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CORRESPONDENCE

Reply to 'No substantial long-term bias in the
Cenozoic benthic foraminifera oxygen-isotope

record'

S. Bernard!, D. Daval?, P. Ackerer?, S. Pont! & A. Meibom>4

Geochemical studies of biogenic calcite in the marine sediment
record have contributed enormously to the understanding of
Earth’s climate evolution. In particular, the oxygen-isotope
compositions of fossil planktonic and benthic foraminifera tests
are used as proxies for surface- and deep-ocean paleo-
temperatures, respectivelyl2. Interpreted at face value, these
compositions indicate Eocene deep-ocean and high-latitude sur-
face ocean temperature in the range of 10-15 °C, and deep-ocean
even warmer during the Cretaceous’?. However, we demon-
strated that oxygen-isotope re-equilibration through solid-state
diffusion can create large errors in ocean paleoenvironmental
reconstructions, even under the close-to-ambient pressure and
temperature conditions characterizing shallow sediment burial3.
Evans et al.* question this conclusion, arguing that there is “No
substantial long-term bias in the Cenozoic benthic foraminifera
oxygen-isotope record”.

Evans et al* defend the idea of an extremely warm early
Cenozoic (~50 Ma) by referring to fossils of “cold-blooded rep-
tiles living in the Arctic and Antarctic circles”. We note that the
interpretation of the polar fossil record (which is restricted to a
few localities™®) is based on the fragile assumption that these
animals had the same physiology and thermal tolerance as pre-
sumed living relatives. However, very little (if anything) is known
about the metabolism, the hibernation strategies, or the migration
potential of these fossil species. For instance, recently discovered
fossils of polar dinosaurs are interpreted to have lived under
climatic conditions far from tropical”:8. In addition, a feature of
the high-arctic world that has not changed since the Cretaeous is
polar night®: nonmigrating polar species must have had a specific
physiology that allowed them to withstand 3-4 months of total
darkness with zero to subzero temperatures. These polar fossils
may not be perfect analogs of presumed living relatives.

Evans et al.# state that “Alternative quantitative Eocene proxy
data from the high-latitude surface ocean can be used as an
independent means of assessing the benthic foraminifera §'80

record, as the temperature of the deep ocean cannot be greatly
decoupled from mean annual sea surface temperature in the
region(s) of deep water formation due to the thermal inertia of
water.” Yet, the thermohaline circulation likely varied in the past.
Most models predict a weakened (if not arrested) ocean ther-
mohaline  circulation under high atmospheric CO,
conditions?~!1, High-latitude ocean surface waters may well have
been largely decoupled from deeper waters.

It might be worth investigating the long-term stability of these
alternative proxies. In fact, as highlighted by Evans et al.%, these
proxies indicate a very weak latitudinal thermal gradient in the
surface waters during the Eocene (even weaker than the gradient
indicated by the oxygen-isotope composition of fossil planktonic
foraminifera). Such a weak gradient requires latitudinal heat
transport of impossibly high efficiency!?-14. In contrast, we
demonstrated that, corrected for burial-induced isotope re-equi-
libration, a temperature gradient between low- and high-latitude
surface ocean waters consistent with state-of-the-art climate
models is re-established for the foraminifera oxygen-isotope
record of the late Cretaceous and Paleogene?.

Pristine tests of foraminifera exhibit irregularly shaped calcite
grains of only a few tens of nanometers (Fig. 1). As early as the
1950s, Urey et al.!> discussed the problem of preserving biogenic
calcite oxygen-isotope records over geological time scales, speci-
fically addressing resetting by diffusion. At that time, they
wrongly assumed typical calcite grain sizes around 1 mm (they
believed that bivalve shell calcite prisms were single crystals) and
concluded that burial-induced isotope re-equilibration would be
insignificant. We conducted numerical simulations conservatively
assuming calcite grain sizes between 50 and 250nm and
demonstrated that isotopic re-equilibration of oxygen through
diffusion can induce biases in paleotemperature reconstructions
on time scales of 109-107 years. Of note, inserting a (con-
servative) grain size of 200 nm into the calculations by Urey
et al.1” yields results very similar to ours. Because biogenic calcites
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Fig. 1 Images of a pristine planktonic foraminiferal test (Orbulina universa) from the macroscopic scale to the submicrometer-scale of the granular calcite
“building blocks”. a-d Scanning electron microscopy (SEM) images of the outer surface exhibiting a large, porous surface area. e, f Atomic force
microscopy (AFM) height (e) and phase (f) mode images. Courtesy of Prof. Stolarski

are strikingly similar at microscales'®!7, despite their great
morphological diversity at the macroscale, all biocalcites are likely
to be similarly sensitive to burial-induced re-equilibration
processes.

Evans et al.# show §!80 values from foraminifera of the same
age retrieved from 11 different sites and states that “although the
11 sites span a range in maximum (i.e., present day) burial depth
of between ~50 and 350 m, there is no visible offset between any
individual site and the five-point running mean through all sites.”
But this does not put into question our conclusions. The extent of
diffusion is controlled by the temperature to which the for-
aminifera tests are exposed within the sediments. This tempera-
ture does not only depend on the burial depth, but also on the
local thermal gradient. For instance, Eocene foraminifera tests
collected from ODP sites 690 and 738 were buried below ~130 m
of sediments with a thermal gradient of about 70 °C km~—!, and
below ~230m of sediments with a thermal gradient of about
40°Ckm™~!, respectively!8-21. In other words, these fossil tests
were exposed to similar temperature conditions within the sedi-
ments; ie., ~10-12°C (which is, by the way, the temperature
indicated by their present day oxygen-isotope compositions).

Of note, we investigated the impact of diffusion, but the much
faster process of pseudomorphic coupled dissolution-
reprecipitation’>?3 also has the potential to bias paleo-
temperature reconstructions. It was recently demonstrated
experimentally that isotope compositions of carbonates may
change at room temperature over short timescales (<years), even
after fluid-mineral chemical equilibrium has been attained?42,
According to Oelkers et al.>> “These observations are consistent
with the hypothesis that mineral-fluid equilibrium is dynamic
(i.e., dissolution and precipitation occur at equal, nonzero rates at
equilibrium).” This process may impact elemental ratios as well.

We cannot follow Evans et al.* when they state that secondary
calcite precipitation “will result in calcite with a similar §'80c to
the primary foraminiferal calcite”. In fact, because the water
temperature is not the same everywhere in both the ocean and the
sediment, secondary calcite precipitation that occurs within the
sediments (increasingly so with increasing burial depth?©)

inevitably alters the bulk oxygen-isotope composition of fossil
foraminifera tests?”28.

In any case, we fully agree that “a thorough understanding of
diagenetic processes is essential to informative palaeoclimate
reconstructions” and thank Evans et al.# for this correspondence,
which nourishes strong motivation for future investigations.

Data availability. The datasets generated during and/or analyzed
during the current study are available from the corresponding
author on reasonable request.
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