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Abstract

We present an improved way for imaging the density of states of a sample with a scanning tunneling
microscope, which consists in mapping the surface topography while keeping the differential
conductance (dI/dV') constant. When archetypical Cso molecules on Cu(111) are imaged with this
method, these so-called iso-dI/dV maps are in excellent agreement with theoretical simulations of the
isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification
of superatomic Cg orbitals and their hybridization is then possible.

1. Introduction

The ability of the scanning tunneling microscope (STM) to image and address conductive surfaces at the atomic-
scale is the main reason of its impressive success over the last three decades. Of appealing interest is the
possibility of probing the density of states (DOS) of metallic or organic nanostructures adsorbed on surfaces. If
the energy distribution of the sample DOS is usually directly inferred from differential conductance (dI/dV)
spectra, a strict comparison requires a renormalization of the experimental data [1-5]. Measuring the spatial
distribution of the DOS is even more demanding. Maps of the DOS are usually obtained by recording the dI/dV
atagiven target voltage (V') while keeping the tunneling current (I) constant [6—18]. However, these so-called
constant-current dI/dV maps suffer from the fact that the tip—sample distance (z) varies during the scan and
therefore do not properly reflect the DOS of the probed system. This well-known limitation has been evidenced
for surface—confined electronic states [19, 20], adatoms [21] or molecules adsorbed on surfaces [22—24]. To
extract reliable information from these maps, a time-consuming image treatment is required after acquisition
[20-24].

An interesting alternative consists in recording the dI/dV while scanning the surface with an open feedback
loop [21, 23-27], the so-called constant-height dI/dV mapping. In the case of a flat sample, the obtained image is
an accurate representation of the DOS. However, this method is limited in the case of corrugated objects,
because the effective tip—sample distance varies as a function of the (x, y) position of the tip. Moreover, since the
data are acquired with a disabled feedback loop, this method requires a small thermal drift during the acquisition
of the conductance map, limiting the field of application to cryogenic measurements .

In this letter, we propose a different experimental approach. It enables a direct visualization of the surface
DOS that accounts for the corrugation of the sample, and which may be implemented at all working
temperatures. This imaging technique consists in acquiring iso-dI/dV maps, in other words in scanning the tip
across the surface while keeping the dI/dV signal constant (instead of the current) and recording changes in z. In
figure 1 we provide a sketch which qualitatively shows the benefit of this approach with respect to the
conventionnal constant-current and constant-height approach which fail to reproduce the spatial distribution
of the DOS.

Through a combination of experiments with density functional theory (DFT) calculations, we show that the
iso-dI/dV maps of non-planar Cgo molecules on a Cu(111) surface closely reflect theoretical representations of
the molecular DOS unlike standard dI/dV maps that exhibit misleading patterns for some of the Cg orbitals
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Figure 1. [llustration of the constant current, constant height and iso-dI/dV approaches. (a), (b), (d) and (of) show a (x, z) cut passing
through a Cy, molecule adsorbed on Cu(111). The position of the carbon nuclei located close (below 0.8 A) to the (x, z) plane in (a) are
indicated by white discs in (b), (d) and (f). Computed local density of states (LDOS) isocontours (from outer to inner contours:

3 x 10~%e/bohr’, 107> e/bohr’, 3 x 107> e/bohr’, 10~*e/bohr’, 3 x 10*e/bohr’, 10° e/bohr”) for the LUMO A of the Cy
molecule (see below and supplementary material online at stacks.iop.org/NJP/19/113033 /mmedia for details) appear as yellow lines.
The cyan lines estimate the tip trajectory in the three different mode of measurements: in the constant current approach (b) where the
trajectory is approximated by considering the sum of the two first unoccupied molecular orbitals, in the constant height approach (d),
and in the iso-dI/dV approach (f). (c), (¢) and (g) are the simulations of the signal of interest in the three cases: the dI/dV intensity in
(c)and (e) and zin (g). In (c) and (e) the dI/dV signal is simulated by projecting the LDOS of the LUMO A on the tip trajectory. The
slight asymmetry between the left and right part of (c) is an effect of the structural relaxation calculated for the C¢ on the copper
surface (see supplementary material for details).

