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Disruption of amygdala Tsc2 in adolescence leads to changed prelimbic cellular activity and generalized fear responses at adulthood in rats
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Adolescence constitutes a period of vulnerability in the emergence of fear-related disorders (FRD), as a massive reorganization occurs in the amygdala-prefrontal cortex (PFC) network, critical to regulate fear behavior. Genetic and environmental factors during development may predispose to the emergence of FRD at the adult age, but the underlying mechanisms are poorly understood. In the present study, we tested whether a partial knock-down of tuberous sclerosis complex 2 (Tsc2, Tuberin), a risk gene for neurodevelopmental disorders, in the basolateral amygdala (BLA) from adolescence could alter fear-network functionality and create a vulnerability ground to FRD appearance at adulthood. Using bilateral injection of a lentiviral vector expressing a miRNA against Tsc2 in the BLA of early (PN25) or late adolescent (PN50) rats, we show that alteration induced specifically from PN25 resulted in an increased c-Fos activity at adulthood in specific layers of the prelimbic cortex, a resistance to fear extinction and an overgeneralization of fear to a safe, novel stimulus. A developmental dysfunction of the amygdala could thus play a role in the vulnerability to FRD emergence at adulthood. We propose our methodology as an alternative to model the developmental vulnerability to FRD, especially in its comorbidity with TSC2-related autism syndrome.

Introduction

Nowadays, fear-related disorders (FRD) such as anxiety or post-traumatic stress disorder (PTSD) affect a large amount of worldwide population (up to 33.7% for anxiety disorders or 6% for PTSD) [START_REF] Atwoli | Epidemiology of posttraumatic stress disorder: Prevalence, correlates and consequences[END_REF][START_REF] Bandelow | Epidemiology of anxiety disorders in the 21st century[END_REF], with debilitating symptoms such as exaggerated fear responses, fear-extinction deficits and overgeneralization of fear [START_REF] Rauch | Neurocircuitry Models of Posttraumatic Stress Disorder and Extinction: Human Neuroimaging Research-Past, Present, and Future[END_REF][START_REF] Liberzon | The functional neuroanatomy of PTSD: a critical review[END_REF][START_REF] Fenster | Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man[END_REF]. In FRD, an imbalanced functionality of the fear circuitry, in particular between the amygdala and the medial prefrontal cortex (mPFC), has been highlighted. Human and laboratory-rodent studies show that adults suffering from PTSD, anxiety, or phobias display a disruption of amygdala's activity [START_REF] Pavliša | Bilateral MR volumetry of the amygdala in chronic PTSD patients[END_REF][START_REF] Bremner | Structural and functional plasticity of the human brain in posttraumatic stress disorder[END_REF][START_REF] Shin | Is Posttraumatic Stress Disorder A Stress-Induced Fear Circuitry Disorder?[END_REF][START_REF] Morey | Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group[END_REF][START_REF] Neves | Increases in dendritic spine density in BLA without metabolic changes in a rodent model of PTSD[END_REF]) associated with a dysfunctional mPFC [START_REF] Shin | Is Posttraumatic Stress Disorder A Stress-Induced Fear Circuitry Disorder?[END_REF][START_REF] Whitaker | Animal models of post-traumatic stress disorder and recent neurobiological insights[END_REF]. The fear network has the particularity to undergo an asynchronous development, especially between the early maturing amygdala, a major hub underlying associative fear learning [START_REF] Gründemann | Ensemble coding in amygdala circuits for associative learning[END_REF], and the late maturing medial prefrontal cortex (mPFC), which modulates fear expression and its maintenance in memory [START_REF] Ledoux | The Emotional Brain : The mysterious underpinnings of emotional life[END_REF][START_REF] Ledoux | Emotion Circuits in the Brain[END_REF][START_REF] Sierra-Mercado | Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear[END_REF]. While the amygdala reaches its adult-like maturational state and functionality before adolescence (Bouwmeester et al. 2002;Cressman et al. 2010;[START_REF] Uematsu | Developmental Trajectories of Amygdala and Hippocampus from Infancy to Early Adulthood in Healthy Individuals[END_REF]), the mPFC is not fully mature until adulthood [START_REF] Tottenham | The developing amygdala: a student of the world and a teacher of the cortex[END_REF]. Moreover, the amygdala-prefrontal networks undergoes deep maturational changes during adolescence until adulthood, making the network sensitive to disruption at these crucial periods [START_REF] Burghy C A | Developmental pathways to amygdalaprefrontal function and internalizing symptoms in adolescence[END_REF][START_REF] Scherf | The amygdala: An agent of change in adolescent neural networks[END_REF][START_REF] Arruda-Carvalho | Optogenetic examination of prefrontal-amygdala synaptic development[END_REF][START_REF] Zimmermann | Maturational Changes in Prefrontal and Amygdala Circuits in Adolescence: Implications for Understanding Fear Inhibition during a Vulnerable Period of Development[END_REF]. Hence, the adolescence period constitutes a window of vulnerability to genetic and environmental factors, where a stressful event appearing during these intense maturational processes may lead to the appearance of emotional and cognitive disorders at adult age, in particular in fear-related disorders [START_REF] Tsoory | Juvenile stress induces a predisposition to either anxiety or depressive-like symptoms following stress in adulthood[END_REF][START_REF] Cloitre | A Developmental Approach to Complex PTSD: Childhood and Adult Cumulative Trauma as Predictors of Symptom Complexity[END_REF][START_REF] Chaby | Determining effects of adolescent stress exposure on risk for posttraumatic stress disorder in adulthood[END_REF].

