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Abstract

Modeling strain localization with a second gradient model can become problematic at the late stages of soften-

ing response, when the second gradient terms become significant compared to the first gradient terms. This is

particularly true for mode I crack problems where an unrealistic spreading of the localised zone can be encoun-

tered. To deal with these limitations, a novel second gradient interface element for mode I crack propagation

problems is introduced. It is shown that the model is able to correctly reproduce all the different phases up to

failure; the adherence phase, strain localisation, the transition from localised strains to cohesive zones and full

crack opening.

Keywords: second gradient; strain localization; regularization; cohesive element; higher-order continua;

micromorphic continua; generalized continua; crack; transition

1. Introduction

Two approaches are often used to simulate cracks in quasi-brittle materials : a purely continuous approach,

often within the framework of damage mechanics [1] [2] and a discontinuous approach, mainly based on fracture

mechanics [3] [4] [5]. In the former, the solid remains a continuum while the failure process is described by a

damage field that governs the softening response of the material. This approach necessitates the introduction of

a length scale to avoid ill-posedness and spurious localization of the damage and strain fields (regularization).

Among the various regularization methods in the continuum mechanics approach, this article deals with the

so called micromorphic or generalized continua [6] [7] [8] that take into account a kinematic description of the

microstructure. In the latter, cracks are naturally described by displacement discontinuities. In its simplest

form, linear elastic fracture mechanics, the material outside the crack is assumed linear elastic while an energy10

criterion is adopted to predict crack initiation. Cohesive zone models [9] [10] [11], which can be considered as an

extension of the Griffith’s fracture mechanics theory [12], are used to simulate crack initiation and propagation.

The transition from diffuse material degradation to a localized crack is still however a challenging problem [13],

especially if the crack path is not known in advance or if multiple cracks are present.
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One particular type of generalized continua, the second gradient model developed by Chambon et al. [14]

[15] [16] [17], has demonstrated its ability to regularize strain localization in the framework of plasticity [15]

[18] [19] and damage mechanics [2] [20] [21]. Shear banding problems [22] [23] [24] [25] and mode I crack

propagation [2] can be reproduced up to a certain point.

On the other hand, as demonstrated by various authors [21] [26] [27] [28] [29], strain localization with

a second gradient model can become problematic at the late stages of softening response, when the second20

gradient terms become significant compared to the first gradient terms. This is particularly true for sharp

or narrow mode I fracture problems where high values of damage are expected as soon as the crack starts

propagating. An unrealistic spreading of the damaged zone can be encountered due to the significant values

of the second gradient terms used in equilibrium equations. So the forces transmitted through the localization

zone are important even for high damage values. Similar issues occurs with other regularization techniques; for

example, the widening of the damage zone is a well known problem for the non-local - and the closely related

implicit gradient, damage models [30] [31]. Additional issues associated with the numerical implementation

of the regularization methods may also occur, such as the narrowing of the localization band below the finite

element size [3]. Recent formulations, as the gradient damage model proposed by Zhao Wang & Leong Hien Poh

[32] or phase field fracture models seem to overcome these problems. One can also mention the hemivariational30

continuum approach proposed in [33] to reproduce damage induced anisotropy, chirality and formation of finite

localization zones.

In this article however we focus on the second gradient model developed by Chambon et al. [14] [15]

[16] [17] because of its versatility, as it is able to simulate strain localization within different constitutive law

frameworks (plasticity, hypoplasticity, viscoplasticity, damage mechanics etc). No additional modification of

the finite element software is needed other than the implementation of the second gradient finite element; all

the implemented constitutive laws can be used straightforwardly. Furthermore, an extension of the formulation

for poromechanical modeling is introduced in [25] and has already proved its performance (see among others

[34], [35], [36]).

To simulate crack opening and propagation, various authors studied the introduction of discontinuities40

in continuous damage models [3] [4] [5] [37] [38] [39] [40]. Discontinuities are generally introduced at points

where damage reaches a critical value while strain localization and damage fields can evolve elsewhere in the

structure. This critical value corresponds either to a complete rupture of the material and in this case the

inserted discontinuity is traction free, or to any other value that implies the use of a cohesive zone model to

deal with the remaining energy that has yet to be dissipated during the crack formation.

The objective of this article is to study mode I crack propagation problems and the transition from con-

tinuous damage to a cohesive zone in a second gradient continuum. The article is divided into two parts: the

first part (sections 2 and 3) presents the second gradient formulation (virtual work principle, constitutive laws

and numerical implementation issues) and focuses on two examples to illustrate the spurious behavior that can

be encountered. The second part (section 4) introduces a solution, a second gradient cohesive element (virtual50
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work principle, numerical implementation) and ends with two examples to validate the approach.

The following notations are adopted hereafter: the upper script ⋆ represents a virtual variable, the ′ and ′′

the first and second derivative with respect to the coordinate x, ∇ the gradient, ∇2 the second gradient, : the

double contraction, ∴ the triple contraction, ⊗ the tensor product and div the divergence operator respectively.

q is a first order tensor (vector), n the unit surface normal vector, q a second order tensor, q a third order

tensor and q a fourth order tensor. The partial derivatives are denoted as qi,j = ∂qi/∂xj , qi,jk = ∂2qi/∂xj∂xk.

Dq is the normal derivative of any quantity q (i.e. Dq = ( ∂q
∂xk

)nk) and
Dq
Dxj

is the tangential derivative of any

quantity q (i.e. Dq
Dxj

= ∂q
∂xj

− ( ∂q
∂xk

)nknj). The normal and tangential components of a vector are given as

qi = (qi)t + qlnlni, with (qi)t the tangential component. The normal and tangential components of a second

order tensor are given as qij = (qij)t + qilnlnj with (qij)t the tangential component. Body forces are hereafter60

neglected for simplicity and inertia phenomena are not taken into account.

2. The second gradient model

2.1. Virtual work principle

As shown by Germain [6] (see also [14] [15]), second gradient continua can be seen as a particular case of

micromorphic or generalized continua. This type of continua introduces a kinematic of the microstructure via

a tensor v. In the second gradient model introduced in [15], the tensor v represents the micro strains and is

supposed equal to the macro strains ∇u, where u is the macro displacement field. That feature holds true as far

as bulk equations are concerned, however boundary conditions for second grade continua present particularities

with regard to those of micromorphic continua.

The virtual work principle for second grade continua is given by:70

∫
Ω

(σ : ∇u∗ +Σ ∴ ∇2u∗)dΩ =

∫
∂Ω

(s.u∗ + T .Du∗)dΓ (1)

which is the weak formulation of equilibrium.

On the boundary ∂Ω, u∗ and its normal derivative Du∗ vary independently, the force densities s and T

(dual to the normal derivative of u) can be also chosen independently [15].

Using the virtual work principle (equation (1)), several integration by parts and the divergence theorem

finally provides the following balance equations and boundary conditions [15]:

div(σ − div(Σ)) = 0 (2)

∂σij

∂xj
− ∂2Σijk

∂xj∂xk
= 0 (3)

Under the assumption of smooth boundary (without edges or corners), the boundary equations become (the

existence of corners necessitates the introduction of additional terms):

σijnj −nknjDΣijk−
DΣijk

Dxk
nj−

DΣijk

Dxj
nk+

Dnl

Dxl
Σijknjnk−

Dnj

Dxk
Σijk =si (4)
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Σijknjnk = Ti (5)

2.2. Constitutive laws

The introduction of the second gradient of the displacements and its dual double stress tensor (equation 1)

in the internal virtual work implies different possibilities regarding the constitutive laws linking the two stress

tensors and the displacement gradients [41]. The choice made by Chambon and co-workers [15] [18], adopted80

also in this article, is to decouple the first and the second gradient constitutive laws, i.e. the first gradient

stress tensor σ is a function of ∇u and the double stress Σ a function of ∇2u.

