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Abstract. The solution of the mathematical model for flow
in variably saturated porous media described by the Richards
equation (RE) is subject to heavy numerical difficulties due
to its highly nonlinear properties and remains very challeng-
ing. Two different algorithms are used in this work to solve
the mixed form of RE: the traditional iterative algorithm and
a time-adaptive algorithm consisting of changing the time-
step magnitude within the iteration procedure while the non-
linear parameters are computed with the state variable at the
previous time. The Ross method is an example of this type
of scheme, and we show that it is equivalent to the Newton–
Raphson method with a time-adaptive algorithm.

Both algorithms are coupled to different time-stepping
strategies: the standard heuristic approach based on the num-
ber of iterations and two strategies based on the time trun-
cation error or on the change in water saturation. Three dif-
ferent test cases are used to evaluate the efficiency of these
algorithms.

The numerical results highlight the necessity of imple-
menting an estimate of the time truncation errors.

1 Introduction

Water movement in soils is one of the key processes in the
water cycle since it contributes to the renewal of groundwa-
ter resources through recharge, to vegetation growth through
transpiration, to soil fertility through salinization/alteration
and to atmospheric humidity through evaporation and tran-
spiration. Water movement is usually modeled using the

Richards equation (Richards, 1931), which is now commonly
adopted for many studies in soil science and/or hydrology, in-
cluding the use of physically based hydrological models ap-
plied to large-scale catchments and for long time simulations
(e.g., for climate change studies). However, this equation is
highly nonlinear, and despite numerous efforts over the last
40 years, its numerical solution requires much computational
time.

Assuming a rigid solid matrix, the Richards equation (RE)
is given by{
∂θ

∂t
+ Sws0

∂ψ

∂t
+∇ · q = f

q =−kr(ψ)K [∇ψ +∇z]
(1)

where θ is the volumetric water content (L3 L−3), Sw is the
water saturation (–), s0 accounts for fluid compressibility
(L−1),ψ is the pressure head (L), q is the water flux based on
the extended Darcy’s law (L T−1), t is the time (T ), z is the
vertical coordinate (positive upward) (L), f is the sink/source
term (T−1), K is the saturated hydraulic conductivity tensor
(L T−1) and kr(ψ) is the relative hydraulic conductivity (−).
The model includes initial and boundary conditions of the
Dirichlet (prescribed pressure head) or Neumann (prescribed
flux) type.

Equation (1) is also called the mixed form of RE. Two
alternative formulations of the mixed form exist for RE.

The pressure form is defined by{
[C (ψ)+ Sws0]

∂ψ

∂t
+∇ · q = f

q =−kr(ψ)K [∇ψ +∇z]
(2)
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where C (ψ)= ∂θ
∂ψ

is the specific moisture capacity (L−1),
and the soil moisture form that is restricted to unsaturated
conditions is defined by{
∂θ

∂t
+∇ · q = f

q =−(D(θ)∇θ + kr(θ)K∇z)
(3)

where D(θ)= kr(θ)K dψ
dθ

is the pore water diffusivity
(L2 T−1).

Constitutive relations are required to solve RE. For
the pressure–water content relationship, the most common
model is the Van Genuchten model (van Genuchten, 1980):

Sw(ψ)=
θ(ψ)− θr

θs− θr
=

{
(1+ |αψ |η)−mψ < 0,
1ψ ≥ 0,

(4)

where m= 1− 1/η, Sw is the effective saturation, θr and θs
are the residual and saturated volumetric water content, re-
spectively, and α and η are experimentally estimated coeffi-
cients.

This model is usually associated with the Mualem model
(Mualem, 1976) for the relative permeability of the aqueous
phase:

kr(Sw)=

{
S

1/2
w

[
1−

(
1− S1/m

w

)m]2
ψ < 0,

1.0ψ ≥ 0.
(5)

A summary of the most popular relations can be found in
Belfort et al. (2013).

Due to the strong heterogeneities of the unsaturated zone
and nonlinearities in the constitutive relations (Eqs. 4 and 5),
analytical solution of RE does not exist except in special
cases (Celia et al., 1990; van Dam and Feddes, 2000). There-
fore, numerical methods such as finite difference (Feddes et
al., 1988; Romano et al., 1998; van Dam and Feddes, 2000),
finite element (Gottardi and Venutelli, 2001), and mixed fi-
nite element (Bause and Knabner, 2004; Bergamaschi and
Putti, 1999; Fahs et al., 2009; Farthing et al., 2003) are used
to solve RE.

Iterative methods based on the Picard (fixed point) or
Newton–Raphson approach (Lehmann and Ackerer, 1998;
Paniconi and Putti, 1994) are the most popular techniques
for solving this highly nonlinear equation. Alternative itera-
tive methods are based on transform formulations (Crevoisier
et al., 2009; Ross and Bristow, 1990; Williams et al., 2000;
Zha et al., 2013) or the method of lines (Fahs et al., 2009;
Matthews et al., 2004; Miller et al., 1998; Tocci et al., 1997).

Adaptive time-stepping strategies based on time truncation
error control were found to be superior to other approaches
(Hirthe and Graf, 2012; Kavetski et al., 2001; Tocci et al.,
1997). The method of lines using the DASPK integrator was
applied to the Richards’ equation by Matthews et al. (2004),
Miller et al. (1998), and Tocci et al. (1997), among others.
The method of lines consists of discretization of the spa-
tial part of the PDE only, leading to a system of ordinary

differential equations. It has been found to be significantly
more efficient than other temporal discretizations (Miller et
al., 2006). However, Kavetski and Binning (2002b) reported
difficulties in obtaining convergence for the DASPK solver
associated with an arithmetic mean of inter-block conduc-
tivities for the most difficult problem addressed by Miller et
al. (1998). Additionally, very few non-iterative schemes have
been developed (Kavetski and Binning, 2004, 2002a; Pani-
coni et al., 1991).

Despite the many existing numerical methods, solution of
RE is still a challenging research topic, with many remaining
questions about reduction of the computational time, treat-
ment of nonlinearities, and improvement of the accuracy of
these methods for difficult problems such as infiltration in
very dry soils (Diersch and Perrochet, 1999; Forsyth et al.,
1995; Hills, 1989). The need for efficient algorithms to solve
this equation has increased during recent decades because it
has been recognized that explicit modeling of flow in the un-
saturated zone has to be implemented in land surface models
(Vergnes et al., 2012). In their recent review of land surface
models, Clarke et al. (2015) push for a mechanistic model-
ing of the flow in soils. They consider the implementation of
the mixed form of the Richards equation to be an improve-
ment to the modeling of soil moisture variations. They also
underline the need for efficient algorithms to solve RE, to al-
low the implementation of stochastic approaches and/or au-
tomatic parameter estimations.