Although the majority of the world population has been exposed at least once in their lifetime to a stressful event, not all individuals will develop FRD, suggesting singular genetic and/or environmental vulnerabilities [START_REF] Koenen | Gene-environment Interaction in Posttraumatic Stress Disorder: An Update[END_REF][START_REF] Klengel | Epigenetics of Stress-Related Psychiatric Disorders and Gene × Environment Interactions[END_REF][START_REF] Sharma | Gene × Environment Determinants of Stress-and Anxiety-Related Disorders[END_REF]. Understandably, the lack of knowledge regarding the initial subjects' Amygdala-Prefrontal (AP) network functionality, or their anatomical and functional features, makes difficult to identify what could have predisposed them to FRD. A genetic and/or environmental disruption of the early maturing amygdala's activity at adolescence could have influenced the development of a balanced activity in the late-maturing PFC, resulting in emotional disorders appearance at adulthood [START_REF] Márquez | Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression[END_REF][START_REF] Hermans | How the amygdala affects emotional memory by altering brain network properties[END_REF][START_REF] Cisler | Changes in functional connectivity of the amygdala during cognitive reappraisal predict symptom reduction during trauma-focused cognitive-behavioral therapy among adolescent girls with post-traumatic stress disorder[END_REF][START_REF] Johnson | Amygdala hyper-connectivity in a mouse model of unpredictable early life stress[END_REF][START_REF] Kaiser | Childhood stress, grown-up brain networks: Corticolimbic correlates of threat-related early life stress and adult stress response[END_REF]). An intriguing observation is the genetic case of tuberous sclerosis (TSC) disease, in which a loss-of-function mutations of the Tsc2 gene [START_REF] Li | TSC2: Filling the GAP in the mTOR signaling pathway[END_REF][START_REF] Hoeffer | mTOR signaling: At the crossroads of plasticity, memory and disease[END_REF] may induce alteration in cortico-limbic structures and functions [START_REF] Kim | Laterobasal amygdalar enlargement in 6-to 7-year-old children with autism spectrum disorder[END_REF][START_REF] Maximo | The implications of brain connectivity in the neuropsychology of autism[END_REF][START_REF] Ha | Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan[END_REF][START_REF] Top | Atypical Amygdala Response to Fear Conditioning in Autism Spectrum Disorder[END_REF], with a heightened risk to develop FRD compared to the general population at adult age, especially if the diseased individuals presents a co-occurrence of spectrum autism disorder [START_REF] Haruvi-Lamdan | Autism Spectrum Disorder and Post-Traumatic Stress Disorder: An unexplored co-occurrence of conditions[END_REF][START_REF] Rumball | Experience of Trauma and PTSD Symptoms in Autistic Adults: Risk of PTSD Development Following DSM-5 and Non-DSM-5 Traumatic Life Events[END_REF][START_REF] Kerns | Traditional and atypical presentations of anxiety in youth with autism spectrum disorder[END_REF][START_REF] Rosen | Co-occurring psychiatric conditions in autism spectrum disorder[END_REF][START_REF] Hollocks | Anxiety and depression Page 49 of 75 Cerebral Cortex -For Peer Review -not for publication Cerebral Cortex -For Peer Review -not for publication in adults with autism spectrum disorder: A systematic review and meta-analysis[END_REF][START_REF] Nimmo-Smith | Anxiety Disorders in Adults with Autism Spectrum Disorder: A Population-Based Study[END_REF][START_REF] Rodriguez-Seijas | A transdiagnostic model of psychiatric symptom co-occurrence and autism spectrum disorder[END_REF][START_REF] Kopp | Behavior problems in children with tuberous sclerosis complex and parental stress[END_REF][START_REF] Boronat | Stressor-related disorders in tuberous sclerosis[END_REF][START_REF] De Vries | A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND)[END_REF][START_REF] De Vries | Tuberous Sclerosis Complex-Associated Neuropsychiatric Disorders (TAND): New Findings on Age, Sex, and Genotype in Relation to Intellectual Phenotype[END_REF][START_REF] Ehninger | Reversal of learning deficits in a Tsc2+/-mouse model of tuberous sclerosis[END_REF][START_REF] Ehninger | Increased levels of anxiety-related behaviors in a Tsc2 dominant negative transgenic mouse model of tuberous sclerosis[END_REF][START_REF] Haji | Tsc1 haploinsufficiency in Nkx2.1 cells upregulates hippocampal interneuron mTORC1 activity, impairs pyramidal cell synaptic inhibition, and alters contextual fear discrimination and spatial working memory in mice[END_REF] . This highlights the importance of a proper balanced brain development in the regulation of emotional behavior at adult age.

