
HAL Id: hal-03520854
https://cnrs.hal.science/hal-03520854v1

Submitted on 26 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Faster multiplication over F_2[X] using AVX512
instruction set and VPCLMULQDQ instruction

Jean-Marc Robert, Pascal Véron

To cite this version:
Jean-Marc Robert, Pascal Véron. Faster multiplication over F_2[X] using AVX512 instruction set
and VPCLMULQDQ instruction. Journal of Cryptographic Engineering, 2022, �10.1007/s13389-021-
00278-3�. �hal-03520854�

https://cnrs.hal.science/hal-03520854v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Faster Multiplication over F2[X] using AVX512 instruction set
and VPCLMULQDQ instruction

Jean-Marc Robert · Pascal Véron

This is a pre-print of an article published in “Journal of
Cryptographic Engineering”. The final authenticated version is available online at:
https://doi.org/10.1007/s13389-021-00278-3

the date of receipt and acceptance should be inserted later

Abstract Code based cryptography is one of the main
proposition for the post-quantum cryptographic con-
text, and several protocols of this kind have been sub-
mitted on the NIST platform. Among them, BIKE and
HQC are part of the five alternate candidates selected
in the third round of the NIST standardization pro-
cess in the KEM category. These two schemes make
use of multiplication of large polynomials over binary
rings, and due to the polynomial size (from 10000 to
60000 bits), this operation is one of the costliest during
key generation, encapsulation or decapsulation mecha-
nisms. In BIKE-2, there is also a polynomial inversion
which is time consuming and this problem has been
addressed in [11]. In this work, we revisit the different
existing constant-time algorithms for arbitrary poly-
nomial multiplication. We explore the different Karat-
suba and Toom-Cook constructions in order to deter-
mine the best combinations for each polynomial degree
range, in the context of AVX2 and AVX512 instruction
sets. This leads to different kernels and constructions
in each case. In particular, in the context of AVX512,
we use the VPCLMULQDQ instruction, which is a vector-
ized binary polynomial multiplication instruction. This
instruction deals with up to four polynomial (of degree
up to 63) multiplications, that is four operand pairs of
64-bit words with 128-bit word storing each results, the
four results being stored in one single 512-bit word. This
allows to divide by roughly 3 the retired instruction
number of the operation in comparison with the AVX2
instruction set implementations, while the speedup is

J.-M. Robert, P. Véron
Institut de Mathématiques de Toulon
Université de Toulon, France
E-mail: jean-marc.robert@univ-tln.fr
E-mail: veron@univ-tln.fr

up to 39% in terms of processor clock cycles. These re-
sults are different than the ones estimated in [10]. To
illustrate the benefit of the new VPCLMULQDQ instruc-
tion, we used the HQC code to evaluate our approaches.
When implemented in the HQC protocol, for the secu-
rity levels 128, 192 and 256, our approaches provide up
to 12% speedup, for key pair generation.

Keywords

Finite field multiplication, Karatsuba, Toom-Cook,
post-quantum cryptography, code based cryptography,
AVX2, AVX512, VPCLMULQDQ.

1 Introduction

In 2017, the NIST launched a consultation deal-
ing with the so-called "Post-Quantum Cryptography"
(PQC) [24], leading to think that a practical quan-
tum computer might appear in the next two or three
decades. Among the candidates known to resist against
quantum computers, several submissions on the NIST
platform are code based protocols. The public key cryp-
tosystem of Mc Eliece marked the beginning of code
based cryptography [22]. The security of most of the
code based protocols relies on a decision problem which
can be stated without using the terminology of coding
theory: the SD (Syndrome Decoding) problem.

Input : H a (k, n) matrix over F2, s ∈ Fk
2 a

column vector, p an integer.
Question : Is there a column vector e ∈ Fn

2 , with at
most p non-zero coordinates, such that
He = s ?

2 J.-M. Robert, P. Véron

Although this problem is NP-complete [7], in practice,
the efficiency of the probabilistic algorithms devoted to
solve the SD problem [6] has as a consequence that code
based cryptography usually suffers from huge keys. Nu-
merous strategies have been deployed to obtain a com-
pact representation of the key. Among them, the use
of double circulant codes [13] leads to secure protocols
with short keys.

Definition 1 An n×n matrix is called a circulant ma-
trix if each row is obtained from the previous one by a
cyclic shift over one position to the right.

A =

a0 a1 . . . an−2 an−1
an−1 a0 . . . an−3 an−2
...

...
...

...
a1 a2 . . . an−1 a0

 .

In the sequel, we use some coding theory terminol-
ogy. The reader may refer to [21, chapter 1] for more
information on coding theory.

Definition 2 Let k, n ∈ N, an (n, k) linear code C over
F2 is a k dimensional subspace of Fn

2 .

Definition 3 A parity check matrix of an (n, k) linear
code C is an (n − k) × n matrix H over F2 such that
H tc = 0 iff c ∈ C.

Definition 4 A (2n, n) double circulant code C is a
linear code such that :

(c0, c1, . . . , cn−2, cn−1, cn, cn+1, . . . , c2n−2, c2n−1) ∈ C
⇓

(cn−1, c0, . . . , cn−3, cn−2, c2n−1, cn, . . . , c2n−3, c2n−2) ∈ C .

A parity check matrix H of the (2n, n) double circulant
code has the following form :

H =

(
A

∣∣∣∣ M),
where A and M are two n× n circulant matrices.

A parity check matrix of a (2n, n) double circulant
code can be stored, in a compact way, using only its
first row. There is no general complexity result for the
SD problem where H is the parity check matrix of a
random double circulant code. However, in practice, up
to a small factor, the best attacks against the SD prob-
lem in this case are the same as those for random binary
codes. Indeed, according to [14], when n is prime and 2

is a primitive root of Z/nZ, almost all random double
circulant codes lie on the Gilbert-Varshamov bound. As
a result, the SD problem is considered hard by the cryp-
tographic community for double circulant codes.

Let y = (y0, . . . , y2n−1) ∈ F2n
2 a column vector and

let us define y(1)(X) = y0 + y1X + · · · + yn−1X
n−1

and y(2)(X) = yn + yn+1X + · · ·+ y2n−1X
2n−1. Given

that the algebra of n × n circulant matrices over F2 is
isomorphic to the algebra of polynomials in the ring
F2[X]/(Xn − 1), through the mapping ψ such that
ψ(A) = a0 + a1X + a2X

2 + · · · + an−1X
n−1, then the

product Hy boils down to the computation of two poly-
nomial multiplications, namely:

ψ(A)× y(1)(X) (mod Xn − 1)

and
ψ(M)× y(2)(X) (mod Xn − 1) .

BIKE [5] and HQC [3] make use of this isomorphism
which maps a matrix-vector product into a polynomial
multiplication in F2[X]/(Xn − 1). Due to the polyno-
mial size (from 10000 to 60000 bits) in both protocols, it
turns out that this operation has an impact on key gen-
eration, key encapsulation and key decapsulation mech-
anisms.

For example, in the HQC submission, key generation
requires one multiplication, encapsulation requires two
multiplications and decapsulation requires three mul-
tiplications. These multiplications are computed over
F2[X]/(XN − 1), with 17669 6 N 6 57637.

Moreover, the multiplications are performed with
one sparse operand, while the other one is dense. Sparse-
dense multiplications are classically implemented using
convolution approaches which is an adapted version of
the schoolbook approach (for example, see Aranha et
al. in [15]).

The report [4] mentions that side-channel resistance
is a desirable security property for NIST PQC candi-
dates. A minimum requirement for cryptographic prim-
itives to ensure this property is to provide constant time
implementations. In BIKE and HQC, some secret data
are represented as sparse polynomials used as operand
of a multiplication by an arbitrary polynomial, in the
three steps of the protocol: key generation, encryption
and decryption mechanisms. Thus, any multiplication
algorithm taking advantage of the sparsity of the se-
cret data may leak some information on it. An adver-
sary able to exploit such source of leakage may recover
information on secret data. That is why dense-dense
approaches, which process the sparse operand as an ar-
bitrary polynomial, are to be considered as mandatory.

Dense-dense multiplication over F2[X] has been in-
tensively studied in the past, for different applications:

– schoolbook approaches (with quadratic complexity);
– Karatsuba-Offmann [20] and Toom-Cook [8] sub-

quadratic methods, with interpolation-evaluation al-
gorithms;

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 3

– Schonhäge-Strassen [26] and Fürer [12] FFT based
methods, and recent works (see Harvey et al. in [17,
16]) showing a quasi-linear complexity in O(n log n)
for integer multiplication.

One reference for the dense-dense operation is the
general purpose NTL library (see [1]), which aims to
provide the whole set of operations, and is based on
the gf2x library [18] for the characteristic 2 operations.
All the different approaches mentioned above are imple-
mented. However, this library and the underlying gf2x
have been designed for general purpose use and are op-
timized for generic operations with operand of any size.

In terms of operand size, the HQC [2] protocol deals
with polynomials whose size is fixed as a protocol pa-
rameter. The range of sizes corresponds to the one for
which the Karatsuba and Toom-Cook approaches are
the best in the state-of-the-art. Indeed, in the gf2x li-
brary, over F2[X]/(XN − 1), with 17669 6 N 6 57637,
the computations make use of Karatsuba or Toom-Cook
(split by 3 or 4) approaches, while the threshold for
FFT approaches is above 240000 bits (i.e. the degree of
the polynomials). These bounds are relevant with the
recent results of Harvey et al. in [17,16].

In terms of software implementation on x86-64 plat-
forms, until recently, the state-of-the-art was AVX2 in-
struction set implementations, especially using the PCL-
MULQDQ instruction (see the gf2x library). This instruc-
tion performs a binary polynomial (of degree at most
63) multiplication over F2[X]. It returns the result stored
in a 128-bit word, either an xmm 128-bit register or
a same size memory storage location. The AVX2 in-
struction deals with 256-bit registers or memory words
and performs various vectorized operation on packed
operands. In 256-bit words, one can store either 32
bytes, 16 16-bit words, 8 double words or 4 quadwords
(whose size is 64 bits).

In 2018, Intel announced a new instruction set ex-
tension in the so-called Icelake processor generation,
which extends the AVX512 instruction set already avail-
able on some XEON processors. In particular, this ar-
chitecture introduces a vectorized VPCLMULQDQ instruc-
tion, which performs up to four polynomial PCLMULQDQ
multiplications, the four 128-bit results being stored
in one single 512-bit word. Following this announce-
ment, Drucker et al. [10] proposed a software imple-
mentation (for polynomials up to degree 216 − 1) using
this instruction set, but could only experiment simula-
tions or adapted versions of their software implemen-
tations, since no platforms and no Icelake processors
were available at this time. However, they claimed up
to 50% lowering of retired instructions and predicted
the same drop in terms of processor clock cycle number

execution. Their implementations consist in three core
flows that perform schoolbook multiplication:

1. a 4× 4 quadwords (64 bits) multiplication, written
in AVX, using xmm registers and the PCLMULQDQ in-
struction,

2. a 4× 4 quadwords (64 bits) multiplication, written
in AVX512, using ymm registers and the VPCLMULQDQ
instruction,

3. a 8× 8 quadwords (64 bits) multiplication, written
in AVX512, using zmm registers and the VPCLMULQDQ
instruction.