In this study, we analyzed the performance of different al-
gorithms based on the Newton–Raphson method since the
classical Picard scheme has been found to be less efficient
(Lehmann and Ackerer, 1998). Applied to the soil moisture
form of RE, we demonstrate that the recently developed Ross
method (Ross, 2003; Crevoisier et al., 2009; Zha et al., 2013)
is equivalent to the Newton–Raphson method (Sect. 2). A de-
tailed presentation of the Newton–Raphson method applied
to the mixed form or RE is given in Sect. 3. The standard
Newton–Raphson algorithm is based on the computation of
the corresponding matrices in an iterative way by updating
the parameters until convergence. An alternative algorithm
has been suggested more recently where the parameters are
kept unchanged within one time step and the time step is
adapted to reach convergence. This algorithm has been ap-
plied to the pressure-based form of RE by Kavetski and Bin-
ning (2002a) and to the soil moisture form by Crevoisier
et al. (2009), Ross (2003), and Zha et al. (2013). Although
this algorithm is called “non-iterative” because the parame-
ters are not updated during the calculation, iterations may be
necessary to adapt the magnitude of the time step. Therefore,
in the following, we will refer to the usual algorithm as “iter-
ative” and to the alternative algorithm as “time-adaptive”. To
our knowledge, this alternative algorithm has never been ap-
plied to the mixed form of RE. Section 4 is dedicated to both
algorithms and to the time-stepping strategy used for solving
RE. Finally, in Sect. 5, the numerical accuracy and robust-
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ness of the algorithms applied to the mixed form of RE are
evaluated using three different test cases.

2 The Ross method and the Newton–Raphson method

The moisture-based formulation is applicable in unsaturated
conditions only and is prone to numerical difficulties in the
case of heterogeneous soils, explaining the reduced atten-
tion directed to this formulation. However, discontinuous
water content can be handled by adapted schemes, and the
moisture-based formulation appears to be very accurate for
initially dry conditions (Zha et al., 2013, 2015).

Ross (2003) suggested a non-iterative formulation that
has been recently extended to different soil conditions
(Crevoisier et al., 2009; Varado et al., 2006a) and to two and
three dimensions (Zha et al., 2013).

In its initial one-dimensional finite-volume formulation
and for a volume (cell) i, the Ross method (Ross, 2003) is
based on the following set of equations:

1z

1t

(
θn+1
i − θni

)
=
1z

1t

(
θs,i − θr,i

)(
Sn+1
i − Sni

)
= qσ−− q

σ
+ (6)

with
qσ+ = q

n
++ σ

[(
∂qni

∂Sni

)(
Sn+1
i − Sni

)
+

(
∂qni

∂Sni+1

)(
Sn+1
i+1 − S

n
i+1

)]

qσ− = q
n
−+ σ

[(
∂qni

∂Sni

)(
Sn+1
i − Sni

)
+

(
∂qni

∂Sni−1

)(
Sn+1
i−1 − S

n
i−1

)]
,

(7)

where Sn+1
i is the water saturation at cell/node i at time

(n+1), qσ− (or qσ+) is the water flux between cell i and (i−1)
(or i+1) at time t = tn+ σ 1t,σ ∈ [0,1] and 1z is the size
of cell i. θs,i is the saturated water content and θr,i is the
residual water content. For simplicity, we assume here that
all cells are of the same size.

The previous mass balance Eq. (6) leads to the following
equation for cell i:

−

(
∂qn−

∂Sni−1

)(
Sn+1
i−1 − S

n
i−1

)
+

[
1z

σ1t

(
θs,i − θr,i

)
−

((
∂qn−

∂Sni

)
−

(
∂qn+

∂Sni

))]
(
Sn+1
i − Sni

)
+

(
∂qn+

∂Sni+1

)(
Sn+1
i+1 − S

n
i+1

)
= qn−− q

n
+. (8)

The Newton–Raphson method was initially developed as a
root-finding algorithm of an arbitrary equation that has been
generalized for solving a system of nonlinear equations. Ap-
plied to the soil moisture form of RE and using an implicit
scheme, the NR consists in defining a residual based on the

mass balance equation (Eq. 6) at iteration k for time step n+1
and for cell i written as

R
n+1,k
i

=
1z

1t

(
θs,i − θr,i

)(
S
n+1,k
i

− Sni

)
+ q

n+1,k
+

− q
n+1,k
−

,

(9)

where Rn+1,k
i is called the residual.

The NR consists in computing the solution at iteration k+1
by estimating the residual of the next iteration Rn+1,k+1

i us-
ing a first-order Taylor development and setting it equal to
zero as

R
n+1,k
i

∂Sn+1,k

(
S
n+1,k+1
i − S

n+1,k
i

)
+R

n+1,k
i = 0. (10)

The derivatives of this residual are

∂R
n+1,k
i

∂S
n+1,k
i−1

=−
∂q

n+1,k
−

∂S
n+1,k
i−1

,

∂R
n+1,k
i

∂S
n+1,k
i

=
1z

1t

(
θs,i − θr,i

)
+
∂q

n+1,k
+

∂S
n+1,k
i

−
∂q

n+1,k
−

∂S
n+1,k
i

,

∂R
n+1,k
i

∂S
n+1,k
i+1

=
∂q

n+1,k
+

∂S
n+1,k
i+1

,

(11)

which leads to the following set of linear equations:

−
∂q

n+1,k
−

∂S
n+1,k
i−1

(
S
n+1,k+1
i−1 − S

n+1,k
i−1

)
+

[
1z

1t

(
θs,i − θr,i

)
+
∂q

n+1,k
+

∂S
n+1,k
i

−
∂q

n+1,k
−

∂S
n+1,k
i

]
(
S
n+1,k+1
i − S

n+1,k
i

)
+
∂q

n+1,k
+

∂S
n+1,k
i+1

(
S
n+1,k+1
i+1 − S

n+1,k
i+1

)
=
1z

1t

(
θs,i − θr,i

)
(
S
n+1,k
i − Sni

)
+ q

n+1,k
+ − q

n+1,k
− . (12)

For the first iteration, we have S
n+1,k+1
i = Sn+1

i and
S
n+1,k
i = Sni , and therefore

−
∂qn−

∂Sni−1

(
Sn+1
i−1 − S

n
i−1

)
+

[
1z

1t

(
θs,i − θr,i

)
+
∂qn+

∂Sni
−
∂qn−

∂Sni

]
(
Sn+1
i − Sni

)
+

∂qn+

∂Sni+1

(
Sn+1
i+1 − S

n
i+1

)
= qn+− q

n
−. (13)

Whatever the formulation of the fluxes q (as a function of
the pressure (see Eq. A1) or the water content, expressed by
Kirchhoff transform as in Ross, 2003, or not), the implicit
Ross method (Eq. 8 with σ = 1) is equivalent to the first it-
eration of the Newton–Raphson method (Eq. 13).
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3 Newton–Raphson method for the mixed form
Richards’ equation

Because the pressure-based formulation does not ensure
mass conservation – except for the approximation provided
by Rathfelder and Abriola (1994) – and due to the limitations
of the moisture-based formulation (see previous section), the
mixed formulation has been widely used since the work of
Celia et al. (1990).