2.2.1. First gradient part

A simple damage mechanic law is adopted in this article for the constitutive law of the first gradient part,

equation (6). The law has a scalar damage variable D, function of an internal variable κ depending on the

load history and on the equivalent strain ϵeq through the definition of a loading function, equation (7) and the

Kuhn-Tucker conditions, equation (8) :

σ = (1− D(κ))E∇u (6)

f(ϵeq, κ) = ϵeq − κ (7)

f ≤ 0; κ̇ ≥ 0; fκ̇ = 0 (8)

The definition of the equivalent strain and the damage evolution law, which provides D as a function of κ,

are detailed in section 3.

2.2.2. Second gradient part90

The constitutive law for the second gradient part is chosen linear elastic. Following Mindlin [42] [8] it is

written in 2D as:



Σ111

Σ112

Σ121

Σ122

Σ211

Σ212

Σ221

Σ222



=



α12345 0 0 α23 0 α12 α12 0

0 α145 α145 0 α25 0 0 α12

0 α145 α145 0 α25 0 0 α12

α23 0 0 α34 0 α25 α25 0

0 α25 α25 0 α34 0 0 α23

α12 0 0 α25 0 α145 α145 0

α12 0 0 α25 0 α145 α145 0

0 α12 α12 0 α23 0 0 α12345





u1,11

u1,12

u1,21

u1,22

u2,11

u2,12

u2,21

u2,22



, (9)

4



where :

α12345 = 2(α1 + α2 + α3 + α4 + α5),

α23 = α2 + 2α3,

α12 = α1 + α2/2,

α145 = α1/2 + α4 + α5/2,

α25 = α2/2 + α5,

α34 = 2(α3 + 2α4). (10)

with α1, α2, α3, α4, α5 five independent material parameters.

As in Matsushima et al [18], the choice here is to work only with one independent material parameter B,

as this was proven sufficient to regularize various localization problems [18] [19] [23]:

a1 = 0

a2 = B

a3 = −B/2

a4 = B

a5 = −B

(11)

The linear elastic constitutive law of the second gradient part is finally given by :



Σ111

Σ112

Σ121

Σ122

Σ211

Σ212

Σ221

Σ222



=



B 0 0 0 0 B/2 B/2 0

0 B/2 B/2 0 −B/2 0 0 B/2

0 B/2 B/2 0 −B/2 0 0 B/2

0 0 0 B 0 −B/2 −B/2 0

0 −B/2 −B/2 0 B 0 0 0

B/2 0 0 −B/2 0 B/2 B/2 0

B/2 0 0 −B/2 0 B/2 B/2 0

0 B/2 B/2 0 0 0 0 B





u1,11

u1,12

u1,21

u1,22

u2,11

u2,12

u2,21

u2,22



. (12)

It should be noted however that the different elastic material parameters for the second gradient constitutive

law can be obtained by a homogenization procedure over a representative volume element (see for example [43]

[44] [45]). A generalized Hooke’s law for isotropic second gradient materials characterized by seven elastic

moduli is proposed in [46].100

2.3. Finite element mixed formulation

The virtual work form of equation (1) introduces derivatives of the second order for the displacement field

and thus necessitates functions of class C1 (continuous and continuously differentiable once) for its interpolation

[47]. Such finite element has been used for 1D problems by Chambon et al. [14] but is difficult to construct for

2D and 3D cases (see however [48] and [49]). For this numerical reason, it is more convenient to use the weak

formulation of the equilibrium of a general micromorphic continuum (see appendix Eq.A.9 for more details)

that can be used to numerically model the deformations of a second gradient continuum. In that case, one
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uses two virtual fields u∗ and v∗ that necessitate functions of class C0 (continuous). However, it is necessary

to force the micro strain v to be equal to the gradient ∇u of the displacement field. Consequently Lagrange

multipliers (namely τ and P
t
defined in the Appendix A) are necessary to impose the kinematic constraint110

v = ∇u respectively on the domain and its boundary. They are unknowns and cannot be fixed as data nor

given by a constitutive equation.

To impose the equality of the microstrains and the macrostrains the virtual work principle takes the following

form [15], [50]:

∫
Ω

(σ : ∇u∗ + λ : (v∗ −∇u∗) + Σ ∴ ∇v∗dΩ =

∫
Γ

(
s. u∗ + Pn : v∗n + ρ :

(
v∗
t
−∇tu

∗
))

dΓ (13)

and

−
∫
Ω

λ∗ : (v −∇u)dΩ = 0 (14)

and ∫
Γ

ρ∗ : (v
t
−∇tu)dΓ = 0 (15)

which holds for any admissible fields u∗, v∗, λ∗ and ρ∗. From equations (A.9) and (13) one can also observe

that the Lagrange multiplier field λ is equivalent to the micro stress tensor τ and the Lagrange multiplier

field ρ equal to P
t
. s is the external surface force and Pn is the external double force that can be chosen

independently.120

The success of the finite element formulation depends upon the behavior of the Lagrange multiplier field.

In the following, this is considered constant on each finite element [15] [17] [18], as this is the best choice in

terms of computational cost [24]. Nevertheless, the use of constant Lagrange multipliers alone can introduce

spurious oscillations (e.g. in mode I crack propagation problems [21] [28]). The kinematic constraint of the

second gradient model can be also imposed with a penalty method, by specifying a ”constitutive law” for τ of

the form [24] [51]:

τ = C(∇u− v) (16)

where C is the (scalar) penalty coefficient which must be taken as large as possible to correctly enforce the

equality. In the second gradient model however it is very difficult to choose the appropriate value for the

penalization parameter, which in fact has to be very large [24]. The combined use of Lagrange multiplier fields

and penalization terms is a way out, as it improves the convergence performance and the sensitivity to the130

value of the penalization parameter [21] [24] [28]. In this latter case, Eq.13 becomes:

∫
Ω

(σ : ∇u∗ + (λ+ τ) : (v∗ −∇u∗) + Σ ∴ ∇v∗dΩ =

∫
Γ

(
s. u∗ + Pn : v∗n + ρ :

(
v∗
t
−∇tu

∗
))

dΓ (17)

Other choices of the Lagrange multiplier field are also possible [52] but it is necessary to verify that they

satisfy they Ladyzhenskaya–Babuška–Brezzi (LBB) condition [53]. One can for example mention the use of a
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linear field for the Lagrange multipliers for the specific case of the second gradient model for dilatant materials,

in the mixed formulation introduced by [54], that does not need the use of penalization terms to correctly

reproduce the incompressible material behavior.

The additional term (v
t
−∇tu) in the virtual work principle for the external forces on the surface Γ vanishes

when the kinematic condition is fully respected and may be considered negligible when it is introduced in a

weak way. On the parts of the surface Γ where the boundary conditions specify the displacement field and its

gradient (forces and double surface forces are unknown), in order to guarantee the cancellation of the additional140

term, it is necessary to specify them as:

u = uimp and v = vimp
n ⊗ n+∇tu

imp (18)

where the imposed uimp and vimp
n are specified independently and ∇tu

imp is deduced from the given imposed

displacement uimp. Consequently, when one component of the displacement field u is fixed along a boundary,

the component of v corresponding to the tangential derivative of the fixed displacement must be also fixed.