They also mention Karatsuba multiplications for operand
sizes above 256 bits. They provide the source code only
for the second approach (4 × 4 quadwords multiplica-
tion, using ymm registers).

Contributions
In this work, we explore the Karatsuba and Toom-

Cook multiplication construction and we identify the
best combinations to be used depending on the poly-
nomial degrees. As an illustration, we applied these
results on the hqc-128 and hqc-192 multiplications
of the Optimized Implementation of the HQC release,
2020/10/01 version [2]. In this release, the multiplica-
tion implementation make use of a 2-recursive 3-split
Karatsuba. We show that using a Tom-Cook-3 approach,
this provides some speedup in comparison with the ini-
tial multiplication of this release. As a consequence, this
has been integrated in the last official HQC release,
2021/06/06 version.

Then, in the context of AVX512 instruction set, now
available since the Icelake microarchitecture proces-
sors, we propose new implementations designed for cryp-
tographic use of polynomial multiplications over F2[X].
We show that the elementary multiplication construc-
tion has to be a schoolbook approach up to the 256
bit operand level, while in the state-of-the-art AVX2
context, a Karatsuba multiplication is required at the
threshold of 128 bit operands.

We then implement tailor made vectorized sub-
quadratic approaches (recursive Karatsuba and Toom-
Cook-3) using the AVX512 instruction set and the vec-
torized VPCLMULQDQ instruction in order to improve the
performances, in comparison with current state-of-the-
art AVX2 implementations. We compare our implemen-
tations:

– with the gf2x library;
– with the multiplications provided or derived from

the Optimized Implementation of HQC.

Drucker et al. in [10] estimated that, by using the
new AVX512 instruction set and especially the new VPC-
LMULQDQ one, the retired instruction count might be

4 J.-M. Robert, P. Véron

divided by two, and the clock cycle number might be
lowered in the same proportion. At the time they sub-
mitted their paper, there were no actual processor avail-
able implementing the instruction set extension with
VPCLMULQDQ. In this paper, we checked their claims. We
show that while the instruction count reduction can be
overtaken, in our tests, the clock cycle number is low-
ered by about 39% only.

This paper is organized as follows : in Section 2
we present the Karatsuba multiplication over F2[X]

and our AVX512 software implementation, the timing
results and comparison with the implementations of
Drucker et al. [10,11], the gf2x library and state-of-the-
art AVX2 implementation; in Section 3 we present the
Toom-Cook multiplication over F2[X] and our AVX512
software implementation, the timing results and com-
parison with the gf2x library and state-of-the-art AVX2
implementation; in Section 4 we present the perfor-
mances obtained with the HQC protocol:

– when using our AVX2multiplications in hqc-128 and
hqc-192 in the HQC release (round 3), 2020/10/01
version;

– when implementing our AVX512 multiplications in
the last official HQC release, 2021/06/06 version.

Finally Section 5 provides some concluding remarks.
The source code of all of our implementations are

available at https://github.com/arithcrypto/, in the
AVX512PolynomialMultiplication repository.

2 Karatsuba multiplication: algorithms and
implementations

The Karatsuba multiplication algorithm is the first
subquadratic approach, which has been presented by
Karatsuba and Offmann in [20]. This multiplication was
first applied to large integers, but can be applied to
polynomials. This classical approach has been exten-
sively studied since then, and our work relies on all
those previous works. Our main contribution here is
the AVX512 software implementation of this approach,
in order to speedup the runtime execution of multipli-
cations over F2[X].

First, we review the subquadratic Karatsuba ap-
proaches for multiplication over F2[X]. We then present
our implementations and the performance results.

2.1 Karatsuba algorithm

One wants to multiply two arbitrary polynomials of
degree at most N−1, and the result is of degree at most

2 · N − 2. The Karatsuba complexity applied to poly-
nomial multiplication over F2[X] has been studied by
Nègre and Robert in [23]. Let A and B be two binary
polynomials of degree at most N − 1. These polyno-
mials are packed into an array of 64-bit words, whose
size is dN/64e. Let t = 2r with r the minimum value
ensuring t > dN/64e. Now, A and B are considered
as polynomials of degree at most 64 · t − 1. We repro-
duce the Karatsuba algorithm in Algorithm 1 Appendix
A. From [23], the complexity of the recursive Karat-
suba multiplication is : 8tlog2(3) − 8t XOR between 64-
bit words and tlog2(3) native 64-bit multiplication. We
assume that this native multiplication line 2 (denoted
Mult64) is performed using a single processor instruc-
tion: this is the case of the Intel Cores i3, i5 and i7 and
above.

There are variants of these approaches, splitting the
operands in all number of parts, and using an elemen-
tary multiplication which can be all sort of Karatsuba
multiplication for example. These variants have been
extensively studied in Weimerskirch and Paar in [27].
Algorithms 2 and 3 present the 3-way and 5-way split
Karatsuba (see Appendix A).

In Table 1, we remind the complexity of recursive
Karatsuba multiplication (t is the size of the operands
in 64-bit words).

Apart the Schoolbook, which presents the worst com-
plexity in terms of elementary multiplications, one can
verify that the Karatsuba approaches are ordered in
growing complexity for equivalent sizes.

2.2 AVX512 Implementation

We propose here a little survey of the possible ap-
proaches for AVX512 implementations. Our goal is to
review the state-of-the-art (to our knowledge) and pos-
sibly propose improvements. We started to evaluate the
implementation approaches from [10], which were based
on the schoolbook algorithm for the 256 bit and 512 bit
operand sizes. Their main claim is a reduction of 50%
of the instruction count for the kernels they presented
in this paper, and while an actual processor were not
available at the time of their work, they evaluated a
similar improvement in terms of clock cycle number for
the computation time. In a more recent work, Drucker
et al. in [11] proposed a new approach based on the
Karatsuba algorithm. In our evaluation, this last work
outperforms the first of [10]. In this section, we briefly
review the main feature of the AVX512 instruction set,
and then present the most interesting approaches for
elementary multiplication for the 512 bit operand size,
from [11] and our work.

https://github.com/arithcrypto/

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 5

mult. #pclmul #xor
Schoolbook t2 4× t2
KaratRec tlog2(3) 8× tlog2(3)

Karat3 6× ((t/3)log2(3)) 48× ((t/3)log2(3))

Karat5 15× ((t/5)log2(3)) 120× ((t/5)log2(3))

Table 1: Complexity of the Karatsuba’s multiplication variants

2.2.1 AVX512 instruction set and special features

The AVX512 are 512 bit extensions to the SIMD (Sin-
gle Instruction Multiple Data) 256 bit AVX (Advanced
Vector Extension) instructions for x86 instruction set
architecture. This was proposed by Intel since 2013 and
consists of multiple extensions. In the AVX512 proces-
sors, in addition to the general purpose 64 bit registers,
larger registers are also available in order to perform
vectorized instructions. These registers are of type

– xmm : of size 128 bits, i.e. containing two quadwords,
thus denoted {a1, a0}, a0 and a1 being the quad-
words in register a;

– ymm : of size 256 bits, i.e. containing four quadwords,
thus denoted {a3, a2, a1, a0}, a0, a1, a2 and a3 being
the quadwords in register a;

– zmm : of size 512 bits, i.e. containing eight quad-
words, thus denoted
{a7, a6, a5, a4, a3, a2, a1, a0}, a0, a1, a2 , a3, a4, a5,
a6 and a7 being the quadwords in register a;

The number of registers of each type is 32.

2.2.2 The elementary polynomial multiplication:

Let us first remind how the PCLMULQDQ instruction
works.

The intrinsic available by including the
immintrin.h file is :

__m128i _mm_clmulepi64_si128 (__m128i a,
__m128i b, const int imm8)

The quadwords ai and bi represent binary polyno-
mials of degree at most 63. The PCLMULQDQ instruction
returns the results in an xmm register, that is aj × bi, of
degree at most 126. The selection of i and j, i.e. the cor-
responding quadword of the operand is made according
to the value of imm8 :

1. imm8 = 0x00 : i = 0, j = 0 → PCLMULQDQ returns
a0 × b0;

2. imm8 = 0x01 : i = 0, j = 1 → PCLMULQDQ returns
a1 × b0;

3. imm8 = 0x10 : i = 1, j = 0 → PCLMULQDQ returns
a0 × b1;

4. imm8 = 0x11 : i = 1, j = 1 → PCLMULQDQ returns
a1 × b1;

The VPCLMULQDQ instruction now available on Icelake
and above platforms has the following intrinsic:

__m512i _mm512_clmulepi64_epi128 (__m512i a,
__m512i b, const int Imm8)

This instruction computes in parallel 4 pclmul mul-
tiplications, i.e. carryless multiplications of binary poly-
nomials of degree at most 63, stored in 4 quadwords in
512 bit registers, as seen above. Thus, four 128 bit re-
sults are stored in the zmm register as follows:

{a6+j × b6+i︸ ︷︷ ︸
128 bits

, a4+j × b4+i︸ ︷︷ ︸
128 bits

, a2+j × b2+i︸ ︷︷ ︸
128 bits

, aj × bi︸ ︷︷ ︸
128 bits

}

The selection of i and j is made as above according
to the value of Imm8.

We now examine the implementation of four multi-
plications using this instruction set and these registers:
the mul512 version, from Drucker et al. in [11], our new
karat_1_512 using the mul128x4 procedure from [11]
and our new karat_mult_1_512_SB using a schoolbook
mul128x4 procedure, and the full schoolbook 512 bit
implementation, as suggested in [10]. We provide the
detailed source code of the karat_mult_1_512_SB, and
corresponding explanations in Appendix C, while the
source code of the other approaches are available in the
github repository, as mentioned in the Introduction.

We chose not to present here the schoolbook ap-
proaches of [10], because in our tests, these versions
are outperformed by the others. Likewise, we also im-
plemented 256 bit kernels using schoolbook (SB256)
and Karatsuba at the 256 bit level Karat256 with the
AVX512 and VPCLMULQDQ instruction. These versions are
also outperformed by the others, in particular by the
8x8 multiplication of [10].

Nevertheless, we give an overview on these multi-
plications and their performances Appendix B and Ap-
pendix F, and the source code is also provided in the
github repository.