[22]. We use this new method to provide a fresh insight into the recently reported superatomic orbitals of Cgq
monomers and dimers [10].

2. Experimental details

The experiments were performed with a STM operated at 4.6 Kin UHV. Electrochemically etched W tips and
Cu(111) samples were prepared by successive cycles of Ar* bombardment and annealing. The Cg, molecules
were sublimated from an evaporator onto the cold (a5 K) sample. The dI/dV spectra were recorded via a lock-in
amplifier by applying an AC bias of 7 kHz modulation frequency and of 10 mV rms amplitude (50 mV rms for
the maps). Except for figure 2(b), the dI/dV spectra were acquired with a disabled feedback loop. To permit an
unbiased comparison between the different imaging methods, the experimental maps were not processed,
except for the pseudo-3D representations in figure 4, which were treated with a smoothing algorithm. All the
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Figure 2. (a) Constant-height dI/dV spectra acquired for tip positions marked by the dots in the STM image in inset (2.3 x 2.3nm?,
V = 2.2V). (b) Constant-current dI/dV spectrum for the tip positioned above the center of C¢o (I = 1 nA).

images were prepared with the Nanotec Electronica WSxM software [28]. Details of the DFT calculations are
provided in the supplementary material’.

3. Results and discussion

To start, we briefly describe the working principle of an iso-dI/dV map. Atlow temperature and assuming a

%
constant tip DOS, the tunnel current can be expressed as I (z, V) fo ‘ p.(E) T(z, V, E) dE [29] where p, is
the surface DOS and E the energy. Within the Wentzel-Kramer—Brillouin approximation, the transmission

factorreads T (z, V, E) x exp(—az ¢ + eV /2 — E)where ¢ is thelocal barrier heightand o« = 2+/2m /7

(m: free electron mass, /i: reduced Planck constant). The derivative of the current with respect to V reads

dI(z, V)
dv

eV 9T (z, V, E)

_l’_ - >~ - 7
T

&V dz 0T (z, V, E)

+ -~ 7
»[(; dv 0z

x ep,(eV)T (z, V, eV)
p(E) dE
p(E) dE. 1)

In the following, we disregard the third term of equation (1) as the lock-in modulation frequency of the AC bias
is purposely chosen to be high compared to the time constant of the feedback loop (dz/dV = 0). We then find
the usual expression [4, 21]

pyleV) ox —— FMW+ L1 vy, @

eT(z, V, eV) dv 404\/5

where the second term can be neglected hereafter for usual STM conditions as discussed in detail in
supplementary material (see footnote 3). Assuming that ¢ does not vary as a function of (x, y) we then write

z(x, y, V) o< Inp,(x, y, eV) — ¢, 3)

where ¢ = In é% is a constant parameter that only depends on the dI/dV value set for the regulation, i.e.,

the set point. In other words, equation (3) shows that by measuring the (x, y) dependency of zit is possible to
directly determine the spatial dependency of the sample DOS at a given energy eV. We stress that the level of
approximation employed here is the same generally used when discussing standard dI/dV maps.

Next, to validate our imaging technique, we carry out a comparative study between standard dI/dV maps
and iso-dI/dV maps by focusing our attention onto isolated Cyqo molecules on Cu(111). In the inset of figure 2(a)

? See supplementary material at XX for a discussion of the validity of the approximations considered in the model and for details regarding
the method used to compute the electron distribution of the fullerene molecule.
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Figure 3. (a) Isosurface contours of the C¢q orbitals computed with DFT (10~ e/bohr?). (b) Constant-current dI/ dVmaps (I=1nA),
(c) constant-height dI/dV maps (feedback opened at I = 1 nA for a tip located on the center of the Cqp) (d) iso-dI/dV maps (dI/
dV=0.7nS,leadingto I < 1nA)ofan individual C¢acquired at the biases identified in the spectra of figure 2. The images have the
samesize (3.1 x 3.1nm?).

