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ABSTRACT

In the first two papers of this series (Rhea et al. 2020b; Rhea et al. 2021), we demonstrated the

dynamism of machine learning applied to optical spectral analysis by using neural networks to extract

kinematic parameters and emission-line ratios directly from the spectra observed by the SITELLE

instrument located at the Canada-France-Hawai’i Telescope. In this third installment, we develop a

framework using a convolutional neural network trained on synthetic spectra to determine the number

of line-of-sight components present in the SN3 filter (656–683nm) spectral range of SITELLE. We

compare this methodology to standard practice using Bayesian Inference. Our results demonstrate

that a neural network approach returns more accurate results and uses less computational resources

over a range of spectral resolutions. Furthermore, we apply the network to SITELLE observations

of the merging galaxy system NGC2207/IC2163. We find that the closest interacting sector and the
central regions of the galaxies are best characterized by two line-of-sight components while the outskirts

and spiral arms are well-constrained by a single component. Determining the number of resolvable

components is crucial in disentangling different galactic components in merging systems and properly

extracting their respective kinematics.

Keywords: Machine Learning; ISM; Galaxies; Resolved Emission Components

1. INTRODUCTION

Systems of merging galaxies are critical tracers of the

evolutionary history of the universe according to the well

accepted hierarchical model of galaxy formation (e.g.

Conselice 2014). Simulations and observations of inter-

Corresponding author: Carter L. Rhea

carter.rhea@umontreal.ca

acting systems and galaxy clusters reveal that the merg-

ing process is responsible for the creation of a significant

fraction of stars as well as modifying the distribution of

gas in galaxies and in the intergalactic medium of galaxy

clusters (e.g. Liu et al. 2016; Barnes 2002; Struck 2007);

the mergers are additionally responsible for starbursts

occuring after the merger (known as post-merger star-

bursts) which are phases of intense star formation (e.g.

Wild et al. 2009; Trouille et al. 2013). The rate and
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efficiency of the star formation activity vary in time all

throughout the merger process and depends on a wide

variety of collision parameters but is most importantly

related to the galaxies’ initial gas content (e.g. Barnes &

Hernquist 1996; Darg et al. 2010; Donzelli & Pastoriza

2000).

The evolution and kinematics of star forming gas in

merging systems can be observed in the optical and

near infrared wavelengths. Specifically, several opti-

cal lines are used as tracers of ionized gas associated

with star-forming regions and other emission line ob-

jects: Hαλ6563, and Hβλ4861, ionized oxygen (i.e.

[O ii]λλ3726, 3729, and [O iii]λλ4959, 5007), ionized ni-

trogen (i.e. [N ii]λλ6548, 6583), and ionized sulfur (i.e.

[S ii]λλ6716, 6731) (e.g. Osterbrock & Ferland 1989;

Shields 1990; Veilleux & Osterbrock 1987; the lines’

wavelengths are quoted in Angstroms). These strong

emission lines help identify excitation mechanisms and

chemical abundances present in the gas (Baldwin et al.

1981; Crawford et al. 1999; Kewley et al. 2001).

To measure the emission lines’ flux within a spectrum,

it is essential to fit the lines using the proper model

with parameters that allow to represent the intensities

in all spectral elements. Estimating the number of com-

ponents of each underlying emission lines (i.e. multi-

ple lines with multiple velocity components as would

be expected from merging galaxy systems) is also cru-

cial to extract meaningful information from the lines.

Standard methodologies require fitting both single and

double component models and computing their Bayes

factor, or approximating it using a proxy such as the

Akaike (or Bayesian) Information Criterion (AIC; Rhea

et al. 2020b). However, these methods are highly reliant

on the accuracy of the fits (e.g. Kieseppä 1997; Pooley

& Marion 2018). Several promising new methods have

been proposed utilizing machine learning algorithms to

solve this problem (Hampton et al. 2017; Keown et al.