6 J.-M. Robert, P. Véron

2.2.3 mul512 version, from Drucker et al. in [11]

In [11], Drucker et al. present a multiplication of
1024 bit operands. This multiplication is computed as
follows:

– The mul1024 is a Karatsuba wrapper which calls
three mul512 multiplications, along with a classi-
cal Karatsuba reconstruction. This implementation
is similar to the AVX2 equivalent implementations
except the register size.

– The mul512 is a Karatsuba multiplication which
splits in four parts the 512 bit operands. They use
a four 512 bit word table, storing the 5 elementary
xored operands in addition to the operands them-
selves, for a total of 9 pairs of 128 bit operands.
After this step of operand preparation, the mul512
procedure calls three times a mul128x4 function in
order to compute the 9 elementary 128 bit operand
multiplications.

– Finally, the mul128x4 procedure performs four 128
bit operand multiplications in parallel, using the
VPCLMULQDQ instruction. This instruction is called
three times, corresponding to the Karatsuba con-
struction using 128 bit operands, split in two 64 bit
words.

One may notice that the mul512 procedure invokes 9
times the VPCLMULQDQ instruction, that is 36 elementary
64 bit operand multiplications, while using only 33 = 27

out of them due to the Karatsuba multiplication. We
refer the reader to [11, Appendix B], for a complete and
detailed explanation of the source code.

2.2.4 Our new karat_mult_1_512 using the
mul128x4 procedure, from [11]

Starting from the previous implementation of [11],
our goal is to check the difference between the Karat-
suba and the schoolbook approach at the 256 bit
operand level. For this sake, we modified the mul512
procedure into classic Karatsuba construction, which
split in two parts the 512 bit operands. Now, three el-
ementary 256 bit schoolbook multiplications are com-
puted. These multiplications invoke one single call to
the mul128x4 procedure from [11]. In our version, the
code of the mul128x4 procedure has been manually in-
lined.

The total number of VPCLMULQDQ instructions in this
512 bit multiplication is 9, the same as previously. How-
ever, this procedure now makes use of all 36 elementary
64 bit multiplication computed, while slightly simplify-
ing the final reconstruction at the 256 bit level. This
version is called karat_mult_1_512, and its source code
can be found in the github repository of the paper.

2.2.5 Our new karat_mult_1_512_SB using a
schoolbook mul128x4 procedure

This configuration implements the schoolbook al-
gorithm at the 128 bit and 256 bit multiplication lev-
els. Our goal now is to check which algorithm between
Karatsuba and schoolbook is the best at the 128 bit
operand level. Indeed, the instruction count is lower,
while making use of one more VPCLMULQDQ instruction.
The latency and throughput of this instruction is higher
than conventional instructions. However, the vectorized
version changes this by performing simultaneously four
elementary 64 bit operand multiplications.

This approach now uses 3 × 42 = 48 elementary
64 bit operand multiplications in total. This version is
called karat_mult_1_512_SB and is presented in de-
tails in Appendix C page 17.

2.2.6 Full schoolbook 512 bit multiplication SB512

From the description of Drucker et al. in [10], we
also wrote a full schoolbook approach at the 512 bit
size level.

This version now uses 4×42 = 64 elementary 64 bit
operand multiplications in total, and is called SB512.

2.2.7 Instruction counts for the four 512 bit
multiplication versions

The instruction count for both configurations of
mul128x4 is shown Table 2.

Instruction counts for mul512, SB512,
karat_mult_1_512 and karat_mult_1_512_SB are
shown Table 3. For the Drucker et al. [11] version, we
count three times the mul128x4 instruction count plus
the mul512 instructions.

These instruction counts give an overview of the po-
tential differences between the schoolbook and Karat-
suba approaches at different levels. The threshold
for the use of Karatsuba algorithm is at the lowest
level in AVX2 implementation. However, the vectorized
VPCLMULQDQ instruction performs 4 multiplications at
a time, with similar latency and throughput. Thus, in
the context of AVX512, the good level for this threshold
is 256 bit multiplication.

As expected (see Table 3), the instruction count is
the lowest for the karat_mult_1_512_SB, correspond-
ing to the schoolbook approach until the 256 bit operand
size. The mul512 of [11] instruction count is the greatest
among the three approaches, due to the more complex
final reconstruction of each Karatsuba recursion step.

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 7

Instruction count of mul128x4
128 bit size operands

Instructions Drucker et al. [11] schoolbook (this work)
_mm512_clmulepi64_epi128 3 4

XOR 4 1
_mm512_mask_xor_epi64 2 2
_mm512_permutex_epi64 2 -

_mm512_permutexvar_epi64 1 1
Total 12 8

Table 2: Instruction count for the mul128x4 bit multiplication versions

Instruction count
512 bit size operands

Instructions karat_mult_1_512_SB karat_mult_1_512 SB512 mul512 [11]
_mm512_clmulepi64_epi128 12 9 16 9

XOR 11 20 5 22
_mm512_mask_xor_epi64 11 11 14 11
_mm512_permutex_epi64 - - - 6

_mm512_permutexvar_epi64 13 20 18 8
_mm512_permutex2var_epi64 3 3 5 5

_mm512_alignr_epi64 - - - 6
Total 50 63 58 67

Table 3: Instruction count for the 512 bit multiplication versions

2.2.8 Performances

We now check the performances of all the previous
approaches. The test procedure is presented Appendix
E page 19. Since the SB512 version is the slowest one,
we chose to provide its performances Table 14 page 20,
in Appendix F.

We present Table 4 the results for the first three
approaches described above, and compare them to the
classic AVX2 implementations from the gf2x library [18]
and the one from the HQC submission [2]. The main
conclusions are as follows:

– among the AVX512 implementations, the best ver-
sion is the one based on the karat_mult_1_512_SB,
i.e. a schoolbook algorithm applied to the 128 bit
and 256 bit levels, and the Karatsuba approach at
the highest level (512 bit operands);

– in comparison with the AVX2 implementation, this
version achieves a retired instruction number di-
vided by roughly three, and speedups (in terms of
clock cycle number) are from 29.5% to up to 39.1%
(KaratRec, size 131072 bit), due to the lower IPC
of the AVX512 instruction set.

The gf2x library performances are slightly lower
than the ones of the other implementations. The re-
sults shown Table 4 allows to evaluate the Instructions
per cycles (IPC), which is the ratio between the retired
instructions and the clock cycle number. The graph in
Figure 1 shows that while the IPC of the gf2x library
multiplications is about 4.5, the IPC of the AVX2 multi-
plications is nearly 3.0 and the IPC of our AVX512 mul-
tiplications (with karat_mult_1_512_SB) is about 1.5.
In the gf2x case, the software implementation makes
use of AVX2 instruction set. However, this all-purpose li-
brary includes some wrappers and tests, and especially
offers the possibility to tune each operand size. This
is costly, but is written with conventional instructions.
This is the most likely explanation of the high IPC,
while the clock cycle number is a little worse that the
one of the AVX2 software implementation.

We compare also the IPC of our AVX512 multipli-
cation (with karat_mult_1_512_SB) and the one us-
ing the mul512 of Drucker et al. from [11]. In this last
case, the IPC is greater than the one obtained with
our implementation. While the clock cycle numbers of
our implementations are about 9% lower than the ones
using the mul512, Table 4 shows that the instruction

8 J.-M. Robert, P. Véron

KaratRec AVX2 Our impl. This work
of [11] AVX512 new 512 bit op. mult.

size gf2x[18] after [2] mul512 karat_mult_1_512 karat_mult_1_512_SB

1024 # clock cycles 339 183 137 143 129
instructions 1224 612 254 228 193

2048 # clock cycles 998 610 461 447 423
instructions 3892 1867 872 693 581

4096 # clock cycles 2949 1929 1425 1383 1287
instructions 11079 5684 2701 2219 1821

8192 # clock cycles 8742 6038 4424 4236 3977
instructions 33182 17991 8600 7051 6128

16384 # clock cycles 26128 18327 13314 12893 12078
instructions 100163 54840 26099 21573 18797

32768 # clock cycles 78889 59613 40582 39038 36811
instructions 295755 166410 79078 65466 57525

65536 # clock cycles 226640 187305 126386 121348 114620
instructions 853977 503014 238851 198185 174468

131072 # clock cycles 667900 572984 382669 369495 348982
instructions 2516857 1515625 719423 597021 527205

Table 4: Performance comparison for Algorithm 1

numbers are 24% to 33% lower. This may be explained
by the intensive use of the _mm512_clmulepi64_epi128
we have in our case. Due to this instruction high
latency and throughput, the lesser instruction count
does not yield such a large decrease for the clock
cycle numbers. These results may also vary versus
the processor version, according to the corresponding
_mm512_clmulepi64_epi128 instruction latency and
throughput.

The conclusion of this comparison is that the
AVX512 multiplication implementation presents an el-
ementary 64 bit multiplication cost relatively low in
comparison with the AVX2 situation. In this case, the
non vectorized multiplication cost leads to a Karatsuba
application at the 128 bit level. Insofar as the vectorized
instructions equivalently divides by four the latency and
the throughput of the elementary multiplication at the
64 bit level, it becomes more interesting to apply the
schoolbook approach at the 128 bit level and also at the
256 bit level. In our tests, we saw that at the 512 bit
level, the Karatsuba approach becomes again the best
one.

On the hardware point of view, our tests show an-
other aspect of this AVX512 implementation case, which
differs from the initial estimations given in [10], con-
cerning the potential speedups brought by the AVX512
instruction set and VPCLMULQDQ instruction. Indeed,
these results make clear that, in terms of processor

hardware, at the microarchitectural level, the AVX512
instruction set has not yet been implemented with the
same integration level as the one of the other instruction
sets (conventional and AVX2), at least on our platform.
The Intel documentation does not provide a lot of de-
tails [19], however, one can assume that the hardware
features are not homogeneous with the AVX2 equiva-
lents. This also means that future Intel processor gen-
erations might improve the IPC of the AVX512 instruc-
tion set and potentially decrease the clock cycle num-
ber of our implementation. Indeed, between our AVX2
and AVX512 multiplication implementation, the retired
instruction count is divided by nearly three. If the pro-
cessor manufacturer improves the IPC of the AVX512
and AVX2 instruction sets, to get closer to the one of
the conventional instruction set IPC, this means that
one may observe speedups with our software implemen-
tations on future platforms.

