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Abstract
Wepresent an improvedway for imaging the density of states of a sample with a scanning tunneling
microscope, which consists inmapping the surface topographywhile keeping the differential
conductance (dI/dV ) constant.When archetypical C60molecules onCu(111) are imagedwith this
method, these so-called iso-dI/dVmaps are in excellent agreementwith theoretical simulations of the
isodensity contours of themolecular orbitals. A direct visualization and unambiguous identification
of superatomic C60 orbitals and their hybridization is then possible.

1. Introduction

The ability of the scanning tunnelingmicroscope (STM) to image and address conductive surfaces at the atomic-
scale is themain reason of its impressive success over the last three decades. Of appealing interest is the
possibility of probing the density of states (DOS) ofmetallic or organic nanostructures adsorbed on surfaces. If
the energy distribution of the sampleDOS is usually directly inferred fromdifferential conductance (dI/dV )
spectra, a strict comparison requires a renormalization of the experimental data [1–5].Measuring the spatial
distribution of theDOS is evenmore demanding.Maps of theDOS are usually obtained by recording the dI/dV
at a given target voltage (V )while keeping the tunneling current (I) constant [6–18]. However, these so-called
constant-current dI/dVmaps suffer from the fact that the tip–sample distance (z) varies during the scan and
therefore do not properly reflect the DOSof the probed system. This well-known limitation has been evidenced
for surface–confined electronic states [19, 20], adatoms [21] ormolecules adsorbed on surfaces [22–24]. To
extract reliable information from thesemaps, a time-consuming image treatment is required after acquisition
[20–24].

An interesting alternative consists in recording the dI/dVwhile scanning the surfacewith an open feedback
loop [21, 23–27], the so-called constant-height dI/dVmapping. In the case of aflat sample, the obtained image is
an accurate representation of the DOS.However, thismethod is limited in the case of corrugated objects,
because the effective tip–sample distance varies as a function of the (x, y) position of the tip.Moreover, since the
data are acquiredwith a disabled feedback loop, thismethod requires a small thermal drift during the acquisition
of the conductancemap, limiting the field of application to cryogenicmeasurements .

In this letter, we propose a different experimental approach. It enables a direct visualization of the surface
DOS that accounts for the corrugation of the sample, andwhichmay be implemented at all working
temperatures. This imaging technique consists in acquiring iso-dI/dVmaps, in other words in scanning the tip
across the surface while keeping the dI/dV signal constant (instead of the current) and recording changes in z. In
figure 1we provide a sketchwhich qualitatively shows the benefit of this approachwith respect to the
conventionnal constant-current and constant-height approachwhich fail to reproduce the spatial distribution
of theDOS.

Through a combination of experiments with density functional theory (DFT) calculations, we show that the
iso-dI/dVmaps of non-planar C60molecules on aCu(111) surface closely reflect theoretical representations of
themolecularDOS unlike standard dI/dVmaps that exhibitmisleading patterns for some of theC60 orbitals
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[22].We use this newmethod to provide a fresh insight into the recently reported superatomic orbitals of C60

monomers and dimers [10].

2. Experimental details

The experiments were performedwith a STMoperated at 4.6 K inUHV. Electrochemically etchedW tips and
Cu(111) samples were prepared by successive cycles of Ar+ bombardment and annealing. TheC60molecules
were sublimated from an evaporator onto the cold (≈5 K) sample. The dI/dV spectra were recorded via a lock-in
amplifier by applying anACbias of 7 kHzmodulation frequency and of 10mV rms amplitude (50mV rms for
themaps). Except for figure 2(b), the dI/dV spectrawere acquiredwith a disabled feedback loop. To permit an
unbiased comparison between the different imagingmethods, the experimentalmapswere not processed,
except for the pseudo-3D representations infigure 4, whichwere treatedwith a smoothing algorithm. All the