The mixed form of the Richards equation given by Eq. (1)
is rewritten as

∂θ

∂t
+ Sws0

∂ψ

∂t
=∇ · kr(ψ)K [∇ψ +∇z]+ f (14)

and is discretized by

An+1,kψn+1,k+1
+Bn+1,kψ

n+1,k+1
−ψn

1tn+1

+E
θn+1,k+1

− θn

1tn+1 = F n+1,k, (15)

where A is the discretized form of the divergence term, B and
E are the discretized forms of the storage terms, F is the dis-
cretized form of the sink/source term and the boundary con-
ditions, n is the time step and k is the iteration counter.1tn+1

is the time-step magnitude defined by 1tn+1
= tn+1

− tn.
Matrices A, B, and E and vector F depend on the numer-
ical scheme used for the spatial discretization. The implicit
scheme is applied for the spatial discretization.

For the Newton–Raphson method, the residual is defined
now by

R(ψn+1,k)= An+1,kψn+1,k
+Bn+1,kψ

n+1,k
−ψn

1tn+1

+E
θn+1,k

− θn

1tn+1 −F n+1,k (16)

and its derivatives are

R′(ψn+1,k)= An+1,k
+
∂An+1,k

∂ψn+1,kψ
n+1,k

+
Bn+1,k

1tn+1

+
∂Bn+1,k

∂ψn+1,k
ψn+1,k

−ψn

1tn+1

+
E

1tn+1
∂θn+1,k

∂ψn+1,k −
∂F n+1,k

∂ψn+1,k . (17)

Looking for ψn+1,k+1 such as R(ψn+1,k+1)= 0, the sys-
tem to be solved is similar to Eq. (10):

R′(ψn+1,k)1ψn+1,k+1
=−R(ψn+1,k), (18)

with 1ψn+1,k+1
= ψn+1,k+1

−ψn+1,k .
The NR formulation is also used for the non-iterative

scheme by applying only one NR step per time step, with
ψn+1

= ψn+1,1 where ψn+1,0
= ψn (Paniconi et al., 1991;

Zha et al., 2015).

4 Algorithms and time-stepping strategy

The usual algorithm used to solve RE consists in defining a
time step that remains constant and in iteratively computing
the parameters and variables in the following way.

For a given time step n Define the time-step length 1tn+1

depending on the time-stepping strategy.

Initialization of the iterative process by setting
ψn+1,1

= ψn.

do k= 1, maxit

1 Computation of the variable θn+1,k , the parameter
Kn+1,k and their derivatives dθn+1,k

dψn+1,k , ∂K
n+1,k

∂ψn+1,k using

ψn+1,k .

2. Computation of the system matrix R′ and the resid-
ual R.

3. Computation of the system solution ψn+1,k+1.

4. Check convergence. If convergence is achieved,
exit.

enddo

Next time step where k is the iteration counter and maxit
the maximum number of iterations.

The time-adaptive algorithm consists in calculating the
nonlinear parameters with the pressure heads computed
at time step n and adapting the time-step length. The
algorithm is described by the following.

For a given time step n Computation of the variable θn, the
parameter Kn and their derivatives dθn

dψn , ∂K
n

∂ψn
using ψn.

do k= 1, maxit

1. Define a time step 1tn+1,k depending on the time-
stepping strategy.

2. Computation of the system matrix R′ and the resid-
ual R.

3. Computation of the system solution ψn+1,k+1.

4. Check convergence. If convergence is achieved,
exit.

enddo

Next time step The main advantage of the alternative algo-
rithm is its avoidance of the computation of the variable
θ , the parameterK and their derivatives dθ

dψ and ∂K
∂ψ

dur-
ing the iterations. Due to the highly nonlinear relations
between θ , K , dθ

dψ , ∂K
∂ψ

and the pressure, this computa-
tion may require significant CPU time.

The most popular time-step management during the sim-
ulation is that of the heuristic type (Miller et al., 2006). The

Hydrol. Earth Syst. Sci., 21, 2667–2683, 2017 www.hydrol-earth-syst-sci.net/21/2667/2017/
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time step1tn+1 is computed depending on1tn and the num-
ber of iterations k necessary to reach convergence in the fol-
lowing way:

if k ≤m1 1t
n+1
= k11t

nk1 > 1.0,
if m1 ≤ k ≤m2 1t

n+1
=1tn,

if m2 ≤ k 1t
n+1
= k21t

nk2 < 1.0,
(19)

where k1, k2, m1, and m2 are user-defined constants.
Other heuristic time-step management procedures have

been suggested by Kirkland et al. (1992) based on the water
volumes exchanged between the adjacent cells of the grid,
and by Ross (2003), where the time-step size is controlled by
the maximum allowed change in the saturation.

For the Ross method, the fluxes are computed first and the
time-step magnitude is calculated accordingly using

1tn+1
=

1Smax

maxi

( ∣∣∣qn
−,i−q

n
+,i

∣∣∣
1zi(θs,i−θr,i)

) (20)

where 1Smax is the user-defined maximum allowed satura-
tion change. After the computation of the change in the sat-
uration 1S, the time step is modified if the maximum of the
computed change exceeds (1+ λ)maxi (|1Si |), where λ is a
user-defined value, according to

1tn+1,k
=

1Smax

maxi (|1Si |)
1tn+1,k−1, (21)

and the system of equations is solved again. More details
about handling the fluxes at boundaries and saturated con-
ditions can be found in Crevoisier et al. (2009), Ross (2003)
and Varado et al. (2006b).

The adaptive scheme used in this work evaluates the time
steps through truncation error due to the temporal discretiza-
tion as proposed by Thomas and Gladwell (1988). This
scheme was already applied to the pressure-based formula-
tion by Kavetski et al. (2001) and to the moisture-based for-
mulation by Kavetski and Binning (2004).

The difference between the first-order and second-order
time approximations can be considered as an estimate of the
local truncation error of the first-order scheme. The first-
order approximation is given by

ψn+1
1 = ψn+1tn+1 ∂ψ

n

∂t
. (22)

The second-order approximation is

ψn+1
2 = ψn+1tn+1 ∂ψ

n

∂t
+

1
2

(
1tn+1

)2 ∂2ψn

∂t2

= ψn+
1
2

(
1tn+1

)[∂ψn+1

∂t
+
∂ψn

∂t

] (23)

using ∂ψn+1

∂t
=

∂ψn

∂t
+1tn+1 ∂2ψn

∂t2
.

This truncation error is given by

εn+1
t =maxi

∣∣∣ψn+1
2,i −ψ

n+1
1,i

∣∣∣
=

1
2
1tn+1maxi

∣∣∣∣∣∂ψn+1
i

∂t
−
∂ψni

∂t

∣∣∣∣∣
≈

1
2
1tn+1maxi

∣∣∣∣∣ψn+1
i −ψni

1tn+1 −
ψni −ψ

n−1
i

1tn

∣∣∣∣∣ , (24)

when the truncation error is smaller than γ , the temporal
truncation error tolerance defined by the user, and the size
of the next time step calculated by

1tn+1
=1tnmin

(
s

√
γ

max(εn+1
t ,EPS)

,rmax

)
. (25)

When the truncation error is larger than γ , the computation
is repeated with a reduced time step defined as follows:

1tn =1tnmax

(
s

√
γ

max(εn+1
t ,EPS)

,rmin

)
, (26)

where rmax and rmin are user-defined constants used to avoid
overly drastic changes in the time step. s is considered to
be a safety factor that ensures that the time-step changes are
reasonable. EPS is used to avoid floating point errors when
the truncation error becomes too small.

