hydraulic conductivity, effec-
tive porosity) and injection flow rate were derived from previous ex-
periments (Table 1). The flow computation was performed with TRA-
CES. Grid cells are squares with uniform sides Δx = Δy so that mixed
finite elements are equivalent to finite differences (Younes et al., 2010)
and the following results can be extended to the flow field computation
with MODFLOW. The flow field was computed with grid cells of 4 mm,
2 mm, 1 mm and 0.5 mm. The grid size was found to have no significant
effects for the homogeneous test case (packing 1). For the two other test
cases, the coarser mesh led to an apparent spreading of the solute as
shown in Fig. 5 for packing 2 and Fig. 6 for packing 3. These different
travel time distributions are related to the hydraulic head computations
whose gradients are smoother for the coarse discretization
(Δx= 4 mm) than for a finer discretization (Δx= 1 mm), as it shown
in Fig. 7 for packing 2. Grid convergence was reached for a grid cell size
of 1 mm; smaller grid sizes did not yield visibly different results. The
corresponding grid Péclet numbers are Pe = 1.0, 1.9, and 4.3, respec-
tively, for the fine, medium and coarse sand. Grid convergence is

reached even if these grid Péclet numbers do not fulfill the traditional
requirement, i.e., Pe < < 1 (note that this condition is theoretically
established only for one-dimensional uniform flow (Kinzelbach, 1986)).

Similar tests were performed with the triangular grids used for
FEFLOW and ELLAM. The triangular grids are obtained from the rec-
tangular grids by dividing each square into two triangles by the square
diagonal. The diagonal orientation was changed from square to square,
to avoid artificial anisotropy due to the mesh. The tests on triangular
grids provide the same results as the rectangular grids. Therefore, the
following computations were performed on grids with a spatial dis-
cretization of 1 mm size.

The temporal discretization was modified until no significant
change appeared in simulated concentrations at the outlet. The max-
imum time step length was fixed to 0.25 min. In the following simu-
lations, advective transport by APT is displayed also on the BTCs to
highlight the contribution of dispersion on the simulated concentration.
Finally, simulations with dispersivities 10 times greater than the values
reported in Table 1 were performed to evaluate the sensitivity of the
simulated BTCs. No significant changes were observed because the
shape of the BTCs is due mainly to advective transport.

3.2. Comparison of results between numerical methods and measured BTCs

The simulations were performed assuming that neither the
boundary conditions (input flow rate at the inflow) nor the parameters
(see Table 1) are subject to uncertainty. Because the objective of this
section is to compare numerical results, the measured BTCs are used
here as a reference solution to examine the quality of the numerical
results.

For the first set of experiments (homogeneous medium), all com-
puted BTCs compare to the measurements quite well (Fig. 8). From the
APT simulation, we see that the shape of the BTC is due mainly to
advective transport and that the contribution of the dispersion is neg-
ligible. Therefore, even if numerical diffusion exists, it cannot be
highlighted by this kind of experiment. The four numerical methods
provide very similar results except at the beginning of the BTC (around
50 min) where the finite element based flow models (FEFLOW, ELLAM)
show an earlier breakthrough.

The simulations of the second set of experiments (packing 2) do not
compare well to the experimental results (Fig. 9). Even the global shape
of the measured BTC is not well reproduced by the numerical simula-
tions, especially between 60 and 90 min after injection, even when
dispersion/diffusion is neglected (APT). Dispersion/diffusion leads to a
smoother evolution of the concentration versus time as expected. The
BTCs computed by the codes are significantly different from each other
as well. Results based on ELLAM show some oscillations at the end of
the simulation period due to the numerous interpolations required by
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Fig. 5. Simulated breakthrough curves for Packing 2 considering advective transport only
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the method. Concentrations computed by MODFLOW are significantly
different from the concentrations computed by the other computational
approaches between 40 and 60 min after injection.