we present a standard STM image of a Cgo where the characteristic threefold-symmetric shape of the molecule
can be recognized, indicating that it is adsorbed with a hexagon oriented towards the tip [30-32]. The dI/dV
spectra (figure 2(a)) acquired for different positions of the STM tip (dots in the STM image) reveal a variety of
molecular resonances. Following [33], we identify the highest occupied molecular orbital (HOMO) and the two
lowest unoccupied molecular orbitals (LUMO and LUMO+-1). Because of the strong interaction with the
Cu(111) substrate, the LUMO and LUMO+1 orbitals are split (A and E components). The spectrum in

figure 2(b) reveals further resonances at higher energy. We assign the broad peak at 3.2V to the superposition of
the LUMO+-2 and LUMO+-3 states. The DFT calculations for the isolated, unstrained molecule reveal in fact
that these states are separated by only 200 meV (see footnote 3), which is below the lifetime broadening of the
molecular states (around 300 meV). Additionally, two sharp resonances appear at 4 and 5.2 V that correspond to
superatomic [ = 0 and /= 1 states [ 10], which can also be understood in the framework of whispering gallery
modes [34].

Knowing the energies associated to the molecular orbitals, we can now measure their spatial distribution. To
start, we display in figure 3(a) the computed LDOS isosurfaces for each molecular orbital. These gas phase DFT
calculations take into account the degeneracy lifting caused by the interaction with the surface (see footnote 3).
While the HOMO orbital does not split on the surface, the threefold degeneracy of the LUMO and of the LUMO
+1 orbitals is partially lifted upon adsorption [22, 33]. Following simple symmetry arguments [35], we
decomposed the computed LUMO and LUMO+-1 orbitals into their A and E components. Since the LUMO+-2
and LUMO+3 orbitals cannot be distinguished in the dI/dV spectra, we consider only the sum over the LUMO
+2 and LUMO+-3 isosurfaces.

Experimentally, the spatial distributions of the above orbitals have been probed following three different
approaches: with constant-current dI/dV maps (figure 3(b)), constant-height dI/dV maps (figure 3(¢)), and iso-
dI/dV maps (figure 3(d)). The agreement between these maps and the calculated LDOS isosurfaces will be
discussed separately. The constant-current dI/dV maps (figure 3(b)) agree well with the simulation for the
HOMO, the LUMO A and the LUMO+1 A. At the energy of the LUMO E, the signal is very low and the pattern is
asymmetric. For the E component of the LUMO-1, the constant-current dI/dV map reveals a pattern of
inverted contrast compared to the calculation. This behavior, discussed in detail by Lu et al., is due to variations
of the tip—sample distance during the data acquisition [22]. Possible artifacts and the resulting inaccuracy of this
method will be further discussed in the next section.

The dI/dV maps recorded at a constant tip height (figure 3(c)) respect the symmetry of the computed
isosurfaces. However, the level of detail is reduced compared to the other approaches. More precisely, only the

4
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Figure 4. dI/dV spectra of (a) the | = 0 and (b) the | = 1 resonances of a single Cso molecule on Cu(111). The spectra in (b) were
acquired for three different lateral positions of the tip with respect to the Cgo molecule as indicated by the colored arrows in panel ().
The blue and red spectra have been offset by 2 and 4 nS, respectively (c). Computed LDOS isosurfaces (top row, 10> e/bohr”),
constant-current dI/dV maps (middle row, I = 1 nA for /=0 and I = 0.3 nA for / = 1 maps) and iso-dI/dV maps (bottom row, dI/
dV=0.8nS) of an individual C4 acquired at the biases identified in the spectra in (a) and (b) (size of the theoretical images: 4.0 x 5.4
nm? and of the experimental images: 4.0 x 4.0 nm?). (d) dI/dV spectra acquired for three different lateral positions of the tip with
respect to a Cgo dimer as indicated by the colored arrows in the STM image in the inset of panel (d). (¢) Computed LDOS isosurfaces
(top row, 10~ ¢/bohr?), constant-current dI/dV maps (middle row, I = 1 nA) and iso-dI/dV maps (bottom row, dI/dV = 0.2 nS) for
a Cgo dimer acquired at the biases identified in the spectra in (d) (the images have the same size: 5.9 x 4.9 nm?).

