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Abstract

During the last years, several card-based Zero-Knowledge Proof (ZKP)
protocols for Nikoli’s puzzles have been designed. Although there are
relatively simple card-based ZKP protocols for a number of puzzles,
such as Sudoku and Kakuro, some puzzles face difficulties in designing
simple protocols. For example, Slitherlink requires novel and elabo-
rate techniques to construct a protocol. In this study, we focus on
three Nikoli puzzles: Nurikabe, Hitori, and Heyawake. To date, no card-
based ZKP protocol for these puzzles has been developed, partially
because they have a relatively tricky rule that colored cells should
form a connected area (namely, a polyomino); this rule, sometimes
referred to as “Bundan-kin” (in Japanese), complicates the puzzles, as
well as facilitating difficulties in designing card-based ZKP protocols.

*An earlier version of this paper was presented at the 17th Conference on Com-
putability in Europe, CiE 2021, Virtual Event, Ghent, July 5-9, 2021, and appeared
in Proc. CiE 2021, Vol. 12813 of LNCS, pp. 373-384, 2021 [22].
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We address this challenging task and propose a method for verify-
ing the connectivity of hidden colored cells in a ZKP manner, such
that we construct card-based ZKP protocols for the three puzzles.

Keywords: Zero-knowledge proofs, Card-based secure two-party protocols,
Puzzle, Nurikabe, Hitori, Heyawake, Connectivity

1 Introduction

Zero-Knowledge Proofs (ZKP) were introduced by Goldwasser et al. [8]. This
protocol involves two parties: a prover P and a verifier V. The prover P
attempts to convince the verifier V' that P possesses the solution s of a prob-
lem, without revealing any information about s. A ZKP protocol must satisfy
the following three properties:

Completeness. If P knows the solution s, then P can convince V.

Soundness. If P does not know s, then P cannot convince V.
Zero-Knowledge. V' learns nothing about s. Formally, simulated and actual
protocol outputs follow the same probability distribution.

It was proven that for any NP-complete problem, there exists an interac-
tive ZKP protocol [6]. Usually, ZKP protocols are executed on computers. In
contrast, a physical ZKP protocol solely adopts physical algorithms with daily
objects such as cards, envelopes, and bags, while prohibiting large computa-
tions (i.e., no computer is allowed). In 2009, the first physical ZKP protocol
was introduced for Sudoku [9], which is the most famous Nikoli* puzzle. Subse-
quently, efficient physical ZKP protocols for pencil puzzles have been proposed:
Sudoku [25, 29], Nonogram [3, 24], Akari [1], Takuzu [1, 17], Kakuro [1, 16],
Kenken [1], Makaro [2], Norinori [5], Slitherlink [15], Juosan [17], Suguru [23],
Ripple Effect [27], Numberlink [26], Bridges [28], and Cryptarithmetic [13]. All
these physical protocols employ a deck of cards as physical objects. Hence, we
call such a protocol a card-based ZKP protocol hereinafter.

In this study, we address three other Nikoli puzzles: Nurikabe, Hitori, and
Heyawake', with a common rule. Examples of their cases and solutions are
illustrated in Figures 1, 2, and 3. The common rule is about a geometric
structure that requires white cells (in a solution) to form a connected area,
namely, a polyomino. This rule, sometimes referred to as “Bundan-kin” (in
Japanese), complicates the puzzles, and causes difficulties in designing simple
card-based ZKP protocols.

*Nikoli is a game publisher famously known for its Sudoku puzzle as well as several other pencil
puzzles.

‘\Solving these three puzzles is proved to be NP-complete. In [12], solving even simple versions of
Nurikabe was proven to be NP-complete. In [10], the authors proved that Hitori is NP-complete.
In [11], solving a Heyawake puzzle is proved to be NP-complete.
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Connectivity constraint

Let us discuss this rule in a ZKP approach. Assume that a prover P has
a polyomino in mind comprising white cells (as illustrated in the solutions
in Figures 1, 2, and 3), which we call a white-polyomino, on a grid, while a
verifier solely knows the grid. The prover P attempts to convince the verifier
V' that P knows the white-polyomino without revealing it. Accordingly, a
novel technique is required, as demonstrated later. Hereinafter, we refer to this
common rule as the connectivity constraint.

Contributions

In this study, we construct card-based ZKP protocols for Nurikabe, Hitori, and
Heyawake. To achieve this, we present a generic method to address the connec-
tivity constraint. Specifically, after introducing some of the known techniques
in Section 2, we present the generic method to verify the connectivity con-
straint, together with a simple observation. Then, using the generic method,
we construct card-based ZKP protocols for Nurikabe, Hitori, and Heyawake in
Sections 4, 5, and 6, respectively. Finally, the paper is concluded in Section 7.

One might think that physical ZKP protocols for these three puzzles
could be constructed by transforming a known physical ZKP protocol for
an NP-complete problem, such as a lockable-box-based ZKP protocol for 3-
Colorability [7]; however, such a transformation is infeasible because 1) the
overhead must be included in the transformation, 2) it is challenging to con-
struct a method for transforming an instance of a puzzle into a graph whose
3-colorability respects the solvability of the puzzlet, and 3) the transformed
ZKP protocol does not capture the property of a puzzle. Therefore, we want to
develop a direct (and specialized) card-based ZKP protocol for each of them.