In human suffering of FRD, whether a developmental imbalance in the AP network, due to an initial malfunction of amygdala and/or mPFC, resulting from genetic and/or environmental causes, may be a predisposal factor for FRD appearance at the adult age remains an open question. To address this question, we have developed an alternative rat model of developmental fear-network malfunction based on a viral construct designed to induce a partial knock-down of Tsc2 expression (Tsc2-KD) in glutamatergic CaMKII-positive neurons, selectively in the basolateral amygdala (BLA) from early or late adolescence. This strategy intends to help circumscribe the potential origin of certain alterations in brain development or structures' activity that may lead to FRD in adulthood. It has been shown that heterozygous TSC2 mutation in human [START_REF] Marcotte | Cytoarchitectural alterations are widespread in cerebral cortex in tuberous sclerosis complex[END_REF][START_REF] Im | Altered Structural Brain Networks in Tuberous Sclerosis Complex[END_REF]) may trigger imbalance of neuronal excitability and disrupted synaptic plasticity, or disruption of axonal growth and formation [START_REF] Choi | Tuberous sclerosis complex proteins control axon formation[END_REF]Hisatsune et al. 2021;[START_REF] Reis | The paradox of autophagy in Tuberous Sclerosis Complex[END_REF]). In the present work, we used this model to determine the extent to which an alteration of Tsc2/mTOR pathway in the amygdala during the highly vulnerable period of adolescence could modulate emotional behavior and mPFC activity later in adult age, and thus participate to the development of fearrelated disorders as assessed by using a fear-conditioning paradigm.

We report that rats whose amygdala was disrupted from early adolescence present symptoms of fear-related disorders at adulthood, i.e., a resistance to fear extinction and an overgeneralization of fear, associated with a basal hyper-activity in layers of mPFC generally implicated in fear behavior modulation. Thus, our strategy constitutes an interesting alternative to model how a modulation of a signaling pathway crucial for brain development in the amygdala while the AP network is still developing may be a predisposal factor for the genesis of emotional and cognitive disorders at adulthood.

Materials and Methods

Animals

A total of eighty-nine male Sprague Dawley rats (Envigo, France) was used. Rats were housed in Plexiglas cages (three to four per cage) in a 12/12h light-dark cycle (7am-7pm) with controlled temperature (21 ± 2°C) and hygrometry (55 ± 5%), and water and food ad libitum.

Cages were enriched with tunnels, wood sticks and two types of litter (wood chip and sawdust), allowing them to dig and hide. All rats were handled and weighed daily. Experimental procedures were conducted in accordance with the guidelines established by the European Communities Council Directive (2010/63/EU Council Directive Decree) and the Paris-Centre et Sud Ethical Committee (CEEA N • 59). All efforts were made to reduce the number of rats used and to minimize their suffering.