2.2.9 Karat3 and Karat5 implementations

These multiplications (Algorithms 2 and 3, Ap-
pendix A page 15) make use of the previous KaratRec
multiplication (Algorithm 1) as elementary multiplica-
tions. The vectorized versions are again implemented
using AVX2 and AVX512 instruction set. This leads to
different sizes: while the Karat3 multiplication has an
operand size which is three times the one of the elemen-

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 9

 0

 1

 2

 3

 4

 5

 6

 7

 2000 3000 4000 5000 6000 7000 8000

IPC

polynomial operand size (bits)

Multiplication Instructions per Cycle Comparison
IPC = #Instr./#CC

gf2x mult
AVX2 KaratRec

AVX512 KaratRec with mul512 Drucker et al.
AVX512 KaratRec with Karat512_SB

Fig. 1: Instructions per cycle comparison for Algo-
rithm 1

tary multiplication (for example 512,1024, 2048... bits),
the Karat5 has an operand size which is five times the
one of the elementary recursive Karatsuba multiplica-
tion. Thus, depending on the context, one may choose
the most appropriate version according to the operand
sizes. We present the performance results (# clock cy-
cles) in Table 5.

The Karat3 or Karat5 multiplications can also use
themselves as elementary multiplications. This leads to
four extra combinations for multiplication. We present
the performance results (# clock cycles) in Table
6. One may notice that the Karat3(Karat5), i.e. a
Karat3 multiplication using a Karat5 elementary mul-
tiplication, deals with the same operand sizes that the
Karat5(Karat3). However, we give the results for both
versions, and observe that they present very close per-
formances.

In all this experimentation, we only used,
as the most elementary multiplication, the
karat_mult_1_512_SB version, presented Section
2.2.5 page 6. The platform and experimentation
process are the same as previously (see Appendix E
page 19).

2.3 Conclusion

In this section, we presented our AVX512 implemen-
tation of recursive Karatsuba multiplication over F2[X]

for polynomial of degree at most 131071.
Our implementations show that the best AVX512 ap-

proach is a 512 bit kernel, using a schoolbook algorithm
at the 128 and 256 bit level, and Karatsuba at the high-
est level, that is for the 512 bit size operands.

Used in AVX512 recursive Karatsuba multiplications
of greater sizes, and in comparison with the AVX2 soft-
ware implementation of [2], our implementations achieve

size # clock cycles
gf2x AVX2 AVX512

Karat3

1536 904 440 302
3072 2486 1272 871
6144 6104 3974 2655
12288 18463 11998 8118
24576 50311 37024 24488
49152 150469 117707 76147
98304 427281 357577 231686

Karat5

2560 1770 1135 724
5120 4640 3378 2251
10240 13814 10177 6741
20480 40911 30545 20486
40960 118334 97809 63524
81920 323997 295147 192378

Table 5: Performance comparison for Algorithm 2 and 3

a retired instruction number divided by roughly three,
and speedups (in terms of clock cycle number) are from
29.5 % to up to 39.1 % (KaratRec, size 131072 bit), due
to the lower IPC of the AVX512 instruction set.

The same achievements have been reached in all the
Karatsuba variants (split in 3, 5 parts, and combina-
tions).

3 Toom-Cook multiplication over F2[X]

In this section, we present the implementation issues
of the Toom-Cook 3-5 approach applied to multiplica-
tion over F2[X], especially with the AVX512 instruction
set. We refer the reader to Appendix D page 18 for a
general presentation of the Toom-Cook approach.

3.1 Toom-Cook multiplication complexity

There are several way to split the operands in the
Toom-Cook approach:

– The Toom-Cook 3-5, which splits the operands in 3
parts, and involves 5 elementary multiplications;

– The Toom-Cook 4-7, which splits the operands in 4
parts, and involves 7 elementary multiplications;

– The Toom-Cook 5-9, which splits the operands in 5
parts, and involves 9 elementary multiplications;

We present Table 7 the general results versus the poly-
nomial degrees, and the corresponding operand size in
64 bit words.

As log2(3) > log3(5) > log4(7) > log5(9), this im-
plies that the multiplication number is decreasing while

10 J.-M. Robert, P. Véron

size # clock cycles
gf2x AVX2 AVX512

Karat3(Karat3)

4608 4129 2707 1920
9216 11261 8102 5425
18432 34205 24498 16340
36864 97586 76912 51097
73728 270900 232362 154065

Karat5(Karat5)

12800 19495 17988 11471
25600 56258 53132 36417
51200 161740 159148 107020
102400 438283 479256 321361

size # clock cycles
gf2x AVX2 AVX512

Karat3(Karat5)

7680 8317 7075 4496
15360 25110 20670 13845
30720 73222 63386 42454
61440 209872 192557 127336
122880 618612 597357 388414

Karat5(Karat3)

7680 8242 7031 4943
15360 26364 20586 13775
30720 72897 63653 42713
61440 216280 190317 129419
122880 619802 580575 387763

Table 6: Performance comparison for recursive Algorithms 2 and 3

increasing the split. However, the hidden constant in
the O notation is increasing, due to the more complex
interpolation phase. This leads to a “gray zone” in which
the different algorithms are very close to each other
and this gray zone resides in our range for code based
cryptographic protocols. In the gf2x implementation,
a specific selection of the algorithm is made depending
on each of the operand size (which can be different in
this general purpose library).

3.2 Toom-Cook multiplication, implementation issues

Let us recall that in order to multiply two binary
polynomials A and B of degree at most N − 1, we con-
sider them as polynomials of degree at most 64t − 1

where t = 3n and n ensures t > dN/64e. We now
present how to choose n.

In the evaluation phase, the elementary products do
not have the same operand size: C(0), C(1) and C(∞)

have operands of degree at most 64n−1, while C(x) and
C(x+1) have operands of degree at most 64n+2 ·w−1

(see Appendix D page 18). To take into account this
characteristic, if the size of the elementary product is
known, one has to set operands of size n + 2w/64 64-
bit words, padding with zeros in order to use the same
elementary product. Now, we can specify the value of n
mentioned Appendix D: n must be the minimum value
ensuring 3n > dN/64e such that n + 2w/64 is the size
of the elementary multiplications computed during the
evaluation phase. Thus, n+ 2w/64 is either a power of
2 in case of a Karatsuba multiplication (as seen section
2.1), or a value which complies with another Toom-
Cook multiplication.

In the interpolation phase, since the divisions by x
and (x+1) are exact, they can be implemented using the
trick presented by Quercia and Zimmermann in [28] and
[25]. One takes advantage of the size of the polynomial
to replace these divisions by a one word right shift for

the division by x, and by a special multiplication by (x+

1)−1 mod Xd, d > degree of C(x) and d ≡ 0 mod w.
In the second case, to evaluate (x+1)−1 mod Xd =

(Xw + 1)−1 mod Xd, notice that:

(Xw + 1)−1 mod Xn =

d/w−1∑
i=0

Xw·i .

Example 1. Here is a small toy example with poly-
nomial over F2[X] : let us divide by X + 1 polyno-
mial whose degree is less than 8. One has (X + 1)−1

mod X8 = X7 + X6 + X5 + X4 + X3 + X2 + X + 1.
Now, ∀P (X) such as (X + 1)|P (X) and degree(P)< 8,
Q(X) = P (X)/(X+1) is computed as P (X) ·(X+1)−1

mod X8. Since this division is exact, the result is the
exact quotient.
Let us set P (X) = X7 +X5 +X4 +X :

Q(X) = (X7 +X5 +X4 +X) · (X + 1)−1 mod X8

= (X7 +X5 +X4 +X)

·(X7 +X6 +X5 +X4 +X3 +X2+

X + 1) mod X8

= X6 +X5 +X3 +X2 +X.

The vectorized implementation, while using 256-bit
instructions, uses both values w = 64 or w = 256. We
can even use w = 512 in the case of AVX512 platforms.
Notice that the division by x + 1 is cheaper in case of
w = 256 or 512, while n is slightly greater with w = 64.

To illustrate some Toom-Cook use cases, let us present
some examples.

Example 2. In order to use elementary Karatsuba mul-
tiplications, and with w = 64, let us consider n such
that n+2w/64 = 28. Thus, one has 64 ·n+2 ·w = 8192,
and this elementary multiplication proceeds polynomi-
als of degree at most 8191. We then have n = 254,
t = 3 · n = 762, thus building a Toom-Cook multiplica-
tion which can multiply polynomials of degree at most
762 · 64− 1 = 24191.

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 11

mult. Complexity size range (gf2x [18])
operand degrees # 64 bit words

KaratRec O(tlog2(3)) < 1343 < 21
Toom-Cook 3-5 O(tlog3(5)) 1343 < degrees < 22143 21< w <346
Toom-Cook 4-7 O(tlog4(7)) > 22143 > 346
Toom-Cook 5-9 O(tlog5(9)) above above

Table 7: Complexity of the Toom-Cook’s multiplication variants

Example 3. We now will use the previous multipli-
cation in order to build a 1-recursive Toom-Cook mul-
tiplication, setting w = 256. One now chooses n such
that 64n + 2 · 256 = 24192. This leads to n = 370 and
t = 1110. This multiplication proceeds polynomials of
degree at most 71039:

– the first split computes polynomials of degree at most
23679;

– we build the operands for the evaluation phase, whose
size is up to 24192;

– we then call the Toom-Cook procedure of the previ-
ous example, which makes use of Karatsuba multi-
plications of size 8192.

Example 4. We now build a Toom-Cook multiplica-
tion, setting w = 512 using a Karat5 elementary mul-
tiplication of size 20480. One now chooses n such that
64n+2·512 = 20480. This leads to n = 304 and t = 912.
This multiplication proceeds polynomials of degree at
most 58368. This multiplication fits with the hqc-256
protocol (see [2]), whose parameter N = 57669, and for
an AVX512 implementation.

This can be adjusted for other sizes. To deal only
with word shifts, this implies on the operand size that:

– elementary recursive Karatsuba multiplications are
based on PCLMULQDQ or VPCLMULQDQ 64-bit ele-
mentary multiplications, whose size corresponds to
the ones previously seen (KaratRec, Karat3, or
Karat5...);

– the computation of C(x) and C(x + 1) needs con-
struction of operands whose size has to be the ele-
mentary multiplication size;

– the split has to take into account the size of the
elementary multiplication operand, by diminishing
the size of the split by two words.

3.2.1 Toom3Mult implementations

Three Toom3Mult versions have been implemented
(see Table 8):

– with KaratRec elementary multiplications whose size
is among 512, 1024, 2048, 4096, 8192, 16384 and
32768 bits;

– with Karat3 elementary multiplications whose size
is among 6144, 12288 and 32768 bits;

– with Karat5 elementary multiplications whose size
is among 5120, 10240, 20480, 40960 bits.

The platform and test procedure are the ones de-
scribed Appendix E page 19.