This study is inspired by [15], which focused on Slitherlink and Masyu,
where P has to convince V of a single loop property. We follow a similar
strategy to [15]. That is, P first colors cells successively, such that the resulting
cells are guaranteed to satisfy the connectivity constraint; then, V' verifies all
the remaining constraints. We note that the proposed protocols could not be
constructed by simply adopting the existing technique [15].

An earlier version of this paper was presented and appeared as a conference
paper [22]. The primary difference between the two is as follows. First, we
have provided a generic method to address pencil puzzles with the connectivity
constraint, including the idea behind our method in Section 3. Second, we have
added Section 6 to present a card-based ZKP protocol for Heyawake using the
generic method (whereas the conference paper solely handled Nurikabe and
Hitori). Third, Sections 4.3 and 5.3 have been enhanced to provide full security
proofs (whereas the conference paper just provided sketches).

iConversely, transforming a graph into a pencil puzzle has already been proposed as in the
NP-completeness proof [12].
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Fig. 2 Initial Hitori grid on the left and its solution on the right.

Nurikabe’s rule

This puzzle® is played on a rectangular grid, where some cells contain numbers
(Figure 1). The objective is to color some cellsY in black, such that the following
conditions are met:

1.

2.
3.
4.

Each numbered cell identifies the number of continuous black cells (sep-
arated by white cells). This region comprising black cells is called an
island.

An island must contain only one numbered cell.

The white cells form a white-polyomino (called a sea).

The sea cannot form a 2 x 2 area.

Hitori’s rule

This puzzle! comprises a grid and numbers where each cell contains a single
number, as demonstrated in Figure 2. The objective is to color some cells in
black, with the following constraints:

1.

Each row and each column must contain only one occurrence of a number
(on white cells).

. Two black cells cannot share a side; however, they can share a corner

vertex.
The numbered cells (white cells) must form a white-polyomino.

Shttps://www.nikoli.co.jp/en/puzzles/nurikabe.html.
The original puzzle has colors white and black exchanged; we choose to reverse them for
coherence with regard to the other puzzles, i.e., Hitori and Heyawake.
Ihttps://www.nikoli.co.jp/en/puzzles/hitori.html.


https://www.nikoli.co.jp/en/puzzles/nurikabe.html
https://www.nikoli.co.jp/en/puzzles/hitori.html
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Fig. 3 Initial Heyawake grid on the left and its solution on the right.

Heyawake’s rule

This puzzle* (as illustrated in Figure 3) is a grid comprising white cells and
numbered cells. The grid is delimited by regions called rooms. The objective
is to color some cells in black with the following constraints:
1. Each room with a number has the corresponding number of black cells in
it. A room with no number can have any number of black cells.
2. Two black cells cannot share a side; however, they can share a corner
vertex.
3. The white cells must form a white-polyomino.
4. White cells cannot stretch across more than two rooms in a straight line.

2 Preliminaries

In this section, we introduce some card and shuffle notations, and explain some
of the existing card-based sub-protocols adopted in our constructions later.

Card

In our protocols, a deck of cards comprises clubs [&][&] - - -, hearts [O]D] - - -,
and number cards ---, whose backs are identical [7]. We encode three
colors {black, white, red} with the order of two cards as follows:

[®]Q] — black, [O]#] — white, [Q[Q] — red. (1)

We call a pair of face-down cards corresponding to a color according to
the above encoding rule a commitment to the respective color. We also use
the terms, black commitment, white commitment, and red commitment. We
sometimes regard black and white commitments as bit values, based on the

following encoding;:
[S][O] = 0, [D]&] — 1. (2)

**https://www.nikoli.co.jp/en/puzzles/heyawake.html.



https://www.nikoli.co.jp/en/puzzles/heyawake.html
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For a bit z € {0, 1}, if a pair of face-down cards satisfies the encoding (2), we
say that it is a commitment to x, denoted by

HHE
——
Pile-shifting shuffle [20, 30]
This shuffling action means to cyclically shuffle piles of cards. More for-

mally, given m piles, each of which consists of the same number of face-down
cards, denoted by (py,Pss---,DP.m), applying a pile-shifting shuffle (denoted

by <|| o ||>)7 results in (ps-l-lvps-i-2a ce 7ps+fm):
< HiE | e > H |||| |||| - 2]
~—~ ~—~ S~~~
S P2 p&H Ps+2 Psim

where s is uniformly and randomly selected from Z/mZ. Implementing a pile-
shifting shuffle is simple: we adopt physical cases that can store a pile of cards,
such as boxes and envelopes. Here, a player (or players) cyclically shuffles them
manually until everyone (i.e., P and V') loses track of the offset. Note that
“everyone” is an essential assumption for security.