5 Evaluation of the algorithms’ performance

We applied the NR method to the mixed form of RE using
the standard iterative algorithm and the time-adaptive algo-
rithm. A cell centered finite-volume scheme for the spatial
discretization with an implicit Euler scheme for the temporal
discretization has been used to solve the partial differential
equation and arithmetic means are used to compute the inter-
block hydraulic conductivity. The detailed discretizations of
the matrix R′(ψn+1,k) and the vectorR(ψn+1,k) (see Eq. 18)
are given in Appendix A. The time-adaptive algorithms have
been applied as described by the authors: Ross (2003) for the
time stepping based on the saturation changes and Kavetski
et al. (2001) for the time stepping based on the truncation
errors.

For the standard iterative algorithm, we defined two types
of errors to check the convergence: the error based on the
maximum change in the state variables between two iter-
ations defined by εψ =maxi

∣∣∣ψn+1,k+1
i −ψ

n+1,k
i

∣∣∣ and the
truncation error εt defined by Eq. (24). Convergence is as-
sumed to be achieved when

εψ < τψ,a + τψ,r

∣∣∣ψn+1,k+1
imax

∣∣∣ , (27)

where τψ,a and τψ,r are the absolute and relative user-defined
tolerances and ψn+1,k+1

imax is the pressure corresponding to εψ
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Table 1. Different options of the tested algorithms. Reference to the corresponding equation in parentheses.

Standard iterative algorithm Time-adaptive algorithm

Time-stepping Stopping criterion

Heuristic Truncation Saturation Pressure Truncation Truncation Saturation
(19) (25) (26) (20) (21) (27) (28) (25) (26) (20) (21)

SH_1ψ x x
SH_1ψ_1t x x x
ST_1ψ x x
SS_1ψ_1t x x x
TA_T x
TA_S x

Figure 1. Relative permeability as a function of the pressure for the
three test cases (L1, L2 and L3 are the three layers for test case 3).

and when

εt < τt,a + τt,r

∣∣∣ψn+1,k+1
imax

∣∣∣ , (28)

where τt,a and τt,r have the same meaning as those for the
previous criterion but ψn+1,k+1

imax represents the pressure value
corresponding to εt .

The tested algorithms are summarized in Table 1. Compu-
tations of all possible combinations for the standard iterative
scheme have been performed. We present only the four most
efficient algorithms. We also analyzed convergence based on
the nonlinear residual. It was found to be less restrictive than
the previous criteria. Due to the definition of the NR method,
the residual tends to zero, but it does not ensure a small value
of εψ . Therefore, the results related to the reduction of the
nonlinear residuals are not reported.

We investigated three one-dimensional problems with var-
ious initial and boundary conditions and hydraulic functions
to assess the accuracy, efficiency and computational costs of
the different algorithms. The selected test cases represent a

range of difficult infiltration problems widely analyzed in the
literature.

– TC1: infiltration in a homogeneous initially dry soil
with constant prescribed pressure at the surface and pre-
scribed pressure at the bottom (Celia et al., 1990);

– TC2: infiltration in a homogeneous soil initially at hy-
drostatic equilibrium with a prescribed constant flux at
the soil surface and prescribed pressure at the bottom
(Miller et al., 1998); and

– TC3: infiltration/evaporation in an initially dry hetero-
geneous soil, with variable positive and negative fluxes
at the surface and free drainage at the base of the soil
column (Lehmann and Ackerer, 1998).

For the three test cases, the soil hydraulic functions were de-
scribed by Mualem–Van Genuchten models (Mualem, 1976;
van Genuchten, 1980); see Eqs. (4) and (5).

The required parameters, boundary conditions and initial
conditions are summarized in Table 2. The evolution of the
relative hydraulic conductivity, the water saturation and the
specific moisture capacity with respect to the pressure values
are shown in Figs. 1, 2 and 3, respectively. For TC1, the pres-
sure will vary from−1000 to−75 cm only due to the specific
conditions of this test case. Therefore, the parameter varia-
tions are smaller than those for the other test cases. Since the
parameters’ variations are more abrupt for test cases 2 and 3,
their solutions are more challenging.

Preliminary tests were performed to define the optimal
spatial discretization; i.e., a finer spatial discretization pro-
vided very similar results for a given convergence criterion
and a given time-stepping strategy. Therefore, we can assume
that the errors only originate from the time-step size and the
linearization.

The following criteria were used for the time-stepping
strategy:

– k1 = 0.80, k2 = 1.20, m1 = 5, and m2 = 10, which are
the usual values for the heuristic strategy defined by
Eq. (19); and
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Table 2. Domain size (L), initial conditions (IC), boundary conditions at the soil surface (BCu) and at the soil bottom (BCl), saturated
hydraulic conductivity (Ks), residual and saturated water contents (θr, θs) and shape parameters (α, η) for the different test cases. KM (t) is
the hydraulic conductivity of the last grid cell. Length and time units are centimeters and seconds, respectively.

L IC BCu BCl Ks θr θs α η

TC1 30 −1000.0 ψ =−75 ψ =−1000 9.22× 10−3 0.102 0.368 0.0335 2.0
TC2 200 z− 200 q = 3.7× 10−5 ψ = 0 7.18× 10−5 0.095 0.410 0.019 1.31
TC3 60 −100.0 q(t) q(t)=KM (t) 6.26× 10−3 0.0286 0.366 0.028 2.239

60 −100.0 1.51× 10−4 0.106 0.469 0.0104 1.395
60 −100.0 6.26× 10−3 0.0286 0.366 0.028 2.239

Figure 2. Water saturation as a function of the pressure for the three
test cases (L1, L2 and L3 are the three layers for test case 3).

– rmin = 0.10, rmax = 4.0, s = 0.9, and EPS= 10−10,
which are the standard values for the time-stepping
scheme based on the time discretization error defined
by Eq. (26) (Kavetski et al., 2001).

To perform a consistent comparison of the time-stepping
strategies, the maximum allowed change in saturation (see
Eqs. 20 and 21) has been evaluated using the maximum
change in the pressure, according to the following relation-
ship:

1Smax ≈
1(

θs,imax− θr,imax
) dθ

dψ

∣∣∣∣n
imax(

τa + τr

∣∣∣ψn+1,k+1
imax

∣∣∣) . (29)

The simulations have been performed using different values
of τr and with τa = 0.0.