The speedup of our AVX512 implementation in com-
parison with the AVX2 one is as follows:

– Toom3 based on KaratRec (Toom3Mult(KaratRec)):
the speedup starts from 33.5% for the 48768 bit
operand size up to 36.7% for 97920 bit operand size;

– Toom3 based on Karat3 (Toom3Mult(Karat3)): the
speedup starts from 30.4% for 36480 bit operand
size up to 33.3% for the 73344 bit operand size;

– Toom3 based on Karat5 (Toom3Mult(Karat5)): the
speedup starts from 32.4% for the 14976 bit operand
size up to 33.9% for 122496 bit operand size.

3.3 Toom3 vs Karat3 comparison

The Toom-Cook multiplication presented above
(Toom3) and the Karat3 multiplication (see Algorithm
2 page 15) look similar, both splitting the operands
in three parts. However, the Toom3 needs 5 elementary
multiplications while the Karat3 requires 6. In the gf2x
library [18], the Toom-3 multiplication is used above the
threshold of 21 64-bit words, i.e. polynomial of degree
1343.

In our AVX2 and AVX512 implementations, we com-
pare the clock cycle numbers of multiplications using
the same elementary Karatsuba multiplication. Conse-
quently, the operand size in the Toom3 case is slightly
lower. In Table 9, the clock cycle numbers of the Toom3
multiplication are lower for the considered sizes, and
the speedup starts from 8% for the smallest (about 6000
bit operand size) up to 11.7% for the bigger sizes, the
maximum potential speedup being theoretically 16.7%.
Indeed, the costliest interpolation and reconstruction
phase of the Toom3 approach lowers the speedup for
the smallest sizes.

12 J.-M. Robert, P. Véron

size # clock cycles
gf2x AVX2 AVX512

Toom3Mult(KaratRec)
24192 47200 33501 22238
48768 144960 104257 69328
97920 427101 323719 204596

Toom3Mult(Karat3)
18048 34019 22032 14872
36480 94378 67451 46940
73344 272891 206601 137791

Toom3Mult(Karat5)

14976 25146 18570 12664
30336 77548 57339 38668
61056 211790 170316 113783
122496 622830 513595 339387

Table 8: Performance comparison between AVX2 and AVX512 Toom3 multiplications, with various elementary Karat-
suba multiplications

clock cycles
multiplication size AVX2 AVX512

Elt. Karat. size Karat3 Toom3 Karat3 Toom3 Karat3 Toom3

2048 6144 5760 4150 3987 2655 -
3072 9216 8832 8405 7726 5425 -
4096 12288 11998 12508 11480 8118 -
6144 18432 18048 25264 22032 16340 14872
8192 24576 24192 37024 33501 24488 22238
12288 36864 36480 79727 67451 51097 46940
16384 49152 48768 117707 104257 76147 69328
24576 73728 73344 241548 206601 154065 137791
32768 98304 97920 357577 323719 231686 204596

Table 9: Performance comparison between AVX2 and AVX512 Toom3Mult and Karat3 multiplications

3.4 Conclusion

In this section, we presented our AVX512 imple-
mentation of Toom-Cook multiplication over F2[X] for
polynomial of degree at most 122496, based on various
Karatsuba version elementary AVX512 multiplications
(KaratRec, Karat3 and Karat5).

The speedup between AVX2 and our AVX512 imple-
mentation is again up to nearly 37% (97920 bit size,
Toom3Mult(KaratRec)), as it has already been observed
with our AVX512 Karatsuba multiplications. Thus, the
same remark can be done about the potential in terms
of future results.

4 HQC multiplications

In this section, we present the application of our
AVX2 and AVX512 Toom-Cook multiplications in the
context of the HQC protocol.

The sizes of the HQC multiplications are (see [2]):

– hqc-128 : PARAM_N = 17669;
– hqc-192 : PARAM_N = 35851;
– hqc-256 : PARAM_N = 57637.

In the NIST submission [2, updated submission
package (round 3), 2020/10/01], the hqc-128 and the
hqc-192 implementations make use of the Karat3 mul-
tiplication based on elementary Karat3 multiplications,
while the hqc-256 is a Toom-Cook multiplication (3
part operand split) based on a Karat5 elementary mul-
tiplication. The reader may notice that the operand size
is different in the hqc-256 case, in comparison with the
Toom3Mult(Karat5) version presented in Table 8 page
12, whose operand size is 61056 bits, while the AVX2
operand size is 59904 bits, and the AVX512 one is 58368
bits, see Table 10. This is due to the word size consid-
ered in the Toom-Cook implementation: the first ver-
sion of table 8 has a word size w = 64 bits, while the

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 13

AVX2 version has w = 256 and we chose w = 512 for the
AVX512 version. The new sizes fit the hqc-256 PARAM_N
= 57637, allowing a slightly better performance.

The platform and test procedure are the ones de-
scribed Appendix E page 19. We kept the compiler flags
used in the NIST submission [2, updated submission
package (round 3), 2020/10/01]:
-O3 -funroll-all-loops -flto -march=tigerlake
for AVX512 versions;
-O3 -funroll-all-loops -flto -mavx -mavx2 -mbmi
-mpclmul for AVX2 versions.

In Table 10, we sum-up the performances of the re-
spective multiplications, from Tables 8 page 12 and 9
page 12, along with the specific hqc-256multiplications
results, in the context of HQC protocol.

4.1 HQC implementation performances

This leads to the performances and also the speedups
brought by our work in comparison with the NIST re-
lease [2, updated submission package (round 3),
2020/10/01], provided in Table 11.

As a consequence of this work, the AVX2 Toom3 mul-
tiplication based on Karat3 is now part of the last re-
lease of HQC (2021/06/06).

Table 12 provides the HQC performances when us-
ing our AVX512 multiplications in the 2021/06/06 re-
lease. One may notice that column one of this Table is
different of the corresponding one of Table 11 because
other parts of the HQC source code has been updated
between both releases.

A maximum 11.8% speedup for the HQC implemen-
tation is reached with the hqc-256 Keygen.

5 Conclusion

In this paper, we considered the software AVX512 im-
plementation of polynomial multiplication over F2[X],
using the vectorized 64-bit polynomial multiplication
instruction VPCLMULQDQ. We studied the different com-
binations of schoolbook/Karatsuba constructions for the
kernels up to 512 bit operands. We then implemented
two different approaches: one based on the Karatsuba
subquadratic approach and the other on the Toom-
Cook approach. These implementations are competitive
in comparison with state-of-the art general purpose li-
brary, HQC submissions, and other AVX512 software im-
plementations of [10,11]. While the retired instruction
count is divided by roughly three compared to the corre-
sponding AVX2 implementations, we achieved a speedup
up to nearly 40%, in terms of clock cycle numbers.

We implemented our approaches in the HQC proto-
col by patching the NIST submission released in october
2020, in order to experiment the potential benefits, and
this leads to speedups up to 11.8% (hqc-256 Keygen.).

All the implementations of this work are available
on github1.

Funding This work has been partially funded by
TPM Metropol (AAP2020-IPOCRAS project).

References

1. Ntl: a library for doing number theory. https://libntl.org,
last accessed 21 Sep 2021.

2. Carlos Aguilar-Melchior, Nicolas Aragon, Slim Bettaieb, Loïc
Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe
Gaborit, Edoardo Persichetti, Jean-Marc Robert, Pascal
Véron, and Gilles Zémor. Hamming Quasi-Cyclic (HQC).
In NIST Post-Quantum Cryptography submissions, round 3.
NIST, october 2020. http://pqc-hqc.org/, last accessed 15
Sep 2021.

3. Carlos Aguilar-Melchior, Nicolas Aragon, Slim Bettaieb, Loïc
Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe
Gaborit, Edoardo Persichetti, and Gilles Zémor. Hamming
Quasi-Cyclic (HQC). In NIST Post-Quantum Cryptography
submissions, round 2. NIST, 2019. http://pqc-hqc.org/
implementation.html, last accessed 15 Sep 2021.

4. Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David
Cooper, Quynh Dang, Yi-Kai Liu, Carl Miller, Dustin
Moody, Rene Peralta, Ray Perlner, Angela Robinson,
and Daniel Smith-Tone. Status Report on the First
Round of the NIST PQC Standardization Process,
2019. https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.
IR.8240.pdf, last accessed 16 Sep 2021.

5. Nicolas Aragon, Slim Bettaieb, Paulo S.L.M. Barreto, Loïc
Bidoux, Olivier Blazy, Jean-Christophe DeneuvillePhilippe
Gaborit, Philippe Gaborit, Shay Gueron, Tim Güneysu, Car-
los Aguilar Melchior, Rafael Misocki, Edoardo Persichetti,
Nicolas Sendrier, Jean-Pierre Tillich, and Gilles Zémor.
Bit Flipping Key Encapsulation (BIKE). In NIST Post-
Quantum Cryptography submissions, round 2. NIST, 2019.
https://bikesuite.org/, last accessed 15 Sep 2021.

6. Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Ger-
ardo Pelosi, and Paolo Santini. A finite regime analysis of
information set decoding algorithms. Algorithms, 12(10):209,
2019. doi:10.3390/a12100209.

7. Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A.
van Tilborg. On the inherent intractability of certain coding
problems (corresp.). IEEE Trans. Inf. Theory, 24(3):384–
386, 1978. doi:10.1109/TIT.1978.1055873.

8. Marco Bodrato. Towards optimal Toom-Cook multiplication
for univariate and multivariate polynomials in characteristic
2 and 0. In Claude Carlet and Berk Sunar, editors,WAIFI’07
proceedings, volume 4547 of LNCS, pages 116–133. Springer,
June 2007. doi:10.1007/978-3-540-73074-3_10.

9. Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, and
Paul Zimmermann. Faster multiplication in gf(2)[x]. In
Algorithmic Number Theory, 8th International Symposium,
ANTS-VIII, Banff, Canada, May 17-22, 2008, Proceedings,
pages 153–166, 2008. doi:10.1007/978-3-540-79456-1_10.