Chosen pile protocol [5]

This protocol is an extended version of the “chosen pile cut” proposed in [14].
This protocol allows a prover P and a verifier V to obtain a pile of cards P
chose from multiple piles, without V' knowing which one it is. Some operations
can be manipulated on this pile, and all the piles, including this pile, can be
replaced in their initial order.

Precisely, given m piles (py,Ps,---;P,,) With 2m additional cards, the
chosen pile protocol enables P and V' to obtain the i-th pile p; P chose (without
revealing the index 4) and reverts the sequence of m piles to their original order
after applying other operations to p;.

1. Using m — 1 @s and one @, P places m face-down cards (denoted by
row 2) below the given piles, such that only the i-th card is @ We
further position m cards (denoted by row &) below the cards, such that
only the first card is [Q]:

l el El el el E

\/ \/\/\/ v
P1 Pi-1 Pi Pit1 P
70
- ¢ row 3.
Q? -Ya oY- o?c ‘Yo

2. Considering the cards in the same column as a pile, apply a pile-shifting
shuffle to the sequence of piles.
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3. Reveal all the cards in row 2. Consequently, exactly one @ appears, and
the pile above the revealed @ is the i-th pile (hence, P can obtain p;).
After this step is invoked, other operations are applied to the chosen pile.
Then, the chosen pile is reverted back to the i-th position in the sequence.

4. Remove the revealed cards, i.e., the cards in row 2. (Note that we do not
use the card @ revealed in Step 3.) Subsequently, apply a pile-shifting
shuffle.

5. Reveal all the cards in row 3. Consequently, one @ appears, and the pile
above the revealed @ is p;. Therefore, by shifting the sequence of piles
(such that p; becomes the leftmost pile in the sequence), we can obtain
a sequence of piles whose order is the same as the original one without
revealing any information about the order of the input sequence.

Input-preserving five-card trick [17]

Given two commitments to a,b € {0,1} based on the encoding rule (2), this
sub-protocol [4, 17] reveals only the value of a V b and restores commitments

to a and b:
— aVvb& [2]?][2]7];
| g —

a b a b
the original sub-protocol [4, 17] was designed to compute AND (aAb); however,
we adjust it to compute OR (a V b) in Sections 5 and 6.
The sub-protocol proceeds as follows.
1. Add helping cards and swap the two cards of the commitment to b to
obtain the negation b, as follows:

2] [2]2] = [22] O] [2]2] [O] &[] S]]
—— =~ —_— T =~

a b a b

2. Rearrange the sequence of cards and turn over the face-up cards as:

22O 2 2][O]s]s]s]&] = [2]2]O]?7]?] = [2]?]?]?
Qo] o] e o 202027

3. Regarding cards in the same column as a pile, apply a pile-shifting shuffle

to the sequence:
< ‘

4. Reveal all the cards in the first row.

(a) If the resulting sequence is [&[&[D[D[P] (up to cyclic shifts), then
aVb=0.

(b) If it is [O] &[] &[] (up to cyclic shifts), then a A b= 1.

5. After turning over all the face-up cards, apply a pile-shifting shuffle.

’ > _, I
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6. Reveal the two cards in the second row; then, the revealed cards should
include exactly one [Q].

7. Shift the sequence of piles, such that the revealed @ is the leftmost card,
and swap the two cards of the commitment to b, to restore commitments
to a and b.

3 How to Form a White Polyomino

In this section, we present a generic method to support constructions of a card-
based ZKP protocol for a pencil puzzle with the connectivity constraint, i.e.,
white cells must form a white-polyomino. Using our method, we construct card-
based ZKP protocols for our targets, i.e., Nurikabe, Hitori, and Heyawake, in
Sections 4, 5, and 6, respectively.

3.1 Idea

The idea behind our novel technique emerges from a simple observation. Sup-
pose that we are given a rectangle grid where only one cell is white and the
remaining cells are black. We will change the color of a black cell to white suc-
cessively, as follows. If we color one of the four neighbor cells white around the
initial white cell, then the resulting white cells should be connected and not
separated. Therefore, if we repeatedly color one of the four neighbors white
around any white cell, then we obtain a white-polyomino because we color
only an adjacent cell around a white cell. We let the prover P perform this
transformation of colors and make a desired polyomino to convince the verifier
V' that the resulting cells satisfy the connectivity constraint.

3.2 Subprotocol: 4-Neighbor Protocol

Before comprehensively describing our method, we present a subprotocol,
called the 4-neighbor protocol that is benefical to our generic construction.
This protocol enables a prover P to indicate a specific commitment from com-
mitments on a grid, including one of the four commitments next to the specific
commitment without a verifier V' knowing their exact positions.

Precisely, given pq commitments placed on a p x ¢ grid, a prover P has
an intended commitment, which we call a target commitment. The prover P
attempts to reveal the target commitment and another one that lies next to the
target commitment (without revealing their exact positions). Here, a verifier V
should be convinced that the second commitment is a neighbor of the first one
(without knowing which one), and V' should be able to confirm the colors of
both commitments. To handle the case where the target commitment is at the
edge of the grid, we place commitments to red (as “dummy” commitments) on
the left of the first column and below the last row, to prevent P from choosing
a commitment that is not a neighbor. Accordingly, the size of the expanded
gridis (p+1) x (¢+1) (not (p+2) X (¢ + 2), as will be explained in Step 3).

