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1.  Introduction
Fault slip during all the stages of the seismic cycle can produce measurable deformation at the surface of the 
Earth. We are interested in the inverse problem of inferring subsurface fault slip given surface observations. 
For the quasi-static problem in a linear elastic media, the relationship between slip m on a discretized fault 
and crustal surface displacements d can be written as d = Gm, where the Green's functions G represents 
the response of the medium due to unitary slip on each element of a discretized fault surface (e.g., Segall & 
Harris, 1987).

Given a fine enough fault discretization, the prediction of any model inference is insensitive (within data 
uncertainties) to the high frequency component of the slip distribution on the fault surface, leading to an ill-
posed discrete linear inverse problem (e.g., Hansen, 1998). Moreover, the ability to infer fault slip, typically 
constrained by onland observations in the subduction earthquake example, is variable across the subsur-
face fault, with the least constrained portions of the fault located further away from the observations (e.g., 
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Lohman, 2004; Loveless & Meade, 2011; Ortega-Culaciati, 2013; Pritchard et al., 2002; Simons et al., 2002). 
Thus, any errors on either the measurements or the prediction of the approximate physical model, can map 
into spurious features in the slip distribution, leading to unstable and biased estimates.

There are two end-member approaches that deal with the inherent instability of the ill-posed inverse prob-
lem: An unregularized, fully Bayesian approach (e.g., Minson et al., 2013; Tarantola, 2005), and a more ex-
pedient but biased optimization approach using some form of regularized cost function minimization (e.g., 
Segall & Harris, 1987). In the Bayesian approach, the solution of the inverse problem is the posterior joint 
probability density function (pdf) of model parameters, which describes the likelihood of model parame-
ters constrained by prior information and observations. In the optimization approach, the estimated model 
corresponds to the model that maximizes the posterior joint pdf of the regularized problem, and therefore 
depends on the type and amount of regularization imposed (e.g., Tarantola, 2005). Both approaches can be 
described using a Bayesian formulation of the inverse problem, being different in the specific assumptions 
on data and model parameter uncertainties and in the methodology used to solve the inverse problem (sam-
pling or optimization methods).

An important advantage of the Bayesian approach over the classic optimization techniques is the ability 
to limit oneself to physically justifiable prior information (e.g., we do not expect to find normal slip on a 
subduction megathrust earthquake) without imposing other prior behavior (e.g., smoothness) beyond that 
imposed by the model parameterization itself (Minson et  al.,  2013). However, to avoid over-fitting, this 
approach requires a careful description of both observational and model prediction uncertainties (Duputel 
et al., 2014).

Optimization approaches use some form of regularization, not necessarily based on the physics of the 
problem, to avoid numerical instabilities and over-fitting of errors (in both the observations and forward 
model prediction). The optimization approach inherently requires one to determine the amount of regular-
ization applied through the choice of model parameterization (e.g., Barnhart & Lohman, 2010; Pritchard 
et al., 2002) or regularization parameter—sometimes posed as a penalty of the L1 or L2 norm of the regu-
larization or as a correlation length (e.g., Evans & Meade, 2012; Radiguet et al., 2011; Segall & Harris, 1987; 
Tarantola & Valette, 1982). The range of values of the regularization parameter defines a family of solutions 
of the inverse problem. Typically, selection of the best regularization parameter is performed by using meth-
ods that search for a balance between misfit and regularization norms, such as an L-curve (e.g., Hansen & 
O'Leary, 1993) or U-curve (e.g., Krawczyk-Stańdo & Rudnicki, 2007; Wang et al., 2018); that search for a 
balance between over-fitting and over-smoothing based on data and model resolution, such as jRi (Barnhart 
& Lohman, 2010); that minimize the mean squared error (MSE) of estimated model parameters (e.g., Cai 
et al., 2004; Wang & Gu, 2020); or by using some criteria based on a balance between how well observations 
are explained by model predictions and to what level the observations are independently resolved, such as 
Cross-Validation (e.g., Aster et al., 2013; Craven & Wahba, 1979; Wahba, 1990), Akaike Bayesian Informa-
tion Criterion (e.g., Akaike, 1980), or some other form of model class selection (e.g., Muto & Beck, 2008).

Implementation of the unregularized Bayesian approach can be computationally intensive, potentially re-
quiring the evaluation of a large ensemble of forward models (Duputel et al., 2014; Minson, 2010; Minson 
et al., 2013). Thus, while we generally prefer to advance Bayesian methodologies that rely only on physical-
ly justifiable prior information, we continue to pursue implementations of the least squares optimization 
approach that can be used to quickly solve large slip inversion problems using minimal computational re-
sources. The optimization approach becomes a practical choice at times when rapid solutions are necessary, 
or for problems with a very large number of model parameters that defy sampling methods.

2.  Methodology
Including a regularization term in an inverse problem involves introducing prior information or beliefs on 
what model parameters should be. For instance, smoothing constraints tend to discard rough slip models 
as candidate solutions of the inverse problem. As particular examples, several studies inferring interseismic 
coupling in the Japan Trench megathrust from onshore GNSS data (e.g., Hashimoto et al., 2009; Loveless & 
Meade, 2010, 2011; Mazzotti et al., 2000; Suwa et al., 2006) obtain coupling models that differ substantially 
due to different choices of prior assumptions or regularization methods. Thus, one must evaluate how the 
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chosen regularization scheme biases the solution and how well a particular approach deals with the inher-
ent instabilities of the ill-posed inverse problem.

We frame our discussion in the context of the 2011 (Mw 9.0) Tohoku-Oki, Japan, earthquake (e.g., Simons 
et al., 2011, see Text S4). Here, we analyze slip estimates constrained by three component displacement 
data generated from various synthetic slip models evaluated at the locations of 738 GNSS stations of the 
Japanese GEONET network located in northern Honshu, Japan (Minson et al., 2014; Sagiya et al., 2000). 
We choose this scenario due to the particularly large distance between the onland observations and the 
shallowest portions of the megathrust fault in this region, which results in a large spatial variability of the 
resolving power that the observations have on inferred fault slip (Loveless & Meade, 2011). Here, we analyze 
the stability and biases of inferred slip estimates when using prior information implied by commonly used 
regularization schemes as well as for a novel regularization scheme, we call the Equal Posterior Information 
Condition (EPIC) Tikhonov regularization.