1 https://github.com/arithcrypto/
AVX512PolynomialMultiplication

https://libntl.org
http://pqc-hqc.org/
http://pqc-hqc.org/implementation.html
http://pqc-hqc.org/implementation.html
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://bikesuite.org/
https://doi.org/10.3390/a12100209
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-540-73074-3_10
https://doi.org/10.1007/978-3-540-79456-1_10
https://github.com/arithcrypto/AVX512PolynomialMultiplication
https://github.com/arithcrypto/AVX512PolynomialMultiplication

14 J.-M. Robert, P. Véron

This work
NIST release [2] improved AVX2 AVX512

hqc-128 Karat9 (N = 18432) Toom3Karat3 (N = 18048, w = 64)
PARAM_N = 17669 24498 22032 14872

hqc-192 Karat9 (N = 36864) Toom3Karat3 (N = 36480, w = 64)
PARAM_N = 35851 76912 67451 46940

hqc-256 Toom3Karat5 (N = 59904, w = 256) Toom3Karat5 (N = 58368, w = 512)
PARAM_N = 57637 168975 110568

Table 10: AVX2 and AVX512 multiplication version performances, clock cycles numbers, in the context of the HQC
protocol

This work
clock cycles NIST release improved AVX22020/10/01

hqc-128
Keygen 111073 110009 (-1.0 %)
Encaps 185741 181154 (-2.4 %)
Decaps 344154 337594 (-2.0 %)

hqc-192
Keygen 250184 239908 (-5.3 %)
Encaps 430689 410090 (-4.8 %)
Decaps 722899 696779 (-3.6 %)

Table 11: HQC performances, AVX2 clock cycles numbers

This work
clock cycles NIST release

AVX5122021/06/06

hqc-128
Keygen 70171 64825 (-7.6 %)
Encaps 1723219 158377 (-8.1 %)
Decaps 311434 300661 (-3.5 %)

hqc-192
Keygen 168397 154486 (-8.3 %)
Encaps 395367 361838 (-8.5 %)
Decaps 646313 617853 (-4.4 %)

hqc-256
Keygen 338137 298331 (-11.8 %)
Encaps 768537 680602 (-11.4 %)
Decaps 1290132 1194526 (-7.4 %)

Table 12: HQC performances, AVX512 clock cycles numbers

10. N. Drucker, S. Gueron, and V. Krasnov. Fast multiplica-
tion of binary polynomials with the forthcoming vectorized
vpclmulqdq instruction. In 2018 IEEE 25th Symposium
on Computer Arithmetic (ARITH), pages 115–119, 2018.
doi:10.1109/ARITH.2018.8464777.

11. Nir Drucker, Shay Gueron, and Dusan Kostic. Fast polyno-
mial inversion for post quantum QC-MDPC cryptography.
In Shlomi Dolev, Vladimir Kolesnikov, Sachin Lodha, and
Gera Weiss, editors, Cyber Security Cryptography and Ma-
chine Learning - Fourth International Symposium, CSCML
2020, Be’er Sheva, Israel, July 2-3, 2020, Proceedings, vol-
ume 12161 of Lecture Notes in Computer Science, pages 110–
127. Springer, 2020. doi:10.1007/978-3-030-49785-9_8.

12. Martin Fürer. Faster integer multiplication. In Proceedings of
the 39th Annual ACM Symposium on Theory of Computing,
San Diego, California, USA, June 11-13, 2007, pages 57–66,
2007. doi:10.1145/1250790.1250800.

13. Philippe Gaborit. Shorter keys for code-based cryptogra-
phy. In Proceedings of Workshop on Codes and Cryptogra-
phy, pages 81–90, France, 2005. WCC 2005.

14. Philippe Gaborit and Marc Girault. Lightweight code-based
identification and signature. In IEEE International Sympo-
sium on Information Theory, ISIT 2007, Nice, France, June
24-29, 2007, pages 191–195. IEEE, 2007. doi:10.1109/ISIT.
2007.4557225.

https://doi.org/10.1109/ARITH.2018.8464777
https://doi.org/10.1007/978-3-030-49785-9_8
https://doi.org/10.1145/1250790.1250800
https://doi.org/10.1109/ISIT.2007.4557225
https://doi.org/10.1109/ISIT.2007.4557225

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 15

15. Antonio Guimarães, Diego Aranha, and Edson Borin. Secure
and efficient software implementation of qc-mdpc code-based
cryptography. In XX Simpósio em Sistemas Computacionais
de Alto Desempenho, pages 116–117, 11 2019. doi:10.5753/
wscad_estendido.2019.8710.

16. David Harvey and Joris van der Hoeven. Faster polynomial
multiplication over finite fields using cyclotomic coefficient
rings. J. Complexity, 54, 2019. doi:10.1016/j.jco.2019.
03.004.

17. David Harvey, Joris van der Hoeven, and Grégoire Lecerf.
Faster polynomial multiplication over finite fields. J. ACM,
63(6):52:1–52:23, 2017. doi:10.1145/3005344.

18. Inria. gf2x library. In gf2x Library, 2019. https://www.
gforge.inria.fr/frs/?group_id=1874, last accessed 15 Sep
2021.

19. Intel. Intel® 64 and ia-32 architectures software developer
manuals. Intel website, 2021. https://software.intel.com/
content/www/us/en/develop/articles/intel-sdm.html,
last accessed 15 Sep 2021.

20. A. Karatsuba and Yu Ofman. Multiplication of many-digital
numbers by automatic computers. In Doklady Akad. Nauk
SSSR, volume 145, pages 293–294, 1962.

21. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error
Correcting Codes. Number ptie. 2 in Mathematical Library.
North-Holland Publishing Company, 1977.

22. R. J. McEliece. A Public-Key Cryptosystem Based On Alge-
braic Coding Theory. Deep Space Network Progress Report,
44:114–116, January 1978.

23. Christophe Nègre and Jean-Marc Robert. Impact of Opti-
mized Field Operations AB, AC and AB + CD in Scalar
Multiplication over Binary Elliptic Curve. In Progress in
Cryptology - AFRICACRYPT, 6th International Conference
on Cryptology in Africa, June 22-24., LNCS, pages 279–296,
2013. doi:10.1007/978-3-642-38553-7_16.

24. NIST. Post-Quantum Cryptography, 2019. https://
csrc.nist.gov/projects/post-quantum-cryptography, last
accessed 15 Sep 2021.

25. Michel Quercia and Paul Zimmermann. Irred-ntl patch.
In Irred-ntl source code, 2003. https://members.loria.fr/
PZimmermann/irred/.

26. Arnold Schönhage and Volker Strassen. Schnelle multip-
likation großer zahlen. Computing, 7(3-4):281–292, 1971.
doi:10.1007/BF02242355.

27. André Weimerskirch and Christof Paar. Generalizations
of the karatsuba algorithm for efficient implementations.
Cryptology ePrint Archive, Report 2006/224, 2006. https:
//eprint.iacr.org/2006/224, last accessed 15 Sep 2021.

28. Paul Zimmermann. Irred-ntl patch. In ntl Library, 2008.
https://members.loria.fr/PZimmermann/irred/.

Appendix A Karatsuba algorithms

We reproduce here the Karatsuba algorithms:

– Algorithm 1 reproduces the recursive multiplication
with a two halves split, from [23];

– Algorithm 2 shows the three parts split correspond-
ing approach;

– Algorithm 3 shows the five parts split corresponding
approach;

Algorithm 1 KaratRec(A,B,t), from [23]

Require: A and B on t = 2r computer words.
Ensure: R = A×B
1: if t = 1 then
2: return (Mult64(A,B))
3: else
4: // Split in two halves of word size t/2.
5: A = A0 + x64t/2A1

6: B = B0 + x64t/2B1

7: // Recursive multiplications
8: R0 ← KaratRec(A0, B0, t/2)

9: R1 ← KaratRec(A1, B1, t/2)

10: R2 ← KaratRec(A0 +A1, B0 +B1, t/2)

11: // Reconstruction
12: R← R0 + (R0 +R1 +R2)X

64t/2 +R1X
64t

13: return (R)

Algorithm 2 Karat3(A,B,t), from [27]

Require: A and B on t = 3× 2r computer words.
Ensure: R = A×B
1: // Split in three thirds of word size t/3.
2: A = A0 + x64t/3A1 + x2×64t/3A2

3: B = B0 + x64t/3B1 + x2×64t/3B2

4: // Recursive multiplications
5: R0 ← KaratRec(A0, B0, t/3)

6: R1 ← KaratRec(A1, B1, t/3)

7: R2 ← KaratRec(A2, B2, t/3)

8: R3 ← KaratRec(A0 +A1, B0 +B1, t/3)

9: R4 ← KaratRec(A0 +A2, B0 +B2, t/3)

10: R5 ← KaratRec(A1 +A2, B1 +B2, t/3)

11: // Reconstruction
12: R← R0+(R0+R1+R3)X

64t/3+(R0+R1+R2+

R4)X
2×64t/3 + (R1 +R2 +R5)X

64t +R2X
4×64t/3

13: return (R)

Appendix B Source code for 256-bit operand
size multiplication

B.1 Source code for the 4× 4 256 bit multiplication
of this work based on the schoolbook approach

We present here our schoolbook AVX512 implemen-
tation of the 256 bit operand size multiplication, with
comments and explanations.
__m512i mask_middle= (__m512i){0x0UL ,

0 x f f f f f f f f f f f f f f f f U L ,
0 x f f f f f f f f f f f f f f f f U L ,0x0UL ,0x0UL ,
0 x f f f f f f f f f f f f f f f f U L ,
0 x f f f f f f f f f f f f f f f f U L ,0x0UL} ;

__m512i idx_b=(__m512i){0x0UL ,0x1UL ,0x2UL ,0x3UL
,0x2UL ,0x3UL ,0x0UL ,0x1UL} ;

https://doi.org/10.5753/wscad_estendido.2019.8710
https://doi.org/10.5753/wscad_estendido.2019.8710
https://doi.org/10.1016/j.jco.2019.03.004
https://doi.org/10.1016/j.jco.2019.03.004
https://doi.org/10.1145/3005344
https://www.gforge.inria.fr/frs/?group_id=1874
https://www.gforge.inria.fr/frs/?group_id=1874
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://doi.org/10.1007/978-3-642-38553-7_16
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://members.loria.fr/PZimmermann/irred/
https://members.loria.fr/PZimmermann/irred/
https://doi.org/10.1007/BF02242355
https://eprint.iacr.org/2006/224
https://eprint.iacr.org/2006/224
https://members.loria.fr/PZimmermann/irred/

16 J.-M. Robert, P. Véron

Algorithm 3 Karat5(A,B,t), from [27]

Require: A and B on t = 5× 2r computer words.
Ensure: R = A×B
1: // Split in five parts of word size t/5.
2: A = A0 + x64t/5A1 + x2×64t/5A2 + x3×64t/5A3 +

x4×64t/5A4

3: B = B0 + x64t/5B1 + x2×64t/5B2 + x3×64t/5B3 +

x4×64t/5B4

4: // Recursive multiplications
5: R0 ← KaratRec(A0, B0, t/5)

6: R1 ← KaratRec(A1, B1, t/5)

7: R2 ← KaratRec(A2, B2, t/5)

8: R3 ← KaratRec(A3, B3, t/5)

9: R4 ← KaratRec(A4, B4, t/5)

10: R01 ← KaratRec(A0 +A1, B0 +B1, t/5)

11: R02 ← KaratRec(A0 +A2, B0 +B2, t/5)

12: R03 ← KaratRec(A0 +A3, B0 +B3, t/5)

13: R04 ← KaratRec(A0 +A4, B0 +B4, t/5)