This subprotocol proceeds as follows.



Springer Nature 2021 BTEX template

Card-Based ZKP for Connectivity 9

1. P and V pick the (p+1)(¢+1) commitments on the grid from left-to-right
and top-to-bottom to make a sequence of commitments:

[2]2] [z)z] [2l2] [2]2] - [2]2]:

2. P uses the chosen pile protocol (Section 2) to reveal the target commit-
ment.

3. P and V pick all the four neighbors of the target commitment. Because
a pile-shifting shuffle is a cyclic reordering, the distance between com-
mitments are maintained (up to a given modulo). In other words, for a
target commitment (not at the edge), the possible four neighbors are at
a distance for the left or right one, and p 4+ 1 for the bottom or top one.
Therefore, P and V can determine the positions of all the four neighbors.

Recall that dummy commitments are placed in the leftmost column
and bottom row. If a target commitment is at the edge, for instance,
top rightmost, its right commitment is the dummy at the second from
the top leftmost, while its top commitment is the dummy at the bottom
rightmost position. Consequently, a (p 4+ 1) x (¢ + 1) grid suffices.

4. Among these four neighbors, P chooses one commitment using the chosen
pile protocol and reveals it.

5. P and V end the second and first chosen pile protocols.

3.3 Method

Using the 4-neighbor protocol presented in Section 3.2, we present a generic
method to perform the transformation of colors mentioned in Section 3.1,
without revealing any information on the resulting cells.

Assume that there is a grid with p x ¢ cells. P attempts to arrange white
commitments on the grid, such that they form a white-polyomino while V' is
convinced that the placement of commitments is certainly a white-polyomino.
Our generic method is as follows.

1. P and V place a commitment to black (i.e., [%][D]) on every cell and
commitments to red as mentioned in Section 3.2, such that they have
(p+1)(¢g+ 1) commitments on the board.

2. P uses the chosen pile protocol to choose one black commitment that P
attempts to change.

(a) V swaps the two cards constituting the chosen commitment, such
that it becomes a white commitment (recall the encoding (1)).

(b) P and V end the chosen pile protocol to return the commitments to
their original positions.

3. P and V repeat the following steps exactly pg — 1 times.

(a) P chooses one white commitment as a target and one black commit-
ment among its neighbors using the 4-neighbor protocol; the neighbor
is chosen such that P attempts to make it white.

(b) V reveals the target commitment. If it corresponds to white, then V
continues; otherwise V aborts.
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(¢) V reveals the neighbor commitment (chosen by P). If it corresponds
to black, then P makes the neighbor white or keeps it black (depend-
ing on P’s choice) by executing the following steps; otherwise V/
aborts.

(i) If P attempts to change the commitment, P places face-down
club-to-heart pair below it; otherwise, P places a heart-to-club

pair:
- or [7][7]

(ii) Regarding cards in the same column as a pile, V' applies a pile-
shifting shuffle to the sequence of piles:

(3= -

(iii) V reveals the two cards in the second row. If the revealed right
card is @, then V' swaps the two cards in the first row; otherwise
V' does nothing.
(d) P and V end the 4-neighbor protocol.
After this process, V is convinced that all the white commitments represent a
white-polyomino. Therefore, this method enables a prover P to make a solution
that only P has, guaranteed to satisfy the connectivity constraint.

If the number of white cells in the final polyomino, e.g., k, is public to a
verifier V, it is sufficient that in Step 3, P and V repeat & — 1 times and in
Step 3c, V simply swaps the two cards comprising the neighbor commitment
to make it white (without P’s choice).

4 ZKP Protocol for Nurikabe

In this section, we propose a card-based ZKP protocol for Nurikabe. Our
protocol comprises two phases: the setup and verification phases, which are
presented in Sections 4.1 and 4.2, respectively. Its security proof is provided
in Section 4.3.

Consider a puzzle instance of a p x ¢ grid containing m numbered cells,
such that the i-th numbered cell (in any order) has a number z; for every 4,
1 < i < m. Recall that an island of a Nurikabe puzzle must contain exactly
one numbered cell, and the number of black cells inside the island is indicated
by the number written on the numbered cell. Therefore, the number of white
cells in the solution (namely, in the white-polyomino), denoted by N,,, is the
difference between the number of total and black cells (including the numbered
cells). Therefore, we have

m
Nu=pg—Y =
i=1
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This number N,, can be regarded as public information, and indeed, we
explicitly use the number N,, in our protocol.

4.1 Setup Phase

The prover P (having a polyomino in mind as a solution) and the verifier
V' adopt the generic method presented in Section 3, where N, is used as
public information, such that Step 3 is repeated N,, — 1 times. The resulting
configuration is a placement of (p+1)(¢+1) commitments on the board where
the commitments in the leftmost column and the bottom row correspond to
red, and the remaining commitments represent the solution according to the
encoding (1) (because P makes the white-polyomino corresponding to the
solution). Subsequently, V' is convinced that all the white commitments form
a white-polyomino, i.e., the connectivity constraint is satisfied.