Similar results are obtained for packing 3, although the simulated
solutions showed a better match to the experimental results (Fig. 10).
The difference between advective transport (APT) and advective-dis-
persive transport is quite small, which indicates the predominant role of
the advective transport for this test case. The transport computed by
FEFLOW shows some excessive dispersion/diffusion and MODLOW
computation shows some excessive dispersion between 60 and 100 min
after injection. Both experiments were simulated using a finer mesh
(Δx= 0.5 mm) without significant changes in the computed con-
centrations.

The results of the simulations for all three packing arrangements are
summarized in Table 3, in terms of metrics that provide a quantitative
comparison:
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where N is the number of measured normalized concentrations, Ci
s and

Ci
m respectively being the simulated and measured concentrations. In

Eq. (4), ME represents the average error and is a good indicator when
discrepancies between computed and observed concentrations are due
to a translation along the time axis; AME is the absolute mean error and
RMSE is the root mean square error. Note that RMSE and AME provide
the same type of information, RMSE being more sensitive to high dif-
ferences between computed and measured normalized concentrations.

On average, we find that the APT simulations provide the highest
errors, showing that dispersion, although quite small, improves the
quality of the simulations. The values of ME are relatively small,
showing that the average flow is well reproduced by the simulation; this
finding might be expected given that the flow rate (at the inflow in our
case) is prescribed. This result also shows that the various schemes
tested (especially the upwind schemes) do not generate any artificial
advective transport. The differences between AME and RMSE remain
limited for all test cases because the numerical schemes analyzed here
do not render outliers in concentration values.

All three metrics are quite small for packing 1 (< 0.05 when dis-
persion is included) with some slightly higher values for FEFLOW.
These metrics are the highest for packing 2 (close to 0.09 for
MODFLOW), where all codes fail to reproduce the shape of the BTC (see

Fig. 7. Pressure head distribution for Packing 2 and spatial
discretization of (a) Δx= 1 mm and (b) Δx = 4 mm.
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Fig. 8. Measured and simulated breakthrough curves at outlet for Packing 1 (P1).
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Fig. 9. Measured and simulated breakthrough curves at outlet for Packing 2 (P2).
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Fig. 9). More significant differences among the codes are evidenced for
packing 3, especially between FEFLOW and TRACES (see Experiment
2).

Note that we consider here the measured concentrations as a re-
ference even though uncertainties exist in the parameter values and in
the geometry of the block-homogeneous zones. These uncertainties do
not allow for more detailed comparisons among the codes at this stage.
Indeed, a numerical code with numerical dispersion may provide better
results than a more accurate code where an underestimated dispersivity
value is used.

As stated above, local BTCs (associated with resident concentration)
were also computed to evaluate the relative differences among the
numerical methods. To this end, the grid and time step sizes chosen
after convergence at the outlet BTCs were used, i.e., Δx = 1 mm and
Δtmax = 0.25 min. There are no measurements from within the la-
boratory flow cells, and the main purpose of these comparisons was to
investigate how numerical methods describe local BTCs at some stra-
tegic points in the domain. We do so by selecting points located at the
boundaries of two or more zones in the heterogeneous structures
(packing 2 and 3).

While the differences between the codes remain quite small for the
local BTCs close to the inlet, the differences are very significant far from
the outlet (Fig. 11 for packing 2 and Fig. 12 for packing 3). We recall
here that the differences in the simulations rely on the numerical
method and the grid. ELLAM, FEFLOW and MODFLOW suffer from
numerical dispersion/diffusion (see BTCs at ‘C’ for both packings for
FEFLOW and MODFLOW, BTC at ‘C’ for packing 2 for ELLAM). Because
the flow fields of different codes are very similar, the difference in the
computed concentrations may rely on (i) the discretization of the ad-
vective part of the transport equation, (ii) the handling of a full dis-
persion tensor (which might be a critical issue for a finite volume based
approach such as embodied in MODFLOW) and/or (iii) the coupling
between advection and dispersion when the numerical method used to
solve advection and dispersion are different (which is the case for
ELLAM and TRACES).

