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Abstract 

Despite the improvements in image quality of cone beam computed tomography (CBCT) scans, 
application remains limited to patient positioning. In this study, we propose to improve image quality by 
dual energy (DE) imaging and iterative reconstruction using least squares fitting with total variation (TV) 
regularization. 
The generalization of TV called total nuclear variation (TNV) was used to generate DE images. We 
acquired single energy (SE) and DE scans of an image quality phantom (IQP) and of an anthropomorphic 
human male phantom (HMP). The DE scans were dual arc acquisitions of 70kV and 130kV with a 
variable dose partitioning between low energy (LE) and high energy (HE) arcs. To investigate potential 
benefits from a larger spectral separation between LE and HE, DE scans with an additional 2 mm copper 
beam filtration in the HE arc were acquired for the IQP. The DE TNV scans were compared to SE scans 
reconstructed with FDK and iterative TV with varying parameters. The contrast-to-noise ratio (CNR), 
spatial frequency, and structural similarity (SSIM) were used as image quality metrics. 
Results showed largely improved image quality for DE TNV over FDK for both phantoms. DE TNV with 
the highest dose allocation in the LE arm yielded the highest CNR. Compared to SE TV, these DE TNV 
results had a slightly lower CNR with similar spatial resolution for the IQP. A decrease in the dose 
allocated to the LE arm improved the spatial resolution with a trade-off against CNR. For the HMP, DE 
TNV displayed a lower CNR and/or lower spatial resolution depending on the reconstruction parameters. 
Regarding the SSIM, DE TNV was superior to FDK and SE TV for both phantoms. The additional beam 
filtration for the IQP led to improved image quality in all metrics, surpassing the SE TV results in CNR 
and spatial resolution. 
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1. Introduction 

Recent years have seen significant improvements in the image quality of the cone-beam computed 
tomography (CBCT) scans [1-3]. Despite that, CBCT scans are mostly used for patient positioning [4-6] 
and, to some extent, for dose accumulation using deformed planning CT [7]. While some advanced 
applications, such as dose calculations on CBCT, could be feasible now [8], the image quality of CBCT 
still needs to be improved to unlock the full potential of adaptive radiotherapy (ART). Some of these 



applications are for example image segmentation and automatic contour propagation. In these cases, a 
good contrast-to-noise ratio (CNR) and the ability to discriminate between low contrast tissues is 
required.  
Dual-energy (DE) imaging aims to exploit the energy dependence of X-ray attenuation. Different 
scanning energies lead to different attenuations and therefore to different images. The difference in 
attenuation between various materials defines their contrast. Since the change of attenuation from one 
energy to another varies for different materials, and a lower energy leads to higher attenuation in the 
energy range typically used for (CB)CT imaging (60kV-140kV), the contrast increases with decreasing 
energy. The disadvantage is an increased noise level for the same imaging dose due to fewer photons 
reaching the detector. In single energy (SE) imaging, the beam energy is selected to maximize the CNR 
for a constant imaging dose. Low energy (kV setting) imaging has a high soft tissue contrast but also high 
noise. Its CNR is inferior to some higher energy representing the optimum for the same imaging dose. 
Therefore, the idea of using dual energy (DE) imaging to combine the advantages of different energies 
has been around for a long time [9, 10] and it might lead to better image quality and dose calculation 
accuracy [11]. An important concept for DE imaging is the spectral separation. An x-ray tube does not 
emit a mono-energetic beam but a spectrum. Different kV settings at the x-ray tube generate different 
spectra. In between these spectra, a number of particles have the same energy i.e. there is a spectral 
overlap. These particles have the same attenuation, hence they provide the same information. To increase 
the benefit of dual-energy imaging, the overlap should be minimized [12].    
Previous research on DE imaging has focused on the linear mixing of the low and high energy 
acquisitions using conventional filtered back-projection (FBP) [13], but no clear benefit has been shown 
yet. A common alternative to the FBP based algorithms are the iterative reconstruction algorithms. They 
have shown to be very well suited for the reconstruction of low-dose and undersampled images [14,15]. 
Iterative reconstruction requires a regularization term to converge to a plausible solution. A common 
regularization term for iterative reconstruction is total variation (TV) [16]. One advantage of TV is that it 
preserves edges while decreasing noise. A second one is that TV can produce accurate reconstructions 
from under-sampled data [17].   
In order to extend the concept of TV based iterative reconstruction to DE CBCT, the TV regularization 
term needs to be generalized to spectral data. Holt [18] as well as Rigie and Riviere [19] have proposed 
total nuclear variation (TNV) and have shown its favourable properties for spectral CT reconstruction. 
The TNV correlates the different energy channels and therefore considers the similarities between the 
channels, e.g. edge locations. It has a shared-direction bias, which means that TNV favours the gradients 
of the channels to point in the same direction.  
In this study, we investigated the combination of DE with TNV for CBCT, making it an extension of the 
work of Rigie and Riviere [19] to CBCT. We evaluated the image quality in terms of CNR, spatial 
resolution, and structural similarity index measure (SSIM), and compared it to single-energy (SE) FDK 
and iterative reconstruction with total variation (TV). 