In order to probe the behavior of all the regularization schemes analyzed in this work, we design various 
synthetic slip models, subsequently using them to generate noisy synthetic datasets. From the work of 
Lévêque et al. (1993) for seismic tomography inversions, we understand that the quality of the assessment 
on the recovery of the “True slip model” depends on the shape and size of the synthetic model used for 
such purpose. Thus, we perform our analysis for a set of synthetic checkerboard slip models at different 
scales and a set of synthetic slip models resembling various earthquake scenarios with an elliptical shape, 
with moment magnitudes Mw 8.0, Mw 8.5, Mw 9.0, with spatial extent based on scaling laws (e.g., Stirling 
et al., 2013), and located at different positions on the subduction megathrust. We construct a 3D triangulat-
ed fault surface based on the geometry of the subduction megathrust from Simons et al. (2011). We compute 
synthetic crustal displacements using a layered elastic medium (Herrmann, 2013). The elastic structure is 
taken from Simons et al. (2011), which is based on the 3D tomography from NIED (Japan National Research 
Institute of Earth Science and Disaster Prevention) and the work of Takahashi et al. (2004). We consider 
synthetic data with three realizations of random noise (Noise 1, 2, and 3) from the same unbiased normal 
distribution. The standard deviation of the random noise is set to 5 mm for the horizontal components and 
10 mm for the vertical component of the synthetic GNSS data. For each regularization scheme, we infer 
slip using the generalized cross validation (GCV) technique to select the optimum regularization parameter 
by minimizing the GCV loss function (Craven & Wahba, 1979). We refer the reader to Text S4 for further 
details.

We demonstrate the vie of EPIC Tikhonov regularization in a real example, by estimating fault slip during 
the 2011 (Mw 9.0) Tohoku-Oki, Japan, earthquake as constrained by co-seismic offsets measured by the 
GEONET network. When we consider the actual Tohoku-Oki earthquake observations, we also include 
positivity constraints on fault slip. We parameterize slip in two directions, one parallel to the slip vector de-
fined by the Tohoku-Oki earthquake focal mechanism (rake parallel), and a perpendicular one (see Minson 
et al., 2013, Text S4). However, for the synthetic tests, we only allow slip in the rake parallel direction, in 
order to avoid needing to interpret complexity that arises from correlations between slip in the two orthog-
onal directions.

We acknowledge that the defined forward model is an approximation of the true physics underlying the slip 
inversion problem, for instance, due to uncertain fault geometry and elastic structure. Furthermore, tech-
niques have been proposed for dealing with such epistemic uncertainties (e.g., Duputel et al., 2014; Minson 
et al., 2013; Ragon et al., 2018; Yagi & Fukahata, 2011). The inclusion of epistemic uncertainties increases 
the variances of the misfit between each observation and its corresponding forward model prediction, im-
proving the robustness of slip estimates, as it avoids overfitting of errors (e.g., Duputel et al., 2014, 2015; 
Minson et al., 2013, 2014; Yagi & Fukahata, 2011). At the same time, epistemic uncertainties contributes 
to the covariances (correlations) between the misfit of different modeled data (Duputel et al., 2014; Ragon 
et al., 2018; Yagi & Fukahata, 2011). Such covariances are often neglected in slip inversions. In our work, 
when using real Tohoku-Oki earthquake data, we include epistemic uncertainties using the approach of 
Minson et al. (2014) (see Text S4). While we prefer approaches that include model prediction correlations 
(e.g., Duputel et al., 2014), we use the uncorrelated model prediction uncertainties of Minson et al. (2014) 
for consistency, as we compare our results with those of Minson et al. (2014). For our comparative analysis 
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of regularization schemes, we do not include epistemic uncertainties, as we constrain slip models with syn-
thetic datasets, thus considering an exact forward model.

2.1.  On the Estimation of Quasi-Static Fault Slip

Following Tarantola and Valette (1982), the general inverse problem can be formulated using a Bayesian 
framework as




1( ) ( | ) ( )post priorf fm m d m� (1)

where m is the model parameter vector representing slip on the fault, ( )priorf m  is the pdf describing prior 
information on model parameters, ( | )m d  is the likelihood of the predicted data (surface displacements) 
given a set of model parameters m and observed data d, ( )postf m  is the posterior pdf on model parameters, 
and ν is a normalization constant. As much as possible, we follow the notation of Tarantola (2005) through-
out our development.

Typically, the uncertainties on both observations and model predictions are assumed to be unbiased, follow-
ing a multivariate normal distribution with zero mean and covariance matrices Cd and Cp, respectively (e.g., 
Duputel et al., 2014; Minson et al., 2013; Tarantola, 2005). Thus, given the linear relationship between data 
and model parameters, d = Gm, the likelihood function can be written as,

   
 

     
 

11( | ) . exp
2

constobs obs obsm d Gm d C Gm d


� (2)

where dobs is a vector containing the observations, Gm the model prediction, Cχ = Cd + Cp is the misfit 
covariance matrix, and const. is an unknown normalization constant (e.g., Tarantola, 2005). We note that 
the assumption that model prediction (Cp) is unbiased and follows a Gaussian distribution is clearly an 
approximation (e.g., Duputel et al., 2014).

Among the infinite ways to prescribe prior information on model parameters, m, one approach is to rely 
on the beliefs that we have in some ad hoc and uncertain quantity, h, related to the model parameters, m, 
through some mathematical relationship,  ( )h m . For instance, the quantity h may represent a spatial 
derivative of slip values (e.g., slip roughness  2( )m m ), or actual values of slip (i.e., ( )m m ). In the 
context of a linear inversion problem, we are interested in the case of a linear relationship h = Hm. Since h 
is an uncertain quantity, we consider a stochastic model h = ho + ϵh, where ho is some prescribed determin-
istic a priori value (i.e., a particular realization of h) and the stochastic variable ϵh describes the uncertain-
ties on the determination of ho. A wide range of prior pdf's can be used to describe ϵh. As a practical choice, 
uncertainties on h can be modeled as an unbiased normal distribution with covariance matrix Ch, thus prior 
information on h is represented by a normal distribution ( , )o

hh C , with pdf

     
     

 
11( ) . exp

2h const o o
hh h h C h h


� (3)

where const. is a normalization constant. We then construct the prior information on model parameters as 
the likelihood that the model parameters are consistent with the prior value of the quantity h = Hm,

       
      

 
11( ) ( ) . exp

2
prior

hf const o o
hm h m Hm h C Hm h


� (4)

where const. is a normalization constant. In this sense, regularization or prior information is not treated 
differently from observational constraints. The only key difference lies in that observations typically come 
from experimental measurements of physical phenomena being studied, while prior information or regu-
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larization represents a belief on how model parameters should behave. Also, following Tarantola (2005), 
prior information must be obtained independently of observational constraints.