We used several criteria to evaluate the performance of
these codes. A typical error used in solving RE is the global

Figure 3. Specific moisture capacity as a function of the pressure
for the three test cases (L1, L2 and L3 are the three layers for test
case 3).

cumulative mass balance error defined by

MB(tn+1)=

M∑
i=1
1zi

(
θn+1
i − θ0

i

)
n+1∑
k=1

(
qkin− q

k
out
)
1tk

, (30)

where 1zi is the size of the cell/element i, θn+1
i is its wa-

ter content at time tn+1, θ0
i is the initial water content,

and qkin and qkout are the inflow and outflow, respectively,
at the domain boundaries at time tk . M is the number of
cells/elements. The fluxes at the boundaries are defined by
qk = 1

2

(
qk + qk−1). The mass balance errors were checked

for each run but were found to be negligible since we solved
the mass-conserving RE form.

While it is necessary to satisfy the global mass balance for
an accurate numerical scheme, a low mass balance error is
not sufficient to ensure the accuracy of the solution. There-
fore, solutions have also been compared with the reference
solution obtained using a very fine temporal discretization
and the iterative Newton–Raphson method. This comparison
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is based on the average relative error defined by

εk =

 1
M

∑
i

∣∣∣ψ ref
i − ψ̂i

∣∣∣k∣∣ψ ref
i

∣∣k


1/k

, (31)

where M is the number of cells, ψ ref is the reference solu-
tion and ψ̂ is the tested numerical solution. ε1 represents the
average absolute relative error (called L1-norm in the follow-
ing), ε2 is the average quadratic error (L2-norm) and ε∞ is
the highest local relative difference between the numerical
and reference solutions (L∝-norm).

Since the time-adaptive algorithm does not require the
computation of the parameters and their derivatives during
the iterative procedure, we use Nsol to denote the number of
times where the system of equations is solved and Nparam to
denote the number of times where the parameters are com-
puted. Of course, these counters are equal to each other for
the standard algorithm, which leads to computational costs
depending on 2Nsol. Nparam is less than Nsol for the time-
adaptive algorithm. For comparison purposes, the computa-
tional costs are estimated by Nsol for the standard algorithm
and by (Nsol+Nparam)/2 for the time-adaptive algorithm. The
efficiency of the algorithms has been evaluated by comparing
the computational costs for a given relative tolerance τr. The
errors are presented in the tables and the figures. The figures
show some additional results not listed in the tables that al-
ready contain much information.

5.1 TC1: Infiltration in a homogenous soil with
constant boundary conditions

This test case simulates an infiltration into a homogeneous
porous medium. This problem is addressed here because it
has been widely analyzed previously by many authors like
Bouchemella et al. (2015), Celia et al. (1990), El Kadi and
Ling (1993), Rathfelder and Abriola (1994), and Tocci et
al. (1997), among others. The computations were performed
with a spatial discretization of 0.1 cm. The initial time-step
size was set to 1.0× 10−5 s, and the maximum time-step size
was set to 400 s.

The results for the iterative and time-adaptive algorithms
are presented in Tables 3 and 4, respectively. When both
convergence criteria are used (algorithms SH_1ψ_1t and
SS_1ψ_1t), Ntrunc represents the number of times where
the truncation error is the most restrictive condition. For the
heuristic time-stepping schemes, the convergence is mostly
linked to the truncation error (Ntrunc is close toNsol), whereas
when the saturation time-stepping scheme is used, the most
restrictive criterion is the maximum difference in the pres-
sure.

When the time-stepping scheme is based on saturation, for
both iterative and time-adaptive algorithms, the number of
iterations required to solve the problem is proportional to the

Figure 4. Evolution of the L2 relative error with computational
costs for TC1.

relative tolerance. Therefore, highly accurate solutions incur
high computational costs.

For the time-adaptive scheme, the number of parameter
changes Nparam is close to the number of iterations for low
tolerance values. Small tolerance values lead to small time
steps, avoiding time-step adjustments. This is not the case
for larger tolerance values that lead to larger time steps and
therefore to additional iterations (see for example TA_T for
the tolerance of τr = 10−2 – Table 4).

The three types of errors provide the same information.
The best solution for one type of error is also the best solution
for the other two.

On average, the iterative algorithm is faster than the time-
adaptive algorithm that requires more iterations for a given
error. This is also shown in Fig. 4 that presents the conver-
gence rate of the L2-norm with respect to the computational
costs, i.e., the number of iterations or number of iterations
and number of parameter changes. The time-adaptive algo-
rithm with time stepping based on the truncation errors per-
forms quite poorly compared to the other algorithms. Irre-
spective of the tolerance, this algorithm leads to a wetting
front moving faster (Fig. 5).

When the relative tolerance is set to a very low value
(τr = 10−5), the iterative scheme with time stepping based
on the saturation changes shows behavior that is different
from that found for the less restrictive tolerance. The cri-
terion based on truncation errors is no longer significant
(Ntrunc = 252), possibly explaining why the accuracy of the
scheme remains constant. This also indicates that errors due
to time discretization have to be handled, either in the con-
vergence criterion or in the time-stepping strategy.

For this test case, the most efficient algorithms are the
iterative algorithms using the time-stepping strategy based
on truncation error (ST_1ψ) or based on the satura-
tion changes (SS_1ψ_1t). Saturation-based time-stepping
strategies (SS_1ψ_1t and TA_S) show a linear decrease
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Table 3. Relative errors and number of iterations obtained for the iterative algorithm depending on different convergence criteria for TC1.

Tol. Algorithm L1 L2 L∝ Ntrunc Nsol

10−5 SH_1ψ 1.918× 10−3 8.829× 10−3 0.106 2177
SH_1ψ_1t 8.391× 10−6 6.459× 10−5 8.782× 10−4 542 371 615 880
ST_1ψ 3.968× 10−4 1.045× 10−3 3.512× 10−3 6160
SS_1ψ_1t 1.136× 10−5 3.406× 10−5 2.817× 10−4 252 392 0446

10−4 SH_1ψ 2.557× 10−3 1.375× 10−2 0.168 1701
SH_1ψ_1t 7.818× 10−5 2.259× 10−4 1.593× 10−3 170 438 194 420
ST_1ψ 1.331× 10−3 1.316× 10−3 1.181× 10−2 1950
SS_1ψ_1t 8.607× 10−6 3.525× 10−5 3.899× 10−4 154 597 392 041

10−3 SH_1ψ 3.956× 10−3 1.166× 10−2 0.125 1312
SH_1ψ_1t 2.320× 10−4 7.553× 10−4 7.883× 10−3 52 723 60 303
ST_1ψ 2.241× 10−3 5.702× 10−3 1.792× 10−2 620
SS_1ψ_1t 6.567× 10−5 1.585× 10−4 1.453× 10−3 9895 39 110

10−2 SH_1ψ 6.559× 10−3 1.716× 10−2 0.119 1018
SH_1ψ_1t 2.224× 10−3 7.923× 10−3 7.111× 10−2 15 540 17 888
ST_1ψ 9.954× 10−3 2.630× 10−2 8.727× 10−2 243
SS_1ψ_1t 8.283× 10−4 2.271× 10−3 1.478× 10−2 862 3804

Table 4. Relative errors and number of iterations obtained for the time-adaptive algorithm depending on different convergence criteria for
TC1.