2. Materials and Methods 

2.1 Iterative reconstruction 

Iterative reconstruction often minimizes a cost function consisting of a data fidelity and one or more 
regularization terms. Minimizing solely the data fidelity term 

argmin
'
‖R𝑓 − 𝑝‖-- 																																																																																		(1) 

where R is the forward projector, f the image, and p the measured projections, leads to non-plausible 
images at convergence and regularization is therefore required. As regularization term, total variation  
(TV) was chosen. TV has been broadly studied and used for (CB)CT reconstruction [15, 20-22], where 
the gradient sparsity of CT images is exploited. We define the isotropic TV of an image f as the mixed 
l1/squared l2-norm, which means that the l1-norm over space (spatial indices: x, y, z) of the squared l2-
norm over the gradient of the image is taken: 

TV(𝑓) =	 ‖	∇𝑓(𝑥, 𝑦, 𝑧)‖:,- = ;‖(∇𝑓)(𝑥, 𝑦, 𝑧)‖-	
<,=,>

.																																																		(2) 

Since we want to study DE scans, we have to reconstruct 4D (spectral) data with the energy at the fourth 
dimension. A straightforward way to generalize TV to spectral data is the use of the Jacobian J and a 
suitable norm. Holt investigated several possibilities and concluded that the Schatten 1-norm, called the 
nuclear norm (NN), yields the desired properties and the best image quality [18]. The Schatten p-norm of 
a matrix A is the lp-norm of the vector of the singular values (SV) σ of A. For the NN, this means that it is 
the sum of its SV 

‖	𝐀‖∗ = 	‖𝝈DD⃗ 𝑨(𝑥, 𝑦, 𝑧)‖: ,     (3) 

and the resulting total nuclear variation (TNV) is   

TNV(𝒇) = ‖	J	𝒇(𝑥, 𝑦, 𝑧)‖:,∗ = ;‖(J	𝒇)(𝑥, 𝑦, 𝑧)‖∗
<,=,>

	.																																																(4) 

Compared to a simple channel-by-channel TV, this approach couples the different energy channels and 
for one channel, TNV reduces to the isotropic TV. Because the NN is the best convex approximation of 
rank(J f(x,y,z)), the TNV favours rank-sparsity in J f(x,y,z). Hence, the TNV is not only channel- and 
direction-coupled (ratio between directional derivatives in different spatial directions is constant over 
space) but also has a shared direction (gradients for all channels all point in the same directions) due to the 
rank minimization [18]. In other words, the (gradient-)coupling is achieved by promoting common edges 
and alignment of their gradients [19]. Therefore it is more advantageous than e.g. the Frobenius norm 
(Schatten 2-norm). A more detailed description of the NN and other TV generalizations and their 
properties can be found in Holt [18]. 

2.2 Reconstruction algorithms 

All reconstructions were performed using the Reconstruction toolkit (RTK v.1.4) [23]. For the SE and 
DE, the 4Drooster (4D RecOnstructiOn using Spatial and TEmporal Regularization)  algorithm was used, 



which is based on the work of Mory et al. [24] and includes spatial (3D) and temporal TV. Compared to 
the original algorithm described in Mory et al. [24], RTK allows disabling the temporal TV regularization 
and enabling TNV. In the latter case, spatial TV was disabled as well. The 4Drooster algorithm 
sequentially solves different problems. In every main loop iteration k, the data fidelity term (Eq. 1) is 
(channel-wise) minimized first using the conjugate gradient method (CG) with n=10 iterations. This 
results in f0

(k) for SE. For DE, all spectral components are reconstructed separately generating 
f0

(k)=(f0,LE
(k), f0,HE

(k)). Here and onwards, bold letters indicate 4D spectral data. Afterwards, a non-
negativity constraint is applied which sets all negative voxels to 0. For SE scans, the new image was then 
computed in m iterations of TV denoising, i.e. 

𝑓(K) 	= argmin
'
	‖𝑓 − 𝑓L‖-- +	 	𝜃	TV(𝑓)	.																																																								(5) 

For DE scans, the new image was regularized with m iterations of TNV denoising, i.e.: 

𝒇(𝒌) = argmin
𝒇
	‖𝒇 − 𝒇𝟎‖-- +	 𝜃	TNV(𝒇)	.																																																						(6) 

resulting in a 4D image with a low energy (LE) and a high energy (HE) component f(k) = (fLE
(k), fHE

(k)). To 
solve the minimization, both TV and TNV denoising employed the basis pursuit dequantization algorithm 
[25]. The parameter 𝜃 regulates the denoising of the image, the larger 𝜃, the smoother the image. Initially, 
three values were experimentally chosen so that with the minimum value (𝜃 = 10-4) an effect of the total 
(nuclear) variation term is apparent and so that higher values than the maximum (𝜃 = 10-3) do not show 
large improvements in image quality. For a subset of the acquisitions, reconstructions with more 𝜃 values 
were necessary to get a more accurate image quality comparison. The maximum number of main loop 
iterations N was chosen so that a near convergence was reached. To limit the parameter space, the number 
of CG and TV/TNV iterations was kept constant at n=m=10. Furthermore, the two 4Drooster 
reconstructions, SE with TV and DE with TNV, are denoted as SE TV and DE TNV. The selected 
parameters of the RTK algorithms are shown in Table 1. In RTK, the number of iterations has to be pre-
defined before reconstruction. An exemplary command line for every utilized RTK algorithm is provided 
in the supplementary material (Appendix A). 