4.2 Verification Phase

V first verifies that the current commitments placed on the grid (after the
setup phase) satisfy the rule 4 (forbidden 2 x 2 area). Then, V verifies the
rules 1 and 2, relative to the black commitments (island constraints).

Sea rule: Forbidden area (rule 4)

The prover P attempts to convince V that any 2 x 2 area contains at least
one black cell. Note that all 2 x 2 areas are determined, given an initial grid.
Indeed, for a given p x ¢ grid, there are (p — 1)(¢ — 1) possible areas.
Hence, P and V consider each 2 x 2 area (consisting of four commitments)
successively (in any order), and will repeat the following for each possible area.
1. P chooses a black commitment on this 2 x 2 area via the chosen-pile
protocol applied to the four commitments.
2. V reveals the commitment chosen by P. If the revealed commitment cor-
responds to black, then V is convinced that the 2 x 2 area is not solely
formed by white commitments. Otherwise, V' aborts:

. [%]]
— Chosen pile protocol — .

Island rules (rule 1, 2)

P attempts to convince V' that the black cells respect the constraints. There
are two verifications to consider: solely one numbered cell for a given region
(island) and all black commitments are connected inside the island. These two
constraints are verified in the following protocol.

Let n > 2 be the number written on a given numbered cell.ft We are
going to change the n continuous black commitments (on the island) into

T For a numbered cell where one is written, V' simply reveals the commitment on it and its four
neighbors to confirm that the island is surrounded by the sea.
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red ones successively using the 4-neighbor protocol. Notice that we use red
commitments to ensure that each black cell is checked exactly once.
1. V reveals the commitment on the numbered cell. If it corresponds to
black, V replaces it with a red commitment; otherwise V aborts.
2. Repeat the following steps exactly n — 1 times.

(a) P uses the 4-neighbor protocol to choose a red commitment as a
target, and one black commitment among its neighbors.

(b) V reveals the target commitment. If it corresponds to red, then V
continues; otherwise V' aborts.

(¢) V reveals the neighbor commitment (chosen by P). If it corresponds
to black, V replaces it with a red commitment; otherwise V' aborts.

(d) P and V end the 4-neighbor protocol to return the commitments to
their original positions.

Now, V is convinced that the size of the island comprising black cells is greater
than or equal to n because Step 2 just indicates that there are n —1 continuous
black cells adjacent to the number cell. To verify that the size of the island is
equal to n, it suffices to prove that there exists no black cell around the island.
Accordingly, we change all the n red commitments into white ones successively,
and confirm that there is no black commitment around them. Notice that we
can check each red commitment exactly once.

3. V replaces the commitment on the numbered cell with a white commit-

ment.

4. Repeat the following steps exactly n — 1 times.

(a) P uses the chosen pile protocol to choose a red commitment.

(b) V reveals the chosen commitment. If it corresponds to red, V
continues; otherwise V' aborts.

(c¢) Recall that P attempts to verify that any of four neighbor commit-
ments is not black. Recall also the encoding (1), i.e., the left card
of a white or red commitment is a heart @ V reveals the left card
of each of the four neighbors. If all of them are hearts (which means
that all the commitments do not correspond to black), V' replaces the
chosen commitment with a white commitment; otherwise V' aborts:

[2]7] [©]7] [z]7]

FEIROEE - PR O] - Rl lE])

HEH [©]7] [2]7]

(d) P and V end the chosen pile protocol to revert the commitments to
their original positions.
By applying the aforementioned steps to all the numbered cells, V' is con-
vinced that the placement of the commitments satisfies all the constraints, i.e.,
P possesses the solution.
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4.3 Security Proofs

We present the following theorems to demonstrate that our protocol respects
the security properties.

Theorem 1 (Completeness) If P knows a solution of a Nurikabe grid, then P can
convince V.

Proof Suppose that P, which knows the solution s of the grid, runs the setup phase
as in Section 4.1. We will demonstrate that P can perform the proofs for the sea
formation and the verification phases.

Setup: In this phase, the goal of P is to prove that the white commitments form
a white-polyomino (rule 3). Because s is a solution to the initial grid, the white
cells appearing (in the solution) are connected. Hence, P can always pick a white
commitment. The corresponding neighbor can be changed into a white commitment,
thereby ensuring that the resulting figure is connected.

Verification: The verifier V' must be convinced that rules 1, 2, and 4 hold. First,
the forbidden area (rule 4) must be verified. Because s is a solution, there is no
2 x 2 area solely comprising white commitments on the grid. Therefore, by checking
each 2 x 2 area, there will be at least one black commitment among the chosen four
commitments on the area. Hence, P can choose (via the chosen-pile protocol) such
a black commitment.

