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1 I N T RO D U C T I O N

We thank Dr Jim Savage for his interest in, and comment on, our
paper (Kanamori et al. 2019, hereafter referred to as KRL19), where
we showed that the commonly believed thrust-fault mechanism of
the 1960 Chilean earthquake (Mw = 9.5) is not compatible with tele-
seismic data (e.g. strain seismograms at Isabella, California, and Og-
densburg, New Jersey, and long-period seismograms at Pasadena,
California and Berkely, California) and suggested that dextral-slip
component comparable in amount to the dip-slip component is re-
quired. We did not test our model against the shear strain data in
Chile published in Plafker & Savage (1970). Savage (2021, here-
after referred to as S21) investigated whether the large dextral slip
is compatible with the observed shear strain data. He concluded that
the observed shear strain was very small, and provides no obvious
evidence for large dextral component. However, he also stated that
the absence of shear strain is not conclusive evidence of the absence
of dextral slip. In fact, using a 2-D model, he showed in his fig. 9
that models with strike-slip moment comparable to the thrust mo-
ment can fit the observed uplift and strain data well. However, he
noted that these models require remarkable balancing of contribu-
tions from the shallower (depths <∼70 km) and deeper strike-slip
components. Savage thinks that such near-perfect cancelling is un-
likely. Also, the distribution of the dextral slip shown in fig. 9 may
appear somewhat unrealistic because it is very different from that
of dip slip.

Savage’s comment includes insightful suggestions on how the
dextral-slip distribution affects the shear strain field, but does not
include specific criticisms on our analysis of seismic data. Since it
is more like a stand-alone paper elaborating on his earlier comment
(Jim Savage, written communication to HK, 2010) on the geodetic
data, here we extend Savage’s analysis to further explore slip models
compatible with geodetic, tsunami and seismic observations.

2 A C C E P TA B L E D E X T R A L - S L I P
M O D E L S

As Savage (2021) suggested, the key issue is to find acceptable
dextral-slip models that explain the observed shear strains γ 2 that

are nearly zero after the contribution from the dip-slip component
is removed (figs 2c and 3c of S21). Savage also demonstrated that
the problem can be essentially decoupled to two parts: ‘dip-slip,
uplift, γ 1’ problem and ‘dextral-slip, γ 2’ problem. Although this
decoupling is not perfect near the edge of a slip strip as shown by
fig. 2c of S21, the effect of dip slip on γ 2 is generally small. Thus, to
focus on the key issue, we simplify the problem to find dextral-slip
models with a given seismic moment M0 that yield γ 2 ≈ 0 at all the
sites within the uncertainties given by the red bars on fig. 3c of S21.

We use exactly the same model geometry (Fig. A1,
length = 1000 km, down-dip width = 300 km, strike = N10◦E,
dip = 20◦, divided into 12 along-strike strips; figs 1 and 2 of S21)
and symbols used by S21. We write the γ2 at the jth location by

γ2 j =
12∑

i=1

bi�
2
i j , j = 1, 2, . . . , 8, (1)

where �2
i j denote the values of γ2 at the jth location calculated for a

unit dextral slip on the ith strip, and bi is the amount of dextral slip
on the ith strip. We use the Okada’s (1985) code for computation of
�2

i j .
Referring to Savage’s (2021) preferred dip-slip model (fig. 3a of

S21: average slip = 6.92 m, M0 = 8.3 × 1022 Nm, and Mw = 9.2),
we first consider two reference models: (1) Model S 1: the best-fit
dextral-slip model (bi, i = 1, 2,. . . ,12) that yields γ2 j = 0 for all j.
This can be determined with the non-negative least-squares method
(NNLS; Lawson & Hanson 1974); (2) Model S 2: a dextral-slip
model with the same distribution as that of the Savage’s best-fit
thrust model given by fig. 3a of S21. The models and the slip dis-
tributions are given in Table 1 and Figs 1(a) and (b). Model S 1 is
similar to the one shown in a preliminary version of S21 (also
KRLm140 of fig. 9b of S21) and is perfectly acceptable with

RMS ≡
√

8∑
j=1

(γ2 j − γ
target
2 j )