3. The second gradient theory as a regularization method for quasi-brittle damage problems

3.1. One-dimensional tensile problem

In their first paper on the second gradient theory (used as a regularization method for strain localization),

Chambon and co-workers gave the closed form solution of a 1D traction problem [14]. Their results will be

used hereafter to highlight some features of the model.

Let’s consider a 1D bar of length L. An horizontal monotonically increasing displacement (tension) u = U150

is applied at the right end of the bar while its left end is fixed u = 0. Zero double forces are considered at its

both ends (figure 1(a)). In [14], a plastic 1D bilinear law was adopted for the first gradient part. The authors

found that no unloading occurs inside the localization band and so it is possible to adopt the same bilinear

constitutive law formulated within a damage mechanics framework. The following constitutive law is therefore

adopted in this paper:

D =
κc

ϵeq

ϵeq − κi

κc − κi
(19)

with ϵeq is the equivalent strain, κi the strain threshold at the peak of the bilinear law corresponding to the

damage initiation and κc the strain threshold after which stresses are no longer transmitted. The equivalent

strain is simply taken as ϵeq = ϵ = u′. The initial slope of the first gradient law is named Gel and the post

damage slope Gtg = Gelκi

κi−κc
. The second gradient law is the one dimensional version of (12) with a constant

slope B linking the double stress Σ along the 1D bar with the second derivative of the displacements u′′ (figure160

1(b)).
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Figure 1: One-dimensional tensile test : Boundary conditions and constitutive laws

The balance equation (3) simply becomes:

σ′ − Σ′′ = 0 (20)

and can be integrated as (with s the classical tensile traction):

σ − Σ′ = s (21)

Equation 20 is solved considering either a sound (undamaged) or damaged behavior. In the sound parts

(i.e subdomain where u′ < κi) the displacement is given by [14]:

u =
s

Gel
x+K + αcosh(ωx) + βsinh(ωx) (22)

In damaged parts (where κi < u′ < κc), the displacement is given by [14]:

u =
N2

Gtg
x+Q+ γcos(ηx) + δsin(ηx) (23)

with

η =

√
−Gtg

B
(24)

ω =

√
Gel

B
(25)

N2 = s+ (Gtg −Gel)u
′ (26)

and α, β, γ, Q, K constants.

A various number of damaged and sound subdomains can be ”linked” together, and thus several solutions

to the boundary problem are possible with a different number of ”damaged” and ”sound” parts. The total170

number of solution is finite and depends on the boundary conditions and the material parameters [14]. The

localization length (the total length of the soft parts ls) can be approximated by the wave-length λs [14] and

it is obvious from equation (27) that for a bigger value of B the length of the localization zone increases:

8



ls ≃ λs = 2π

√
−B

Gtg
(27)

The solution given in [14] is valid as long as u′ < κc (i.e. σ > 0) everywhere.

It is important to keep in mind that, in a second gradient continuum, the traction applied at the boundary

is balanced by both stress and double stress quantities (equation (21)), meaning that σ is not necessarily

constant along the 1D bar. It is thus possible to have σ = 0 at one point (i.e. damage equal to 1), or even on a

subdomain of the bar, while a tensile force is still transmitted. In this particular case, the closed form solution

is no longer valid for u′ > κc (Figure 2). Rolshoven [26], Jirasek and Rolshoven [29] and [20] [2] [22] [27] [28]

showed that this situation leads to an increasing localization zone that finally covers the whole length of the180

bar.

Figure 2: One-dimensional tensile test : the closed form solution is not valid for u′ > κc

3.1.1. Tensile traction, stress and double stress

In order to have a better insight in the stress, double stress distribution and tensile traction evolution, these

quantities are plotted as a function of the imposed displacement (the adopted parameters are given in table 1).

One particular possible solution is studied, the ”sound-damaged-sound” solution shown in Figure 3(a). In this

case, the length of the sound part is lh = 2lh,end, while the length of the damaged part ls can be found from

the following equation [14]:

Type Parameters Value Unit

Dimension Length L 1 m

First gradient law Elastic Modulus Gel 150 Pa

Tangent modulus Gtg -75 Pa

Strain limit κi 0.01 -

Second gradient law Elastic modulus B 0.8 N

Table 1: One-dimensional tensile problem : Parameters

9



tanh

(
ω
L− ls

2

)
= −

√
−Gel

Gtg
tanh

(
η
ls
2

)
(28)

Remark : this solution is equivalent to the ”damaged-sound-damaged” solution in Figure 3(b), as both

correspond to the same localization length and force displacement curve. In this case, ls = 2ls,end.

Figure 3: One-dimensional tensile test : a) ”sound-damaged-sound” solution b) ”damaged-sound-damaged” solution

From the closed form solution given in [14], the stress σ and the double stress Σ can be computed at190

any point in the bar using the displacement solution, the constitutive laws and the balance equation. The

corresponding tensile traction s is finally given by [28]:

s =
U +

Gel−Gtg

Gtg
κils −

(
1
ω2 + 1

η2

)
ωκitanh(ωlh)

lh
Gel

+ ls
Gtg

−
(

1
ω2 + 1

η2

)
ω

Gel
tanh(ωlh)

(29)

and the stress and Σ′ at the maximum strain point (x = L/2) [28] are given as:

σ = Gel(
N2

Gtg
+ ζη) (30)

− Σ′ = Bζη3 (31)

with

ζ =
κi − N2

Gtg

ηcos(ηls,end)
(32)

s, σ and Σ′ are hereafter adimensionalized with: •̃ = •/(Gelκi). The adimensionalized quantities depend

on ω, η, L and are linear functions of the adimensionalized displacement Ũ = U/(Lκi). The evolution of these

quantities at the point of maximum strain (beginning of the bar for the damaged-sound-damaged solution or

middle of the bar for the sound-damaged-sound case) is given in figure 4. When σ̃ becomes equal to zero, Σ̃′

is different from zero and therefore the transmitted tensile traction s̃ is not nul.
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Figure 4: One-dimensional tensile test : Adimensionalized tensile traction s̃, stress σ̃ and Σ̃′ evolutions at the point of maximum

strain with ω = 13.7m−1 and η = 9.7m−1

The closed form solution is valid only up to the point where σ reaches 0 (u′ = κc at the point of maximum200

strain). Beyond this point, the localization length starts increasing. The limit value of s̃ obtained when damage

reaches 1 is given by [28]:

s̃lim =
1

1− cos(ηls,end)
(33)

Equation (33) indicates that for the constitutive laws adopted (figure 1) and when damage reaches 1, the

adimensionalized tensile force in the bar cannot be less than half the maximum adimensionalized traction. This

can be also observed in Figure 5 that gives the value of s̃lim for different values of η and ω, (L = 1m). This is

clearly a non realistic behavior as the bar should be traction free if a crack appears and the bar is cut in pieces

(see also sections 3.2 and 4).

Figure 5: One-dimensional tensile test : Evolution of s̃lim as a function of η and ω (L = 1m)

Remarks:
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• A way to solve the spurious spreading of the localization zone is to couple the first and second gradient

constitutive laws so as to decrease the influence of the second gradient terms at the late loading stages. A210

1D example using a damage mechanics formulation is presented in [27], where it is shown that a proper

coupling can lead to a formulation able to a priori control the evolution (decrease, constant or increase)

of the localization zone. Nevertheless and as it is shown in the 1D example in this section, the tensile

force cannot become zero but presents a minimum. This is clearly a problem for crack modeling studies,

which is solved in section 4 with the introduction of a second gradient cohesive element.