Figure 1. Illustration of the constant current, constant height and iso-dI/dV approaches. (a), (b), (d) and (f) show a (x, z) cut passing
through aC60molecule adsorbed onCu(111). The position of the carbon nuclei located close (below 0.8 Å) to the (x, z) plane in (a) are
indicated bywhite discs in (b), (d) and (f). Computed local density of states (LDOS) isocontours (fromouter to inner contours:
3 × 10−6 e/bohr3, 10−5 e/bohr3, 3 × 10−5 e/bohr3, 10−4 e/bohr3, 3 × 104 e/bohr3, 103 e/bohr3) for the LUMOAof theC60

molecule (see below and supplementarymaterial online at stacks.iop.org/NJP/19/113033/mmedia for details) appear as yellow lines.
The cyan lines estimate the tip trajectory in the three differentmode ofmeasurements: in the constant current approach (b)where the
trajectory is approximated by considering the sumof the twofirst unoccupiedmolecular orbitals, in the constant height approach (d),
and in the iso-dI/dV approach (f). (c), (e) and (g) are the simulations of the signal of interest in the three cases: the dI/dV intensity in
(c) and (e) and z in (g). In (c) and (e) the dI/dV signal is simulated by projecting the LDOSof the LUMOAon the tip trajectory. The
slight asymmetry between the left and right part of (c) is an effect of the structural relaxation calculated for theC60 on the copper
surface (see supplementarymaterial for details).
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imageswere preparedwith theNanotec ElectronicaWSxM software [28]. Details of theDFT calculations are
provided in the supplementarymaterial3.

3. Results and discussion

To start, we briefly describe theworking principle of an iso-dI/dVmap. At low temperature and assuming a

constant tipDOS, the tunnel current can be expressed as I z V E T z V E E, , , d
eV

s0ò rµ( ) ( ) ( ) [29]where sr is

the surfaceDOS andE the energy.Within theWentzel–Kramer–Brillouin approximation, the transmission
factor readsT z V E z eV E, , exp 2a fµ - + -( ) ( )wheref is the local barrier height and m2 2 a =
(m: free electronmass, ÿ: reduced Planck constant). The derivative of the current with respect toV reads
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In the following, we disregard the third termof equation (1) as the lock-inmodulation frequency of theAC bias
is purposely chosen to be high compared to the time constant of the feedback loop ( z Vd d 0= ).We thenfind
the usual expression [4, 21]
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where the second term can be neglected hereafter for usual STMconditions as discussed in detail in
supplementarymaterial (see footnote 3). Assuming thatf does not vary as a function of (x y, )we thenwrite

z x y V x y eV c, , ln , , , 3srµ -( ) ( ) ( )

where c ln
e

I z V

V

1 d ,

d
= ( ) is a constant parameter that only depends on the dI/dV value set for the regulation, i.e.,

the set point. In otherwords, equation (3) shows that bymeasuring the (x, y) dependency of z it is possible to
directly determine the spatial dependency of the sampleDOS at a given energy eV.We stress that the level of
approximation employed here is the same generally usedwhen discussing standard dI/dVmaps.

Next, to validate our imaging technique, we carry out a comparative study between standard dI/dVmaps
and iso-dI/dVmaps by focusing our attention onto isolatedC60molecules onCu(111). In the inset offigure 2(a)

Figure 2. (a)Constant-height dI/dV spectra acquired for tip positionsmarked by the dots in the STM image in inset (2.3×2.3 nm2,
V=2.2V). (b)Constant-current dI/dV spectrum for the tip positioned above the center of C60 (I=1 nA).