2
/8 = 0.18 μ-strain, where γ

target
2 j are

the target values of γ2 j , 0 in our case (Figs 1a and b). However,
this model would appear tectonically unrealistic because its dis-
tribution is very different from that of the dip-slip model (fig. 3a
of S21). Nevertheless, it is useful because it clearly illustrates a
type of dextral-slip distribution that yields negligibly small γ 2 at all
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(a) (b)

(d)(c)

Figure 1. (a). Slip models Model S 1 (red) and Model S 2 (blue). (b). γ 2 for Model S 1 (red) and Model S 2 (blue) at sites A, B, C, D, E, F, G and H (locations
are shown in fig. 1 of S21). The vertical bars indicate the error bars taken from S21. RMS is given in the parentheses. (c) Slip models Model S 2 (blue),
Model S 3 (red) and Model S 4 (black). The correlation coefficient, Cr, is given in parentheses. (d). Same as (b), for Model S 2, Model S 3 and Model S 4.

the observation sites. It places almost the entire dextral slip in the
strip furthest from the sites where γ2s were measured. In contrast,
Model S 2 is tectonically more reasonable but the γ 2 misfits are
large (Figs 1a and b).

We explore a range of acceptable models starting from
Model S 2. Although the least-squares approach is useful to de-
termine the best-fit model, it is not necessarily the most suitable
for exploring a population of acceptable models. Here we use a
Monte Carlo approach similar to that used by Press (1968) to find
acceptable sets of Earth’s shear wave speed distribution that are
compatible with the normal-mode and surface wave data.

First, we give a shape of slip distribution, bi (i = 1, 2,. . . , 12), of
a test model and a range of slip from bi min to bi max on each strip.
We compute the slip by

bi = r (bi,max − bi,min) + bi,min, (2)

where r is an independent random number between 0 and 1 for each
realization and is given to each strip. The slip distribution is normal-
ized so that the average slip is always 6.92 m corresponding to the
moment of Model S-2. Then, we compute γ2 j by eq. (1), repeat it
N times while varying r, and compute the RMS. Here N is typically
108. We choose Model S 2 as a model to guide the Monte Carlo
search. We set the range bi max and bi min by adding 10 m to, and
subtracting 5 m from, bi of Model S 2, and use them in eq. (2). To
maintain the positivity, we set bi min = 0, if bi min < 0. The resulting
range is given in Table 1. Then, we perform the search described
above and take the average of the 10 best slip models with the least
RMS to obtain Model S 3 (Table 1, Figs 1c and d). Although the
RMS = 0.92 μ-strain for this model is considerably larger than that

of Model S 1, the misfit is small, almost indistinguishable from that
of Model S 1 as shown in Fig. 1(b). Thus, we consider Model S 3
acceptable. The correlation coefficient, Cr, between Model S 3 and
Model S 2 is 0.82. This means that the acceptable dextral-slip dis-
tribution is not very different from that of the dip-slip distribution.

We can iterate this procedure using Model S 3 as a guide, and
can find a model with even smaller RMS (RMS = 0.69 μ-strain),
but with a smaller Cr (Cr = 0.54). This model, Model S 4, is given
in Table 1 and Figs 1(c) and (d).

3 C O M PA R I S O N W I T H T H E I N V E R S I O N
R E S U LT S O F H O E T A L . ( 2 0 1 9 )

Ho et al. (2019) performed slip inversion of the 1960 Chilean earth-
quake using the uplift data from Plafker & Savage (1970) and
tsunami data. Fig. A1 shows the fault geometry used by Ho et
al. (2019). They obtained fault slip models with rake = 90◦, 110◦

and 140◦, which can explain the uplift and tsunami data. Since they
did not include the shear strain data published by Plafker Savage
(1970), here we compare the strains γ 1 and γ 2 computed for Ho
et al.’s (2019) models with the data. Fig. 2 shows the comparison.
It is interesting that the pure thrust model (rake = 90◦) can produce
non-zero (up to 20+ μ-strain) γ 2 probably due to the edge effect
mentioned earlier; it also explains well the spatial distribution of γ 2.
Thus, at face value, the pure thrust model is a perfectly acceptable
model. The model with rake = 110◦ is equally good. The fit of γ 2

deteriorates for the model with rake = 140◦. However, even for this
model the maximum misfit of γ 2 is relatively small, about 60 μ-
strain. Since the locations of A, B, C,. . . ., E are close to the eastern
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(a) (b)

(d) (e)

(c)

(f )

(g) (h) (i)

Figure 2. Uplift, strain γ 1 and strain γ 2 for the slip models of Ho et al. (2019). Left: rake = 90◦; middle: rake = 110◦; right: rake = 140◦. Panels (a)–(c) show
the complete set of uplift data given in Plafker & Savage (1970). Panels (d)–(f) show the uplift along the EW trending line shown in Plafker & Savage (1970)
for locations from #24 to #55. Panels (g)–(i) show the strains γ 1 and γ 2 at locations A, B, C, D, E, F, G and H.