2019; Rhea et al. 2020a). In particular, CLOVER, de-

veloped in Keown et al. (2019), uses a convolutional

neural network to classify high-resolution radio emission

lines as having either single or double underlying compo-

nents. In this paper, we expand upon this methodology

for medium resolution, Fourier Transform IFU spectra

taken by the SITELLE (Spectromètre Imageur à Trans-

formée de Fourier pour l’Etude en Long et en Large

de raies d’Emission) instrument at the Canada-France-

Hawai’i Telescope (Baril et al. 2016). Each SITELLE

observation contains approximately 4 million pixels and,

thus, produces 4 million spectra of a given resolution

set by the principal investigator (1 < R < 10, 000; Dris-

sen et al. 2014; Drissen et al. 2019; Martin & Drissen

2017). The instrumental line function of SITELLE is

described as a sinc model convolved with a Gaussian to

represent intrinsic line broadening which requires spe-

cial care during the fitting process (Martin et al. 2016).

Therefore, the development of machine learning appli-

cations for SITELLE demands special treatment of the

underlying emission profiles.

In this paper, we explore using a convolutional neural

network to classify extragalactic nebulae imaged with

SITELLE as having either a single underlying velocity

component or two. In § 2, we develop a synthetic set

of data, explain the conventional methods for determin-

ing the number of underlying components, and develop

a convolutional neural network architecture. In § 3, we

discuss the results of classifying the test set data us-

ing the AIC, Bayesian inference, and our convolutional

neural network (CNN). We compare the three method-

ologies, discuss applicability to other instruments, and

test out the algorithm on real SITELLE observations

of the merging galaxy system NGC2207/IC2163 in §4.

Concluding remarks are made in §5.

2. METHODOLOGY

In the first two articles of the series, Rhea et al.

(2020b) & Rhea et al. (2021), we explored the appli-

cation of convolutional and artificial neural networks to

calculate the kinematic parameters and flux ratios from

SITELLE spectra. In this paper, we employ a convolu-

tional neural network to determine the appropriate num-

ber of underlying emission components in [S ii]λ6717,

[S ii]λ6731, [N ii]λ6584, Hα(6563Å), and [N ii]λ6548. To

train the algorithm, we start by developing a set of syn-

thetic SITELLE spectra.

2.1. Synthetic Data

The synthetic data is created using the ORB – Outil

de Reduction Binoculaire – software package described

in Martin et al. (2016) and Martin et al. (2012). The

create cm1 lines model is used to create the follow-

ing emission lines: [S ii]λ6717, [S ii]λ6731, [N ii]λ6584,

Hα(6563Å), and [N ii]λ6548. We use these lines since

they are all present in the SN3 (651-685 nm) filter. ORB

creates synthetic spectra by taking the spectral resolu-

tion, line amplitude, line function, line broadening, and

velocity as user inputs. As in other papers, these spectra

are representative of those expected from the SIGNALS

(Star formation, Ionized Gas, and Nebular Abundances

Legacy Survey ; Rousseau-Nepton et al. 2019). We ran-

domly sample the resolution from a uniform distribu-

tion varying between R=4800 and R=5000; this vari-

ation mimics expected resolution variations within the

SITELLE field of view, that are observed in SITELLE

data cubes.
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The velocity value is randomly chosen from a uni-

form distribution between−500 km s−1 and 500 km s−1 ;

these values well encompass the typical rotation velocity

range for galaxies found in the SIGNALS program. Ad-

ditionally, we select the broadening from an uniform dis-

tribution between 5 km s−1 and 20 km s−1 . We selected

the lower limit since SITELLE cannot resolve broaden-

ing beneath this level (Rousseau-Nepton et al. 2019).

We note that shocks in the ISM are not being consid-

ered here – they would require an increase in the max-

imum broadening. We verified that the chosen lower

limit does not impact the classification process by test-

ing different lower bounds (3 km s−1 and 1 km s−1 ).

We selected 20 km s−1 since it is the expected upper

limit of dispersion in HII regions based onon previous

experience in SITELLE analysis (Rhea et al. 2020b).

Moreover, we randomly vary the signal-to-noise ratio

concerning the Hα emission between 5 and 30. We prop-

agate the noise to the other emission lines by adding it

to each spectral channel. The noise factor itself is sam-

pled from Gaussian with a sigma of 1. Therefore, each

spectrum has a different signal-to-noise ratio described

by a Gaussian centered between 5 and 30 with a sigma

of 1. The last feature required to create synthetic spec-

tra is the relative amplitude of the strong emission lines.