• The damage process could also result in introduction of new microstructures leading to growth or decre-

ment of second gradient terms when compared to the first gradient terms. Thus spreading could be

realistic in some cases, see for example [55] [56] [57].

3.1.2. Dissipated energy

The energy dissipated up to the point where damage reaches 1 can be calculated from the closed form220

solution. For a damage model, the dissipated energy on a domain Ω is given by :

Gf =

∫
Ω

∫ D

0

Y dDdx (34)

with Y the energy release rate.

In our case, because damage is applied only to elastic modulus of the first gradient part, Y is the same as

in a first gradient continuum. We thus have for the 1D problem:

Y =
1

2
Gelu

′2 (35)

Considering the damage evolution law given by equation (19) and a monotonic loading we have:

dD =
∂D
∂ϵ

dϵ =
∂D
∂u′ du

′ =
1

u′2
κiκc

κc − κi
du′ (36)

For the ”damaged-sound-damaged” solution, damage spreads at the two extremities of the bar ( ls = 2ls,end)

(see figure 3(b)). Equation (34) therefore becomes :

Gf

2
=

∫ ls,end

0

∫ u′(x)

κi

1

2
Gel

κiκc

κc − κi
du′dx =

∫ ls,end

0

1

2
Gel

κiκc

κc − κi
(u′(x)− κi)dx (37)

where u′(x) is calculated from equation (23) with the boundary conditions u(0) = 0, Σ(0) = 0 and u′(ls,end) = κi

:

u′(x) =
t+ (Gtg −Gel)κi

Gtg
+

κi − N2

Gtg

ηcos(ηls,end
ηcos(ηx) (38)

When damage reaches 1, the value of the tensile traction is given by equation (33). Equation (37) finally230

becomes [28]:
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Gf =
(Gel −Gtg)Gelκ

2
i

Gtg

[
ls,end

(
cos(ηls,end)

1− cos(ηls,end)

)
− 1

ηtan(ηls,end/2)

]
(39)

The dissipated energy is therefore linked to the second gradient modulus B through ls,end and η. Equation

(39) provides the energy dissipated up to the state when damage reaches 1 at the center of the process zone.

Although this is not the state of complete failure and therefore this energy is not the fracture energy, equation

(39) can be used for a first calibration of B.

3.2. Two-dimensional mode I crack propagation problem

Up to this point, the behavior of the second gradient model and several analytical results for the 1D tensile

test have been presented. This simple case highlights some of the current limitations of the second gradient

model used as a regularization model for strain localization.

The above limitations can be less or more severe depending of the crack propagation mode. For example,240

the second gradient model works very well for shear band problems, as already shown in various articles in the

literature [22] [23] [24] [25]. Its performance is however less satisfying for mode I crack propagation problems

(where damage increases rapidly and becomes close to 1). To illustrate this behavior, a notched trapezoidal

beam with an imposed displacement at its lips [21] [5] is modeled hereafter, Figure 6.

ae

h

p

free boundaries 
(notch)U imposed 

displacement

Figure 6: Mode I crack propagation test : Geometry

The damage evolution law is the same as in the 1D test (equation (19)). To obtain a mode I crack

propagation the classical Mazars equivalent strain is adopted [58] as:

ϵeq =
√∑

< ϵi >2
+ (40)

where < ϵi >+ are the positive principal strains. The geometrical, material and numerical parameters are given

in Table 2.
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Type Parameters Value Unit

Geometry Height h 20 cm

Depth a 10 cm

Notch e 9 cm

Width p 5 cm

Elastic parameters Young Modulus E 30 GPa

Poisson coefficient ν 0.22 -

Damage law Initial strain κi 0.03 ‰

Failure strain κc 0.2 ‰

Second gradient law Elastic modulus B 30 kN

Penalisation Penalty coefficient C 10 GPa

Table 2: Mode I crack propagation test : Geometrical, material and numerical parameters

The 2D second gradient finite element [18] introduced in the finite element code Lagamine (University of

Liège) by [59] has been used for the spatial discretisation. The element has 9 nodes, the displacement field250

is interpolated by quadratic functions of the Serendipity type, the microgradient field by linear functions and

the uniform Lagrange multiplier is calculated at the central node (see also Figure 15). Following the remarks

in section 2.3, the Lagrange multiplier field λ is combined with a penalty coefficient C to impose the second

gradient kinematics in a weak form. The numerical integration is performed using a classical Gauss scheme,

[59].

The damage distribution for an imposed displacement of 20µm is given in Figure 7. A ”conical” damage

distribution is observed behind the fracture front.

The damage distribution (figures with blue background) and the integration points where damage is in-

creasing (figures with grey background) around the notch tip are shown in Figure 8, for different levels of

loading.260

Figure 9 shows the damage distribution after a 20µm-displacement. The problem is essentially one dimen-

sional (the equivalent strain ϵeq is close or equal to ϵ22) and can thus be compared to the 1D problem treated

in section 3.1. Figure 10 gives the distribution of ϵeq and D for an imposed displacement of U = 20µm, along

cross sections normal to the crack propagation direction x1.
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Figure 7: Mode I crack propagation test : Damage distribution for U = 20 µm
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Figure 10: Distribution of ϵeq and D in front of the notch for U = 20µm

From Figures 7, 8, 9 and 10, it is obvious that the localization width does not stay constant but increases

behind the crack front, despite the use of a constant moduli ratio between the first and the second gradient

constitutive laws [22]. More specifically and as in section 3.1, the localization width stays constant where

damage is below 1 (see figure 8(a)). On the cross sections where D reached its maximum value, the width

starts to increase with increasing loading (see Figure 8(f) and Figure 10), which gives the ”conical” shape

damage distribution behind the fracture front.270

Figure 11 gives the damage distribution along the crack propagation axis x1 (see figure 9) for different levels

of loading. On the contrary to other regularization models [30] [31], the initial damage occurs right at the notch

tip (e = 9cm, point P on the figure). Then, damage spreads both in front of and behind the notch tip. The

”process-zone” where damage varies from 0 to 1 is not of constant length and seems to be influenced by the
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Figure 8: Damage distribution and loading integration points for different levels of loading

Figure 9: Damage distribution for U = 20 µm

distance from the boundaries.
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Figure 11: Damage distribution along the notch axis

The force-displacement curve (the force being equal to the reaction where the displacement U is imposed)

is given in figure 12. The residual force remains important even though damage has spread throughout the

specimen. As in the 1D test (section 3.1), this spurious residual force is due to the second gradient part, which

still transmits forces despite damage values close to 1 in the localization band.

Figure 12: Force - displacement curve

Finally, another way to represent the phenomenon is the distribution of double stress components Σijk along280

the axis x2, orthogonal to the crack path (axis x1) at a distance 0.12 m from the notch tip (Figure 13). It can

be observed that the distributions of Σ121, Σ112, Σ212 and Σ222 change sign at the center of the localization

band while Σ111, Σ221 and Σ222 reach an extremum.