Despite the assumptions of Gaussian uncertainties for observations, a linear forward model, and linear pri-
or information, the inverse problem in Equation 1 defines an infinite ensemble of posterior models. From 
such an ensemble, we are interested in a particular model that maximizes the posterior pdf ( )postf m , which 
is also the solution of the general linear least squares problem,

min ( ) ( ) ( )

( )

m

obs obs

m

o

h
Gm d C Gm d Hm h C     





1 1

E

  
(( )

( )

Hm h
o

m


R

  � (5)

where the cost function is composed by ϕE(m), a measure of goodness of a particular model to predict the 
observations, and ϕR(m) a measure of goodness of such model to be consistent with the chosen prior infor-
mation implied by the regularization of the inverse problem. Equation 5 can be written in a more familiar 
form,

min ( ) ( )

( ) ( )

m

obs

m

h

o

m

W Gm d W Hm h   
     

 

  2
2

2
2

E R

� (6)

where the misfit and regularization weights follow   
 1W W C  and  1

h h hW W C .

The solution of the general linear least squares problem (Equation 5) follows a normal distribution with 
posterior mean (and maximum likelihood) model

    
      1 1 1 11 obs o

h hm G C G H C H G C d H C h   � (7)

and posterior covariance matrix

   
       1 1 11 1

m h hC G C G H C H P H C H  � (8)

(e.g., see Tarantola,  2005), where 
 1P G C G  is the precision matrix of the unregularized problem, or 

equivalently, the mapping of the misfit covariance matrix (Cχ) into the model parameter space (see Text S1).

We quantify uncertainty in the inferred fault slip by analyzing the variances and spatial correlations of slip 
estimates directly from the posterior covariance matrix  mC . Posterior standard deviations provide informa-
tion on the expected amplitude of slip perturbations given Cd and Cp, and can be used to define confidence 
intervals on the value of estimated model parameters. Off diagonal elements of  mC  provide information on 
the pairwise covariance of estimated model parameters. To facilitate the interpretation of the covariance, we 
consider the Pearson correlation coefficient,

 
 


   
   



 
ij

ij

ii jj

m

m m

C

C C
� (9)

which has extreme values of −1 and 1 for fully negatively and positively correlated model parameters, 
respectively. A null Pearson correlation indicates no correlation or linear dependency between model pa-
rameters. In that sense, a set of estimated model parameters that are positively or negatively correlated will 
tend to be perturbed from the estimated (mean) model, in the same direction due to uncertainties in obser-
vations, model prediction and prior information, with perturbation amplitudes controlled by their posterior 
marginal standard deviations.

When model parameters are defined from a spatial discretization of a continuous scalar field (e.g., a compo-
nent of slip on a fault plane), a measure of correlation between model parameters can be used to estimate a 
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spatial correlation length (e.g., Mai & Beroza, 2002; Tarantola & Valette, 1982). The form of spatial correla-
tion used in this work is given by the exponentially decaying function



 
 
 
 

2dij

i
ij e

� (10)

where dij is the distance between the discretized elements of i-th and j-th model parameter and λi is the 
spatial correlation length for the i-th discretized element (e.g., Radiguet et al., 2011; Tarantola, 2005; see 
Text S5). We interpret the calculated correlation lengths as spatially averaged uncertainties, in the sense that 
at any fault element, estimated slip is correlated to some degree with the ones at neighboring fault elements. 
Thus, λi serves as a proxy for a measure of spatial resolution of slip estimates. In this regard, we characterize 
model resolution based on posterior uncertainties, following Tarantola and Valette (1982).

2.2.  Common Regularization Schemes

Commonly used prior information consist on prescribing some, typically null, values for slip or to search for 
spatially smooth slip distributions (e.g., Harris & Segall, 1987; Radiguet et al., 2011; Segall & Harris, 1987). 
For example, Radiguet et al. (2011) uses the approach given by Tarantola and Valette (1982), in which they 
impose a spatial correlation length on slip, as well as a bias toward a prior slip model mo. The implemen-
tation of the correlation between model parameters is achieved by designing a prior covariance matrix Cm 
that models prior uncertainties on mo as correlated in space, in which correlation decays with the distance 
between discretized elements of the fault surface. In terms of Equation 4, this form of regularization is 
equivalent to setting H = I (the identity matrix), ho = mo (typically arbitrarily set as mo = 0), and covariance 
matrix Ch = Cm(λ), where

C
m

( )

( , )

.    


ij m

d i j

e
2� (11)

Here, d(i, j) is the distance between subfaults i and j,  2
m is the prior variance on slip values and λ is a cor-

relation length, used as a regularization parameter. Note that in this case, correlation decays exponentially 
with distance, but the choice of such a functional form is arbitrary (e.g., see Radiguet et al., 2011; Taranto-
la, 2005). Here, variances of prior information are all equal to  2 2

h m. This operator imposes a correlation 
that is stronger for model parameters that are more proximal in physical space, i.e., a smoothing constraint 
on slip. This operator also imposes a condition in which model parameters are constrained to be close to 
their prior value mo, thus biasing model estimates to such values. For brevity, we refer to this regularization 
scheme as Cm. Note that λi and λ from Equations 10 and 11 have a different meaning. While λi represents a 
vector of posterior correlation lengths on slip estimates, λ is a scalar quantity representing a prescribed prior 
correlation length on slip.

Another common form of prior information on slip is given by Tikhonov regularization (Tikhonov, 1963), 
in which the spatial derivatives of a given order of the model parameters (e.g., slip) are biased toward a null 
value (e.g., Harris & Segall, 1987; Segall & Harris, 1987). The inverse problem using Tikhonov regularization 
is solved through the damped least squares method,

min ( ) .
m

obs
W Gm d Hm     2

2 2
2
2� (12)

where ɛ2, known as the regularization or damping parameter, controls the trade-off between the obser-
vational and regularization terms, which represent the misfit of physical, WχGm = Wχdobs, and regular-
ization, Hm = 0, equations, respectively. The prior information implied by Tikhonov regularization can 
be represented in terms of Equation 4 by prescribing ho = 0, and a choice of H proportional to a finite 
difference approximation of the zeroeth order (H = I), first order (H = ∇) or second order (H = ∇2) spatial 
differential operators. Zeroeth order Tikhonov (T0) regularization biases model estimates to null values 
(mo = 0) without imposing any smoothing constraint. First (T1) and second (T2) order Tikhonov bias model 
estimates to smooth models with null first and second order spatial derivatives, respectively, without bias-
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ing model estimates toward a specific prior slip value. In addition, we set Wh = ɛI so problems (6) and (12) 
are equivalent, meaning that all the regularization equations in (6) have the same weight or importance ɛ. 
In terms of the normal distribution used to describe prior information on h, the prior covariance matrix 
implied by Tikhonov regularization becomes Ch = ɛ−2I. Such definition of prior information considers that 
all components of h have independent and identically distributed uncertainties, with variances that are all 
equal to the reciprocal of the regularization parameter (  2 2

h ).