Table 1 Utilized RTK algorithms and their parameters 

RTK algorithm Scans Parameters 
  Name  Symbol Values 
FDK SE Cut-off frequency (Hann window) 

of the 1D ramp filter relative to the 
Nyquist frequency (unitless) 

h 0.1, 0.2 …1.0, No window 

4DRooster SE/DE Number of main loop iterations 
Number of CG iterations 
Number of TV/TNV iterations 
TV/TNV weighting 

N 
n 
m 
𝜃 

1,2,…10 
10 
10 
…,10-4, …., 5x10-4, 10-3 

 



2.3 CBCT acquisition 

Since it was not possible to perform experimental DE scans of patients, a CBCT Electron Density & 
Image Quality Phantom (IQP) (Model 062MQA) and a Virtually Human Male Pelvis Phantom (HMP) 
(Model 801-P) (CIRS Inc., Norfolk, Virginia, USA) were scanned on a linac integrated CBCT scanner 
(Synergy, XVI 5.0, Elekta Ltd, Crawley, UK), augmented with in-house developed software, utilizing a 
bow-tie filter and a fibre-interspaced anti-scatter grid (ASG) (N44r15, Philips Medical Systems, Best, The 
Netherlands) [1]. The ASG had a line frequency of 44 cm−1 and a grid ratio of 15:1. A head and neck 
(H&N) and a pelvis phantom configuration of the IQP were scanned with a field-of-view (FOV) of 25.6 
cm (small FOV) and 40 cm (medium FOV) in the radial direction, respectively. The pelvis phantom was 
oval with a width (left-right) of 33cm and a height (anterior-posterior) of 27cm. The H&N phantom 
consisted of a circular head part with a diameter of 18cm and a shoulder part with the same extent as the 
pelvis phantom. For the HMP, the medium FOV was utilized. According to clinical protocols for H&N 
and pelvis tumours, the scans were acquired with a 360° gantry rotation and gantry speeds of 1 rpm and 
0.5 rpm for the small and medium FOV, respectively. 

The DE scans were acquired in a dual arc (DA) with changed parameters (kV, mA, ms) between the arcs. 
The settings were performed in such a way that the combined dose of LE and HE acquisitions best 
matched but preferably not exceed the dose resulting from commonly used clinical protocols using 
120kV. The LE and HE were 70kV and 130kV, which are the lowest and highest enabled kV generator 
settings. The larger the difference between the two energy spectra, the more complementary information 
(attenuation) the different energy acquisitions provide, leading to a higher benefit of using DE. To 
determine if a larger spectral separation between the LE and HE improves image quality, HE acquisitions 
of the pelvis IQP phantom were also performed with an additional 2 mm copper filtration (+Cu). 

2.4 CT dose index 

We used the CT dose index (CTDI) [26] to determine the imaging dose (CTDI phantom by PTW, 
Freiburg, Germany). The weighted CTDI (CTDIw) is calculated as:  

𝐶𝑇𝐷𝐼W = :
X
𝐶𝑇𝐷𝐼YZ[\]Z +	

-
X
𝐶𝑇𝐷𝐼^Z]_^`Z]a	,                                             (7) 

where the CTDIcentre is the CTDI value in the centre of the phantom and CTDIperiphery the average of the 
CTDI values at the four peripheral locations of the CTDI phantom. In our study, the CTDIw was 
determined for the two phantom sizes (H&N, a cylinder with 16 cm diameter and pelvis, cylinder with 32 
cm diameter) and three energies, LE of 70kV, HE of 130kV, and clinical (medium, ME) 120kV. For the 
pelvis 130kV, the CTDIw was also determined with the added Cu filtration. After testing the repeatability 
of the dose measurements and verification of linearity (R2>0.999) of the CTDIw - mAs dependence 
(Appendix B), a linear function for each setting was established with only one measurement (Fig. B.1). 
These linear functions were applied to determine the mAs for the low- and high-energy acquisitions 
(Appendix B).  



2.5 Measurements 

For the SE acquisitions, 70kV (SE70), 120kV (SE120), and 130kV (SE130) were used. To find the optimal 
image quality for DE, the dose was partitioned differently between LE and HE. The reference dose was 
the clinically used SE120. Due to technical limitations, i.e. allowed mA-ms settings and heating of the x-
ray source, the possible proportions of LE and HE varied between phantom sizes and the dose deviations 
were D(SE120kV) ± 13%. In an additional experiment, the option of halving the number of projections but 
doubling the mAs for every projection was investigated for possible combinations. Hereby, every second 
projection was discarded to keep a regular angular sampling over the 360° rotation and the same CTDIw. 
Ignoring image lag characteristics, this approach can be seen as a substitute for a fast kV-switching (FS) 
method where the gantry rotation speed was kept the same. Discarding half of the projections might lead 
to undersampling. Therefore, we also investigated how well TNV is able to handle undersampling.  

2.6 Reconstruction 

Before reconstruction, the projections were pre-processed. This pre-processing included several steps: 

1. Multi-angle gain correction to prevent grid line artefacts. 
2. Down-sampling from 512x512 to 256x256 as routinely done in clinical practice. 
3. As the H&N phantom configuration had a shoulder mimicking part in the caudal region extending 

outside the FOV which is incompatible with the iterative reconstruction data fidelity term, the 
projections for this configuration were cropped accordingly to mask phantom parts extending 
outside of the small FOV.  