These comparisons show that the ability of a numerical model to
reproduce a flux-averaged BTC (such as that sampled at a system out-
flow, or along a borehole under field conditions) does not necessarily
imply that local concentrations are computed accurately.

3.3. Numerical method performance

The sensitivity to discretization is frequently studied in assessing the
accuracy of numerical methods. The spatial discretization sensitivity of
numerical solutions presented here was obtained after temporal con-
vergence, i.e., when reducing the time step does not change the solu-
tion. We compare concentration distributions at 50 min after injection,

for packing 3, obtained with two different grid sizes, for the four models
(Fig. 13). The grid size Δx= 1 mm is taken as the reference solution,
which allowed reasonable simulation of the BTCs at the flow cell outlet
(results with the Δx = 0.5 mm grid did not differ but required increased
computational time).

The change in grid size affects the discretization of the flow field
and the potential numerical dispersion of the numerical method. We
recall that, due to the mesh geometry (squares), MODFLOW and
TRACES are based on the same velocity field. The effect of fine sand
inclusions located close to the outlet (bottom right in Fig. 1, packing 3)
is not properly taken into account for the coarser grid.

We note that all of the numerical methods tested are affected by
numerical dispersion with the exception of the APT scheme. In this
context, we found that FEFLOW and MODFLOW are more sensitive to
spatial discretization than TRACES and ELLAM. Decreasing mesh size
reduces greatly the numerical dispersion generated by all of these
methods and improves significantly the accuracy of the numerical so-
lutions. Standard methods embedded in MODFLOW and FEFLOW have
to be applied under restricted conditions to limit problems with nu-
merical stability and/or numerical dispersion. These concentration
distributions provide a good illustration of the numerical dispersion
generated by the standard methods, as well as their dependence to grid
size.

Because the numerical methods are different, the computational
costs are different for the same grid. Accuracy of computational codes
should be linked to computational costs such as CPU time and required
memory. CPU time is of course correlated to the number of unknowns,
but also to local criteria such as the Courant number of the advective
part of the computation. For example, TRACES uses an explicit scheme
for the discontinuous finite element scheme. The number of unknowns
is equal to the number of elements for MODFLOW, the number of nodes
for FEFLOW and ELLAM, and the number of element edges for TRACES.

Table 2 summarizes the required computational needs for the same
grid used for the simulation of the packing 2. However, computer time
is not a proper criterion to compare computational codes, because it
depends on many parameters including, e.g., the type of compiler, the
type of solver, and programming skills, and is provided here only as
additional information.

4. Reliability of the ADE in the context of the numerical methods
tested

The simulations of the second and third sets of experiments (packing
2 and 3) do not yield complete matches to the experimental results
(Figs. 9 and 10), irrespective of the numerical method employed to
solve the ADE. Several reasons can be suggested:

(i) Uncertainty in data, including the idealized geometry of the
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Fig. 11. Simulated breakthrough curves for Packing 2 at points located in A (10.2, 13.2),
B (4.5, 7.5) and C (18.5, 9.5); see Fig. 2.
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heterogeneities in the simulations compared to the experimental setup,
and/or uncertainty in the hydraulic conductivities and porosities due to
sand packing as reported by, e.g., Ruch (1992).

(ii) Lack of knowledge regarding transport processes – and how to
model them – at the interface between two porous media, as reported
by, e.g., Berkowitz et al. (2009, and references therein) for a layered
column. Other experimental results suggest that, at least for small
variations in medium heterogeneity, the global transport in such a
configuration can be considered as the convolution of homogeneous
blocks (Delay et al., 1997), without significant effects of mixing pro-
cesses at the block interfaces.

(iii) The ADE may not be appropriate to fully characterize the
transport, as demonstrated from repeated and diverse experiments de-
monstrating non-Fickian transport (e.g., Berkowitz et al., 2000, 2006).