Following the methodology described in detail in Rhea

et al. (2020b), relative line amplitude of the HII regions

were sampled from the Mexican Million Models database

(3MdB; Morisset et al. 2015) BOND simulations (Asari

et al. 2016).

We created a set of 10,000 spectra with a single

component; therefore, there are five emission lines

present ([S ii]λ6717, [S ii]λ6731, [N ii]λ6584, Hα, and

[N ii]λ6548) with the same velocity and broadening val-

ues. An additional 10,000 spectra with two components

was also created; therefore, there are two sets of five

emission lines present with the same velocity and broad-

ening values within each set. Each set has a different

velocity and broadening value. The amplitudes for each

set come from different instances of the BOND simulations

from 3MdB. Thus, we have 20,000 spectra in total. Fol-

lowing standard procedure, we use 70% of the synthetic

data for the training set, 20% for the validation set, and

10% for the test set (e.g., Breiman 2001). We note that

individual lines may have different kinematics; however,

we do not consider this in our analysis for simplicity’s

sake.

2.2. Bayesian Inference

In the past decade, Bayesian statistics have become

house-hold tools for astronomers; Bayesian techniques

are used to study eclipsing exoplanet signals (Taaki et al.

2020; Ruffio et al. 2018), fitting spectra in order to ex-

tract model parameters (Sereno 2016; Sharma 2017),

and model comparison (Jenkins & Peacock 2011; Trotta

2007). In this section, we outline the mathematics be-

hind Bayesian inference, how it can be used to compare

models, and its practical implementations in python.

Bayesian inference is the process of uncovering under-

lying parameter distributions through the use of Bayes’

theorem. Bayes’ theorem states

P (ΘM |Y, I) =
P (Y |ΘM , I)× P (ΘM |I)

P (Y |I)
, (1)

where ΘM describes a set of model parameters for model

M , Y is the set of observed data, and I represents any

assumed information. The left-hand side of the equation

is known as the posterior distribution, and it describes

the probability distribution of model parameters given

the existing data. On the right-hand side, we have the

likelihood distribution, P (Y |ΘM , I), which describes the

distribution of the data given a set of model parameter

values, the prior distribution, P (ΘM , I), describing our

prior knowledge or believes regarding the distribution of

the model parameters, and the evidence, P (Y |I) or Z.

In many scenarios, Bayes’ theorem is rewritten as

P (ΘM |Y, I) ∝ P (Y |ΘM , I)× P (ΘM |I), (2)

where the evidence is ignored. However, in the case of

model comparison, we wish to calculate the Bayes factor,

which is defined as the ratio of the evidences calculated

using two distinct models. Therefore, the evidence must

be calculated; note that the evidence is defined as the

integral over all the likelihood multiplied by the prior

model parameters.

Z =

∫
θM∈ΘM

P (Y |ΘM , I)× P (ΘM |I)dθm. (3)

We write the Bayes’ factor, P (M |D), as

P (M |D) =
Z1

Z2
(4)

We adopt a standard Gaussian likelihood function of

the following form:

P (Y |MΘ, I) =
1√

2πσ0

exp
(−(Y − YM (MΘ))2

2σ2
0

)
(5)

where YM (MΘ) is the assumed model evaluated given

the model parameters MΘ and σ0 are the measurement

errors. For the sake of the calculations simplicity (dis-

cussed in §4.1), we employ a standard Gaussian to model

the emission line. The Gaussian has the following form:

YM (MΘ) = YM (A, x0, σ) = A exp
(−(x− x0)2

2σ2

)
(6)
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where A is the amplitude of the Gaussian, x is the wave-

length channel, x0 is the position of the line, and σ is the

width of the line. We emphasize that we calculate the

posteriors for the parameters MΘ = [A, x0, σ] in the case

of a single Gaussian model. We adopt linearly uniform

priors for all the fit parameters.

Unfortunately, the calculation of the evidence is ex-

ceptionally costly in high-dimensional spaces, and alter-

native methods to calculate the evidence are required.

Nested sampling is one of the most popular methods

for accurately and rapidly calculating the evidence (e.g.

Skilling 2006; Chopin & Robert 2010). We, therefore,

use the nested sampling code dynesty for our calcula-

tions (Speagle 2020). Since the calculations are compu-

tationally expensive, we explore a faster algorithm – a

convolutional neural network.