Tol. Algorithm L1 L2 L∝ Nparam Nsol

10−5 TA_T 5.016× 10−3 2.376× 10−2 0.269 32 197 35 938
TA_S 6.152× 10−6 2.429× 10−5 2.561× 10−4 9 316 700 9 322 946

10−4 TA_T 5.598× 10−3 2.580× 10−2 0.284 10 169 11 520
TA_S 2.839× 10−5 1.363× 10−4 1.654× 10−3 931 616 938 144

10−3 TA_T 1.524× 10−2 7.085× 10−2 0.822 3231 4032
TA_S 2.537× 10−4 1.271× 10−3 1.568× 10−2 93 114 100 898

10−2 TA_T 6.241× 10−2 0.274 2.459 1023 1402
TA_S 2.519× 10−3 1.224× 10−2 0.142 9267 18 292

in L2 with computational costs. For very high precision
(L2 < 10−4), ST_1ψ outperforms the other algorithms. No
convincing explanation has been found for the insignificant
change in accuracy for SS_1ψ_1t at high precision.

5.2 TC2: Infiltration in a homogenous soil with
hydrostatic initial conditions

This test case models an infiltration in a 200 cm vertical col-
umn of unconsolidated clay loam with non-uniform grain
size distribution and was considered by Miller et al. (1998)
to be a very challenging test. This problem was found to be
more challenging from the numerical point of view compared
to TC1 due to the relative permeability function that en-
hances the nonlinear behavior of Richards’ equation (Figs. 1,
2, and 3). The cell size has been set to 0.125 cm, the initial

time step to 10−5 s and the maximum time-step magnitude to
1000 s.

The different norms for the iterative and time-adaptive
schemes are given in Tables 5 and 6.

Investigation of this test case leads to similar qualitative
conclusions when the time-stepping scheme is based on the
saturation differences (SS_1ψ_1t and TA_S). The standard
scheme SH_1ψ fails to provide an accurate solution within
a reasonable number of iterations (less than 107).

The most efficient methods are the schemes using the time-
stepping strategy based on truncation errors (Fig. 6). How-
ever, as found for TC1, the adaptive time algorithm TA_T
failed to provide highly accurate results (L2-norm error less
than approximately 4.5× 10−4).

Figure 7 shows the time-step magnitudes for approx-
imately equal L2-norms for the two time-adaptive algo-
rithms and for the iterative algorithm using truncation errors
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Table 5. Relative errors and number of iterations obtained for the iterative algorithm depending on different convergence criteria for TC2
(n.c.: non convergence in less than 107 iterations).

Tol. Algorithm L1 L2 L∝ Ntrunc Nsol

10−5 SH_1ψ 6.966× 10−3 1.818× 10−2 5.878× 10−2 573
SH_1ψ_1t 3.697.× 10−4 9.766× 10−4 3.332× 10−3 53 769 59 643
ST_1ψ 1.578× 10−4 4.254× 10−4 2.451× 10−3 3503
SS_1ψ_1t – – – – n.c.

10−4 SH_1ψ 6.966× 10−3 1.818× 10−2 5.878× 10−2 509
SH_1ψ_1t 6.968× 10−4 1.979× 10−3 5.726× 10−3 16 557 18 428
ST_1ψ 5.814× 10−4 1.492× 10−3 6.711× 10−3 1033
SS_1ψ_1t 3.279× 10−6 1.239× 10−5 8.603× 10−5 0 2 474 120

10−3 SH_1ψ 6.966× 10−3 1.818× 10−2 5.878× 10−2 410
SH_1ψ_1t 3.699× 10−3 9.761× 10−3 3.275× 10−2 4830 5444
ST_1ψ 1.553× 10−3 4.226× 10−3 2.457× 10−2 317
SS_1ψ_1t 2.355× 10−5 6.230× 10−5 2.341× 10−4 0 247 426

10−2 SH_1ψ 6.892× 10−3 1.800× 10−2 5.780× 10−2 309
SH_1ψ_1t 9.135× 10−3 2.409× 10−2 7.925× 10−2 376 580
ST_1ψ 2.756× 10−3 1.134× 10−2 7.715× 10−2 180
SS_1ψ_1t 2.973× 10−4 7.884× 10−4 3.252× 10−3 0 24 757

Table 6. Relative errors and number of iterations obtained for the time-adaptive algorithm depending on different convergence criteria for
TC2.

Tol. Algorithm L1 L2 L∝ Nparam Nsol

10−5 TA_T 1.230× 10−4 4.563× 10−4 3.346× 10−3 3089 3098
TA_S 8.741× 10−6 2.308× 10−5 7.905× 10−5 1 136 193 1 136 199

10−4 TA_T 1.572× 10−3 4.497× 10−3 2.404× 10−2 986 987
TA_S 2.701× 10−5 7.219× 10−5 3.095× 10−4 113 616 113 616

10−3 TA_T 4.707× 10−3 1.346× 10−2 7.169× 10−2 323 323
TA_S 1.754× 10−4 4.844× 10−4 2.391× 10−3 11 358 11 358

10−2 TA_T 5.220× 10−3 1.683× 10−2 0.101 135 135
TA_S 1.596× 10−3 4.444× 10−3 2.243× 10−2 1132 1132

for time stepping (4.254× 10−4 within 3503 iterations for
ST_1ψ , 4.563× 10−4 within 3098 iterations for TA_T and
4.844× 10−4 within 11358 iterations for TA_S). The time-
step evolution is very similar for the three strategies: a linear
increase until around 0.1 s, followed by a very slow increase
until 20–30 s and a regular increase until the end of the sim-
ulation. ST_1ψ and TA_T strategies lead to the same time
steps when the time reaches 1 s. The time-step sizes remain
smaller for TA_S, which explains the significantly higher
number of iterations required to solve this test case.

5.3 TC3: Infiltration/evaporation in a heterogeneous
soil

This case study simulates infiltration in an initially dry het-
erogeneous soil with a succession of rainfall and evapora-

tions as upper boundary conditions during 35 days. This
problem differs from the two previous cases by the soil het-
erogeneity and also by the non-monotonic boundary condi-
tions at the soil surface. It is expected that non-monotonic
discontinuous boundary conditions will increase the diffi-
culty in finding accurate solutions. The soil profile consists
of three 60 cm thick layers. The layers are discretized us-
ing cells with the size of 0.10 cm. The prescribed fluxes are
changing every day. For a given time, these fluxes are linearly
interpolated. To avoid an overly rough time discretization of
these boundary conditions, the maximum time-step magni-
tude has been fixed at 0.20 days. The initial time step is set
to 10−5 days.

The relative errors estimated by the iterative algorithms
and the time-adaptive algorithms are presented in Tables 7
and 8, respectively, and are plotted in Fig. 8.
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Table 7. Relative errors and number of iterations obtained for the iterative algorithm depending on different convergence criteria for TC3
(n.c.: non convergence in less than 107 iterations, ∗ convergence failed for 10−3, τr = 0.90× 10−3).