For an external boundary with a normal n = e2, the tractions s and double forces T are given according

Eqs 4-5:
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s1 = σ12 −
∂Σ122

∂x2
− ∂Σ121

∂x1
− ∂Σ112

∂x1
(41a)

s2 = σ22 −
∂Σ222

∂x2
− ∂Σ221

∂x1
− ∂Σ212

∂x1
(41b)

T1 = Σ122 (42a)

T2 = Σ222 (42b)

(42c)

Along the crack axis, all the derivatives with respect to x1 vanishes as the problem is essentially one-

dimensional. Moreover, one observes that Σ222 is null along the crack axis and thus T2 = 0. Its derivative

however contributes to the traction component s2. It means that tractions are still transmitted, even when σ22

reaches 0 for D = 1.

Figure 13: Mode I crack propagation test : Double stress distribution

4. A second gradient cohesive element290

The previous analysis on the performance of the second gradient model as a method to numerically reproduce

strain localization highlighted some deficiencies, especially for mode I crack problems. A possible solution is to
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deal with the transition from a continuous medium to a discontinuous description of a crack, see for example

[3] [37] [38] [4] [5] [39] [40].

Among the different approaches to perform the transition from a continuous to a discontinuous description,

several authors propose the insertion of a fully formed crack (displacement discontinuity and no forces trans-

mitted across the crack faces) when damage reaches, or is very close to 1. Such approach has been applied to

resolve damage spreading in implicit gradient models [40]. Another way is to introduce the discontinuity not

as a fully formed crack but as a cohesive zone, which can still transmit forces (see [3] [37]). This enables to

start the transition before damage reaches 1, as some energy is dissipated in the cohesive zone.300

This last choice is made hereafter as it enables taking advantage of the two approaches: the continuous

damage model in a second gradient medium deals with the transition from diffuse damage to localization and

predicts the path and orientation of the shear bands, while the second gradient cohesive element realistically

reproduces failure. The formulation and numerical implementation of a novel second gradient cohesive element

is detailed in the following.

4.1. The second gradient cohesive zone

4.1.1. Virtual work principle I - second gradient formalism

Consider a solid domain Ω with traction and double forces imposed on the boundary Γd and a cohesive zone

with faces Γ+
coh and Γ−

coh (figure 14). The weak formulation takes the following form (assuming as mentioned

earlier smooth boundaries):310

∫
Ω

σ : ∇u∗ +Σ ∴ ∇2u∗dΩ =

∫
Γ+
coh

s+.u∗ + T+.Du∗dΓ +

∫
Γ−
coh

s−.u∗ + T−.Du∗dΓ

+

∫
Γd

sd.u
∗ + T d.Du∗dΓ

(43)

Figure 14: Solid domain with cohesive crack
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where s+, T+, s− and T− are respectively the cohesive traction for the first gradient part and double forces

for second gradient part on the faces Γ+
coh and Γ−

coh. sd and T d are the traction and the double force imposed

on Γd.

The specific contribution of the cohesive zone part in the internal work is written as:

Wi
sg = −

∫
Γ+
coh

s+.u∗ + T+.Du∗dΓ−
∫
Γ−
coh

s−.u∗ + T−.Du∗dΓ (44)

4.1.2. Virtual work principle II - micromorphic formalism

The continuum Ω is discretized with the mixed formulation described in section 2.3 as well as for the

interface element. We then have for the contribution of the cohesive zone:

Wi
mc =−

∫
Γ+
coh

s+. u∗ + P+
n .v

∗
n + P+

t
:
(
v∗
t
−∇tu

∗
)
dΓ

−
∫
Γ−
coh

s−. u∗ + P−
n .v

∗
n + P−

t
:
(
v∗
t
−∇tu

∗
)
dΓ

(45)

where the third terms in the integrals over Γ+
coh and Γ−

coh appear as a result of the redefinition of the surface320

traction in the general mixed formulation. The upper index i in equations (44) and (45) indicates that they

refer to the cohesive interface part only.

4.1.3. Finite element implementation

Different choices are possible regarding the numerical implementation of a cohesive zone in a finite element

model. When the crack path is known in advance, interface cohesive elements can be inserted a priori in the

mesh [60] [9] [10] [61]. When the path is unknown beforehand, interface cohesive elements can be introduced

during crack propagation using remeshing techniques [62] [63]. Better suited for this type of problem, X-FEM

[64] [11] and embedded discontinuities [65] [66] can naturally deal with a propagating discontinuity on an

unknown path.

The choice hereafter is to work with cohesive interface elements inserted a priori in the mesh (problems330

with known crack paths), the goal being to focus on the transition from localized strains to cracks in a second

gradient medium. The second gradient cohesive element presented hereafter can however be easily extended

to more general methods. The main difficulty with interface cohesive elements inserted a priori is to treat

properly the initial ”adherence phase”, before the activation of the cohesive zone, when displacements must be

continuous across the interface.

As in section 2.3, the third terms in the two integrals of equation (45) vanish when the equality (v∗
t
−∇tu

∗)

is correctly enforced. This equality can be weakly imposed with Lagrange multipliers :
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Wi =−
∫
Γ+
coh

s+. u∗ + P+
n .v

∗
n + ρ+ :

(
v∗
t
−∇tu

∗
)
dΓ

−
∫
Γ−
coh

s−. u∗ + P−
n .v

∗
n + ρ− :

(
v∗
t
−∇tu

∗
)
dΓ

(46)

−
∫
Γ+
coh

ρ+∗ :
(
v
t
−∇tu

)
dΓ−

∫
Γ−
coh

ρ−∗ :
(
v
t
−∇tu

)
dΓ = 0 (47)

with ρ+ and ρ− the Lagrange multipliers field for the kinematical constraint on the faces Γ+
coh and Γ−

coh. In the

following, it is assumed that this constraint is correctly enforced by the adjacent solid elements and therefore340

these terms are neglected. The validity of this assumption depends on the degree of interpolation of the

Lagrange multipliers λ over the domain. We thus finally have for the mixed formulation of the cohesive zone :

Wi = −
∫
Γ+
coh

s+. u∗ + P+
n .v

∗
n dΓ−

∫
Γ−
coh

s−. u∗ + P−
n .v

∗
n dΓ (48)

As already mentioned in section 3.2, the 2D second gradient finite element [18], [59] has 9 nodes, the

displacement field ui is interpolated by biquadratic functions of the Serendipity type and the gradient field

vij by bilinear functions, (Figure 15). It is thus natural to use a quadratic interpolation for u and linear

interpolation for v for the 3-noded second gradient cohesive element using the parent element coordinates ξ, as

illustrated in Figure 16.

Figure 15: 2D second gradient finite element, [18], [59].

Figure 16: Second gradient cohesive interface element (parent element)

The degrees of freedom of the 3-noded second gradient cohesive interface element are (denoted with a hat

•̂) :

{û}T = {û1|ξ=−1 û2|ξ=−1 û1|ξ=0 û2|ξ=0 û1|ξ=1 û2|ξ=1} (49)
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350

{v̂}T = {v̂11|ξ=−1 v̂12|ξ=−1 v̂21|ξ=−1 v̂22|ξ=−1 v̂11|ξ=1 v̂12|ξ=1 v̂21|ξ=1 v̂22|ξ=1} (50)

As usual, the displacement field has the form of a column vector (notated {•}) and is expressed as a product

of the interpolation functions matrix with the nodal degrees of freedom. For the faces Γ+
coh and Γ−

coh we have:

{u+} = [Nu] {û+} (51a)

{u−} = [Nu] {û−} (51b)

and on ∂Ω

{v} = [Nv] {v̂} (52)

According to equation (A.5), on the boundary, vn = v.n, that reads in index notation:

vni = vijnj

Consequently, it can be checked that the FE discretization of vn on ∂Ω reads:

{v n} = [Nvn] {v̂}

where the 2x8 matrix [Nvn] reads:

[Nvn] =

n1 n2 0 0

0 0 n1 n2

 [Nv]

n1 and n2 being the component of the normal vector determined on the edge of the element between two nodes

situated on ∂Ω. For the faces Γ+
coh and Γ−

coh that reads:

{
v +

n

}
=

[
N+

vn

]
{v̂+} (53a){

v −
n

}
=

[
N−

vn

]
{v̂−} (53b)

where the n1 and n2 are the components of the vector {en} defined below.