3
See supplementarymaterial at XX for a discussion of the validity of the approximations considered in themodel and for details regarding

themethod used to compute the electron distribution of the fullerenemolecule.
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wepresent a standard STM image of aC60where the characteristic threefold-symmetric shape of themolecule
can be recognized, indicating that it is adsorbedwith a hexagon oriented towards the tip [30–32]. The dI/dV
spectra (figure 2(a)) acquired for different positions of the STM tip (dots in the STM image) reveal a variety of
molecular resonances. Following [33], we identify the highest occupiedmolecular orbital (HOMO) and the two
lowest unoccupiedmolecular orbitals (LUMOand LUMO+1). Because of the strong interactionwith the
Cu(111) substrate, the LUMOand LUMO+1 orbitals are split (A andE components). The spectrum in
figure 2(b) reveals further resonances at higher energy.We assign the broad peak at 3.2V to the superposition of
the LUMO+2 and LUMO+3 states. TheDFT calculations for the isolated, unstrainedmolecule reveal in fact
that these states are separated by only 200 meV (see footnote 3), which is below the lifetime broadening of the
molecular states (around 300 meV). Additionally, two sharp resonances appear at 4 and 5.2V that correspond to
superatomic l= 0 and l= 1 states [10], which can also be understood in the framework of whispering gallery
modes [34].

Knowing the energies associated to themolecular orbitals, we can nowmeasure their spatial distribution. To
start, we display infigure 3(a) the computed LDOS isosurfaces for eachmolecular orbital. These gas phaseDFT
calculations take into account the degeneracy lifting caused by the interactionwith the surface (see footnote 3).
While theHOMOorbital does not split on the surface, the threefold degeneracy of the LUMOand of the LUMO
+1 orbitals is partially lifted upon adsorption [22, 33]. Following simple symmetry arguments [35], we
decomposed the computed LUMOand LUMO+1 orbitals into their A and E components. Since the LUMO+2
and LUMO+3 orbitals cannot be distinguished in the dI/dV spectra, we consider only the sumover the LUMO
+2 and LUMO+3 isosurfaces.

Experimentally, the spatial distributions of the above orbitals have been probed following three different
approaches: with constant-current dI/dVmaps (figure 3(b)), constant-height dI/dVmaps (figure 3(c)), and iso-
dI/dVmaps (figure 3(d)). The agreement between thesemaps and the calculated LDOS isosurfaces will be
discussed separately. The constant-current dI/dVmaps (figure 3(b)) agreewell with the simulation for the
HOMO, the LUMOAand the LUMO+1A. At the energy of the LUMOE, the signal is very low and the pattern is
asymmetric. For the E component of the LUMO+1, the constant-current dI/dVmap reveals a pattern of
inverted contrast compared to the calculation. This behavior, discussed in detail by Lu et al., is due to variations
of the tip–sample distance during the data acquisition [22]. Possible artifacts and the resulting inaccuracy of this
methodwill be further discussed in the next section.

The dI/dVmaps recorded at a constant tip height (figure 3(c)) respect the symmetry of the computed
isosurfaces. However, the level of detail is reduced compared to the other approaches.More precisely, only the

Figure 3. (a) Isosurface contours of theC60 orbitals computedwithDFT (10−5 e/bohr3). (b)Constant-current dI/dVmaps (I= 1 nA),
(c) constant-height dI/dVmaps (feedback opened at I= 1 nA for a tip located on the center of theC60) (d) iso-dI/dVmaps (dI/
dV= 0.7 nS, leading to I 1 nA) of an individual C60 acquired at the biases identified in the spectra offigure 2. The images have the
same size (3.1 3.1´ nm2).
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top part of themolecule is imaged. This is a direct consequence of the sphericity of C60, showing that constant-
heightmeasurements produce limited results for a corrugated surface.

In contrast, the iso-dI/dVmaps infigure 3(d) provide a correct representation of the spatial variation of all
states. Using thismethod, the STM tip directly follows the LDOS isosurface of amolecular state. This largely
facilitates the identification of themolecular orbitals and prevents possiblemisinterpretations. As an example,
herewe can clearly identify the LUMOAatV 0.8 V= , an orbital whose assignement was always uncertain in
previousmeasurements [33] because of its similarity with the LUMO+1 E in constant-current dI/dVmaps, and
whose identification is not possible in constant-heightmapswhere it only appears as a bright protrusion.