We address here the first factor by incorporating parameter un-
certainties in the numerical simulations. We assume therefore that the
difference between computed and observed concentrations is due to the
uncertainty in hydraulic conductivity and porosity due to packing as
observed by Ruch (1992) who reported hydraulic conductivity differ-
ences of about 15% by repeating column experiments.

Uncertainties in parameters were simulated by (forward) Monte
Carlo simulations assuming uniform distribution of the hydraulic con-
ductivity over a given range for each sand. These ranges were fixed to
4 × 10−5–5 × 10−4, 9.0 × 10−4–15 × 10−4 and 5 × 10−3–15
× 10−3 m/s for the fine, medium and coarse sands, respectively.
These values were estimated from other laboratory experiments

Δx = 4 mm Δx = 1 mm

ELLAM

FEFLOW

MODFLOW

TRACES

Fig. 13. Simulated concentration distributions 50 min after injection
(Packing 3). Colour bar indicates relative concentrations.

Table 2
Computational time for the numerical codes for grid size of Δx = 1 mm and Δt = 1 min.

MODFLOW FEFLOW TRACES ELLAM

No. cells 249 × 249 249 × 249 × 2 249 × 249 249 × 249 × 2
Νο. unknowns 62,001 62,500 124,500 62,500
CPU time (s) 5028 431 3806 423

Table 3
Some metrics of the simulations to assess discrepancies between models and data.

Experiment 1 Experiment 2

ME AME RMSE ME AME RMSE

Packing 1
Modflow 0.0015 0.0133 0.0172 −0.0038 0.0071 0.0089
Feflow −0.0177 0.0264 0.0370 −0.0190 0.0316 0.0384
APT −0.0031 0.0375 0.0508 −0.0092 0.0239 0.0324
ELLAM −0.0102 0.0184 0.0281 −0.0139 0.0187 0.0242
Traces 0.0035 0.0122 0.0178 −0.0001 0.0132 0.0189

Packing 2
Modflow −0.0321 0.0697 0.0800 −0.0272 0.0739 0.0870
Feflow 0.0103 0.0456 0.0596 0.0135 0.0564 0.0730
APT −0.0021 0.0571 0.0708 0.0007 0.0636 0.0824
ELLAM −0.0179 0.0499 0.0614 −0.0146 0.0573 0.0746
Traces −0.0127 0.0455 0.0523 −0.0084 0.0510 0.0630

Packing 3
Modflow −0.0251 0.0471 0.0619 −0.0012 0.0469 0.0597
Feflow 0.0405 0.0414 0.0587 0.0688 0.0689 0.0849
APT 0.0201 0.0345 0.0414 0.0443 0.0500 0.0634
ELLAM 0.0164 0.0259 0.0324 0.0456 0.0478 0.0586
Traces −0.0215 0.0276 0.0330 0.0053 0.0231 0.0281
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performed with similar sand (same average grains size) by Ruch (1992);
Schroth et al. (1996); Silliman and Caswell (1998); Chao et al. (2000);
Levy and Berkowitz (2003) and Jose et al. (2004). Effective porosity is
assumed to be distributed over [0.32 to 0.38] which represents 10% of
the estimated value. Although dispersivity values were assumed on the
basis of average grain size, their uncertainties were not taken into ac-
count. Numerical simulations with dispersivity values 10 times greater
did not show significant differences in the BTCs. We also performed a
set of MC simulations where (a) hydraulic conductivity was modeled as
a spatially varying random process within each of the sands, and (b)
conductivity values within each grid cell were randomly selected from
the above mentioned uniform distributions. We found that the effects
on the target BTCs due to this type of internal variability were not
significant when compared to the effects of the conductivity contrasts
between the sand types (details not reported). Given the objective of
our study, we do not pursue this avenue of investigation here.