14: R12 ← KaratRec(A1 +A2, B1 +B2, t/5)

15: R13 ← KaratRec(A1 +A3, B1 +B3, t/5)

16: R14 ← KaratRec(A1 +A4, B1 +B4, t/5)

17: R23 ← KaratRec(A2 +A3, B2 +B3, t/5)

18: R24 ← KaratRec(A2 +A4, B2 +B4, t/5)

19: R34 ← KaratRec(A3 +A4, B3 +B4, t/5)

20: // Reconstruction
21: R ← R0 + (R0 + R1 + R01)X

64t/5 + (R0 + R1 +

R2 +R02)X
2×64t/5 + (R0 +R1 +R2 +R3 +R03 +

R12)X
3×64t/5 + (R0 +R1 +R2 +R3 +R4 +R04 +

R13)X
4×64t/5 + (R1 + R2 + R3 + R4 + R14 +

R23)X
64t + (R3 +R2 +R4 +R24)X

6×64t/5 + (R3 +

R4 +R34)X
7×64t/5 +R4X

8×64t/5

22: return (R)

__m512i idx_1=(__m512i){0x0UL ,0x1UL ,0x8UL ,0x9UL ,
0x2UL ,0x3UL ,0xaUL ,0xbUL} ;

__m512i idx_2=(__m512i){0x0UL ,0x1UL ,0x6UL ,0x7UL ,
0x2UL ,0x3UL ,0x4UL ,0x5UL} ;

__m512i idx_3=(__m512i){0x0UL ,0x1UL ,0x4UL ,0x5UL ,
0x2UL ,0x3UL ,0x6UL ,0x7UL} ;

__m512i idx_4=(__m512i){0x8UL ,0x0UL ,0x1UL ,0x2UL ,
0x3UL ,0x4UL ,0x5UL ,0x8UL} ;

__m512i idx_5=(__m512i){0x8UL ,0x8UL ,0x8UL ,0x6UL ,
0x7UL ,0x8UL ,0x8UL ,0x8UL} ;

__m512i idx_6=(__m512i){0x0UL ,0x0UL ,0x4UL ,0x5UL ,
0xcUL ,0xdUL,0x0UL ,0x0UL} ;

__m512i idx_7=(__m512i){0x0UL ,0x0UL ,0x6UL ,0x7UL ,
0xeUL ,0 xfUL ,0x0UL ,0x0UL} ;

These lines define the constant indexes
for the _mm512_permutexvar_epi64 and
_mm512_permutex2var_epi64 instructions. These
instructions are explained on the fly.

void mult_256_256_512 (__m512i ∗ Out ,
const __m256i ∗ A256 ,
onst __m256i ∗ B256)

{

__m512i A512 , B512 ;
__m512i R0_512 , R1_512 , R2_512 , R3_512 ,

middle , tmp ;

A512 =_mm512_broadcast_i64x4 (∗A256) ;
tmp =_mm512_broadcast_i64x4 (∗B256) ;
B512 =_mm512_permutexvar_epi64 (idx_b , tmp) ;

The _mm512_broadcast_i64x4(*A256) instruction
duplicates the 256 bits of *A256 in the A512 register,
the same for the *B256.

The _mm512_permutexvar_epi64 (idx_b, tmp)
spreads the 64 bit words following the index idx_b.
This allows to shuffle the 64 bit words of *B256 in
the B512 register, in order to prepare the elementary
multiplications.

We thus have:
A512 ← {a3, a2, a1, a0, a3, a2, a1, a0}
tmp ← {b3, b2, b1, b0, b3, b2, b1, b0}
B512 ← {b1, b0, b3, b2, b3, b2, b1, b0}

R0_512=_mm512_clmulepi64_epi128 (A512 , B512 , 0 x00) ;
R1_512=_mm512_clmulepi64_epi128 (A512 , B512 , 0 x10) ;
R2_512=_mm512_clmulepi64_epi128 (A512 , B512 , 0 x01) ;
R3_512=_mm512_clmulepi64_epi128 (A512 , B512 , 0 x11) ;

We now compute all the elementary 64 bit multipli-
cations, providing all the 128 bit results as follows:

R0 ← {a2 × b0, a0 × b2, a2 × b2, a0 × b0}
R1 ← {a2 × b1, a0 × b3, a2 × b3, a0 × b1}
R2 ← {a3 × b0, a1 × b2, a3 × b2, a1 × b0}
R3 ← {a3 × b1︸ ︷︷ ︸

128bits

, a1 × b3︸ ︷︷ ︸
128bits

, a3 × b3︸ ︷︷ ︸
128bits

, a1 × b1︸ ︷︷ ︸
128bits

}

tmp = _mm512_permutex2var_epi64
(R0_512 , idx_1 , R3_512) ;

The tmp register now contains all the ai × bi ele-
mentary products coming form the R0_512 and R3_512
registers:

tmp ← {a3 × b3, a2 × b2, a1 × b1, a0 × b0}
It remains now to compute the middle part of the

result to be added to tmp, in order to get the final result.
middle = _mm512_permutexvar_epi64 (idx_2 , R1_512) ;
middle ^=_mm512_permutexvar_epi64 (idx_3 , R2_512) ;

The middle register now contains the addition
(XOR) between R1_512 and R2_512, reordered with the
_mm512_permutexvar_epi64:

middle ← {a0b3 ⊕ a3b0, a2b3 ⊕ a3b2,
a1b2 ⊕ a2b1, a1b0 ⊕ a0b1}

tmp ^= _mm512_permutex2var_epi64
(middle , idx_4 , idx_b) ;

tmp ^= _mm512_permutex2var_epi64
(middle , idx_5 , idx_b) ;

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 17

The tmp register is added (XOR) with the elemen-
tary products of the middle register, and nearly con-
tains the result, except some of the products of the
middle part:

tmp ←
a3 × b3 a2 × b2 a1 × b1 a0 × b0
⊕ a2b3 ⊕ a3b2 a1b2 ⊕ a2b1 a1b0 ⊕ a0b1
⊕ a0b3 ⊕ a3b0

middle = _mm512_permutex2var_epi64 (R0_512 ,
idx_6 , R3_512) ;

middle ^= _mm512_permutex2var_epi64 (R0_512 ,
idx_7 , R3_512) ;

The remaining products of the middle part to be
added with tmp are put in place in the middle register:

middle ← {0x0UL︸ ︷︷ ︸
128bits

, a1b3⊕a3b1, a0b2⊕a2b0, 0x0UL︸ ︷︷ ︸
128bits

}

∗Out = tmp^middle ;
}

Out gets the final reconstruction :

Out ←

a3 × b3 a2 × b2 a1 × b1 a0 × b0
⊕ a2b3 ⊕ a3b2 a1b2 ⊕ a2b1 a1b0 ⊕ a0b1
⊕ a1b3 ⊕ a3b1 a0b2 ⊕ a2b0
⊕ a0b3 ⊕ a3b0

Appendix C Source code for 512-bit operand
size multiplications

We detail now the source code of the
karat_mult_1_512_SB procedure.

First, the preamble declares the constant in-
dexes for the _mm512_permutex2var_epi64 and
_mm512_permutexvar_epi64 instructions.

i n l i n e stat ic void karat_mult_1_512 (__m512i ∗ C,
const __m512i ∗ A, const __m512i ∗ B)

{

const __m512i perm_al = (__m512i){0x0UL ,0x1UL ,
0x0UL ,0x1UL ,
0x2UL ,0x3UL ,
0x2UL ,0x3UL} ;

const __m512i perm_ah = (__m512i){0x4UL ,0x5UL ,
0x4UL ,0x5UL ,
0x6UL ,0x7UL ,
0x6UL ,0x7UL} ;

const __m512i perm_bl = (__m512i){0x0UL ,0x1UL ,
0x2UL ,0x3UL ,
0x0UL ,0x1UL ,
0x2UL ,0x3UL} ;

const __m512i perm_bh = (__m512i){0x4UL ,0x5UL ,
0x6UL ,0x7UL ,
0x4UL ,0x5UL ,
0x6UL ,0x7UL} ;

const __m512i mask_R1 = _mm512_set_epi64
(6 , 7 , 4 , 5 , 2 , 3 , 0 , 1) ;

const __m512i perm_h = (__m512i){0x4UL ,0x5UL ,
0x0UL ,0x1UL ,
0x2UL ,0x3UL ,
0x6UL ,0x7UL} ;

const __m512i perm_l = (__m512i){0x0UL ,0x1UL ,
0x4UL ,0x5UL ,
0x6UL ,0x7UL ,
0x2UL ,0x3UL} ;

const __m512i mask = _mm512_set_epi64
(15 , 14 , 13 , 12 , 3 , 2 , 1 , 0) ;

Next, we compute the registers al, ah, bl, bh, sa
and sb so that they contain the split parts for the
256 bit operands, and the corresponding sums for the
Karatsuba 256 bit middle multiplication.

__m512i a l = _mm512_permutexvar_epi64
(perm_al , ∗A) ;

__m512i ah = _mm512_permutexvar_epi64
(perm_ah , ∗A) ;

__m512i b l = _mm512_permutexvar_epi64
(perm_bl , ∗B) ;

__m512i bh = _mm512_permutexvar_epi64
(perm_bh , ∗B) ;

__m512i sa = a l^ah ;
__m512i sb = bl^bh ;

We compute now the three 256 bit multiplications
in order to prepare the 512 bit registers cl, ch and cm
containing their results.

// f i r s t mu l t i p l i c a t i on 256 : AlBl

__m512i R0_512=_mm512_clmulepi64_epi128
(al , bl , 0 x00) ;

__m512i R1_512=_mm512_clmulepi64_epi128
(al , bl , 0 x01) ;

__m512i R2_512=_mm512_clmulepi64_epi128
(al , bl , 0 x10) ;

__m512i R3_512=_mm512_clmulepi64_epi128
(al , bl , 0 x11) ;

R1_512 = _mm512_permutexvar_epi64
(mask_R1 , R1_512^R2_512) ;

__m512i l = _mm512_mask_xor_epi64(R0_512 ,
0xaa , R0_512 , R1_512) ;

__m512i h = _mm512_mask_xor_epi64(R3_512 ,
0x55 , R3_512 , R1_512) ;

These lines computes four 128 bit operand size mul-
tiplications in parallel, using a schoolbook approach.
This procedure acts like the mul128x4 procedure of
Drucker et al. [11], which is based on the Karatsuba
algorithm2.

The 512 bit registers l and h now contains the four
elementary 256 bit results.

__m512i c l = _mm512_permutex2var_epi64 (l , mask , h) ;
l = _mm512_permutexvar_epi64 (perm_l , l) ;
h = _mm512_permutexvar_epi64 (perm_h , h) ;

__m512i middle = _mm512_maskz_xor_epi64(0 x3c , h , l) ;

c l ^= middle ;

This is the schoolbook reconstruction for the first
256 bit multiplication. The register cl now contains
the 512 bit result of al×bl.