2.3. Convolutional Neural Networks

Neural networks, and their extension convolutional

neural networks, have been used extensively to solve as-

trophysical problems (e.g. Baron 2019; Davies et al.

2019; Aniyan & Thorat 2017; Kim & Brunner 2017).

Recently, convolutional neural networks have been

shown to be efficient at rapidly and accurately extract-

ing parameters from spectra (e.g. Fabbro et al. 2018;

O’Briain et al. 2021;Keown et al. 2019; Rhea et al.

2020b). For a detailed review of convolutional neural

networks, we direct the reader towards the following

works: Kuo (2016), Liu et al. (2016), Khan et al. (2020).

In particular, by interpreting model selection as a clas-

sification problem, neural networks with a softmax ac-

tivation on the last layer can be used as a substitute to

the reference Bayesian model selection approach, with a

substantial gain in computational complexity.

For this work, we adopt the structure of the network

STARNET developed in Fabbro et al. (2018) and used

in our previous work (Rhea et al. 2020b). We note that

the hyperparameters (i.e. filters) are tuned separately

and are thus different from those used in Fabbro et al.

(2018). The network is as follows:

1. Convolutional layer with 4 filters of 16 elements

activated with the relu function

2. Convolutional layer with 4 filters of 8 elements ac-

tivated with the relu function

3. Pooling layer with a size of 8 elements

4. Flattening Layer

5. 20% Dropout

6. Fully connected layer with 1000 nodes activated

with the relu function and regularized using `2
regularization

Hyper Parameter Value

Batch Number 2

`2 Regularization 5e−5

Optimizer Adam

Kernel Initializer Glorot Uniform

Max Epochs 25

7. 20% Dropout

8. Fully connected layer with 1000 nodes activated

with the relu function and regularized using `2
regularization

9. Fully connected output layer with two nodes acti-

vated with the softmax function

We note that the use of the softmax activation function

in the output layer not only generates a binary classifi-

cation but also assigns a probability of accuracy to the

classification.

Although we adopt the convolutional neural network,

STARNET, described in detail in Fabbro et al. 2018,

we apply a complete suite of hyper-parameter tuning.

Using the sklearn grid search implementation, we opti-

mized the number of convolutional kernels in each layer

(4 in both layers) and the length of each filter (16 el-

ements in the first layer and 8 elements in the second

layer. We also optimized the number of spectra fed into

the network at a time (i.e., the optimal batch size; we

found this to be 2 spectra), the best optimization algo-

rithm, Adam, the length of the convolutional pooling in

each layer, 8. These results are summarized in table 2.3.

Since the resolution is free to vary uniformly from

4800 to 5000 and the network requires inputs of a con-

stant size, we interpolate the spectra using linear cardi-

nal splines using a grid taken from a reference spectrum

with a resolution set to 5000. This does not affect the

fidelity of the spectrum.

3. RESULTS

In this section, we discuss the results of the Bayesian

inference and CNN algorithms. We use confusion matri-

ces to compare the efficiencies of the different method-

ologies. Confusion matrices compare the true catego-

rizations (Y-axis) with the predicted categorizations (X-

axis). A perfectly diagonal confusion matrix indicates

that the method accurately predicts the number of line-

of-sight components 100% of the time. Cross terms rep-

resent misclassifications. The values quoted are percent-

ages.

3.1. Bayesian Inference
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Figure 1. Confusion matrix for the Bayesian inference cal-
culations.

Following the procedure described in §2.2, we fit a sin-

gle Gaussian model and a double Gaussian model using

the dynesty implementation of static nested sampling

to the same test set used in the CNN calculations. We

fit only the Hα line in order to reduce the computational

cost (see §4.1 for a more detailed discussion on the reper-

cussions of this decision). We then used the reported

outputs to calculate the Bayes’ factor. The double com-

ponent model is considered favorable if the Bayes’ factor

is greater than 1.08 (this value was experimentally deter-

mined to return the best classifications1); otherwise, a

single component model is favorable. We used the static

nested sampling implementation over the more accurate

dynamic nested sampling implementation since the lat-

ter increased the computational costs by more than an

order of magnitude – this is further discussed in §4. The

results are shown in figure 1. We investigated the cases

in which a double component model was mistaken for

a single component model (approximately 15% of the

time) and discovered that the majority of misclassifi-

cations occurred when the absolute velocity difference

between the two components was less than 250 km s−1

(see the next subsection for further discussion).