Second, the island rules (rules 1 and 2) must be verified. Because s is a solution,
each numbered cell is in a region (island) with the corresponding number of black
commitments and no additional numbered cell. Consider a numbered cell equal to
n > 2 (the case n = 1 is straightforward because it must have its four neighbors
all in white, which can be verified by simply revealing them). There are n — 1 black
commitments without counting the commitment on the numbered cell. Hence, P and
V can apply the first sub-routine exactly n — 1 times. This implies that all the black
commitments are turned into red ones. From here, V is convinced that the region
contains at least n black commitments. However, this could be more than n, if two
regions are not separated. Hence, the second sub-routine ensures that the region does
not comprise more than n black commitments. Note that at this point, all black cells
are encoded as red commitments: @@

Now, V replaces the commitment on the numbered cell by a white commitment.
When revealing the left card of the four neighbors for a given previous black commit-
ment, there are all @ because all previous black commitments are encoded as @@
The verified commitments are then turned into white ones; hence, V' is convinced
that no red commitment is checked twice.

Finally, because all the verifications have been checked, we proved that if P has
a solution, then the verifications will always succeed. O

Theorem 2 (Soundness) If P does not provide a solution of a Nurikabe grid, then
P cannot convince V.
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Proof Suppose that P does not provide a solution for the grid in the setup phase.
We will demonstrate that V' will always detect it.

Suppose that the commitments are correct, meaning that the white commit-
ments form a white-polyomino. (If it is not the case, then V aborts because a black
commitment can be whitened if and only if one of its four neighbors is already
whitened.)

We can distinguish two cases, each corresponding to a part of the verification
phase.

® Forbidden area. V verifies all possible 2 x 2 areas of the grid. If one of them
solely comprises only white commitments, then P cannot choose a black one.
Therefore, V' will reveal a white one, as P cannot act otherwise.

® Island rules. Consider a numbered cell equal to n (> 2). We divide all the
invalid cases into three, depending on the size of their islands. Each example is
presented as follows:

(1) ) (3)

1. Consider the size is less than n, i.e., only (< n) black commitments
constitute the island. During Step 2c for the ¢-th instance, the neighbor
commitment cannot correspond to a black commitment; thus, V' aborts.

2. Consider the size is equal to n, but some other numbered cells are inside
the island. Note that when the verification is completed for the numbered
cell equal to n, the commitments on the other numbered cells will become
white ones. Consequently, in Step 1 a white commitment should appear
when V' verifies the other numbered cells, and then V aborts.

3. Consider the size is greater than n**. This means that after Step 2 there
are more black commitments around red commitments. V' can detect it in
Step 4c because a club @ should appear when V reveals the left card of
each of four neighbors of a red commitment.

Therefore, if P does not provide a solution, V' always detects it. O

Theorem 3 (Zero-knowledge) V' learns nothing about P’s solution of a given
Nurikabe grid.

Proof We adopt the same proof technique as in [9]: zero-knowledge is induced by a
description of an efficient simulator that simulates the interaction between a cheating
verifier and a real prover. Here, although the simulator does not have a solution, it
can swap cards for different ones during shuffles. The simulator acts as follows.

® The simulator constructs a random white-polyomino of size Ny.

H'We do not consider other numbered cells here because they did not affect whether V' aborts
or not.
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® During the verification of the forbidden area rule, each possible 2 x 2 area is
verified. For a given area, the corresponding commitments are shuffled; thus,
the simulator can swap the target commitment by a black commitment via the
chosen-pile protocol.
® During the verification of the island rule, the simulator replaces the target
commitment by a red one, and its corresponding neighbor by a black one, for
the first sub-routine.
For the second sub-routine, the simulator changes the target commitment by a
red commitment, and also change the left card of each of the four neighbors by
heart cards.
Note that the chosen pile and 4-neighbor protocols use shuffle techniques; thus,
the simulator can replace shuffled cards when applying these protocols. The simulated

and real proofs are indistinguishable; hence, V' learns nothing about P’s solution.
|

5 ZKP Protocol for Hitori

In this section, we present a card-based ZKP protocol for Hitori. Our protocol
comprises the setup and verification phases, which are presented in Sections 5.1
and 5.2, respectively. Its security proof is provided in Section 5.3.

5.1 Setup Phase

This phase follows the same steps as in the generic method presented in
Section 3.3.

After the above process, V is convinced that the resulting commitments
represent a white-polyomino (rule 3), and information on the number of white
commitments is hidden from V.

5.2 Verification phase

One occurrence for each row/column (rule 1)

Here, V verifies if each row and column contains only one occurrence of a num-
ber (on the white commitments). The idea is that for a given row or column,
it suffices to solely consider all cells with the same number that appear k& > 1
times and confirm that the & commitments on the numbered cells correspond
to either k blacks or k£ — 1 blacks without revealing its correspondence. For
example, consider the first row in the puzzle instance of Figure 2, which is
(1,1,2,4,3,5); because ‘1’ appears twice, we check that the two commitments
on ‘1’ are both black or one of them is black (if both of them are white, then
the rule is not satisfied).
For a given row or column, this verification proceeds as follows.
1. V looks for the same numbered cells that appear more than once; let k
be the number of them. V picks the k commitments on them.
2. P uses the chosen pile protocol to choose a white commitment among the
k commitments if it exists; otherwise, P chooses any commitment among
them.
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3. V reveals the k — 1 commitments that are not chosen by P. If all of them
correspond to black (this means that the k& commitments correspond to
k or k — 1 blacks), V' continues; otherwise V aborts.

