Geophysics of terrestrial impact structures:
new data and modeling

Quesnel Y., Lambert P., Dellai N., Rochette P., Uehara M.,
Gattacceca J., Demory F., Munschy M., Le Maire P., Sailhac P.,
Lofi J., Champollion C., Osinski G.
Impact studies?

Mass extinctions...and Recovery of life (with different species)!

Source of early life development?

Economic interest (ore minerals)

Planetology

Geological heritage
Geophysics?

- can reveal buried and/or altered craters
- can remotely detect syn- and post-impact processes, like hydrothermalism
- signals can be compared to similar signals over planetary surfaces
Geophysics?

- density contrasts → gravimetric anomalies
- magnetization contrasts → magnetic anomalies
- electrical conductivity contrasts → electrical anomalies
Terrestrial impact craters

~208 confirmed

Tunnunik

Rochechouart

Chicxulub

: in this study
Tunnunik

Diameter: ~25 km
Age: ~480 Ma
Type: complex
Target: sedimentary cover

~10 to 15 km / day in 2.5 weeks
Tunnunik

Correlation with ‘shatter cones’ area

Today: fractured zone of ~1 km thickness → how large was the erosion?

2D numerical model constrained by mag/gravi data + sample analyses

Quesnel et al., M&PS, 2020
Rochechouart

Diameter: ~23 km
Age: 205 Ma
Type: complex
Target: crystalline

- Lateral extent of drilled formations?
- Diameter?
- Crater floor?
Rochechouart

Drilling campaign in 2017
More than 510 m of cores!
All impactite lithologies observed in Rochechouart
Rochechouart

- Correlation between stratigraphic log and resistivity layers
- Melt-rich suevite layer - on top of topography - stores groundwater
- Suevite/gneiss and MR/MP suevite contacts are not flat (at local scale)

Quesnel et al., GGG, 2021
Conclusions

Impact Craters/structures

- concern many (all?) geoscientific topics
- ground truth for planetological studies
- 1 in France!

Geophysics

- powerful because of erosion/burial
- potential-field methods: anomalies...or not..but in all cases we must explain: due to target lithology? impactor size? erosion? post-impact hydrothermalism? → modeling (with constraints from samples)
Impact?

Impact at cosmic velocity

\(V > 11 \text{ km/s} \)

Increasing Crater Diameter

- **Pit**
 - 10 um
- **Simple crater**
 - Moltke (1 km)
- **Complex crater**
 - Euler (28 km)
- **Peak ring basin**
 - Schrödinger (320 km)
- **Multi-ring basin**
 - Orientale (970 km)

[Diagram showing various stages of crater formation and the resulting features such as fractured and brecciated target rocks, shocked target rocks, and impact melt rocks and breccias.]
Haughton

Diameter: 23 km
Age: 24 Ma
Type: complex
Target: 1.8 km sedimentary cover

Magnetization source?
Haughton

2013: local study + drilling

Predicted by modeling Quesnel et al., 2013

Impactite "anormale" : ~0.2
F2

Impactite "normale" : ~0.04
F3

Post-impact hydrothermal alteration

Zylberman et al., MAPS, 2017
Annex Haughton

Core samples showing anomalous magnetization with hydrothermal alteration

Post-impact hydrothermalism, and erosion, and accumulation

Zylberman et al., MAPS, 2017
Ground magnetic field survey at high spatial resolution (0.5 m) + ERT line

Intense magnetic anomalies are observed → suevite/gneiss contacts?

→ confirms gneiss/suevites geological contacts in this area

Rochechouart

Model resistivity with topography
Elevation: iteration 7, abs. error = 4.2

Mag mapping

NNE

Suevites

Gneiss quarry

SSW

U1-Melt bearing lithic breccia

U2-Gneiss, fractured

SC4

0 m

10 m

187 m

180 m-Crater floor

176.5 m

Severe alteration
Vesicles
Schliren, red matrix
Microgranite