All the aforementioned regularization schemes impose prior information with the same variance for all the 
regularized quantities. For instance, T2 regularization imposes the same amount of slip smoothing for all 
fault patches regardless of their locations. As observations typically do not constrain or resolve slip homo-
geneously along the fault surface (e.g., Loveless & Meade, 2011; ,Pritchard et al., 2002; Simons et al., 2002 
see Text S2), we are motivated to develop a spatially variable regularization scheme.

Spatially variable regularization schemes have been proposed either by changing the size of the fault ele-
ments in order to obtain a quasi-uniform resolving power, requiring little additional regularization (Barn-
hart & Lohman, 2010; Pritchard et al., 2002; Simons et al., 2002, see Text S2) or by the use of second order 
Tikhonov regularization with a spatially variable strength (Lohman, 2004; Ortega-Culaciati, 2013; Wang 
et al., 2019, see Text S2).

The first approach imposes a correlation length by setting constant slip over variably sized fault patches, 
but depends on additional prior information (e.g., direction of slip) and on the specific algorithm used to 
determine the fault discretization. This approach also leads to model discretizations with large regions of 
uniform slip behavior and sharp discontinuities, potentially limiting the usability of the inferred slip distri-
bution. As an aside, one could reduce this problem by modifying the approach to include smoothly varying 
basis functions instead of piece-wise constant (e.g., Yabuki & Matsu'ura, 1992), but we do not explore such 
an approach here.

For the second approach, Lohman (2004) defines an iterative method which relies on applying a spatially 
variable penalty parameter using a low-rank approximation of the model resolution matrix R (Backus & 
Gilbert,  1968) of the regularized inverse problem. However, the model resolution matrix R intrinsically 
assumes that observations can be related to a true model as dobs = Gmtrue, neglecting uncertainties in both 
observations and the forward model. Wang et al. (2019) proposes the use of a least squares inversion with a 
method to define spatially variable weighting to the Laplacian second order smoothing constraint based on 
slip estimates. However, while such regularization scheme achieves larger slip values—compared with the 
unweighted Laplacian—that are closer to true values, it defines an iterative nonlinear approach in which 
prior information standard deviations (reciprocal of Laplacian weights) are updated based on the data that 
constrains the slip model. As another option, Ortega-Culaciati (2013) defines a sensitivity modulated sec-
ond order Tikhonov (ST2) regularization, that empirically modifies variances of prior information implied 
by T2 regularization. Here, the variances of prior information on the second spatial derivative of slip at the 

i-th fault patch, are set proportional to the sensitivity 
max

ii
i

kk
k

Ps
P

, where 
 1P G C G  is the precision ma-

trix of the unregularized inverse problem (see Text S2). Figure 1a shows the square root of the sensitivity of 
fault slip for the model setup defined for the synthetic tests analyzed in this study. In terms of Equations 4 
and 5, prior information implied by ST2 can be represented by prescribing ho = 0, H = ∇2 and Ch = ɛ−2S, 
where Sij = δijsi is the sensitivity matrix, and produces a spatially variable bias toward smooth slip models. 
Here, ɛ−2 has the same meaning as in standard Tikhonov regularization.

2.3.  An EPIC Tikhonov Regularization

We aim to design a spatially variable regularization scheme that accounts for the heterogeneous influence 
of the observations on slip estimates. Here, we use an arbitrarily fine discretized fault surface (only limited 
by computer resources) and adopt a regularization that allows for a smoothly varying correlation length of 
the inferred values of slip, without using any prior information about the actual values of slip but just on 
their derivatives.
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We propose to define an unknown diagonal covariance matrix Ch for prior information. We then ask what 
would be the values of such variances that in turn produce the same amount of information gain for every 
model parameter. Thus, we define an EPIC on model parameters, m, where information gain accounts for 
both observations and prior knowledge, with respect to a homogeneous state of information (see Taranto-
la, 2005, Section 1.2.4). The state of homogeneous information is used to represent lack of knowledge about 
the slip distribution. Here, we do not use prior information as the reference state of information. Instead, 
we use prior information as an auxiliary source of knowledge or beliefs on specific characteristics of model 
parameters, and explore the impact of equalizing the amount of information gained on slip. As demonstrat-
ed later, equalizing the information gain results in uniformly distributed variances for estimated slip across 
the fault. Thus, uncertainties in observations or model predictions, will induce spurious slip that will have 
no preferred location at the fault surface, uniformly stabilizing the solution of the inverse problem.

The concept of differential entropy is used as a proxy to quantify the information gained on slip during 
the inversion process, with respect to the state of homogeneous information (see Text S3, Cover & Thom-
as, 1991). From Equations 7 and 8, the posterior marginal distribution for the i-th model parameter (mi) is 
a normal distribution  2( , )i mim , where  im  is the i-th estimated model parameter value and  2

mi  is the i-th 
diagonal element of  mC . The information gained on slip parameter mi from data and prior information, can 
be quantified by the differential entropy h(mi) of the posterior marginal distribution for mi as
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Figure 1.  Comparison of standard deviations of prior information, that is, diagonal elements of hC , for (a) Sensitivity 
(ST2) regularization with ɛ2 = 1 (Ortega-Culaciati, 2013), and for EPIC (ET2) regularization (this work) considering two 
cases of target posterior standard deviations (σt) for slip estimates, (b and c). For each case, the color bar shows standard 
deviations normalized by their maximum value. Lower-right insets show the unnormalized minimum and maximum 
standard deviations of prior information in units of h = ∇2m. Panel (a) also displays major tectonic features within the 
study area and location of GEONET GNSS sites used in this work.
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   21( ) ln(2 )
2i mih m e� (13)

which depends only on the posterior marginal variance  2
mi  (see Text S3). Therefore, EPIC is equivalent to 

imposing that all posterior marginal variances are the same, which can be formulated as:

  
          

 1 1 2
tii

ii

1
m x hC G C G H C H � (14)

where the target posterior variance  2
t  of the estimated (slip) model is used as a regularization parameter. As 

is the case for higher order Tikhonov regularization, H already induces local correlations of slip. We define 
Ch as a diagonal matrix, whose terms control the strength of the induced correlations. Then, for a given 
value of σt, we compute Ch by solving the nonlinear system of Equation 14 using a nonlinear least squares 
method based on a Trust Region Reflective optimization algorithm (Coleman & Li, 1996). We emphasize 
that, as in most regularization schemes mentioned in Section 2.2, we define Ch in a parametric way, pre-
scribing prior information on h with unknown covariance matrix Ch. For EPIC Tikhonov, Ch is defined as 
an unknown diagonal matrix. Therefore, EPIC must be understood not as a condition defining prior infor-
mation, but as complement of a classical model class selection method, selecting values of the diagonal of 
Ch that in turn produces a desired class of models with uniformly distributed posterior variances. We refer 
the reader to Text S3 for further details and implementation.