The dimensions of the reconstructed 3D (4D for DE) images were 400x400x256(x2) for the pelvis IQP 
and HMP (medium FOV) and 256x256x133(x2) for the H&N IQP. The dimension in the cranial caudal 
direction was reduced from 256 to 133 for the H&N IQP due to the cropping. The voxel size was 
1x1x1mm3.  

2.7 Image quality evaluation 

Due to the nature of iterative algorithm, performing a trade-off between the edge sharpness and noise, the 
image quality was investigated through the relation between the contrast-to-noise ratio and spatial 
resolution. The CNR was calculated according to the following formula: 

𝐶𝑁𝑅 = 	 |ef
gggghiefggggj|

klm(nh
monjm)

 ,                                                                      (8) 

where 𝐶𝑇ggggi and 𝐶𝑇ggggs represent the mean CT numbers of cylindrical volumes of interest (VOI) with a 
diameter and height of 1.8cm. For the IQP, the VOI were placed in the linearity inserts (i), ranging from 
air to Teflon, and in their water equivalent surroundings (s). The σ are the standard deviations of these 
VOIs. For the HMP, cylindrical VOIs with a diameter and height of 1.2cm were placed in two 
neighbouring, distinguishable areas, with a contrast of 104 HU on a conventional CT. These two VOIs 
represented insert and surrounding (Supplementary material Fig. C.1 A).  



As a measure for the spatial resolution, the spatial frequency was used. For the IQP, a region of interest 
(ROI) of a central slice of the phantom containing the Teflon insert was chosen. A 2D cumulative normal 
distribution (CND) representing a 2D edge response function (ESF) was fitted to this ROI: 

𝐸𝑆𝐹 = 𝐴 − 𝐵 ∗ 𝐶𝑁𝐷uv(𝑥 − 𝑥L)- + (𝑦 − 𝑦L)-, 𝜇, 𝜎y + 𝐿𝑖𝑛𝑅𝑒𝑔𝑋 ∗ 𝑥 + 𝐿𝑖𝑛𝑅𝑒𝑔𝑌 ∗ 𝑦      (9) 

Here, x and y are the coordinates of the voxels in the ROI, and μ and σ are the mean and the standard 
deviation of the CND. Additionally, the fitting function was expanded with linear regression terms in x 
and y direction to take non-uniformities (“cupping artefacts”) into account. An example is shown in the 
Supplementary material Fig. C.2 A. The derivative of the ESF yields the line spread function (LSF), and 
with the Fourier transform, the LSF can be used to calculate the modulation transfer function (MTF). 
Therefore, as derived by Krah et al. [27], the standard deviation of the ESF (σ) can be used to calculate 
the spatial frequency f10% at which the MTF falls below 10% as:  

𝑓:L% = √-	��:L
-��

	,					with			 |�f�('l�%)||�f�(L)|
= 	 :

:L
	,                                           (10) 

On a CT scan with typical clinical acquisition and reconstruction parameters, the f10% was 7.8cm-1 for the 
IQP pelvis configuration. The slice thickness of the CT was 1.5mm but since the inserts are directed in the 
slice direction, the influence of the difference in slice thickness can be neglected. For the HMP, an area of 
1cm x 2.5cm across the border of two different tissues was evaluated (Supplementary material Fig. C.1 
B). After averaging in the 1cm direction, a 1D ESF similar to Eq. 9 was fitted (Supplementary material 
Fig. C.2 B). On a CT scan of the HMP, f10% was 6.8cm-1 but the slice thickness was 2mm. Compared to 
the 1mm of the CBCT, the spatial resolution was, therefore, underestimated because the border between 
the two tissues is not exactly oriented in the slice direction. The image analysis was performed with 
Python (version 3.8.2) and the SciPy package was utilized for the fit computation [28].  

The size and distance of the VOIs were chosen such that the CNR measurements were only impacted by 
poor spatial resolution. This occurred for images with an f10% below ~1.1-1.5cm-1. Then, the blurring of 
the images was so pronounced that the insert blurred into the VOI of the background. Therefore, only 
results with an f10% above 1.1cm-1 were evaluated. For the DE scans, both the LE and HE component were 
evaluated. 

For the pelvis configuration of the IQP and the HMP, the SSIM was evaluated as a third image quality 
metric. With an equal weighting of 1 for luminance, contrast, and structure, the SSIM of image A and B 
can be expressed as: 

𝑆𝑆𝐼𝑀(𝐴, 𝐵) = (-����o�l)(-���o�m)
(��

mo��
mo�l)(��

mo��
mo�m)

                                   (11) 

 

Here, µ and σ are the mean and the standard deviation of the respective image and σAB their covariance. 
For the variables c1 and c2, the default values of (0.01*L)2 and (0.03*L)2 were used, respectively, with L 
as the dynamic range of the images.  As ground truth images, diagnostic CT scans (120kV) of the 
phantoms were utilized. 



3. Results 

For the IQP, the polystyrene insert had the lowest CNR of all inserts and therefore, these results are 
shown. The behaviour of the other inserts was similar with only varying CNR. For the IQP as well as for 
the HMP, the spatial resolution improved with increasing number of iterations, although the 
improvements for the last iterations were very small because convergence was almost reached. The 
behaviour of the CNR depended on the parameter 𝜃. Generally, the CNR dependence on the number of 
iterations reduced with increasing 𝜃. More specifically, for lower 𝜃	(𝜃=10-4), the CNR usually decreased 
with increasing N. This effect was reduced with increasing 𝜃 and resulted in a CNR increase for higher 𝜃	
(𝜃=10-3). For clarity, only the results for N=10 are shown.   