3.2. Convolutional Neural Network

The convolutional neural network was trained and val-

idated using 70% and 20% of the synthetic data. At the

end of the process, the overall accuracy of the algorithm

was 93%. The mse (mean squared error) on both the

test and validation set is 0.44; this indicates that the

network is not over-fitting. Over-fitting occurs when the

network learns the test set too well and cannot general-

1 In order to determine the cutoff Bayes factor we varied the cutoff
from 1 to 5 in increments of 0.05 and calculated the f1-score given
the chosen factor. We then took the Bayes factor that returned
the best f1-score.

ize to other data (i.e., the validation or test set). The

confusion matrix for the test set (see figure 2) reveals

near-perfect precision in classifying single line-of-sight

component spectra. Moreover, the matrix demonstrates

that the network classifies double line-of-sight compo-

nent spectra accurately 90% of the time; the remaining

10% are misclassified as single components. We note

that this is less than the 95% accuracy of the Bayesian

methodology.

In order to establish that the network is not over-

fitting, we applied the standard k-fold cross-validation

with k = 10. Additionally, we applied a modified k-

fold cross-validation algorithm in which only the train-

ing and validation set are varied while the test set re-

mains consistent across all folds. The reported accuracy

of the model for each fold regardless of implementation

remained constant (less than 5% variation). This is a

strong indication that the network is not over-fitting,

and, thus, it can be generalized to unseen data.

Moreover, we examined the regimes in which the net-

work fails to predict the number of underlying compo-

nents accurately. In figure 3, we plot a histogram of the

absolute velocity difference for the test set spectra with

double line-of-sight components. The stacked histogram

shows that the incorrectly categorized spectra (rose) are

primarily clustered around absolute velocity differences

less than 250 km s−1 . This trend is expected since, at

these low absolute velocity differences, the components

are blended considerably. We show four spectra illus-

trating this issue in appendix A.

Figure 2. Confusion matrix for the convolutional neural
network described in §2.3.

3.3. Other Machine Learning Algorithms

In addition to using a convolutional neural network

to estimate the number of emission-line components,
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Figure 3. Absolute velocity difference vs number of in-
stances for mis-categorized spectra containing two underly-
ing components.

we tested another common machine learning algorithm

for binary classification problems: the random forest.

While random forests are themselves complex machine

learning algorithms, we do not discuss them in detail

here since the purpose of this section is to demonstrate

the efficacy of other machine learning algorithms to solve

our problem; instead we point the reader to (Breiman

2001) and the references therein. Although we test sev-

eral configurations for the random forest classifier, our

final classifier has a total of 50 independent estimators

(decision trees) with a maximum recursion depth of 5

levels. The split criterion is based on entropy calcula-

tions instead of gini calculations. As evidenced by fig-

ure 4, the random forest algorithm does not achieve the

same fidelity in categorization as the neural network.

Figure 4. Confusion matrix for the random forest classifier
tested in this work

4. DISCUSSION

4.1. Comparison of Methods

As evidenced by the confusion matrices shown in fig-

ures 1 and 2, the convolutional neural network outper-

forms the Bayesian inference classifications in the sin-

gle component case. Notably, the CNN slightly (3%)

under-performs the Bayesian Inference analysis for the

classification of double line-of-sight components. Since

the two methods were tested on the same set of data

(the CNN’s test set), the methodologies’ comparison is

unbiased with regards to the data they are tested on.

Although the Bayesian inference methodology returns

similar results to that of the CNN, the method takes two

orders of magnitude more computational time, render-

ing it impractical. The Bayesian method takes approx-

imately 200 hours to fit the test set, while the network

takes 45 minutes to train and approximately 1 second

to predict the test set. Additionally, the creation of

the synthetic data set takes approximately 20 minutes.

Therefore, the total time for the CNN is slightly over 1

hour.

Generally, Bayesian Inference sets a baseline for fit-

ting results; however, our results indicate that the CNN

is outperforming the Bayesian inference model estimates

for the single line-of-sight component scenario since it is

more accurate for single line-of-sight component clas-

sifications. We attribute this discrepancy to the chosen

calculation of the Bayesian evidence and the model used.