Tol. Algorithm L1 L2 L∝ Ntrunc Nsol

10−5 SH_1ψ 9.994× 10−3 1.119× 10−2 1.554× 10−2 1644
SH_1ψ_1t 6.612× 10−4 7.346× 10−4 1.116× 10−3 17 1636 190 588
ST_1ψ 6.830× 10−4 7.775× 10−4 1.648× 10−3 16 984
SS_1ψ_1t 7.185× 10−5 7.935× 10−5 1.297× 10−4 197 481 164 6346

10−4 SH_1ψ 6.664× 10−3 7.280× 10−3 1.033× 10−2 1734
SH_1ψ_1t 3.512× 10−3 3.898× 10−3 5.811× 10−3 57 312 63 956
ST_1ψ 1.300× 10−3 1.517× 10−3 2.412× 10−3 6504
SS_1ψ_1t 5.380× 10−5 6.536× 10−5 1.010× 10−4 41 073 186 351

10−3 SH_1ψ – – – n.c.
SH_1ψ_1t 2.625× 10−3 2.899× 10−3 4.971× 10−3 22 047 24 779
ST_1ψ 4.730× 10−3 5.422× 10−3 1.036× 10−2 1297∗

SS_1ψ_1t 7.569× 10−4 8.820× 10−4 1.402× 10−3 16 474 31 276

10−2 SH_1ψ – – – n.c.
SH_1ψ_1t 5.493× 10−3 6.306× 10−3 1.171× 10−3 7438 8812
ST_1ψ 6.621× 10−3 7.402× 10−3 1.042× 10−2 810
SS_1ψ_1t 7.511× 10−3 8.780× 10−3 1.378× 10−2 5838 7535

Table 8. Relative errors and number of iterations obtained for the time-adaptive algorithm depending on different convergence criteria for
TC3.

Tol. Algorithm L1 L2 L∝ Nparam Nsol

10−5 TA_T 9.814× 10−3 9.949× 10−3 1.286× 10−2 8369 8703
TA_S 7.980× 10−5 8.797× 10−5 1.472× 10−4 1 357 075 1 357 160

10−4 TA_T 1.731× 10−2 1.760× 10−2 2.748× 10−2 2653 2934
TA_S 1.067× 10−4 1.247× 10−4 1.997× 10−4 135 386 135 498

10−3 TA_T 2.922× 10−2 3.105× 10−2 4.545× 10−2 889 1153
TA_S 1.433× 10−4 1.788× 10−4 3.367× 10−4 13 314 13 397

10−2 TA_T 1.996× 10−2 2.449× 10−2 5.536× 10−2 347 515
TA_S 1.851× 10−3 2.051× 10−3 3.925× 10−3 1232 1283

The standard iterative scheme fails to converge within the
maximum number of iterations (107) when the tolerance is
not sufficiently restrictive. The detailed analyses of the com-
putation showed that the time-step size was quite large com-
pared to the more restrictive conditions until day 28.0, where
the infiltration fluxes were equal to 1.50 cm day−1 and where
the conditions were near saturation due to the previous in-
filtration period. This led to a decrease in the time step to
close to the minimum value (10−8 s), causing the procedure
to stop. More restrictive conditions lead to smaller time steps
from the beginning of the simulation and a better approxima-
tion of the solutions during the entire simulation.

The iterative scheme coupled with the truncation-based
time-stepping strategy showed surprisingly unstable behav-
ior for τr = 10−3. The scheme did not converge for τr ∈[
0.96 × 10−3

; 1.04 × 10−3]. The results presented in Ta-

ble 7 and Fig. 8 are obtained for τr = 0.90 × 10−3. At this
stage of our work, we were not able to provide a meaningful
explanation for this effect.

The time-adaptive algorithm with the saturation-based
time-stepping scheme is the most efficient for an L2-norm
greater than 10−4. For more accurate results, the iterative
method with the time-stepping strategy using the truncation
error must be preferred. The impact of the time-stepping
strategy for these two algorithms is shown in Fig. 9 for ap-
proximately the same L2-norm (2.051× 10−3 within 1283
iterations for TA_S and 1.517× 10−3 within 6504 iterations
for ST_1ψ). The time-step changes are related to the bound-
ary condition variations, as expected. The strategy based
on the saturation variation leads to a longer time step than
the strategy using the time truncation error. This difference
can be quite important (see the simulation between days 25
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Figure 5. Pressure profiles in the domain for the TA_T algorithm.

Figure 6. Evolution of the L2 relative error with computational
costs for TC2.

and 30). The consequences of this difference are a reduced
number of iterations but also a less accurate computation, ir-
respective of the error norm.

6 Summary and conclusions

The solution of RE is complex and very time-consuming due
to its highly nonlinear properties. Several algorithms have
been tested for the mixed form of the Richards equation, in-
cluding time-adaptive methods. Based on the numerical ex-
amples that differ in their parameters (level of nonlinearity)
and in their initial and boundary conditions, the conclusions
and recommendations are the following.

1. Our numerical developments showed that the method
suggested by Ross (2003) in its implicit formulation
can be considered as a Newton–Raphson method with
a time-adaptive algorithm.

Figure 7. Time-step magnitudes during the simulation for TC2.

Figure 8. Evolution of the L2 relative error with computational
costs for TC3.

2. The different algorithms have different convergence
rates (accuracy improvement of the scheme as a func-
tion of the computational costs). Therefore, an algo-
rithm can be very efficient for a given accuracy and
less efficient for another level of precision. However,
for these three test cases and, on average, the best per-
formance in terms of efficiency was obtained using a
stopping criterion based on truncation error with its cor-
responding time-step strategy (ST_1ψ). Similar results
were obtained by Kavetski et al. (2001) for the pressure-
based RE and by Kavetski and Binning (2004) for the
moisture-based RE.

3. The mass balance is not a good criterion for the evalua-
tion of the results because the mixed form preserves the
mass balance, irrespective of the pressure distribution
within the profile.
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Figure 9. Time-step magnitudes during the simulation for TC3 for
the time-stepping strategy based on truncation error (TA_S in blue,
TA_T in black, time-varying boundary conditions at the top).

4. The time truncation error should be implemented in nu-
merical codes using the standard iterative procedure.
The use of the maximum variable difference between
two successive iterations only, which is usually imple-
mented, does not provide any information about the ac-
curacy of the time derivative approximation.

Our one-dimensional examples showed that the time-
adaptive algorithm TA_T is very sensitive to the type of prob-
lem to be solved. The time-adaptive algorithm TA_S was less
efficient than the usual schemes. However, for a larger num-
ber of elements like in two-dimensional or three-dimensional
problems, this conclusion might be different because the time
dedicated to the computation of the parameters can be signifi-
cantly higher, unless tabulated values are used to evaluate the
parameters and the required derivatives.