3.1. CBCT Electron Density & Image Quality Phantom 

3.1.1 Single energy TV and dual energy TNV 

The direct comparisons between the best SE and selected DE results for H&N and pelvis phantom 
configuration are shown in Fig. 1. In both cases, the TV and TNV clearly outperformed the clinically used 
FDK algorithm. They generated images with CNRs close to the best FDK results but with a much higher 
spatial resolution. For the H&N configuration, DE TNV yielded a bit lower CNRs than SE TV with 
similar spatial resolutions. For the pelvis configuration without additional copper filtration, the results are 
alike with only showing a slightly lower spatial resolution for DA with 𝜃=5x10-4. Reconstruction 
examples for the pelvis configuration for FDK, SE TV and DE TNV are shown in Fig. 2 and for the H&N 
configuration in the Supplementary material (Fig. D.1). Since they are all 70kV images, their contrasts are 
the same and therefore, the CNR differences are caused by the different noise characteristics. This is 
clearly visible in the elevated noise of the FDK reconstruction (Fig. 2A and Fig. D.1A).Comparisons 
between SSIM and spatial resolution for LE and HE component of the pelvis configuration are shown in 
Fig. 3. Here as well, the best SSIM results are shown for the different reconstruction methods. The 
behaviour of the SSIM was very similar to the CNR with the difference that the best DE results 
(FS20%/80%) surpassed the SE TV results and for HE, additionally, all FDK results. 

 



 

Figure 1 CNR and spatial frequency for the best scans of FDK,  SE TV, and DE (DA) TNV  (LE component, N=10) for the 
H&N (left) and pelvis (right) phantom configuration. For the pelvis (right) phantom configuration, an example with additional 
beam filtration is displayed as well. 

For SE, the LE yielded the best results for FDK and TV. The overall image quality of the FDK results 
was lower than the iterative reconstructions with the parameter h controlling the trade-off between spatial 
resolution and CNR. SE70 TV (𝜃=5x10-4) resulted in a higher spatial resolution while reaching a high 
CNR for both phantom configuration. A visualization of all SE results can be found in the Supplementary 
material (Fig. E.1).  



 

Figure 2 Reconstruction examples of the pelvis configuration of the image quality phantom for (A) FDK (SE70, h=1.0), (B) SE70 
TV (N=10, 𝜃 = 5x10-4), (C) DE TNV (DA88%/12%, LE component, N=10, 𝜃 = 10-3), and (D) DE +Cu TNV (DA79%/21%, LE 
component, N=10, 𝜃 = 5x10-4). The window (393 HU) and level (1343 HU) were kept constant for all images. 



 

Figure 3 SSIM and spatial frequency for the best pelvis IQP scans of FDK,  SE TV, and DE TNV  (N=10). LE (left) and HE 
(right) result in considerable SSIM differences, which is visible in the different axes. For DE TNV, the best results with and 
without additional beam filtration are displayed.  

The DE TNV results in Fig. 1 were obtained with the highest dose in the LE arc as it provided superior 
CNR results to other dose allocations. More specifically, for the LE component, the CNR increased with 
increasing dose allocated in the LE arc. Therefore, the best CNR was obtained with the highest dose in the 
LE arc. This corresponds to a dose partitioning of 81%/19% for the H&N and 88%/12% for the pelvis 
phantom configuration. Similar behaviour was observed in the HE component even though to a lesser 
extent. Generally, the larger the dose allocation in the HE arc, the better the CNR. However, the LE 
component demonstrated CNRs about twice as high as the HE component. Mostly, the CNR increased 
with increasing 𝜃. This increase was considerable from 𝜃=1x10-4 to 𝜃=5x10-4 but much smaller from 
𝜃=5x10-4 to 𝜃=1x10-3. In some cases, the CNR decreased slightly. For the pelvis configuration, the spatial 
resolution improved with decreasing 𝜃 but for the H&N configuration the spatial resolution decreased 
from 𝜃=5x10-4 to 𝜃=1x10-4. In both configurations, the LE component demonstrated slightly higher 
spatial resolution. The results for all dose allocations can be found in the Supplementary material (Fig. 
E.2-E.4). 

3.1.2 Additional beam filtration 

For the pelvis IQP configuration, the effect of additional 2mm Cu filtration was evaluated. Such filtration 
increased both CNR and resolution as illustrated in Fig. 1. With a dose allocation of 79%/21%, the added 
filtration resulted in a spatial resolution above the one of SE TV and also in a slightly larger CNR. 



Consequently, it also surpassed the best results of the pelvis phantom configuration without Cu filtration. 
Adding the Cu filtration also increased the SSIM for both energies (Fig. 3), bringing the DE SSIM 
beyond all FDK SSIMs for LE as well. A reconstruction example for DE TNV with added Cu filtration is 
shown in Fig. 2D. The results for all dose allocations can be found in the Supplementary material (Fig. 
E.5 and Fig. E.6). 