(a) (b)

Figure 3. (a) Dextral-slip distributions for Model H 2D 2 (blue), Model H 2D 3 (red) and Model H 2D 4 (black). The correlation coefficient, Cr, is given in
parentheses. (b) γ 2 for the three models. RMS is given in the parentheses.
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Figure 4. Top: strain seismogram of the 1960 Chile earthquake recorded at Ogdensburg, New Jersey (modified from Alsop et al. 1961). Bottom: simulated
strain seismogram of the 2016 Chile earthquake computed from the horizontal seismograms recorded at HRV. Long-period surface waves G2 and R2 are shown
in the red box. The mechanism of the 2016 event is shown at the bottom right corner.

Table 1. Slip models and test range. Unit of slip = m, unit of RMS = μ-strain. Cr is the correlation
coefficient between Model S 2 and Model S 3, and between Model S 2 and Model S 4.

Strip # Model S 1 Model S 2 Range Model S 3 Model S 4

1 65.24 0 0–10 4.1 9.7
2 0 5 0–15 8.0 13.0
3 0 21 16–31 13.6 15.8
4 0 26 21–36 14.7 9.3
5 0 8 3–18 2.4 0.7
6 0 5 0–15 0.30 0.9
7 1.05 0 0–10 5.7 4.5
8 2.49 0 0–10 6.3 4.7
9 2.09 0 0–10 5.7 7.3
10 0 17 12–27 16.7 11.7
11 0 1.0 0–11 2.2 1.5
12 12.17 0.0 0 3.3 4.0

RMS = 0.18 RMS = 32 RMS = 0.92 RMS = 0.69
Cr = 1.0 Cr = 0.81 Cr = 0.54

border of the Ho et al.’s fault (Fig. A1), the cancellation effect is
small in this case; the remoteness of the high slip zone leads to the
observed low γ 2.

In the following we briefly discuss how we can further reduce this
misfit to an acceptable level. We do not attempt to perform inver-
sion to obtain another model. Such an attempt is beyond the scope
of this short reply, especially given the very underdetermined and
underconstrained situation because of the limited spatial coverage
of the data.

Since Ho et al.’s model has 436 slip patches, the Monte Carlo
approach is not practical or effective for such a large number of
unknowns. Hence, we simplify the problem by reducing the Ho
et al.’s slip model to a simple 2-D model like the Savage’s. We
also extend the fault plane downdip by adding 3 along-strike strips
(total of 15 strips, each 20 km wide) so that we have a total fault
width of 300 km, the same as Savage’s (Fig. A1). Then, we take
the average slip for each strip of Ho et al.’s model and assign it

to the 2-D model. The 2-D model has the same geometry (dip and
strike) and the moment as the Ho et al.’s model. The resulting 2-
D strip model for rake = 140◦ case (Model H 2D 2) is shown in
Table 2 and Fig. 3(a) (blue). For this model, RMS = 42.51 μ-strain
which is comparable to that for Model S 2. Then, we apply the same
Monte Carlo search as that used for the Savage model. The resulting
model (Model H 2D 3) is shown in Fig. 3(a) (red). For this model
RMS = 2.75 μ-strain and Cr = 0.79. Then, using Model H 2D 3
as a starting model, we iterate the search and obtain Model H 2D 4
[Table 2 and Fig. 3a (black)] for which RMS = 0.10 μ-strain and
Cr = 0.54. RMS is very small and the γ 2 misfit is almost 0. Thus,
we can show that with a relatively minor modification of the 2D
version of Ho et al.’s model with rake = 140◦ we can match the
γ 2 shear strain data without difficulty. Fig. 3(a) clearly shows the
nature of modification: reduce the dextral slip for strips in the updip
portion of the fault plane (especially strips #5, 6 and 7) and increase
the slip for strips in the downdip portion (strips #12, 13, 14 and
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Table 2. Slip models for the fault geometry of Ho et al. (2019), unit of
slip = m, unit of RMS = μ-strain.