The geometric discretization is of isoparametric type :

{x+} = [Nu]
{
x̂+

}
(54a)

{x−} = [Nu]
{
x̂−} (54b)

To express the cohesive law in terms of normal and tangential traction, a local coordinate system is defined

as a function of the mean coordinates :360

{et} =
1

|Jm|


∂xm

1

∂ξ

∂xm
2

∂ξ

 {en} =
1

|Jm|

−∂xm
2

∂ξ

∂xm
1

∂ξ

 (55)
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Figure 17: Geometrical interpolation and local coordinate system

with :

{xm} =
1

2

(
{x−}+ {x+}

)
(56)

|Jm| =

√(
∂xm

1

∂ξ

)2

+

(
∂xm

2

∂ξ

)2

(57)

The matrix for the coordinate change is denoted as [R] :

[R] =
1

|Jm|

∂xm
1

∂ξ −∂xm
2

∂ξ

∂xm
2

∂ξ
∂xm

1

∂ξ

 (58)

The cohesive tractions s+, s−, T+ = P+
n , T

− = P−
n are written in this local coordinate system :

s = s+ = −s− =

sn

st

 (59)

T = T+ = −T− =

Tn

Tt

 (60)

Using expression (51) and (52) for the discretization of the fields u and v over the faces Γ+
coh and Γ−

coh and the

expression of the cohesive traction in the local coordinate system (59) and (60), the discretized weak formulation

for the cohesive interface element is given by (the integrals are considered over the deformed configuration):
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Wi =−
∫
Γ+
coh

{û∗+}T [Nu]
T
[R]

T {s}dΓ−
∫
Γ+
coh

{v̂∗+}T
[
N+

nv

]T
[R]

T {T}dΓ

+

∫
Γ−
coh

{û∗−}T [Nu]
T
[R]

T {s}dΓ +

∫
Γ−
coh

{v̂∗−}T
[
N−

nv

]T
[R]

T {T}dΓ

=−
∫ 1

−1

{û∗+}T [Nu]
T
[R]

T {s}|J+|dξ −
∫ 1

−1

{v̂∗+}T
[
N+

nv

]T
[R]

T {T}|J+|dξ

+

∫ 1

−1

{û∗−}T [Nu]
T
[R]

T {s}|J−|dξ +
∫ 1

−1

{v̂∗−}T
[
N−

nv

]T
[R]

T {T}|J−|dξ

(61)

where we used :

|J+| =

√(
∂x+

1

∂ξ

)2

+

(
∂x+

2

∂ξ

)2

(62)

.

|J−| =

√(
∂x−

1

∂ξ

)2

+

(
∂x−

2

∂ξ

)2

(63)

4.2. From localised strains to cohesive zones and to fully opened cracks

It has been illustrated in the literature that the second gradient model [14] [15] [16] [17] [18] regularizes370

strain localisation problems and provides results that are mesh independent (see among others [19] [20] [2]

[21] [22] [23] [24]). Nevertheless, in section 3 it is shown that the second gradient model does not deal with

the transition from localised strains to cracks, resulting sometimes to spurious resistant forces due to the non

vanishing second gradient terms. The second gradient cohesive element proposed in this article bypasses this

limitation by reproducing correctly the transition from localised strains to a cohesive zone and finally to a fully

opened crack.

A similar approach but on a classical medium and for damage models has been presented in [3] [37] and

[5]. In [37] and [5] for example, the activation criteria for the cohesive element is a critical damage value (not

necessarily close to 1). Furthermore, an equivalence between the continuous damage model and the cohesive

zone has to be provided in order to determine the shape and parameters of the cohesive law. In [3], the380

(locally) dissipated energy is chosen to be the same as the completely continuous solution (without transition

to a cohesive zone). These points are studied hereafter but for a second gradient medium.

In the proposed methodology, the second gradient interface element is a priori inserted in the mesh, before

any crack propagation. Special care should be therefore given to deal with this phase, prior to the second

gradient interface element activation, where the interface element should only enforce the continuity of the

displacement and displacement gradient fields across its (closed) faces (Adherence phase). Once the transition

criterion reached (detailed in section 4.2.2), the cohesive law is activated and the crack propagates (Activation

- transition phase).
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A jump (denoted hereafter with a double bracket) is computed as the difference of the kinematic quantities

between the two faces of the interface element :390

JuK = u− − u+ (64)

JvnK = v−n − v+n (65)

The cohesive element (Figure 18) is activated once damage (in the element) reaches a critical value Dcr. The

condition requires the evaluation of the damage variable D, function of the strain tensor ϵ. In the cohesive

element however, the derivative of u is not known in the normal direction (the displacement is interpolated

only in the tangential direction). The strain tensor in equation 19 is therefore calculated using v instead.

A similar proposal was made in [21] as it helps avoiding spurious oscillations due to the weak formulation of

the kinematic constraint when using a constant Lagrange multiplier field per element. Other possible solutions

could be either to interpolate the damage field [37] or to increase the interface element connectivity by including

nodes belonging to the neighboring solid elements.

Finally, it is assumed that no damage evolution occurs around the cohesive crack after the activation.400

4.2.1. Adherence phase ( D < Dcr )

Continuity of the displacement and gradient fields across the second gradient cohesive element interface

implies that no jumps appear (they are equal to 0). It should be noted that if JuK = 0 and v
t
= ∇tu is correctly

enforced, the continuity on the tangential part of v is automatically met (Jv
t
K = 0). Only the continuity on the

normal part should be therefore imposed Jv
n

K = 0. One simple way to impose JuK = 0 and Jv
n

K = 0 is the

use of penalty method, replacing in equation (48), (see also equation (16)):

s = s+ = −s− = CuJuK (66)

T = T+ = −T− = ChJvn K (67)

with Cu and Ch the penalty coefficients on the displacement and displacement gradient jumps. Compared to

the use of Lagrange multipliers, the penalty method offers the advantage of not introducing additional degree

of freedom. Nevertheless, choosing the appropriate penalty coefficient is not straightforward, particularly in

this case, as two penalty coefficients have to be adopted for two non independent fields. In practice, a trial410

and error procedure is required in order to find a set of two constants which sufficiently enforce the continuity

with adequate convergence rate of the Newton-Raphson procedure. More specifically, the procedure consists in

increasing them progressively till ensuring the continuity through the cohesive element. Too high values of the

penalty coefficients should be avoided, as the convergence of the Newton-Raphson scheme can be jeopardized.

Consequently, between two sets of penalty coefficients assuring continuity, the one with the smaller values is

chosen.
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4.2.2. Activation and transition parameters ( D >= Dcr )

Once the critical damage value reached, the cohesive zone is activated to model the progressive ”debonding”

of the two faces. The evolution of the traction stress s and normal double stress Pn are defined hereafter.