4. P and V end the chosen pile protocol to return the k£ commitments to
their original places.

5. P and V repeat the above steps for all numbered cells that appear more
than once.

Lonely black (rule 2)

V' verifies that black cells are isolated from each other. Recalling the encod-
ing (2), we will compute logical ORs: A white commitment corresponds to
bit 1 and a black commitment corresponds to bit 0. For each pair of adjacent
commitments, V applies the input-preserving five-card trick (Section 2) to the
two commitments. If the output is 1 (meaning that at least one of the two
commitments is white), V' continues; otherwise V' aborts.

5.3 Security Proofs

Theorem 4 (Completeness) If P knows a solution of a Hitori grid, then P can
convince V.

Proof Suppose that P knows the solution s of the grid and runs the setup phase. We
will demonstrate that P can perform the setup phase correctly, and V never aborts
in the verification phase.

Setup: Because s is a solution, the white cells form a white-polyomino. Hence, in
Step 3, P can always choose a black commitment to make one of its neighbors white.
Hence, in Step 3, V never aborts. For Step 3c, note that the protocol can make a
black commitment white, depending on P’s will (and V cannot notice it). Let us
consider two cases: The first one is that P wants to change the black commitment.
The configuration is then:

&[]

(][9]

Therefore, after applying a pile-shifting shuffle, if the configuration is the same, then
the right card of the second row is a heart @; hence, V' will swap the cards of
the first row, leading to @E} Therefore, the resulting commitment is white. If the
configuration changes after applying a pile-shifting shuffle, the resulting configuration

is: @E}
[©][%]

Therefore, V' will not change the first row (as the right card of the second row is a
club E]) The resulting commitment also corresponds to white.

The second case is that P does not want to change the black commitment, and
it is analogous to the first case.
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Verification: Because s is a solution, each row and each column include at most one
occurrence of a given numbered cell. Hence, when the same numbered cell appears
k times in a given row or column, at least k — 1 commitments among the k ones on
the numbered cells are black, according to rule 1. Therefore, if s is a solution, P can
always choose a white commitment (if exist) among the k& commitments in Step 2,
and V never aborts.

The last verification considers the black cells. Because s is a solution, for a given
black commitment, its four neighbors are white commitments. Therefore, any com-
bination of pair of these five commitments differs from the pair solely formed by
black commitments. Hence, each of the two adjacent commitments differ from the
pair formed by two black commitments, which consistently triggers output 1 for the
input-preserving five-card trick. O

Theorem 5 (Soundness) If P does not provide a solution for a Hitori grid, then P
cannot convince V.

Proof Suppose that P does not provide a solution for the grid. We will demonstrate
that V will always detect it. Note that the resulting placement of commitments after
executing the setup phase represents a white-polyomino, regardless of P’s behavior.
Suppose that the resulting placement does not correspond to a solution. We can
distinguish two cases, each corresponding to a rule that is not respected.

® One occurrence: For a given row (column), V considers the same numbered cell
with £ > 1 occurrences. If this rule is not respected, it means that more than one
white commitment exist among the k commitments on the £ numbered cells. V'
will detect it because k — 1 commitments among them are revealed in Step 3.

® Lonely black: Note that V' checks all possible two-adjacent commitments. There-
fore, if P tries to blacken more cells than needed (e.g., for passing the one
occurrence verification), then V' will detect it.

Hence, if P does not provide a solution, then V will detect it. Finally, if P passes
all the verifier’s checks, it implies that P possesses the solution, which concludes the
soundness proof. O

Theorem 6 (Zero-knowledge) V learns nothing about P’s solution of a given grid.

Proof We repeat the same proof technique as in [9]. The simulator acts as follows.
® The simulator constructs a random white-polyomino.

® During the verification of the one occurrence rule, the same numbered cell that
appears k > 1 times for each row and column is verified. For the k corresponding
commitments, the chosen pile protocol is applied; hence, the simulator can swap
the kK — 1 commitments, except the target commitment by black commitments.
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® During the verification of the lonely black rule, each pair of adjacent commit-
ments is verified. When the first pile-shifting shuffle is applied in executing the
input-preserving five-card trick, the simulator replaces the five cards in the first

row with @@@@@ that are randomly shifted.

The simulated and real proofs are indistinguishable. Hence, V' learns nothing
about P’s solution. (]

6 ZKP Protocol for Heyawake

In this section, we present a card-based ZKP protocol for Heyawake. Note that
rules 2 and 3 of Heyawake are the same as Hitori. Therefore, we adopt the same
setup phase as Hitori (as seen in Section 6.1) and the lonely black verification
(as in Section 6.2). Rules 1 and 4 are unique for Heyawake; in Section 6.2, we
present their verification phases. We provide the security proofs in Section 6.3.