After thisfirst proof of principle, we nowuse the iso-dI/dVmaps to unveil the spatial distribution and
composition of the resonances assigned to the l= 0 and l= 1 superatomic states. The corresponding dI/dV
spectra of these states are displayed infigures 4(a) and (b), respectively. The computed LDOS isosurface for the
l= 0 state (figure 4(c)) reveals a uniform sphere corresponding to a state fully delocalized over theC60 cage.
While the constant-current dI/dVmap exhibits a hole-like structure that would suggest a hybridization between
the l= 0 and the l= 1 orbitals [10], the iso-dI/dVmap is instead in perfect agreement with the theoretical
predictions.

The l= 1 superatomic state is threefold degenerate (m 1, 0, 1= - ) in vacuum, but the dI/dV spectra
acquired at different positions above themolecule on copper (see arrows infigure 4(c)) reveal instead a split
resonance for this state (figure 4(b)). This suggests that the interactionwith the surface lifts the degeneracy

Figure 4. dI/dV spectra of (a) the l= 0 and (b) the l= 1 resonances of a single C60molecule onCu(111). The spectra in (b)were
acquired for three different lateral positions of the tipwith respect to theC60molecule as indicated by the colored arrows in panel (c).
The blue and red spectra have been offset by 2 and 4nS, respectively (c). Computed LDOS isosurfaces (top row, 10−5 e/bohr3),
constant-current dI/dVmaps (middle row, I= 1 nA for l= 0 and I= 0.3 nA for l= 1maps) and iso-dI/dVmaps (bottom row, dI/
dV= 0.8 nS) of an individual C60 acquired at the biases identified in the spectra in (a) and (b) (size of the theoretical images: 4.0×5.4
nm2 and of the experimental images: 4.0×4.0 nm2). (d) dI/dV spectra acquired for three different lateral positions of the tipwith
respect to a C60 dimer as indicated by the colored arrows in the STM image in the inset of panel (d). (e)Computed LDOS isosurfaces
(top row, 10−5 e/bohr3), constant-current dI/dVmaps (middle row, I= 1 nA) and iso-dI/dVmaps (bottom row, dI/dV= 0.2 nS) for
a C60 dimer acquired at the biases identified in the spectra in (d) (the images have the same size: 5.9×4.9 nm2).
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among them states. OurDFT computations indicate that the state at 5.4V is associated tom=0 and the state at
5.6V to m 1=  . Infigure 4(c), we present the dI/dVmaps of these states alongwith their computed LDOS
isosurfaces. Again, it can be remarked that the iso-dI/dVmaps are in good agreementwith calculations. The
constant-current dI/dVmap, instead, unsatisfactorily reproduce the m 1=  contribution: the ring diameter is
too large, the signal fall-of towards the center steep, and the signal at the center of themolecule is lower than the
signal on the substrate.

The discrepancy between constant-current and iso-dI/dVmaps is evenmore striking for aC60 dimer
(figures 4(d) and (e)). Here, the hybridization between the l= 0 superatomic states of themolecules leads to a
splitting of the orbital into a bonding state (bs) and an anti-bs (figure 4(d)). Contrary to constant-current dI/dV
maps, the bounding and anti-bounding states can be readily visualizedwith iso-dI/dVmaps, their pattern being
self-explanatory and in perfect agreement with simulations.

4. Conclusion

To summarize, we presented a simple way to accuratelymapwith STM the spatial variation of theDOS, which is
well-suited for non-planarmolecules and artificial nanostructures. Because the feedback loop is enabled during
the data acquisition, ourmethod is applicable to corrugated surfaces and in the presence of thermal drift. By
imaging in this way individual C60molecules onCu(111) and comparing the results toDFT calculations, we
could unambiguously identify the different resonances in the dI/dV spectra, in particular the A component of
the LUMOorbital. Furthermore, wewere able to correctly visualize the spatial distribution of the superatomic
states in theC60monomer, as well as their hybridization in the dimer case. The iso-dI/dVmaps are therefore an
excellent error-free alternative to commonlyDOSmapping techniques employedwith STM.
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