top part of the molecule is imaged. This is a direct consequence of the sphericity of Cg, showing that constant-
height measurements produce limited results for a corrugated surface.

In contrast, the iso-dI/dV maps in figure 3(d) provide a correct representation of the spatial variation of all
states. Using this method, the STM tip directly follows the LDOS isosurface of a molecular state. This largely
facilitates the identification of the molecular orbitals and prevents possible misinterpretations. As an example,
here we can clearly identify the LUMO A at V = 0.8 V, an orbital whose assignement was always uncertain in
previous measurements [33] because of its similarity with the LUMO+1 E in constant-current dI/dV maps, and
whose identification is not possible in constant-height maps where it only appears as a bright protrusion.

After this first proof of principle, we now use the iso-dI/dV maps to unveil the spatial distribution and
composition of the resonances assigned to the | = 0 and / = 1 superatomic states. The corresponding dI/dV
spectra of these states are displayed in figures 4(a) and (b), respectively. The computed LDOS isosurface for the
=0 state (figure 4(c)) reveals a uniform sphere corresponding to a state fully delocalized over the Cq, cage.
While the constant-current dI/dV map exhibits a hole-like structure that would suggest a hybridization between
the I=0and the /=1 orbitals [10], the iso-dI/dV map is instead in perfect agreement with the theoretical
predictions.

The I = 1 superatomic state is threefold degenerate in = —1, 0, 1)in vacuum, but the dI/dV spectra
acquired at different positions above the molecule on copper (see arrows in figure 4(c)) reveal instead a split
resonance for this state (figure 4(b)). This suggests that the interaction with the surface lifts the degeneracy
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among the m states. Our DFT computations indicate that the state at 5.4 V is associated to m = 0 and the state at
5.6 Vtom = =£1.Infigure 4(c), we present the dI/dV maps of these states along with their computed LDOS
isosurfaces. Again, it can be remarked that the iso-dI/dV maps are in good agreement with calculations. The
constant-current dI/dV map, instead, unsatisfactorily reproduce the m = 41 contribution: the ring diameter is
too large, the signal fall-of towards the center steep, and the signal at the center of the molecule is lower than the
signal on the substrate.

The discrepancy between constant-current and iso-dI/dV maps is even more striking for a Cgo dimer
(figures 4(d) and (e)). Here, the hybridization between the ] = 0 superatomic states of the molecules leads to a
splitting of the orbital into a bonding state (bs) and an anti-bs (figure 4(d)). Contrary to constant-current dI/dV
maps, the bounding and anti-bounding states can be readily visualized with iso-dI/dV maps, their pattern being
self-explanatory and in perfect agreement with simulations.

4, Conclusion

To summarize, we presented a simple way to accurately map with STM the spatial variation of the DOS, which is
well-suited for non-planar molecules and artificial nanostructures. Because the feedback loop is enabled during
the data acquisition, our method is applicable to corrugated surfaces and in the presence of thermal drift. By
imaging in this way individual C4o molecules on Cu(111) and comparing the results to DFT calculations, we
could unambiguously identify the different resonances in the dI/dV spectra, in particular the A component of
the LUMO orbital. Furthermore, we were able to correctly visualize the spatial distribution of the superatomic
states in the C4p monomer, as well as their hybridization in the dimer case. The iso-dI/dV maps are therefore an
excellent error-free alternative to commonly DOS mapping techniques employed with STM.
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