Strip # Model H 2D 2 Model H 2D 3 Model H 2D 4

1 10.82 10.53 9.70
2 16.84 14.78 12.64
3 22.201 16.89 16.22
4 22.290 16.47 17.23
5 21.13 14.25 11.67
6 16.65 9.40 5.29
7 9.26 3.67 2.27
8 5.61 1.30 5.72
9 3.14 5.93 7.52
10 2.11 6.30 3.58
11 3.84 9.48 6.32
12 5.37 10.81 13.96
13 0. 6.93 11.85
14 0. 6.87 7.96
15 0. 5.74 7.42

RMS = 42.51 RMS = 2.75 RMS = 0.10
Cr = 0.79 Cr = 0.54

15). This is exactly the trend suggested by Savage (2021) from his
fig. 2(d).

This analysis could be extended to the original 3-D model of Ho
et al. (2019), but since the number of unknowns increases from 15
to 436, the problem becomes extremely underdetermined and non-
unique. Since all the strain measurements are in the northeastern end
of the rupture zone (Fig. A1), we can easily reduce γ 2 by placing
the dextral slip in the southern half of the fault plane, especially
southeastern end of the fault plane (Fig. A1). In this case, we do
not need to invoke the balancing effect of shallow and deep dextral
slips for reducing the shear strain. The final choice should be made
depending on whether the resulting slip distribution is tectonically
realistic or not.

Another interesting point here is that Fig. 2 shows that Ho et al.’s
models tend to slightly underpredict the uplift along the line from
240 to 270 km from the deformation front (Figs 2d–f). This misfit
can be reduced if we place about 10 m dip slip in the extended strips
#13 to #15. This amount is comparable to that of the dextral slips of
our Model H 2D 3 and Model H 2D 4. Such deep slips have been
suggested by Linde & Silver (1989) and Barrientos & Ward (1990).
Savage (2021) notes that such deep coseismic slip may be unreal-
istic because it has not been observed for other megathrust events.
However, recent observations have demonstrated that earthquakes
are all different in substantial ways.

4 F U RT H E R S E I S M O L O G I C A L
E V I D E N C E

The most important evidence for the dextral component documented
in KRL19 is from long-period strain records at Isabella and Ogdens-
burg, and long-period seismograms at Pasadena and Berkeley. Since
the availability of historical data is limited, it is desirable to find more
relevant seismic data. In this respect, the Mw 7.6 earthquake that
occurred on 2016 December 26 near the southern end of the 1960
Chilean earthquake rupture zone is important. The mechanism of
this event is almost pure thrust (Fig. 4). Thus, if the 1960 event was
a pure thrust, the 2016 event should produce similar seismograms to
those of the 1960 event. The Ogdensburg strain record (Alsop et al.
1961; fig. 7 in KRL19) is of particular interest. Although we do not
have a strain seismogram at Ogdensburg for the 2016 event, we can
simulate it from the seismograms recorded at nearby stations. As

Benioff (1935) showed, an extensional strain seismogram can be
approximately simulated by

∂ul

∂l
= −

(
cos(ψ)

C0

)
∂ul

∂t
, (3)

where l is the distance measured in the strain rod, ul is the dis-
placement in the direction of the strain rod, t is time, ∂ul

∂t is the
ground motion velocity, ψ is the azimuth of the strain rod measured
from the great circle path and C0 is the phase velocity of the wave
being looked at. Strictly speaking, the phase velocity is different
between the transverse wave (e.g. Love wave) and the longitudinal
wave (e.g. Rayleigh wave), but since the fundamental mode Love
and Rayleigh waves have approximately the same phase velocity
in the period range of our interest, we ignore the difference and
use C0= 5.5 km s−1. Long-period surface waves from the 2016
event were recorded at the station HRV. The epicentral distance
and azimuth of HRV (� = 85.6◦ and ϕ = 1.8◦) and Ogdensburg
(� = 84.5◦ and ϕ = 0.5◦) are similar. Fig. 4 compares the simu-
lated strain record for the 2016 event with the Ogdensburg strain
record of the 1960 event. The simulated record is low-pass filtered
at 0.005 Hz. The amplitude ratio of G2/R2 is very different between
the 1960 and 2016 events, providing evidence that the 1960 Chilean
earthquake and the 2016 event have very different mechanisms. A
similar comparison was made in KRL19, but we used synthetic
seismograms for comparison (fig. 7 of KRL19). Although the long-
wavelength Earth’s heterogeneity is included in the computation of
the synthetics, possible short-wavelength structural heterogeneities
could not be included. Thus, the use of actually recorded seis-
mograms of the 2016 event for comparison is more robust and
desirable.