Depending on the type of the problem that must be solved
(parameter behavior with respect to the pressure, time varia-
tions of the boundary conditions), the time truncation errors
may be predominant compared to the error corresponding
to the pressure changes between two successive iterations.
Therefore, we recommend the implementation of this stop-
ping criteria associated with the time-stepping strategy as de-
fined by Kavetski et al. (2001).

Data availability. We did not use data. The computer program is
available upon request.
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Appendix A

The numerical method used in the paper is implicit standard
finite difference. For a cell i of the grid, the unsaturated flow
Eq. (4) can be discretized in the following way:

θn+1
i − θni

1t
+ Sws0

ψn+1
i −ψni

1t
+
qn+1
i+ − q

n+1
i−

1zi
= fi,

qn+1
i− =−Ki−

(
ψn+1
i −ψn+1

i−1

1zi−
− 1

)
,

qn+1
i+ =−Ki+

(
ψn+1
i+1 −ψ

n+1
i

1zi+
− 1

)
,

(A1)

where n is the time step, Ki− is the inter-block con-
ductivity between cell i and (i− 1) defined by Ki− =
1zi−1K(ψi−1)+1ziK(ψi )

1zi−1+1zi
, and Ki+ is the inter-block con-

ductivity between cell i and (i+1) defined by Ki+ =
1ziK(ψi )+1zi+1K(ψi+1)

1zi+1zi+1
. 1zi− = 1

2 (1zi−1+1zi) is the dis-
tance between the center of cell (i− 1) and i. 1zi+ =
1
2 (1zi +1zi+1) is the distance between the center of cell
i and (i+1).

The residual is

R(ψ
n+1,k
i )=1zi

(
θ
n+1,k
i − θni

)
+1ziSws0

(
ψ
n+1,k
i −ψni

)
+1t

(
q
n+1,k
i+ − q

n+1,k
i−

)
−1t1zifi (A2)

where k is the iteration counter.
The residual derivatives are

∂R(ψ
n+1,k
i )

∂ψ
n+1,k
i−1

= −1t
∂q

n+1,k
i−

∂ψ
n+1,k
i−1

,

∂R(ψ
n+1,k
i )

∂ψ
n+1,k
i

=1zi
dθ

n+1,k
i

dψ
n+1,k
i

+1ziSws0

+ 1t

(
∂q

n+1,k
i+

∂ψ
n+1,k
i

−
∂q

n+1,k
i−

∂ψ
n+1,k
i

)
,

∂R(ψ
n+1,k
i )

∂ψ
n+1,k
i+1

= 1t
∂q

n+1,k
i+

∂ψ
n+1,k
i+1

. (A3)

Therefore, the system to be solved is

−1t
∂q

n+1,k
i−

∂ψ
n+1,k
i−1

1ψ
n+1,k+1
i−1

+

[
1zi

dθ
n+1,k
i

dψ
n+1,k
i

+1ziSws0+ 1t

(
∂q

n+1,k
i+

∂ψ
n+1,k
i

−
∂q

n+1,k
i−

∂ψ
n+1,k
i

)]

1ψ
n+1,k+1
i +1t

∂qn+1
i+

∂ψ
n+1,k
i+1

1ψ
n+1,k+1
i+1

=−1zi

(
θ
n+1,k
i − θni

)
−1ziSws0

(
ψ
n+1,k
i −ψni

)

− 1t
(
q
n+1,k
i+ − q

n+1,k
i−

)
+1t1zifi, (A4)

with the following derivatives of the fluxes qn+1,k
i− ,



∂q
n+1,k
i−

∂ψ
n+1,k
i−1

=−
∂K

n+1,k
i−

∂ψ
n+1,k
i−1

ψn+1,k
i

−ψ
n+1,k
i−1

1zi−
− 1

+ Kn+1,k
i−

1zi−
,

∂q
n+1,k
i−

∂ψ
n+1,k
i

=−
∂K

n+1,k
i−

∂ψ
n+1,k
i

ψn+1,k
i

−ψ
n+1,k
i−1

1zi−
− 1

− Kn+1,k
i−

1zi−
,

(A5)

and qn+1,k
i+ :



∂q
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i
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n+1,k
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i+1 −ψ

n+1,k
i

1zi+
− 1

− Kn+1,k
i+

1zi+
.

(A6)

The component of the vector of the residuals R is given by
Eq. (A2) and the coefficients of the matrix R′ for cell i are

R′i−1,i =1t

[
∂K

n+1,k
i−

∂ψ
n+1,k
i−1

(
ψ
n+1,k
i −ψ
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1zi−
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)
−
K
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1zi−

]
,
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]

−1t
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i

(
ψ
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i
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−
K
n+1,k
i+
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]

+1t
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∂K
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i

(
ψ
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)
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]
,
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[
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(
ψ
n+1,k
i+1 −ψ

n+1,k
i
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− 1

)
+
K
n+1,k
i+

1zi+

]
. (A7)

In the case of prescribed flux at the upper boundary, the resid-
ual is written as

R1(ψ
n+1,k
1 )=1z1

[(
θ
n+1,k
1 − θn1

)
+ Sws0

(
ψ
n+1,k
1 −ψn1

)]
+ 1t

(
qn+1

1+ − qBC

)
−1t1z1f1. (A8)

Using the derivatives as defined in Eqs. (A5) and (A6), the
matrix coefficients are changed as follows:

R′1,1 =1z1

(
dθ

n+1,k
1

dψ
n+1,k
1

+ Sws0

)

−1t

[
∂K

n+1,k
1+

∂ψ
n+1,k
1

(
ψ
n+1,k
2 −ψ

n+1,k
1

1z1+
− 1

)
−
K
n+1,k
1+
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]
,

R′1,2=−1t

[
∂K

n+1,k
1+

∂ψ
n+1,k
2

(
ψ
n+1,k
2 −ψ

n+1,k
1
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− 1

)
+
K
n+1,k
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1z1+

]
. (A9)
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If the flux is applied at the bottom of the profile, similar de-
velopments lead to the residual

RN =1zN

[(
θ
n+1,k
N − θnN

)
+ Sws0

(
ψ
n+1,k
N −ψnN

)]
+1t

(
qBC − q

n+1,k
N−

)
−1t1zNfN (A10)

and its derivatives

R′N−1,N =1t

[
∂K
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∂ψ
n+1,k
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(
ψ
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dθ
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N
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N
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)

+1t

[
∂K
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(
ψ
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N −ψ
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1zN−
− 1
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+
K
n+1,k
N−

1zN−

]
. (A11)

If the pressure is described at the top of the soil, the corre-
sponding flux is defined by

q
n+1,k
1− =−K1−

(
ψ
n+1,k
1 −ψBC

1z1/2
− 1

)
, (A12)

and the derivative is
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. (A13)

The corresponding residual and the matrix coefficients are

R1 =1z1

[(
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)
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)]
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and
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Similarly, if the pressure is prescribed at the soil column’s
bottom, we have

RN =1zN

[(
θ
n+1,k
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)
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and
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. (A17)

The numerical code is written in FORTRAN 90 and is avail-
able upon request.
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