6.1 Setup Phase

P will be able to create a white polyomino (consisting of white commitments)
using the same protocol described in Section 3.

6.2 Verification phase
Lonely black (rule 2)

Because this rule is exactly the same as in Hitori (rule 2), P and V use the
input-preserving five-card trick (Section 2) to verify this rule as in our ZKP
protocol for Hitori presented in Section 5.

No 3-rooms (rule 4)

V attempts to verify that white cells (white commitments) cannot stretch in
straight lines more than two rooms. For this verification, P agrees with V
about the cells to verify, following these steps (refer to Figure 4 for examples).

1. For each row, look for a straight line that crosses at least three rooms.

2. Consider all the cells in the middle room, the rightmost cell of the first
room, and the leftmost cell of the third room.

3. Repeat the same process for the column, but consider all the cells in the
middle room, the lowest cell of the topmost room, and the highest cell of
the bottommost room.

For each group of considered cells, P chooses a black commitment using
the chosen-pile protocol (Section 2), and V reveals the commitment chosen
by P. If the revealed commitment corresponds to black, then V' continues;
otherwise V aborts. For example, for the group (colored in blue) in the second
row in Figure 4, P chooses one commitment among the three commitments; if
it is black, V is convinced that white commitments do not cross at these three
rooms.
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2 2
2 1
- 1 0
1 1]o

Fig. 4 Two examples of cells (in blue) to consider for rule 4. For clarity, we do not represent
all the cells to verify.

Number of black cells in a room (rule 1)

For each room with a numbered cell, V' shuffles all the corresponding commit-
ments and reveals them all. If the number of black commitments is equal to
the number written on the cell, then V is convinced; otherwise V' aborts.

6.3 Security proofs

Theorem 7 (Completeness) If P possesses a solution of a Heyawake grid, then P
can convince V.

Proof We suppose that P possesses a solution and runs the setup phase. Because
this phase is the same as that for Hitori, refer to the proof of Theorem 4 for the
connectivity constraint. Next, we check the verification phase.

Verification. Because P possesses the solution, black cells (black commitments)
do not vertically nor horizontally contact other black cells. Hence, for each pair of
adjacent cells, the five-card trick will always output 1 because the only configuration
for obtaining 0 involves two black cells contacting each other.

For the no 3-rooms verification, no straight line of white cells can expand through
more than two rooms. Therefore, the cells considered (see Figure 4 for examples) will
always comprise at least one black cell.

Because P possesses the solution, the correct number of black cells are placed
inside a room. Because the verification only includes a shuffle, the number of black
cells remains the same. Hence, the verification continues without aborting, meaning
that V is convinced that P has the solution. (]

Theorem 8 (Soundness) If P does not provide a solution of a Heyawake grid , then
P cannot convince V.

Proof Suppose that P does not provide the solution, yet attempts to convince V. We
will demonstrate that V' will detect it, owing to our protocol. Similar to the soundness
proof for Hitori (Theorem 5), we consider that the white cells (white commitments)
are connected without loss of generality. We distinguish the cases where the other
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rules are not respected. Recall that P does not possess the solution by assumption;
hence, at least one of these verifications must fail (otherwise it means that P has the
solution).
® Lonely black: V checks all possible two-adjacent commitments. Therefore, if P
attempts to blacken more cells than needed (e.g., for passing the no 3-rooms
verification), then V will detect it.
® No 3-rooms: V consider all straight lines that cross at least three rooms and
reveal one commitment from it. Because P cannot choose a black commitment
(if white commitments cross at three rooms), V reveals a white one and aborts
the protocol.
® Black cells in a room: Each room with a number is inspected; hence, if the
rule 1 is not respected, then V will detect it because all the commitments are

revealed (after a shuffle).
O

Theorem 9 (Zero-knowledge) V learns nothing about P’s solution of a given grid.

Proof To prove this theorem, it is sufficient to demonstrate that the revealed values
(open cards) follow a distribution that can be simulated without the knowledge of
the solution.

Similar to Theorems 6, the connectivity and all the verification, except the no 3-
rooms, can be constructed without knowing the solution. For the no 3-rooms phase,
any opening card is revealed after a chosen-pile protocol; hence, its position is uni-
formly distributed among all possible ones. O

7 Conclusion

In this study, we proposed three card-based ZKP protocols for Nurikabe,
Hitori, and Heyawake. These three Nikoli puzzles require that white cells in the
solution must be continuous, i.e., form a white-polyomino. We designed the
generic method for solving this connectivity constraint challenge. In addition,
we developed novel techniques to respect the other rules of the puzzles.

It should be noted that the proposed card-based ZKP protocols are
“interactive,” i.e., they require a prover P’s knowledge or memory to
determine how the cards are manipulated during executions of protocols
(cf. [5, 15, 21, 29, 31, 32]). Therefore, designing a “non-interactive” proto-
col for either Nurikabe, Hitori, or Heyawake is an interestingly open problem;
“non-interactivity” implies that after P places face-down cards, the play-
ers’ knowledge or memory is not adopted (as in the standard card-based
computation setting [2, 18, 19, 26, 27]).
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