3.2.2. Fast-switching 

For the H&N phantom configuration, the FS-like acquisition scheme decreased image quality primarily 
by a decrease in CNR (Fig. 4 a). The spatial resolution was similar for FS and DA acquisition but the 
spatial resolution decrease for 𝜃=10-4 was amplified. For the pelvis phantom configuration, the FS-like 
acquisition scheme slightly increased the CNR (Fig. 4 b). For a 39%/61% dose allocation, the spatial 
resolution improved as well. For a lower dose partition in the LE arm (20%/80%), the spatial resolution 
decreased for the FS. The results for both image components from both phantom configurations are 
visualized in the Supplementary material (Fig. E.2 and Fig. E.3). Regarding the SSIM, FS led to a small 
decrease in the LE component in most cases but to a much larger increase for the HE component. The 
SSIM results are displayed in Fig. E.4. 

 
        (a)       (b) 

Figure 4 CNR and spatial frequency for DE TNV (LE component) with dual-arc (DA) and fast-switching (FS) acquisition 
scheme for the H&N (a) and pelvis (b)  phantom configuration. Fig. E.2 sand Fig. E.3 show both the LE and HE component for 
H&N and pelvis phantom configuration, respectively.  

3.2 Virtually Human Male Pelvis Phantom 

Most findings from the IQP were also observed in the HMP, showing that those findings also hold in a 
human anatomy with more variation and more dense material. These include the superiority of TV and 
TNV over FDK, the 𝜃 dependent behaviour of the DE image quality, and that a higher dose allocation in 



the respective energy arm resulted in higher CNR for DE TNV. This effect was also here larger in the LE 
component. Furthermore, DE TNV and SE TV showed similar image quality. The spatial resolution of 
the HMP was in the same range as the IQP. In Fig. 5, the best FDK, SE TV, and DE TNV results for 
CNR and spatial resolution are compared. Here, 𝜃 was varied from 0 to 10-3 to allow a more extensive 
comparison between SE TV and DE TNV. Reconstruction examples for FDK, SE120 TV, and DE TNV 
are shown in Fig. 6. The best SSIM results for all reconstruction methods are displayed in Fig. 7. As for 
the IQP, FS usually generated superior SSIMs than DA and the DE SSIM is larger than for FDK and SE 
TV, but contrary to the IQP, here also for the LE. The SSIM results for all dose allocations can be found 
in the Supplementary material (Fig. E.7). Further differences to the IQP are, that, the best SE CNR results 
were seen for images using 120kV (cf. Fig. E.8). Additionally, the LE and HE components of the HMP 
showed similar CNR results, which were comparable to the values of the IQP ones (pelvis) (Fig. 8). In the 
LE component, the CNRs for the various dose allocations were more similar and not as widespread as for 
the IQP. For a dose allocation of 39%/61%, FS slightly increased CNR as for the IQP but for a dose 
allocation of 19%/81%, the increase in the LE component was large. 

 

     

Figure 5 CNR and spatial frequency for the best scans of FDK, SE TV, and DE (DA) TNV for the virtual human male pelvis 
phantom. The letters A-D indicate the image reconstructions shown in  Fig. 6. 



 

Figure 6 Reconstruction examples of the virtual human male pelvis phantom for (A) SE120 FDK (h=1.0), (B) SE120 TV (N=10, 
𝜃=1x10-4), and DE TNV (DA87%/13%,, LE component, N=10) with (C) 𝜃=2x10-4 and (D) 𝜃=3x10-4. The window and level of the 
DE images were kept constant but changed by means of histogram matching for the SE images due to differing attenuation 
values. 



 

Figure 7 SSIM and spatial frequency for the best HMP scans of FDK,  SE TV, and DE TNV  (N=10) for LE (left) and HE 
(right). 

 

Figure 8 CNR and spatial frequency of the LE and HE component of the DE TNV reconstructions of the virtual human male 
pelvis phantom. Both dual-arc (DA) and fast-switching (FS) acquisition scheme are displayed.  



4. Discussion 

In this paper, we investigated the combination of DE CBCT with spectral TV iterative reconstruction 
(TNV). We evaluated the image quality and compared it to the image quality of SE scans reconstructed 
with different algorithms. While DE TNV yielded better SSIM results than FDK and SE TV 
reconstructions, the SE TV resulted in similar image quality in terms of CNR and spatial resolution. 
Increasing the spectral separation between LE and HE for the DE acquisition (by adding extra beam 
filtration) improved these image quality metrics beyond SE TV. 

For the IQP DE scans, we observed an increase in CNR with increasing percentage of dose in the 
respective energy arm. This is due to the decrease of noise with higher imaging dose. Because of the 
higher density of the HMP, the LE and HE components showed more similar CNRs than the IQP. Higher 
density leads especially for lower kV to higher attenuation and therefore to more noise, decreasing the 
CNR. 

The FS option means that a lower number of projection was used but with a higher mAs per projection. 
Despite similar dose, this led to an increase in CNR due to a decrease in noise for the large sized 
phantoms. The reason could be that part of the “noise” in images with low mAs was also due to streak 
artefacts and these streaks were reduced for the FS option. This lower noise could also have been the 
reason for the better SSIM results for FS compared to DA in most cases. For the H&N configuration 
where the gantry rotation was twice as fast as for the pelvis configuration, FS resulted in under-sampling 
which introduced aliasing, and therefore decreasing the CNR. Images with a larger 𝜃 might not have been 
so affected since larger 𝜃smooth the images more and hence reducing the streaks. To mitigate this 
problem, the gantry rotation speed could be reduced from 1 rpm to 0.5 rpm. Since a 200° acquisition is 
used clinically for several body sites in our institute, a reduction in the angular range of the gantry 
rotation from 360° to 200° while maintaining the number of projections constant is also a feasible option 
if a reduction in the FOV is acceptable. 