When using the EPIC for first or second order Tikhonov regularization, we refer to those as ET1 and ET2 
regularization schemes, respectively. Figures 1b and 1c show the model setup defined for the synthetic tests 
analyzed in this study and the standard deviations of prior information ( hC ) computed using ET2 regu-
larization for two cases of target posterior variances  2

t  on slip. The EPIC induces prior information that 
compensates for the variability of the influence that observations have on slip estimates across the fault. 
Here, we note that the regions less constrained by the data correspond to the ones with lower sensitivity, 
or lower marginal variances of the data misfit projected onto model parameter space (see Text S1). Thus, 
model estimates at those regions are the most prone to produce overfitting, driven by observational and 
model prediction errors.

Although ST2, ET1, and ET2 define spatially variable regularization through variable variances of prior 
information (i.e., in Ch, see Figure 1), how this variability is implemented arises as a key difference. On 
one hand, ST2 regularization defines Ch based on the sensitivity of fault slip and the shape of Ch does not 
depend on the amount of regularization applied (i.e., the value of ɛ2) or the structure of the regularization 
operator H. On the other hand, EPIC estimates Ch for each given value of the regularization parameter σt, 
accounting for the structure on H (Figure 1, Text S4). Moreover, ST2 uses only the diagonal elements of the 
precision matrix of the unregularized problem (P), while EPIC uses the whole matrix P, fully exploiting 
the properties of the physical problem being solved. Such difference is key to increasing stability and to 
reducing bias. Table 1 summarizes the regularization schemes commonly used for least squares linear slip 
inversion, as well as the regularization scheme proposed in this work.

3.  Results for Inversions Using Synthetic Data
In our comparative analysis of the impact of the regularization schemes on slip estimates, we performed in-
versions for all combinations of regularization schemes, synthetic slip models and realizations of data noise 
analyzed in this work. In all cases, the regularization parameter value is determined using GCV. Figures 2 
and 3 show a selection of the results for representative inversion cases, recovering synthetic checkerboard 
and elliptic slip distributions, respectively. In addition, Figure  2 shows prior information and posterior 
slip standard deviations along with posterior slip correlation lengths. Figure 3 shows a comparison of syn-
thetic and estimated slip along a representative trench perpendicular profile, for the case of an elliptic slip 
distribution.

The regularization schemes explored in this work can be judged by the bias they induce on slip estimates 
and by how well they deal with the inherent instability of the inverse problem. We define instability as the 
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extent to which changes in the different realizations of noise impact estimates of slip. Results show that 
those regularization schemes that introduce prior information by seeking slip models that are close to an 
arbitrarily prescribed prior model (mo = 0 in this case), that is, T0 and Cm, produce relatively stable slip 
estimates for all the synthetic study cases. Nevertheless, while the true slip distribution is relatively well re-
covered for portions of the fault with high sensitivity, the inferred distribution is highly biased toward a pri-
ori values of slip (mo = 0 in this case) in regions with lower sensitivity (see Figures 2, S6, and S7). Moreover, 
when elliptical slip models are analyzed, T0 and Cm regularization schemes tend to shift the peak location 
of the estimated slip distribution to regions closer to the location of the observations. These schemes also 
recover slightly smaller moment magnitudes when the true slip distribution is located far from the data (see 
Figures 3, S13, S14, S20, S21, S27, and S28).

Higher order Tikhonov regularization (T1 and T2) results in stable slip recovery of checkerboard models at 
fault regions with high sensitivity (see Figures 1a and 2). A tendency to smoother slip and larger instabilities 
occurs at less constrained regions of the fault (low sensitivity), with instabilities being almost negligible 
for T1 and very noticeable for T2 regularization (see Figures 2, S8, S9, and S34). For near coast earthquake 
scenarios, T1 and T2 regularization recover the true model but with noticeable instabilities at the near-
trench portions of the fault, including large back-slip that could be ameliorated using positivity constraints. 
For earthquake scenarios with fault slip near to the trench, T1 and T2 induce slip estimates that tend to be 
smeared away from observations, setting peak slip toward the trench (see Figures 3, S35–S37).

ST2 regularization excels at recovering stable slip estimates for all checkerboard cases of synthetic slip (Fig-
ures 2 and S10). For all earthquake scenarios with true slip located mainly offshore, the peak of recovered 
slip tends to be located near the coast, slip estimates located in regions of low sensitivity (near trench) are 
over-smoothed, and slip instabilities appear at fault regions with higher sensitivity (see Figures 3, S17, S24, 
and S31).

The EPIC approach results in stable slip estimates for all checkerboard slip scenarios, with a smoothing 
that varies in a similar manner as the fault slip sensitivity to the observations. A stronger bias occurs in 
regions with lower slip sensitivity, while the true model is well-recovered in regions with higher sensitiv-
ity (see Figures 1a, 2, S11 and S12). The same bias is observed when inverting for synthetic earthquake 
scenarios, whereby estimated slip tends to get more filtered, with smaller peak amplitude, when the 
synthetic true elliptic slip model is located closer to the trench, further away from observations (see Fig-
ures 3, S18, S19, S25, S26, S32, and S33). Estimates of slip using ET2 are generally more stable than ones 
using ET1.
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Notation Examples

Prior information Impact on

H Ch ho m − mo

Cm
Tarantola (2005), Radiguet et al. (2011)a I Cm(λ) mo Minimizes amplitude

Induces spatial averaging

T0 Harris and Segall (1987)a,b I ɛ−2I mo Minimizes amplitude

T1 No uses foundb,c ∇ ɛ−2I ∇mo Minimizes spatial gradient
Induces spatial averaging

T2 Segall and Harris (1987)b,d ∇2 ɛ−2I ∇2mo Minimizes roughness
Induces spatial averaging

ST2 Ortega-Culaciati (2013)d ∇2 ɛ−2S ∇2mo Minimizes roughness
Induces spatial averaging

ET1 This workc,e ∇  2( )thC ∇mo Minimizes spatial gradient
Induces spatial averaging

ET2 This workd,e ∇2
 2( )thC ∇2mo Minimizes roughness

Induces spatial averaging
aImposes mo = 0. bCorresponds to Tikhonov regularization when ho = 0, that is, mo = 0, ∇mo = 0 or ∇2mo = 0, 
respectively. cImposes ∇mo = 0. dImposes ∇2mo = 0. eUses EPIC to estimate Ch.