In order to reduce the number of parameters to a more

computationally manageable size, we only fit a Gaussian

(or two Gaussians) to the Hα component. In doing so,

we must marginalize over a 3 or 6 dimensional space, re-

spectively (there are 3 components used to describe each

Gaussian in the Bayesian approach). If we were to fit

all five lines, we would be required to marginalize over

a 15 or 30 dimensional space thus further increasing the

required computational time. Therefore, we emphasize

that the CNN is outperforming the Bayesian approach

only because the Bayesian approach is incomplete since

it does not fully treat the ILS of SITELLE nor does it

take into account every line present in the SN3 spectra.

We further note that a Bayesian approach taking into

account all lines and the proper ILS is not implemented

since it is too computationally expensive at this time.

We also note the work of González-Gaitán et al. (2019-

01-21) in which the authors use spatial information and

prior estimations on the spatial correlations to dras-

tically reduce the required computational time using

Bayesian methods. However, a direct comparison be-

tween our works is beyond the scope of this paper.

4.2. Differing Resolution

In order to port this methodology to observations that

are not part of the SIGNALS collaboration, we create
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an alternative test set at a different resolution. We se-

lect a resolution of 3000 to test the algorithm’s efficacy

on lower-resolution spectra. After creating a set of syn-

thetic data following the same procedure described in

section §2.1 with R ∼ 3000, we train, validate, and

test the algorithm on this lower-resolution set. Figure 5

demonstrates that the categorizations’ fidelity does not

change for single line-of-sight component spectra. At

the same time, the accuracy is reduced by 10% for dou-

ble line-of-sight component spectra. Additionally, we

followed the same procedure for R ∼ 1000 spectra; how-

ever, the network fails to achieve the same level of effi-

cacy due to the shallow resolution. We, therefore, do not

suggest using the network on spectra with a resolution

considerably lower than R ∼ 3000.

Figure 5. Confusion matrix for the convolutional neural
network applied to spectra with R ∼ 3000. The rows sum to
100 (unless there is a discrepancy due to rounding).

4.3. Application to More Components

Although we have only considered the problem as a

binary classification (i.e. either single or double compo-

nent) due to the constraints of the SIGNALS observing

campaign, it is possible that a spectrum can contain

more than two components. Therefore, we constructed

a set of 1,000 synthetic spectra comprised of three under-

lying emission components following the same method-

ology as outlined in §2.1. We then apply our network

to the spectra. Figure 6 demonstrates that the network

classifies the majority (∼95%) of the three-component

spectra as having two components. Therefore, we sug-

gest the following interpretation if a region is suspected

to have more than two components: a classification as

two components should be considered as at least two

components. These results are similar to those found in

Rhea et al. 2020a.

Figure 6. Histogram portraying the number of instances the
network classified a spectrum containing three underlying
emission components as only have one or two components.
There were a total of 51 spectra classified as having only
a single component while the remaining 949 spectra were
classified as having two spectra.

4.4. Application to Real SITELLE Observations

In order to demonstrate the utility of this method-

ology, it is applied to actual SITELLE observations at

R∼3000 of the interacting pair of spiral galaxies NGC

2207 and IC 2163 (P.I. R. Pierre Martin). This system

(D = 35 Mpc) is undergoing a grazing collision and has

been studied from X-rays to cm wavelengths (e.g. Kauf-

man et al. 2012; Elmegreen et al. 2017). The closest in-

teraction of both galaxies is estimated to have happened

200–400 Myr ago (Kaufman et al. 2012) and, according

to models, both galaxies are expected to merge in the fu-

ture (Struck 2007). SITELLE observations cover the en-

tire interaction, including zones not severely affected by

the collision, tidal tails, and the zone of closest proximity

between both galaxies. Therefore, this target presents

an ideal test-bed for our algorithm. We note that no

R ∼ 5000 SITELLE observations of merging galaxies

exist at the time of writing this paper.

In addition to applying the neural network to the

SITELLE data cube, we obtain a deep image of the

SITELLE cube using ORCS. The deep image is a 2d,

stacked representation of the 3d data cube (i.e., the

spectral information is compressed to a single pixel).