Because the objectives are not a detailed statistical analysis of the
concentration distribution, we performed only 100 MC runs using code
TRACES with the optimal spatial discretization of Δx = 1 mm (see
Section 3). These types of uncertainty quantification analyses could also
be performed in the context of typical model calibration, where the
uncertainty associated with estimated model parameters is conditional
on available data as a result of an inverse modeling procedure. As stated
in the Introduction, we emphasize that aspects of model calibration in
randomly heterogeneous porous media are not the subject of this in-
vestigation. Measured and 30 Monte Carlo computed BTCs chosen
randomly among the 100 simulations are shown in Figs. 14 and 15. The
observed data lie within the collection of computed BTCs. The un-
certainty related to the parameters is a possible explanation of the
differences between measured and computed concentrations (Figs. 9
and 10) with the initial dataset (Table 1). The impact of parameter
uncertainties is significant for packing 2, mainly 60 to 80 min after
injection where the shape of the BTC may be either convex or concave.

Given the analysis of these results, together with the recognition
that hydraulic conductivity could also be modeled as a spatial random
function within each type of sand, one can conclude that the significant
impact of the hydraulic conductivity uncertainty on the BTCs does not
allow unambiguous rejection of the classical ADE formulation to
quantify solute transport in these experiments. Of course, this conclu-
sion does not negate the other two factors noted above, as well.

5. Conclusions

Based on the results of our analysis, we conclude the following:

1. Simulation of tracer transport in heterogeneous media is far from

being straightforward. Mesh discretization can impact considerably
the results of computations of both flow and concentration fields.
While numerous numerical works are focused on detailed analysis of
artificial dispersion and/or oscillation due to the numerical solution
of the transport equation, we show here also that the accuracy of the
solution of the flow equation is a critical issue which needs to be
properly addressed through a consistent and rigorous convergence
analysis.

2. Enhanced numerical methods used in computational systems such as
TRACES and ELLAM are more accurate and perform better than
standard methods (finite volume, Galerkin finite elements) for sol-
ving the transport equation, at least for the experiments considered
here. They provide fewer problems related to numerical dispersion
and the way the full dispersion/diffusion tensor can be handled ef-
fectively in the numerical solution method.

3. Model verification based only on flux-averaged concentrations (of
the kind detected at a flow cell outlet and/or pumping well) does
not guarantee the numerical accuracy of the methodology under-
lying the modeling results. Although simulated BTCs at the outflow
may be very close, computed local concentration values (inside the
domain) can be very different, depending on the numerical method
employed. As a consequence, the choice of a numerical method can
include an element of uncertainty to model results, which should be
considered in combination with uncertainties associated with
knowledge of model parameters.

4. Although the experiments were carried out with great care and ac-
curacy, natural experimental uncertainties in the hydraulic con-
ductivity and effective porosity values (eventually including de-
tailed knowledge of the location of boundaries between different
materials) can be significant and contributes to our inability to fully
demonstrate (or reject) the capability of the ADE to interpret the
available data, regardless of the numerical method employed to
solve the flow and transport scenario.

Laboratory experiments are useful for model testing and numerical
methods benchmarking. However, they required very detailed in-
formation on both concentrations and parameters. To fully answer the
question of mathematical model validation, the presented setup still
requires some modifications to reach the ‘ideal’ configuration. Due to
the boundary condition at the inflow (prescribed flux), the average
velocity will not change whatever the hydraulic conductivity in the
domain. Therefore, it is better to use prescribed hydraulic heads and to
measure the water flux at the outflow. It is also highly recommended to
follow local concentrations over time inside the porous medium, as
discussed in, e.g., Loyaux-Lawniczak et al. (2012) and Raveh-Rubin
et al. (2015).Fig. 14. Comparison between measured BTC and BTCs from 30 Monte Carlo simulations

(Packing 2).

Fig. 15. Comparison between measured BTC and BTCs from 30 Monte Carlo simulations
(Packing 3).
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