We now compute the same the two remaining 256
bit operand size multiplications:

// second mu l t i p l i c a t i on 256 : AhBh
. . .
ch ^= middle ;

2 We do not present in detail our variant karat_mult_1_512
based on the mul128x4, however, we refer the reader to their
paper [11] for its presentation.

18 J.-M. Robert, P. Véron

// th i rd mu l t i p l i c a t i on 256 : SASB
. . .
cm ^= middle^ c l ^ch ;

The register ch now contains the 512 bit result of
ah×bh.

The result cm is directly added (XOR) to the other
results cl and ch in order to prepare the final Karat-
suba reconstruction, and cm now contains the 512 bit
result of (sa×sa)⊕cl⊕ch:

// f i n a l reconstruct ion (Karatsuba)

const __m512i perm_cm = (__m512i){0x4UL ,0x5UL ,
0x6UL ,0x7UL ,0x0UL ,0x1UL ,0x2UL ,0x3UL} ;

cm = _mm512_permutexvar_epi64 (perm_cm, cm) ;

C[0]= _mm512_mask_xor_epi64(c l , 0 xf0 , c l , cm) ;
C[1]= _mm512_mask_xor_epi64(ch , 0 x0f , ch , cm) ;

}

This ends the computation, the final lines stores the
result: the 512 least significant bits in the memory place
C[0], and the most significant bits in C[1].

Appendix D Toom-Cook multiplication
general algorithm

Several approaches to multiply two arbitrary poly-
nomials over F2[X] of degree at most N − 1, using the
Toom-Cook algorithm, have been presented by Bodrato
in [8], Brent et al. in [9], and software implementations
have been provided by Quercia and Zimmermann, in
the context of the ntl and the gf2x library, see [28]
and [25]. Let A and B be two binary polynomials of
degree at most N − 1. These polynomials are packed
into an array of 64-bit words, whose size is dN/64e. Let
t = 3n with n a value ensuring t > dN/64e. Now, A
and B are considered as polynomials of degree at most
64 · t− 1. We discuss the value of n in section 3.2.

A and B are split in three parts. One wants now to
evaluate the result C = A ·B with

A = a0 + a1 ·X64n + a2 ·X2·64n ∈ F2[X],

B = b0 + b1 ·X64n + b2 ·X2·64n ∈ F2[X],

(of maximum degree 64t − 1, and ai, bi of maximum
degree 64n− 1) and,

C = c0+ c1 ·X64n+ c2 ·X2·64n+ c3 ·X3·64n+ c4 ·X4·64n

of maximum degree 6 · 64n− 2.
The "word-aligned" version evaluates the polyno-

mial for the values 0, 1, x = Xw, x + 1 = Xw + 1,

∞, w being the word size, typically 64 in modern pro-
cessors. Furthermore, on Intel processors, one can set
w = 256 to take advantage of the vectorized instruction
set AVX-AVX2, and even w = 512 (AVX512 extension),
at the cost of a slight operand size reduction.
For the evaluation phase, one has:

C(0) = a0 · b0
C(1) = (a0 + a1 + a2) · (b0 + b1 + b2)

C(x) = (a0 + a1 · x+ a2 · x2) · (b0 + b1 · x+ b2 · x2)
C(x+ 1) = (a0 + a1 · (x+ 1) + a2 · (x2 + 1))·

(b0 + b1 · (x+ 1) + b2 · (x2 + 1))

C(∞) = a2 · b2

The implementation of this phase is straightforward,
providing that the multiplication ai ·bi is either another
Toom-Cook or Karatsuba multiplication. Notice that
the multiplications by x or x2 are virtually free word
shifts.
For the interpolation phase, one has the following equa-
tions:

C(0) = c0
C(1) = c0 + c1 + c2 + c3 + c4
C(x) = c0 + c1 · x+ c2 · x2 + c3 · x3 + c4 · x4
C(x+ 1) = c0 + c1 · (x+ 1) + c2 · (x2 + 1)

+c3 · (x3 + x2 + x+ 1) + c4 · (x4 + 1)

C(∞) = c4

The matrix associated to this system of equations is
given by:

M =

1 0 0 0 0

1 1 1 1 1

1 x x2 x3 x4

1 x+ 1 x2 + 1 x3 + x2 + x+ 1 x4 + 1

0 0 0 0 1

and one has :

M−1 =

1 0 0 0 0

(x2+x+1)
(x2+x) 1 1/x 1

x+1 x2 + x

0 1
x2+x

1
x+1 1/x x2 + x+ 1

1
x2+x

1
x2+x

1
x2+x

1
x2+x 0

0 0 0 0 1

Finally, the interpolation phase gives :

c0 = C(0)

c1 = (x2 + x+ 1)/(x2 + x) · C(0) + C(1) + C(x)/x

+C(x+ 1)/(x+ 1) + (x2 + x) · C(∞)

c2 = C(1)/(x2 + x) + C(x)/(x+ 1) + C(x+ 1)/x

+(x2 + x+ 1) · C(∞)

c3 = C(0)/(x2 + x) + C(1)/(x2 + x) + C(x)/(x2 + x)

+C(x+ 1)/(x2 + x)

c4 = C(∞)

Faster Multiplication over F2[X] using AVX512 instruction set and VPCLMULQDQ instruction 19

Appendix E Experimentation procedure

Measurements were performed on a Dell Inspiron
laptop with an Intel Tiger Lake processor.

vendor_id : GenuineIntel
cpu family : 6
model : 140
model name : 11th Gen Intel(R) Core(TM)

i7-1165G7 @ 2.80GHz

The compiler is gcc version 10.2.0, the compiler options
are as follows:
-O3 -g -march=tigerlake -funroll-all-loops -lm
-lgf2x.
We kept the -funroll-all-loops option though it does
not provide significant improvements. We follow the
same kind of test procedure that the one described in
[10] :

– the Turbo-Boost® is deactivated during the tests;
– 1000 runs are executed in order to "heat" the cache

memory;
– one generates 50 random data sets, and for each

data set the minimum of the execution clock cycle
numbers over a batch of 1000 runs is recorded;

– the performance is the average of all these mini-
mums;

– this procedure is run on console mode, to avoid sys-
tem perturbations, and obtain the most accurate
cycle counts.

The clock cycle counter is rdtsc and the instruction
counter is rdpmc with the corresponding selection. The
results for the smallest sizes (i.e. 256 bit and 512 bit
operand sizes) are not very reliable since rdtsc and
rdpmc are not serializing instructions (see [19]). For
such sort of small functions, we wanted to avoid the
insertion of a costly serializing instruction as cpuid,
while the instruction count and the clock cycle number
may be less than 20. We chose not to present them. The
first size considered is 1024 bits, i.e. binary polynomial
of degree at most 1023 operands.

Appendix F Instruction count and
performances

F.1 Instruction count comparison

In Table 13, we provide the comparison between
the instruction count of our schoolbook and Karatsuba
versions. Moreover, we compare this two approaches
with the current state-of-the-art AVX2 reference. Such
an AVX2 implementation can be found in the source
code of the optimized version of HQC [2]. It uses the

AVX2 instruction set and the non vectorized PCLMULQDQ
instruction. Finally, we also put in Table 13 the instruc-
tion number of the assembly source code for the same
multiplication presented by Drucker et al. in [10]. Here
are some comments on these results:

– The best version is our implementation of the school-
book approach, dividing by more than 2 the instruc-
tion number in comparison with the state-of-the-art
AVX2 implementation.

– Our Karatsuba approach presents more instructions
but only 3 VPCLMULQDQ instead of 4 for the school-
book version. Thus, the performance comparison
may vary according to the latency and throughput
of the instructions.

– Drucker et al.’s version has 8 VPCLMULQDQ instruc-
tions and a larger instruction number (31, instead
of 19 for our implementation of the schoolbook ap-
proach). This is due to the fact that they only use
2 elementary 64 bit multiplications per VPCLMULQDQ
instruction (ymmm version of the instruction), while
we use 4. This also implies more XOR’s in their case.

F.2 Performances for the 256 bit level kernels

We present Table 14 the performances of the AVX512
Karatsuba multiplications using the 256 bit kernels pre-
sented above. We also include the results of the multi-
plications using our 8x8 SB-512 kernel.

20 J.-M. Robert, P. Véron

Instruction count
256 bit size operands VPCLMULQDQ AVX2

Instructions SB version Karat. version Drucker et al. [10] Karat. Rec.
_mm512_clmulepi64_epi128 4 3 8

_mm_clmulepi64_si128 9
XOR 5 7 15 25
AND 0 1

_mm512_broadcast_i64x4 2 2
_mm512_permutexvar_epi64 3 6 6
_mm512_permutex2var_epi64 5 5

_mm512_alignr_epi64 2
_mm_loadu_si128 4

_mm_shuffle_epi32 6
_mm_setzero_si128 6
_mm_unpacklo_epi64 3
_mm_unpackhi_epi64 3

Total 19 24 31 56
additional vmovdqa64’s 8 9 6 8

Table 13: Instruction count for the 256 bit multiplication versions

KaratRec Drucker et al. AVX2 This work
[10] [2] vpclmulqdq-512

size gf2x 4x4 - 256 8x8 - 512 SB-256 Karat.-256

1024 # clock cycles 339 239 169 183 167 186
instructions 1224 326 221 612 276 339

2048 # clock cycles 998 744 532 610 541 627
instructions 3892 1137 736 1867 908 1102

4096 # clock cycles 2949 2262 1621 1929 1685 1937
instructions 11079 3632 2358 5684 2769 3346

8192 # clock cycles 8742 6960 4926 6038 5204 6205
instructions 33182 11535 7547 17991 8718 10552

16384 # clock cycles 26128 21154 14940 18327 15675 18043
instructions 100163 35483 23313 54840 26482 32068

32768 # clock cycles 78889 65758 45244 59613 47592 54881
instructions 295755 108329 70941 166410 80736 97278

65536 # clock cycles 226640 203855 140347 187305 147572 169844
instructions 853977 328772 214955 503014 244222 293873

131072 # clock cycles 667900 621942 425430 572984 446811 511939
instructions 2516857 992919 648533 1515625 736345 885164

Table 14: Performance comparison for Algorithm 1

	Introduction
	Karatsuba multiplication: algorithms and implementations
	Toom-Cook multiplication over F2[X]
	HQC multiplications
	Conclusion
	Karatsuba algorithms
	Source code for 256-bit operand size multiplication
	Source code for 512-bit operand size multiplications
	Toom-Cook multiplication general algorithm
	Experimentation procedure
	Instruction count and performances