Table 1 
Regularization Schemes for Least Squares Slip Inversion Analyzed in This Work
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Figure 2.  Slip estimates constrained by synthetic observations, generated from a prescribed true checkerboard (Mw 8.5) 
slip model, with added Noise 1, 2, and 3. Best model estimates are shown for inversion using regularization schemes 
in Table 1 and minimize the respective GCV cost function. Prior information and posterior slip standard deviations 
(normalized to their minimum value) and posterior slip correlation lengths are shown for each regularization scheme 
(for Noise 2 realization only). All recovered moment magnitudes equal Mw 8.5 ± 0.1. Bottom-right insets show 
maximum and minimum value of plotted field (without normalization), while top-left insets show the ratio of such 
values.
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Figure 3.  Slip estimates constrained by synthetic observations, generated from a prescribed true elliptical (Mw 8.5) slip model, with added Noise 1, 2, and 3. 
Best model estimates are shown for inversion using regularization schemes in Table 1 and minimize their respective GCV cost functions. Black line in slip maps 
indicate profile along with slip is plotted in the right panel. Profiles of slip for true and estimated models for all noise realizations are shown in the same scale. 
Solid horizontal lines indicate zero slip for the profile with the corresponding color. Shaded regions represent two standard deviations (95% confidence intervals) 
envelope for each three slip profiles set. All horizontal lines spacing corresponds to 2.5 m of slip. Vertical dashed line indicates location of maximum slip of the 
true synthetic distribution. Insets show maximum/minimum slip.
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The impact of regularization schemes on slip estimates can also be analyzed in terms of the structure of the 
posterior covariance matrix of slip,  mC . Figure 2 shows posterior standard deviations and spatial correlation 
lengths on slip estimates for the checkerboard slip case with the Noise 2 realization. Similar values are ob-
tained for different noise realizations and for the recovery of the elliptic synthetic slip shown in Figure 3. 
For classical regularization approaches, standard deviations of slip estimates vary throughout the fault, 
being larger in regions where slip instabilities are most noticeable or a larger bias to prior information is in-
ferred. Instead, for EPIC Tikhonov regularization the standard deviations of inferred slip are by design uni-
formly distributed across the fault. For all regularization schemes, larger posterior slip correlation lengths 
are obtained for fault portions further away from the observations, presenting largest values at the trench, 
where slip estimates are less sensitive to the data.

For an exhaustive view of all our results, we direct the reader to the supporting information. For each reg-
ularization scheme and synthetic slip model, Figures S6–S33 show slip estimates as a function of the noise 
realization added to the synthetic data. Figures S34–S37 directly compare slip estimates as a function of the 
chosen regularization scheme. Figures S38–S51 show GCV curves for inversion results shown in Figures 2 
and 3.

4.  Discussion of Regularization Schemes Based on Synthetic Models
As expected, synthetic models are better recovered in regions of the fault that are closer to the observations 
(with higher sensitivity). Slip estimates are both more biased to prior information and more unstable for 
fault elements located further away from the onland observations (with lower sensitivity). The level of in-
stability depends on the type and amount of regularization imposed.

In terms of the bias induced on model estimates, the analyzed regularization schemes can be characterized 
into two groups, ones that bias slip values toward a known prior slip model ( Cm, T0), and ones that bias 
model estimates toward a smooth slip distribution, penalizing local spatial variations of slip ( Cm, T1, T2, 
ST2, ET1, ET2). Justifying the choice of particular values for a prior slip model is impossible. Setting slip pri-
ors to null values throughout the fault is arbitrary. Instead, prescribing smooth slip as prior information is 
a practical way to partially take care of that problem. While still somewhat arbitrary, smoothing constraints 
can be at least weakly justified in the sense that we seek to only infer complexity required by the data and to 
ensure that unresolved complexity is appropriately averaged and stably inferred with minimal bias.

The stability of model estimates can be considered from the perspective of how observational noise produc-
es perturbations on model estimates or by the changes in model estimates upon the choices of the “best” 
regularization parameter, given a model class selection method. From the first perspective, Cm scheme 
tends to recover models in which slip instabilities are limited and minimally dependent on the noise realiza-
tion. The model perturbations tend to be smoothed over wide regions due to the spatial correlation induced 
by the regularization scheme. The T0 scheme tends to induce larger slip instabilities that are noticeable 
dependent on the noise realization. Such instabilities are localized onto single fault slip patches due to lack 
of smoothing of the regularization scheme. For the recovery of elliptic synthetic slip, Cm and T0 schemes 
tend to shift peak slip toward the coast as slip in the true model is located closer to the trench and the bias 
imposed toward a null slip model becomes more relevant. T1 and T2 regularization schemes show larger 
instabilities in regions that are less constrained by the observations, in which T2 allows for larger changes 
in slip compared to T1. Such instabilities are expressed as randomly distributed large slip variations near 
the trench when recovering checkerboard models, and with the largest slip located at the trench when re-
covering elliptical slip distributions (see Figures 2 and 3). ST2 regularization stabilizes slip estimates when 
recovering checkerboard models (see Figures 2 and S10). Nevertheless, for elliptical slip distributions, ST2 
recovers over-smoothed slip at the regions with low sensitivity (near trench), shifting peak slip to a location 
closer to the observations. ST2 also shows large instabilities at the fault regions with high slip sensitivity 
(near coast), being highly dependent on the noise realization added to the data (see Figures 3, S17, S24, 
and S31). Thus, the empirical choice of prior information variances based on the sensitivity of fault slip is 
unreliable.
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ET1 and ET2 regularization schemes excel in stabilizing the inverse problem solution for all analyzed syn-
thetic slip cases. As a direct consequence of the EPIC, posterior slip variances are all the same, thus insta-
bilities tend to be homogeneously distributed across the fault, with maximum amplitudes controlled by the 
choice of σt (Figures 2 and 3 and Text S1, S13). Figure 2 compares estimates of posterior marginal standard 
deviations and correlation lengths for all regularization operators analyzed in the study of synthetic slip 
cases. Traditional regularization schemes induce posterior standard deviations and correlation lengths that 
are both variable across the fault. While this in principle is not a problem, it becomes less practical as it is 
hard to separate the effects of amplitude and spatial distribution of slip estimates uncertainties. Instead, by 
design, EPIC Tikhonov regularization provides uniform standard deviation and varying correlation lengths 
on posterior information of slip, allowing a direct and effective analysis of model estimates spatial resolu-
tion in terms of their covariances or correlations. As the correlation length calculated for each slip fault 
discretization defines a region in which the estimated model instabilities are highly correlated, slip features 
smaller than the correlation length should not be inferred as they might be the result of overfitting. When 
comparing ET1 and ET2 with their nonEPIC counterpart (T1 and T2), we observe that imposing the EPIC 
results in larger correlation lengths in regions with smaller sensitivity (i.e., near the trench), where standard 
deviations of prior information are also smaller. Use of the EPIC Tikhonov regularization results in rela-
tively stable and unbiased estimates of the slip averaged at scales corresponding to the correlation length 
and larger.