The neural network returns a map of the galaxy where

each pixel is designated as having either a single or

double component. A comparison of these maps (the

component map and the deep image) is shown in figure

7. The component map reveals several interesting fea-

tures: double components in the bulges of each spiral

galaxy, the double component emission in the current

closest proximity zone (green circle), and single compo-

nent emission in the spiral arms. Additionally, the com-
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Figure 7. Left: Deep SITELLE image of the N2207/IC2163 system created with ORCS. This panel shows the stacked
optical emission in the component galaxies. The colors (from blue to yellow) indicate the integrated flux in a spaxel. Several
structures such as the spiral arms, bulges, tidal tails, and diffuse emission regions stand out. Right: Component map for the
NGC2207/IC2163 system. White pixels correspond to double component emission. Black pixels correspond to single component
emission. The green circle highlights the mixing region while the magenta circles highlight diffuse regions.

ponent map classifies diffuse regions (indicated in ma-

genta circles) as single component emission regions. We

note that the HII regions in the center of each galaxy are

also categorized by double component emission. These

findings are consistent with the literature (i.e. Soto

et al. 2012). Since we use a softmax activation func-

tion in the final layer of the network, we also obtain

probability maps. These maps in general can be used

to make probability cuts reflecting regions for which the

network is sure of its classification. We discuss this in

more detail in the appendix C. We hypothesize that

since the bulges are being classified with a high proba-

bility as having two components these regions have at

least two components; this is consistent with our find-

ings in §6. These results indicate that the network’s

classifications should be accepted cautiously for regions

which are heavily contaminated by astrophysical pro-

cesses such as AGN or a bright stellar component. In

regions that correspond to the deep image background

(i.e., not part of either galaxy in the system), the com-

ponent map is noisy. This indicates that the component

map is reliable only for regions of sufficient flux – which

is expected. We stress that we do not expect to be able

to resolve more than two emission-line components given

the resolution of SIGNALS SN3 observations (R∼5000)

and the distance to the objects. Expanding the network

to be a multi-component classifier is a viable avenue for

future research.

4.5. Scientific Implications

Determining the number of resolvable line-of-sight

components in galaxy spectra carries several important

scientific implications. In situations where two line of

sight components are present and resolvable, it is im-

portant to fit both lines separately instead of treating

the emission as a single component for several reasons.

Distinguishing a region of multiple component line-of-

sight emission from a large blended region will allow for

the correct characterization of thermal broadening in

H ii regions which will help untangle the reaction of the

gas to the ionizing source. Moreover, if the two compo-

nents have considerably distinct kinematic parameters

(velocity and broadening), treating the emission as a

single component will lead to a misclassification of the

kinematics of the region which can lead to incorrect in-

terpretations of the star forming mechanisms present. In

effect, a misunderstanding of the number of resolvable

line-of-sight components present will lead to a misrepre-

sentation of the underlying physics.

Additionally, mapping out regions in which two line-

of-sight components is crucial in disentangling galaxy

systems undergoing a merger. In doing so, the kinemat-

ics of the component galaxies can be studied; moreover,

treating each galaxy’s emission separately leads to more

accurate calculations of the emission line fluxes. This

is crucial for understanding the underlying ionization

mechanisms at play in mixing regions of merger systems

(e.g., Baldwin et al. 1981; Kewley et al. 2001; Kewley

et al. 2019; Rich et al. 2015). Furthermore, by applying

the networks developed in Rhea et al. (2020b) and Rhea

et al. (2021) to the appropriate regions, kinematic pa-

rameters and emission-line ratios can be recovered. The

authors note that those networks function only for a sin-

gle component spectrum; future work will demonstrate

their extension to double component spectra.
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4.6. Prospects of application in other instruments

Although we focus on SITELLE data cubes in this ar-

ticle, the methodology described herein can be readily

ported to any other high-resolution integral field unit

that has access to the [N ii] doublet, the [S ii] doublet,

and Hα emission lines such as the Multi Unit Spectro-

scopic Explorer, MUSE (e.g., Bacon et al. 2010; Kreckel

et al. 2019; Kreckel et al. 2020; Foster et al. 2020). When

applying this methodology to other instruments, it is es-

sential to repeat the creation of synthetic data and net-

work training, validation, and testing if the instrumental

response function is not a sincgauss.