5 C O N C LU S I O N

As Savage (2021) shows, a simple pure thrust model can explain
well the existing uplift and strain data. However, with the commonly
practiced criterion for the match of long-period seismic amplitudes,
such a model is not compatible with the strain data at Isabella
and Ogdensburg, and seismic data at Pasadena and Berkeley docu-
mented in KRL19. We can show that significant amounts of dextral
slip can be added to the dip-slip components of the models presented
by S21 and Ho et al. (2019) without violating the local shear strain
data. Because of the limited spatial coverage of the near-field data
and the limited amounts of teleseismic data, we cannot determine a
unique model, but we can find models that are compatible with all
the existing uplift, local strain, tsunami and teleseismic data. The
dip-slip part of the model can remain the same as those previously
established by Plafker & Savage (1970), Barrientos & Ward (1990),
Moreno et al. (2009) and Ho et al. (2019).

In this short reply, we did not consider possible dextral slips on
the Liquiñe-Ofqui Fault Zone (LOFZ). It would be interesting to
explore a range of plausible dextral-slip models for LOFZ, if we
have further geophysical motivation to investigate slip partitioning
at subduction zones (Kanamori & Rivera 2018).

Data accessibility. All the data used are published in Plafker &
Savage (1970) and Savage (2021). The waveform data used were
accessed from The Data Management System of the Incorporated
Research Institutions for Seismology (http://www.iris.edu/hq/).
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A P P E N D I X A :

Since the fault models used by Savage (2021) and Ho et al. (2019)
are slightly different, we show them schematically in Fig. A1, which
displays the horizontal projections of the fault plane on a map to-
gether with the locations, A, B, C, . . . , H, where the strain mea-
surements were made. The fault model used by Savage (red) is
a 1000 km × 300 km rectangular plane with a dip = 20◦ and
strike = N10◦E. It is divided into 12 along-strike strips each 25 km
wide. The southwestern corner is at 46.885◦S and 76.420◦W. The
model used by Ho et al. is not a simple plane. It is divided into 436
subfaults each having a different dip angle. Each subfault has an
area of approximately (0.248◦ latitude) × (0.248◦ longitude) which
varies considerably with latitude. Thus, the width of the fault is not
uniform. It is 233.0 km on the southern side and 266.4 km on the
northern side. The overall shape is defined by the Slab 1.0 plate
boundary model (Hayes et al. 2012). For the purpose of compari-
son with the Savage model, we added three along-strike strips each
20 km wide. The areas occupied by grey ‘+’s and circles indicate
the original fault plane of Ho et al. and the extended portion, respec-
tively. The horizontal projection of the overall shape of the extended
fault is shown in the figure (blue). We computed the coefficients �2

i j

using the exact subfault geometry used by Ho et al. (2019).
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Figure A1. Horizontal projection of the fault models used by Savage (2021) and Ho et al. (2019). The fault model used by Savage (red) is a 1000 km ×
300 km rectangular plane with a dip = 20◦ and strike = N10◦E. It is divided to 12 along-strike strips each 25 km wide. The southwestern corner is located at
46.885◦S and 76.420◦W. The model used by Ho et al. is not a simple plane. It is divided into 436 subfaults each having a different dip angle. Each subfault has
an area of approximately (0.248◦ latitude) × (0.248◦ longitude) which varies considerably with latitude. Thus, the width of the fault is not uniform, 233.0 km
on the southern side and 266.4 km on the northern side. For the purpose of comparison with the Savage model, three along-strike strips are added. The areas
occupied by grey ‘+’s and circles indicate the original fault plane of Ho et al. and the extended portion, respectively. The extended fault (blue) is divided to 15
along-strike strips, each about 20 km wide. A, B, C, . . . , H indicate the locations where the strain measurements were made.
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