For all aforementioned regularization schemes, if one tries to avoid the instabilities by augmenting the 
amount of regularization from the optimum determined using GCV, for example, by increasing ɛ2, λ or 
decreasing σt, one tends to over-smooth the solution at well-constrained portions of the fault (see Text S11). 
In contrast, if one lowers the value of the damping parameter in order to obtain a rougher solution at the 
well-constrained fault portions, slip becomes unstable near the trench. In comparison, EPIC Tikhonov pro-
duces model estimates that are the less sensitive to the choice of the regularization parameter value (see 
Text S11). This insensitivity becomes relevant as GCV or any other model class selection methods tend to 
select solutions of the inverse problem that are slightly over- or under-regularized (e.g., Krstajic et al., 2014).

Not surprisingly, for Mw 8.0 and Mw 8.5 synthetic elliptic slip scenarios, all regularization schemes fail to re-
cover the true model average location and moment magnitude when synthetic slip is located near the trench 
(see Text S10, Figure S35—column 5, Figure S36—column 5). This behavior is not observed for Mw 9.0 syn-
thetic slip scenarios, nor for the checkerboard ones. In all aforementioned cases, the best recovered model, 
in terms of location and magnitude Mw of slip, is achieved when using ET2. Therefore, slip at any fault 
portion needs to produce spatial variability in surface displacements with a high enough signal-to-noise 
ratio to allow recovery. If not, the regularization will set model estimates according to prior information, 
which in this case corresponds to either a null value of slip ( Cm, T0), or null value of slip spatial derivatives 
(T1, T2, ST2, ET1, and ET2). For the regularization schemes that induce smoothing, actual values of slip will 
be related to the values of the nearest well constrained fault patches whose distance is of the order of the 
correlation length of the inferred fault slip.

5.  Application to Tohoku-Oki (Mw9.0) 2011 Earthquake
5.1.  Results and Discussion

Given the results of the tests with synthetic observations, we unsurprisingly favor ET2 regularization 
scheme as a smoothing prior. Figure 4 compares the behavior of EPIC Tikhonov and Tikhonov regulariza-
tion using real observations from the Tohoku-Oki (Mw 9.0) 2011 earthquake. We consider onland crustal 
co-seismic offsets as seen by 738 GPS stations of the Japanese GEONET Network (Minson et al., 2014; Sagi-
ya et al., 2000). Model prediction uncertainties are based on Minson et al. (2014) (see Text S4). We param-
eterize slip in two directions, one parallel to the slip vector defined by the Tohoku-Oki earthquake focal 
mechanism (rake-parallel direction), and a perpendicular one (rake-perpendicular direction) (see Minson 
et al., 2013, Text S4). Prior information is defined for the amplitude of rake-perpendicular slip (h = m), as 
we expect little to no slip in such direction. For the rake-parallel direction, prior information is defined for 
the second order spatial differential of rake-parallel slip (h = ∇2m). Hereafter, we focus on a comparison of 
ET2 and T2, as ET2 is an extension of the commonly adopted T2 regularization, and they both represent a 
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smoothing prior. Panels (a and e) in Figure 4 show slip estimates minimizing GCV cost function, obtained 
using T2 and ET2 regularization schemes, respectively. Along with each slip model, we show standard 
deviations of prior and posterior information on model parameters as well as posterior correlation lengths, 
all for rake parallel and rake perpendicular slip components. In addition, in Text S12 (Figures S53–S61) we 
compare slip solutions, observations and model prediction, for nine selected values of the regularization pa-
rameter indicated in Figure S52, that adopt the same GCV cost function value for T2 and ET2 regularization, 
including under- and over-regularized solutions.
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Figure 4.  Comparison of 2011 (Mw 9.0) Tohoku-Oki earthquake slip. Panels (a and e) show slip estimates when using T2 and ET2 regularization, respectively. 
White lines are 10 m contours of co-seismic slip from Minson et al. (2014). Panels (b.1, b.2–f.1, f.2) show standard deviations of prior information, (c.1, c.2–g.1, 
g.2) show standard deviations of estimated slip and (d.1, d.2–h.1, h.2) show correlation lengths of slip estimates, all for rake parallel and perpendicular slip 
directions as well as T2 and ET2 regularization, respectively. Insets show minimum and maximum value of the plotted field as well as estimated moment 
magnitude for slip model plots.
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The best slip model obtained with ET2 closely resembles the slip model estimated using a fully Bayesian 
inversion method and a much more comprehensive data set including seismic, tsunami and ocean bottom 
geodetic offsets (Figure 4e, Minson et al., 2014). While the peak slip amplitude of ET2 is smaller due to 
strong smoothing, driven partially by the use of only onland GPS data, estimated regions with larger slip 
coincide. Instead, T2 regularization, as expected, tends to concentrate slip at the near trench portions of the 
subduction megathrust (Figure 4a). T2 regularization shows the smaller correlation lengths (compared to 
ET2) and the largest posterior variances of slip at the trench, where in turn, maximum slip is located. Infer-
ences of maximum slip at the trench are found in several published models of the Tohoku-Oki earthquake 
(e.g., Bletery et al., 2014; Ide et al., 2011; Lay et al., 2011; Sun et al., 2014; Yue & Lay, 2011). As shown in the 
synthetic exercises, this kind of inference might be an artifact of the inversion if not using datasets capable 
of constraining shallow near trench slip, such as ocean bottom geodesy or tsunami (e.g., see sensitivity plots 
in Duputel et al., 2014, supporting information). In contrast, slip models constrained by ocean bottom geo-
detic and tsunami data along with GNSS or seismic data in a jointly manner, show limited slip at the trench 
(e.g., Koketsu et al., 2011; Minson et al., 2014; Simons et al., 2011; Yokota et al., 2011).