For the IQP, the SE TV reconstructions produced slightly better image quality regarding CNR and spatial 
resolution than DE TNV. Adding an extra beam filtration for the HE increased CNR and spatial 
resolution showing that a larger spectral separation improves image quality. With the 2mm Cu filtration, 
we were able to improve the DE image quality beyond the image quality of SE. An enhancement in 
hardware (improved X-ray source cooling) and optimizing the filtration (e.g. material, reducing present 
filtration for the LE acquisition) might lead to further increase in image quality as well as make it possible 
to use additional beam filtration for denser anatomy. Without the possibility of additional beam filtration 
for the HMP due to the aforementioned limitations, the CNR and spatial resolution of the SE120 TV was 
slightly superior to DE TNV. When comparing the spatial resolution of DE CBCT to CT, DE achieved an 
approximate 10% lower spatial frequency for both phantoms. For the IQP, the CT scan resulted in a 
spatial frequency of f10%,CT=7.5cm-1 and DE TNV in f10%=6.6cm-1 for DA79%/21% (LE component) with 
additional Cu filtration. For the HMP, the frequencies were f10%,CT=6.8cm-1 and f10%=6.2cm-1. 

In the SSIM calculation, the mean gray value of the image is needed (Eq. 11). The gray values 
(attenuation coefficients) are energy dependent and therefore, the mean gray values of LE and HE scans 
are different. Unlike CNR and spatial resolution, a ground truth image is required to calculate the SSIM. 
Since our ground truth image is a 120kV CT scan, LE images result in lower SSIMs than HE images. So 



even if the SSIM comparison had to be performed separately for low and high energy, the various 
reconstruction methods of the same energy can be compared to each other. For both phantoms and 
energies, the DE TNV resulted in larger SSIMs than FDK and SE TV. For the HE component of the IQP, 
this was even accomplished without extra beam filtration. The added filtration improved the SSIM 
nonetheless. Since the ground truths were 120kV diagnostic CT scans, the HE yielded larger SSIMs. 
Performing a HU calibration would increase the SSIM considerably but due to present image artefacts 
like streaks and shading, a simple calibration based on the phantom inserts of the IQP would lead to 
erroneous HU in some regions of the images. 

At first sight, it is surprising that for the IQP, the LE yielded larger CNRs than the clinically used ME. 
This is because the contrast of the polystyrene insert for 70kV was more than double the contrast for 
120kV and 130kV. The noise for the higher energies was also lower but not to an extent to compensate 
for such a contrast difference. For the HMP, the decrease in contrast from 70kV to 120kV was lower but 
the decrease in noise was larger, leading to a better CNR for 120kV. Using T(N)V decreased the noise 
considerably while maintaining a high spatial resolution leading to a superior image quality. 

Generally, the change in image quality for SE TV and DE TNV with varying 𝜃 behaved as expected. 
First, the CNR increased considerable with increasing 𝜃 due to denoising. With further increase, the CNR 
increase got smaller and even reversed in some cases. That is because the noise could not be further 
reduced and the images got so blurred that the regions of the VOIs started to overlap. The decrease in 
spatial resolution with increasing 𝜃 is also expected since the images become blurrier with increasing 𝜃. 
Unusual is the lower spatial resolution for 𝜃=1x10-4 for the H&N configuration. The reason could be 
related to the number of projections because the effect is increased for FS and also visible for the pelvis 
configuration with FS. In some cases with low mAs and 𝜃, the spatial resolution is apparently very high 
(Fig. 4 b, Fig. 8 LE component). This might be due to the high noise levels and streak artefacts. These 
make it difficult to find a proper fit for the ESF and the spatial resolution can be over-estimated. 

For diagnostic CT, Yu et al. used DECT to generate monochromatic images of phantoms and evaluated 
their image quality. They were only able to show a greater (iodine) CNR compared to SE120 but not 
compared to SE80 images [29]. Until now, DE CBCT has mostly been used for different applications like 
material classification [30] and proton stopping power determination [31]. Men et al. developed a method 
to reconstruct an electron density image using DE CBCT and two basis material attenuation 
measurements [13]. Applying this approach to a Catphan 503 image quality phantom, they showed 
increased uniformity and signal-to-noise ratio. In an (anthropomorphic) Alderson Rando phantom, the 
dose calculation accuracy was also improved [11]. Lee et al. studied the feasibility of a single-scan DE 
cone-beam CT [32]. They used a multi-slit filter to generate the high (filtered) and low energy (non-
filtered) beams, decreasing their total imaging dose by 55%. The LE projections were reconstructed with 
TV minimization and the HE image was reconstructed with an iterative algorithm using the joint sparsity 
between the two images. For a Catphan 600, the CNRs for polystyrene were 2.31 and 3.63, for the LE and 
HE image, respectively. These values are well below the results presented in this study, despite having a 
dose similar to our pelvis sized phantoms. Cassetta et al. performed DE CBCT acquisition and used image 
decomposition to generate virtual mono-energetic (VM) images of a Catphan 604 [33]. VM images with 
the lowest kV (50kV) resulted in the highest CNR, which matches our findings, where the LE component 
showed higher CNRs. For acquisitions with a similar CTDI dose as our H&N IQP, Cassetta et al. showed 
an increase in CNR from FDK to iterative reconstruction (iCBCT by Varian) for all images. However, the 