5. CONCLUSIONS

Machine learning algorithms present a novel approach

for spectral analysis. In the first two papers of this se-

ries, we demonstrated the efficacy of convolutional and

traditional neural networks at extracting kinematic pa-

rameters and emission-line flux ratios from SITELLE

spectra (Rhea et al. 2020b; Rhea et al. 2021). In this

paper, the third of the series, we develop a convolu-

tional neural network to classify spectra as having either

a single or double line-of-sight component. This sys-

tematic method will be critical for disentangling com-

ponents in merger systems, HII regions, and super-

nova remnants. We demonstrate that the network out-

performs Bayesian inference model comparisons in the

single-component case and recovers similar accuracy in

the double-component case. Moreover, the computa-

tional costs associated with the CNN training and sub-

sequent application are several of orders of magnitude

lower than the cost of the full Bayesian approach. In

order to demonstrate the applicability of this network

to real SITELLE data, we apply the network to ac-

tual SITELLE observations of the merging galaxy sys-

tem NGC2207/IC2163. We find that the central regions

of the individual galaxies and the closest proximity re-

gion are best categorized by double components. At the

same time, the spiral arms and diffuse emission on the

outskirts are best described by single component emis-

sion. The code can be found, along with code from the

previous papers, at https://github.com/sitelle-signals/

Pamplemousse.
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de Amparo á Pesquisa e Inovação de Santa Catarina

(FAPESC) and Conselho Nacional de Desenvolvimento

Cient́ıfico e Tecnológico (CNPq). We thank the anony-

mous referee for their insightful comments.

Software: python (Van Rossum & Drake 2009),

numpy (van der Walt et al. 2011), scipy (Virtanen

et al. 2020), matplotlib (Hunter 2007), pandas (McK-

inney 2010), seaborn (Waskom et al. 2017), (Robitaille

et al. 2013), tensorflow (Abadi et al. 2015), keras (Chollet

2015) .

https://github.com/sitelle-signals/Pamplemousse
https://github.com/sitelle-signals/Pamplemousse


10

(a) Correctly classified double component spectrum with an absolute
velocity difference of 85km s−1

(b) Correctly classified double component spectrum with an absolute
velocity difference of 500km s−1

(c) Incorrectly classified double component spectrum with an
absolute velocity difference of 146km s−1

(d) Incorrectly classified double component spectrum with an
absolute velocity difference of 465km s−1

Figure 8.

APPENDIX

A. ILLUSTRATIVE SPECTRA

In this section we show four spectra which illlustrate correct classifications and misclassifications for double compo-

nent spectra. We further divide the spectra by the absolute velocity difference of their components; we use 250 km s−1

as the divider. The top row images (a and b) are spectra with two components that were correctly categorized while

the bottom row images (c and d) are spectra with two components that were incorrectly categorized. Similarly, the

left images (a and c) contain components with an absolute velocity difference less than 250 km s−1 while the right

images (b and d) contain components with an absolute velocity difference greater than 250 km s−1 .

B. CORNER PLOTS FROM DYNESTY

In this section we show the corner plots for a spectrum with two emission-line components assuming a likelihood

with only a single Gaussian and a likelihood with two Gaussians.
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Figure 9. Corner plot from dynesty for the case of a spectrum with two underlying emission-line components modeled with a
single Gaussian.

C. NGC 2207 CLASSIFICATION PROBABILITY MAP

As mentioned, we obtain a probability of the classification being correct along with the classification. Since this is

a binary problem, the probabilities are bound between 0.5 and 1.0. As we see in the figure below (11), the regions

of lower surface brightness and spiral arms are classified with a probability generally between 0.85 and 0.9; on the

contrary, the bulges are classified with 100% probability. A classification probability of 100% is unrealistic; however,

we demonstrated in § 4.3 that spectra more complicated than having a simple single or double emission component are

classified as having two components. This likely indicates that the bulge regions are extremely complicated and may

need more than two emission components to accurately model. Although a detailed analysis of this is beyond the scope

of the paper, the collaboration is studying the bulges of galaxies in the process of a merger in more detail. Importantly,

the probabilities vary considerably in regions with low signal-to-noise ratios. Therefore, we suggest masking out these

areas when using the network’s results for subsequent spectral analysis.



12

Figure 10. Corner plot from dynesty for the case of a spectrum with two underlying emission-line components modeled with
two Gaussians.
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