First gradient part. Mode I crack propagation is considered, i.e. the local behavior around the crack is supposed420

one-dimensional; the normal part of the cohesive traction is function only of the displacement jump in the

normal direction JunK (simply denoted JuK hereafter), the tangential part is supposed null. The cohesive zone

is activated at any point where damage is greater than a specified value Dcr and sn(Dcr) is the corresponding

cohesive traction (the normal component of the first gradient part of the cohesive traction at the activation

time). A linear cohesive law (figure 18) is adopted, that can be defined by the critical displacement jump JucK

(beyond which traction stresses vanish) or the energy dissipated by the cohesive law Gc. In the following, the

critical displacement jump is used. The evolution of the traction stress is given by:

If JuK < JucK:

sn =
sn(Dcr)

sn(Dcr)/Cu − JucK
(JuK − JucK) (68)

If JuK >= JucK:

sn = 0 (69)

Figure 18: First gradient cohesive law

430

The total energy dissipated for the creation of a unit crack is the sum of the energy dissipated by the

damage law GD and the energy dissipated by the cohesive law Gc. For the damage part, the calculation of the

dissipated energy for the one-dimensional case and for a constant localization length ls was given in section

3.1.2 :

GD =

∫
L

∫ D(x)

0

Y dDdx =

∫
ls

∫ D

0

Y dDdx (70)

The energy dissipated in the cohesive zone is simply :

Gc =

∫ JucK

0

s dJucK (71)
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Figure 19: Continuous - discontinuous transition in the 1D case

The total dissipated energy is finally:

G = GD +Gc (72)

It is assumed that damage does not evolve around the cohesive crack after the activation and the corre-

sponding element unloads elastically (see Figure 19). In practice, it might be necessary to fix the damage

evolution in the localization zone once the cohesive law activated [37], see also Figure 22. If the local behavior

is close to a one-dimensional problem, equation (70) and (71) can be used to estimate the dissipated energy for440

a unit crack and to choose the appropriate set of cohesive law parameters.

Second gradient part. For the one-dimensional traction case of section 3.1, no double force exists at activation

corresponding to maximum damage and maximum strain. At this point the second derivative of the displace-

ment is null and therefore according the second gradient elastic constitutive law, the double stress vanishes.

Once the cohesive zone activated, its traction must be in equilibrium with the stresses in the solid. The double

stress being zero, the corresponding double traction T of the cohesive law should be also null.

In the 2D mode I crack propagation case however, tangential double force may exist for a surface with a

normal orthogonal to crack path, as shown in Figure 13. The double traction T must then be accounted by

the cohesive law. It is chosen hereafter to use an additional linear cohesive law linking T with JuK with the

same final displacement jump JucK as for the first gradient part (T (Dcr) being the second gradient part of the450

cohesive traction at activation time).
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If JuK < JucK:

T =
T (Dcr)

sn(Dcr)/Cu − JucK
(JuK − JucK) (73)

If JuK >= JucK:

T = 0 (74)

The choice to link the traction to the displacement jump is classical in the literature, it ensures that traction

is null for the given critical displacement jump. When considering the double traction however, the natural

assumption is to link it to the normal displacement gradient jump. This choice is not adopted here as it is

important to ensure that traction and double traction become zero simultaneously (other choices are of course

possible). One should also consider that this additional cohesive law introduces an additional dissipative term

in the model.460

4.2.3. Some numerical aspects

Activation of the cohesive element. Before activation, the cohesive element is very stiff and develops no damage.

The behavior of the 2D finite element connected to one face of the cohesive element is initially elastic with

damage developing as a function of strain. The cohesive element is activated when damage at the fracture face

reaches a critical value Dcr. In practice, for an incremental loading within the Newton-Raphson algorithm,

activation is done when damage at the last converged step is greater than the critical damage value Dcr (see

also [37] [40] and [3]). Indeed, if activation is allowed during the iterations, convergence may not occur as the

displacement correction often oscillates between the adherence and the activation-transition phases.

Depending on the load increment size, the actual value of damage at the activation point Dtr can significantly

differ from the specified value Dcr. It is however possible to keep the dissipated energy by unit crack length470

constant by adjusting the cohesive law as shown in Figure 20 (see also [3] [37]).

Figure 20: Adjusting the first gradient cohesive law as a function of Dtr
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4.3. The two-dimensional mode I crack propagation problem revisited

The mode I crack propagation problem of section 3.2 is hereafter revisited considering a second gradient

medium and second gradient cohesive elements positioned a priori on the crack path (Figure 21).

Figure 21: Mode I crack propagation test revisited : Second gradient cohesive elements

The material parameters of the second gradient medium are the ones presented in Table 2, while for the

cohesive second gradient element JucK = 0.2mm and Dcr = 0.99. The penalty coefficients for the adherence

phase Cu and Ch are taken equal to 1016 Pa.m−1 and 1015 Pa.m respectively. No adjustment of the cohesive

law is considered to keep the dissipated energy constant. During computation, every time the critical damage

value Dcr is exceeded at the integration point of a second gradient cohesive interface element, damage is blocked

on the 2D second gradient elements left and right of the interface (normal direction) on a width at least equal480

to the localization length. This is facilitated by using a regular mesh near the crack axis (Figure 22), [37]). It

is recalled that for one-dimensional behavior the localization length is approximated by equation (27).

It is obvious in Figure 23 that the introduction of second gradient cohesive elements significantly improves

the behavior. The transition to a cohesive zone allows to reduce the residual force and to correctly simulate

crack opening.
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Figure 22: Fixing damage on adjacent elements during the cohesive zone propagation

Figure 23: Mode I crack propagation test revisited: Global force - imposed displacement curve

The damage distribution for an imposed displacement of 25µm is given in Figure 24. Figure 25 shows the

damage distribution as well the integration points in front of the notch where damage increases for different

imposed displacements. The damage zone width in the direction orthogonal to the crack path does not remain

exactly constant during the loading despite the fact that activation is done before damage reached 1. This is

due to 2D effects, notably at the notch tip and near the boundaries. Nevertheless, when the crack tip is far490

from the notch tip and the boundaries, the damage process zone width remains constant (figures 25 c) and

d)). At crack initiation or when the crack reaches the opposite boundary, the hypothesis of one dimensional

behavior around the crack is not correct (figures 25 a), b) and e), f)).
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Figure 24: Mode I crack propagation test revisited : Damage distribution for U = 25µm

Figure 25: Mode I crack propagation test revisited: Damage distribution and loading integration points

4.4. 3 points bending test

Within the French research program ANR MEFISTO, a series of 3 points bending tests on plane concrete

beams have been performed in order to study scale effects and the crack evolution [67], [68]. The specimen D2
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of the experimental campaign is simulated hereafter. The geometry of the D2 concrete beam and the boundary

conditions are shown in figure 26. The bending tests were performed with a controlled Notch Mouth Opening

Displacement (NMOD) rate of 0.05µm/s. This type of control allows obtaining a gradual increase in the crack

openings and at a later stage (post-peak regime) a steady decrease of the load bearing capacity.

Figure 26: 3 points bending test: Geometry (see also Table3)
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Second gradient finite elements [18] and the proposed cohesive second gradient element are used to discretize

the beam. The finite element mesh and the position of the cohesive elements are shown in figures 27 and 28.