highest CNR for polystyrene was less than 8. Even if their higher reconstruction resolution with a voxel 
size of 0.5x0.5x2mm3 is taken into account, that is much lower than the CNR we reached for the H&N 
IQP (CNR=23.9) and even below the CNR for the pelvis IQP (without additional Cu filtration, 
CNR=13.6). Reasons for these differences could be the acquisition, Cassetta et al. performed a real fast 
kV switching acquisition, or the difference in the applied reconstruction algorithms. Furthermore, material 
decomposition is an ill-conditioned process which amplifies noise. Shi et al. also acquired DE CBCT 
scans to create VM images [34] and found, besides other advantages, an increase in CNR if an additional 
beam filtration (1mm Cu) was used in the HE acquisition, which is in agreement with our findings. 

Besides traditional methods to improve image quality such as the application of anti-scatter grids [1] and 
iterative reconstructions [14, 20] as applied in this work, more recently, learned improvements based on 
deep neural networks have been successfully applied [35, 36]. The limited number of data sets available 
in this work did not permit to train such deep neural nets. It is, however, plausible, that learning based 
approaches will benefit from improved input images in terms of model complexity and\or resulting image 
quality [37]. 

The main limitation in this study was the heat limitation of the kV tube. This made FS for higher dose 
allocations in the LE arm and adding additional beam filtration for the HMP infeasible. From the results 
shown, it could be inferred that both would improve the image quality.  
Another limitation was the use of the CTDI. The CTDI was developed for CT and it is not entirely 
applicable to CBCT due to the extended FOV. The cone-beam expands farther in cranial-caudal direction 
than the ionization chamber in the CTDI phantom. Nonetheless, the CTDI concept can be used in a 
relative manner, i.e. comparing doses of different exposures. In this study, the maximal CTDIw deviations 
from the SE120 dose were -13% and 9%, leading to a CNR decrease and increase of up to -7% and 4%, 
respectively. However, the relevant findings tend to be supported by the differences in dose, e.g. the 
added copper filtration (DA79%/21%+Cu) showed a CNR increase of about 4% compared to SE70 TV 
despite its lower CTDIw of about 4%. 
For SE TV and DE TNV, the parameter space was limited for clarity and to limit reconstruction times. 
The number of CG and T(N)V iterations were kept constant. Moreover, 𝜃 was not optimized. As seen for 
the HMP, using a limited number of 𝜃s might lead to missing the best image quality. Finding the optimal 
values for all parameters might lead to improvements in CNR and spatial resolution. 
Our image quality evaluation was limited to CNR, spatial resolution, and SSIM. Other image quality 
characteristics (e.g. uniformity and visual streak artefacts (Fig. 6 C, D)) were not investigated. However, 
these metrics cover important aspects of image quality and we showed which values are achievable for 
the evaluated metrics for each reconstruction method. This can be seen as a starting point to a specific 
task. For example, (auto-)segmentation may benefit from higher CNR and deformable image registration 
may benefit from higher spatial resolution. The potential impact of the image quality improvements of DE 
CBCT needs to be evaluated in future studies. 
Furthermore, some non-ideal physics effects (e.g. scatter, image lag) were neglected. Although, ignoring 
these effects also meant ignoring their influence on the cost function value and hence, on the 
reconstructed image, their impact is reduced. The presence of an ASG reduced the scatter substantially 
[1]. Image-lag causes circular shading in all reconstructed images. This so-called radar artefact is only 
exhibited in the periphery. In the IQP, it is visible at the left edge of the axial view (Fig. 2) and for the 
HMP, it appears around the left pelvic bone in the axial view of the HMP (Fig. 6). Consequently, the 
impact of image-lag on the evaluated image quality metrics is minimal. Despite it being a known problem 



with potential corrections for SE [38], image lag and also scatter are energy dependent and therefore, 
energy dependent correction strategies would have to be implemented to yield comparable results. 
Implementing energy dependent image lag and scatter correction strategies was out of the scope of this 
project and therefore not performed. Including scatter correction and mitigating image artefacts resulting 
from aliasing and image lag would nonetheless lead to improved image quality. 
For DE, we only analysed the two components of the images separately. Initial linear combinations of LE 
and HE components did not show significant improvements in image quality. Since the applied 
reconstruction algorithm couples the two spectral channels, the noise of the LE and HE components are 
not independent. The noise correlation between the two components increases with the parameter 𝜃. This 
correlation makes a combination of the components to generate a new image more complex and a more 
sophisticated combination might be necessary to yield a gain in image quality. 

The investigated DE CBCT approach might be beneficial for online adaptive radiotherapy. The presented  
improvements in CNR, SSIM, and spatial resolution could facilitate further steps towards online ART, 
where several aspects of image quality are important. 

5. Conclusions 

In this study, we applied a generalization of total variation to spectral data, total nuclear variation, to dual-
energy CBCT scans. For the standard hardware configuration, TNV CBCT outperformed traditional FDK 
but was similar to single energy total variation CBCT. However, adding an additional copper beam 
filtration to reach a larger spectral separation between low and high energy led to increased image quality 
beyond SE. Further mitigation of our study limitations and optimization of beam filtration, dose 
allocation, reconstruction algorithms and software corrections may lead to further image quality 
improvements. 
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