The aforementioned discrepancies in spatial location of estimated slip could be explained by the differences 
in the spatial distribution of standard deviations of prior and posterior information on model parameters. 
The main difference lies in that standard deviations of slip estimates are variable for T2 but uniform for ET2 
across the fault (Figures 4c and 4g). As T2 shows larger slip variances at the trench, we expect larger model 
instabilities and bias in such region. Instead, the EPIC enforces that model perturbations upon observation-
al and model prediction uncertainties have similar expected amplitudes and no preferred location on the 
fault. As a consequence of the EPIC, ET2 induces larger correlation lengths near the trench (fault regions 
less constrained by the data), thus averaging slip over a wider region compared with T2. At the same time, 
T2 and ET2 posterior slip correlation lengths are comparable near the coast, thus averaging slip over simi-
larly sized regions for portions of the fault closer to the location of the observations.

5.2.  On the Use of Positivity Constraints

The EPIC is defined for the regularized linear least squares problem, in which no positivity constraints are 
used. Positivity constraints are physically justifiable and are commonly used in slip inversions. Thus, we 
would like to explore the feasibility of using the EPIC for such inversions. However, if one would use posi-
tivity constraints on, for instance, rake parallel slip, formula 14 for the EPIC is no longer valid as the inverse 
problem becomes (weakly) nonlinear. In this case, the statistics of the solution of the inverse problem are 
different as posterior marginal pdf's could be better approximated by a log-normal pdf, and formula 8 for 
the posterior covariance matrix of model parameters is also no longer valid. Nevertheless, for large ampli-
tude of slip estimates (very different from 0), the marginal pdf of the log-normal distribution representing 
parameters with positivity constraints could be locally approximated by a normal distribution. We use this 
simplification for expediency, but in the future it may be better to use a more elaborate approach to define 
the EPIC for the case in which positivity constraints are used. For such purpose, one could benefit from the 
approach of Nocquet (2018), in which nonnegativity constraints are introduced using a truncated multi-
variate normal prior distribution, deriving an efficient semi-analytical approach to compute posterior slip 
estimates and their marginal variances.

Making the aforementioned approximations, we tested ET2 regularization to invert for the Tohoku-Oki 
earthquake, using positivity constraints on rake parallel slip (see Figure 5). The slip models were selected 
with the L-curve criterion and have similar data misfit norm. In addition, due to the known caveats of such 
model class selection method (e.g., Fukuda & Johnson, 2008), in Text S13 we show slip models for several 
selected values of the regularization parameter across the L-curve. As a first observation, we see that the use 
of positivity constraints leads to more compact slip distributions. However, T2 regularization still induces 
peak slip at the trench. Instead, use of ET2 regularization with positivity constraints recovers slip distribu-
tions that are remarkably similar to smoothed versions of the unregularized co-seismic static slip distribu-
tion found by Minson et al. (2014). Particularly, ET2 and Minson et al. (2014) slip estimates infer the same 
location of maximum inferred slip (see slip envelopes in Figure 5). In contrast to T2 estimates, the spatial 
distribution of inferred slip using ET2 is very stable upon the choice of the regularization parameter value, 
varying mostly the degree of smoothness of the solution, but always representing a smoothed version of the 
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reference slip distribution. Moment magnitudes, for all considered values of the regularization parameters 
range from Mw 9.0 to Mw 9.1 for T2 and ET2 regularization. T2 regularization results in near-trench slip 
values close to those inferred by Minson et al. (2014). Such similarity might be a coincidence as synthetic 
tests show that T2 regularization tends to concentrate largest slip at the trench.

6.  Conclusions
Producing reliable estimates of the distributions of fault slip is a critical step to understand the physics 
controlling the behavior of faults throughout the seismic cycle. EPIC Tikhonov regularization produces 
robust slip estimates when considering stability, bias, and ease of uncertainty analysis of posterior model 
estimates. We also show an initial exploration of the use of EPIC Tikhonov regularization together with 
positivity constraints. Our preliminary tests are encouraging.

EPIC Tikhonov regularization is particularly useful for quasi-static slip inversions of slow motion at the 
fault, for example for estimating post-seismic slip, coupling (slip deficit) and slow slip events, in which 
only geodetic observations provide a spatially variable constraint on slip estimates. Sometimes, subduction 
megathrust slip models inferred using traditional least squares methodologies and constrained with far 
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Figure 5.  Slip distribution of the 2011 Tohoku-Oki (Mw 9.0) earthquake estimated using (a) T2 and (b) ET2 
regularization schemes with positivity constraints on rake parallel slip. (c) Slip estimated by Minson et al. (2014). Insets 
show moment magnitude, maximum and minimum value of the slip distribution. Panel (d) shows envelope of each slip 
distribution projected onto the profile (black line on slip maps). Vertical dashed line indicates location of maximum slip 
envelope for Minson et al. (2014). See Text S13 for further detail.
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onland data, present peak values of slip near the trench. Such behavior might be an artifact of the inversion 
scheme if slip is not well-constrained by appropriate observations. Based on our analyses, the proposed 
EPIC Tikhonov regularization seems to be free from such artifacts, as it sets maximum slip value close to 
its true location.

The examples in this work are focused on subduction zone environments because they are particularly 
challenging in terms of the spatially heterogeneous observations and their distance to fault elements. Nev-
ertheless, the proposed methodology is equally applicable to other environments, due to depth dependence 
of sensitivity to slip and spatially heterogeneous surface observations.

Additionally, while in this work we use a fine fault mesh with quasi-uniformly sized elements, the meth-
odology allows for spatially variably sized fault elements. Nevertheless, the largest fault elements must be 
small enough, as is required by our methodology. On one hand, having small fault elements minimizes the 
effects of stress concentrations resulting from using a piece-wise constant slip representation. Nevertheless, 
this problem could also be ameliorated using continuous basis functions representing slip. On the other 
hand, decreasing the size of fault patches allows for the selection of larger target posterior variances with 
feasible solutions for the EPIC. Therefore, the size of the fault mesh elements, will have an impact on the 
range of feasible target posterior variances (see Text S14).

Compared to other spatially variable regularization schemes, our approach is easily extendable to include 
seismic observations to perform kinematic slip inversions, as our approach achieves the spatially variable 
regularization using an arbitrary discretization of the considered fault geometry. Indeed, our approach can 
be applied to any ill-posed discrete linear inversion problem in which a second order Tikhonov smoothing 
constraint on finely discretized model parameters makes sense as prior information.

Data Availability Statement
Data sets for this research are included in this paper (and its supplementary information files): Minson 
et al. (2014). Python codes to solve the general linear least squares inversion problem using EPIC Tikhonov 
are available at https://doi.org/10.5281/zenodo.4922933, as well as in https://github.com/frortega/EPIC_LS.
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