The mesh is refined along the expected crack path in order to have a sufficient number of cohesive elements

(300 along the beam height). Outside this zone, the mesh is regular in order to facilitate blocking the damage

evolution on the integration points upon activation of the cohesive zone. A monotonically increasing vertical

displacement is applied at the top of the beam, see figure 27. A bilinear damage constitutive law is adopted

Figure 27: 3 points bending test: Position of the cohesive elements

for the 1st gradient part and an elastic law for the 2nd gradient part. The parameters of the constitutive and

the cohesive laws are given in table 3. The material parameters of the 1st gradient constitutive law provide a

tangent modulus of the softening part Gtg = −2.811010Pa. Using equation 27, a first estimation of the width

of the localization zone can be found λ ≈ 1.2cm. This width stays constant as a bilinear damage constitutive510

law is adopted [22] and the transition to the cohesive zone is done for D = 0.95.

The comparison of the experimental with the numerical results in terms of reaction forces-NMOD are given

in figure 29. The damage distribution for NMOD=100 µm is provided in figure 30. It can be observed that

the numerical results reproduce correctly the experimental ones up to the peak and at the beginning of the

softening phase. Significant differences of the two curves appear later on, at the final loading stages. This

however can be certainly improved by an enhancement of the adopted cohesive law. The width of localization
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Figure 28: 3 points bending test: Finite element mesh

zone remains limited even at the final stages of the loading and the crack opening can be clearly visualized.

Figure 29: 3 points bending test: Reaction force - NMOD (numerical and experimental results)

Remark : The relatively fine finite element meshes used for the mode I crack propagation test and the 3

points bending test are due to the fact that one needs at least three to four finite elements inside the localisation

zone to reproduce correctly the softening behavior. Thirty minutes are needed to complete the calculations.520
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Type Parameters Value Unit

Geometry Length L 80 cm

Span S 60 cm

Height h 20 cm

Depth b 10 cm

Notch width e 3 mm

Notch height a 4 cm

Elastic parameters Young Modulus E 30 GPa

Poisson coefficient ν 0.22 -

Damage law Initial strain κi 0.03 ‰

Failure strain κc 0.2 ‰

Second gradient law Elastic modulus B 100 kN

Cohesive law Critical damage Dcr 0.95

Critical displacement jump JucK 0.04 mm

Table 3: 3 points bending test : Geometrical, material and numerical parameters (see also figure 26)

Figure 30: 3 points bending test: Damage distribution for NMOD=100 µm.

5. Conclusion

Modeling strain localization with a second gradient model can become problematic at the late stages of

softening response, when the second gradient terms become significant compared to the first gradient terms.

This is particularly true for mode I crack problems where a spurious spreading of the damaged zone is often

encountered. A novel second gradient cohesive interface element for mode I crack propagation problems is
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proposed to deal with these limitations. The combination of second gradient finite elements and second gradient

cohesive interface elements permits to correctly reproduce all the different phases up to failure; the adherence

phase, strain localisation, the transition from localised strains to cohesive zones and full crack opening.

In order to extend the model to more complex stress conditions (mode 2), several improvements should

be engaged: adopting a more effective damage mechanics model for shear loading and introducing the shear530

component in the cohesive finite element formulation following a similar approach as the one prescribed in this

article. Finally, in order to predict the fracture location (and not to assume it as an input), the second gradient

cohesive element should be positioned between all finite element edges.

Appendix A Splitting in normal and tangential parts

The kinematics of a micromorphic continuum are described by a displacement field u and a micro strain

field v. According to Germain [6] the internal virtual work of such a continuum occupying a bounded domain

Ω reads:

Wi
mc =

∫
Ω

(
σ : ∇u∗ + τ :

(
v∗ −∇u∗)+Σ ∴ ∇v∗

)
dΩ (A.1)

where u∗ and v∗ denote respectively the virtual displacement and the virtual micro strain fields and ∴ the scalar

product of two third order tensors. Consistently with that expression of the internal virtual work, the weak

formulation of the equilibrium of a micromorphic continuum, in case no external volume forces are applied,540

reads: ∫
Ω

(
σ : ∇u∗ + τ :

(
v∗ −∇u∗)+Σ ∴ ∇v∗

)
dΩ =

∫
∂Ω

(
p.u∗ + P : v∗

)
dΓ (A.2)

which holds for any field u∗ and v∗.

The previous equation introduces a number of stress tensors and contact forces : the classical stress tensor σ

dual of the macro strains ∇u, the so-called microstress tensor dual of the difference
(
v −∇u

)
and the so-called

double stress third order tensor Σ dual of ∇v acting on the domain Ω. p and P are respectively the force

and the double force surface densities applied on the boundary ∂Ω. In case of a micromorphic continuum and

according to the boundary value problem considered, they can be known (totally or partially), or unknown.

Considering v∗ = ∇u∗ in the external virtual work of the micromorphic continuum should be done carefully

because u∗ and ∇u∗ cannot be given independently. In the same way, for duality reason the external surface

force p and double force P densities cannot be chosen independently [15]. A way to deal with this is to split550

the tensors P and v∗ into normal and tangential parts.

Let n the external normal at some (smooth) point of ∂Ω and Q⊥ the normal projection onto the tangential

plane. Note that in a 2D problem Q⊥ = t⊗ t where t is the unit tangent vector to ∂Ω. As the identity tensor

I reads :

I = n⊗ n+Q⊥ (A.3)

then, through a right hand side composition, the tensor P can be written:
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P = Pn ⊗ n+ P
t

(A.4)

where

Pn = P .n (A.5)

P
t
= P ◦Q⊥ (A.6)

in which the symbol ”◦” denotes the composition product of two linear operators. The tensor v∗ is split in

a similar way into v∗ = v∗n ⊗ n + v∗
t
. It can be checked that Pn ⊗ n : v∗

t
= P

t
: v∗n ⊗ n = 0 so, with those

decompositions, the scalar product of P ∗ and v∗ reads:560

P ∗ : v∗ = Pn.v
∗
n + P

t
: v∗

t
(A.7)

The introduction of (∇u∗)t = ∇tu
∗ in the weak formulation of the equilibrium of a micromorphic continuum

[6], in case no external volume forces are applied, yields:∫
∂Ω

(
p.u∗ + P : v∗

)
dΓ =

∫
∂Ω

(
p.u∗ + P

t
: ∇tu

∗ + P
n
: v∗

n
+ P

t
:
(
v∗
t
−∇tu

∗
))

dΓ (A.8)

An integration by parts on ∂Ω, assuming the surface is smooth enough and devoid of edges, yields the

following expression:∫
Ω

(
σ : ∇u∗ + τ :

(
v∗ −∇u∗)+Σ ∴ ∇v∗

)
dΩ =

∫
∂Ω

(
s.u∗ + Pn.v

∗
n + P

t
:
(
v∗
t
−∇tu

∗
))

dΓ (A.9)

where s = p − divtP t
, divt being the operator divergence on the surface ∂Ω. The balance equations of that

modeling read:

divΣ− τ = 0 (A.10)

div (σ − τ) = 0 (A.11)

and the boundary conditions are:

Σ.n = P (A.12)

(σ − τ) .n = s+ divt

(
P

t

)
(A.13)

Eq. A.12 can be split into:

(
Σ.n

)
.n = Pn (A.14)(

Σ.n
)
t
= P

t
(A.15)

Assuming v∗ = ∇u∗, which entails that v∗
t
= (∇u∗)t = ∇tu

∗ on ∂Ω, in the equation (A.9) yields:∫
Ω

(σ : ∇u∗ +Σ ∴ ∇2u∗)dΩ =

∫
∂Ω

(s.u∗ + T .Du∗)dΓ (A.16)

which is the weak formulation of the equilibrium of a second gradient continuum.
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