Two groups of different ages were used: Forty-four rats were late adolescents, weighing 280 ± 20 g at arrival in our facility, underwent surgery at postnatal day 50 (PN50) and constituted the "PN50_inj" group. Forty-five rats were young adolescents at the time of surgery and constituted the "PN25_inj" group. In the PN25_inj group, rats were either purchased after weaning; weighing 70 ± 10g at their arrival, or for eleven of them were born in the laboratory from four gestating females (arrival in our facility at 7 days of gestation weighing 280 ± 20g at arrival). Gestating females were in a separate room and housed alone in a cage until pups weaning. Cage litters were supplemented with cellulose paper, and breeding-specific food was given to mother and pups to provide them all the nutrients necessary for gestation and growth.

Four weeks after birth, rats were weaned and separated from their mother and female siblings, and randomly assigned to an experimental group. We verified that breeding condition had no significant effect on behavior for PN25-injected animals (not shown).

Preparation and culture of primary neurons

Cultures of rat primary hippocampal or cortical neurons were prepared from E18 rat embryos as described recently [START_REF] Kriebel | Interference With Complex IV as a Model of Age-Related Decline in Synaptic Connectivity[END_REF]. In brief, cells were isolated by trypsin digestion followed by trituration of the corresponding tissues and seeded in serum-free MEM with B27 supplement (ThermoFisher Scientific) on polyethylenimine (PEI) coated 96-well SENSOPLATE microplates (Greiner Bio-One) at a density of 2.0 x 10 5 cells/cm 2 . Cultures were maintained at 37°C, 5 % CO2 in serum-free MEM with B27 supplement. A 50 % medium change was performed every other day.

Viral preparation and viral efficiency analysis

The lentiviral preparations were produced at the Natural and Medical Sciences Institute at the University of Tübingen (NMI; Reutlingen, Germany). The vector backbone used for both control and Tsc2-specific knockdown constructs has been described previously [START_REF] Kriebel | Interference With Complex IV as a Model of Age-Related Decline in Synaptic Connectivity[END_REF] (https://doi.org/10.3389/fnmol.2020.00043) and is summarized in Fig. 1A. For the identification of injection sites, all lentiviral vectors expressed the Enhanced Green Fluorescent Protein (EGFP) protein under the control of a synapsin promotor. KD lentiviruses also expressed a microRNA (miRNA) specific for Tsc2 mRNA/protein (tuberin), under the control of the Ca++-Calmoduline Kinase II (CaMKII) promoter. The miRNA targeted a specific mRNA sequence of the tuberin in order to diminish Tsc2 expression levels in CaMKII producing cells, thus creating a constitutive and CaMKII-restricted knock-down of TSC2. Two target sequences for the Tsc2-miRNAs were used: Vector 1 (Vir1_Tsc2) sequence was TCATAGCCATGTGGTTCATTA; vector 2 sequence (Vir2_Tsc2) was GGATGGATGTTGGCTTGTCCT. As a control, a lentiviral vector expressing a negative control miRNA from pcDNATM6.2-GW/miR-neg (Thermo Fisher Scientific, USA) was constructed (Vir_ctrl). Titers of corresponding lentiviral suspensions were at least 5x107 Transduction Units (TU)/ml. Vector knock-down (KD) efficiency on Tsc2 protein level was first evaluated in vitro by quantitative immunocytochemistry in primary hippocampal neurons, based on the intensity of anti-Tsc2 immunoreactivity (IR) in somata of successfully transduced neurons (i.e., EGFP-positive neurons). For this purpose, cultures of primary rat hippocampal neurons transduced with lentiviral suspensions at DIV 3 at MOIs up to 10 were fixed at DIV14 using 4 % paraformaldehyde/PBS for 10 min at room temperature. After blocking and permeabilisation for 30 min at room temperature in 0.2 % Triton X-100/PBS containing 1 x Blocking Reagent for ELISA (Merck), neuronal cultures were incubated overnight at 4°C with primary antibodies diluted in blocking solution. After washing in PBS, fluorescently labeled secondary antibodies (1:500; Cy3-coupled goat anti-rabbit (Dianova) and Alexa Fluor 647-coupled goat anti-chicken (ThermoFisher Scientific)) were added, followed by an incubation for 2 h at room temperature. Cell nuclei were stained with Hoechst Dye 33258

(1:1000 in PBS; Merck). The following primary and secondary antibodies were used: rabbit anti-Tuberin/TSC2 (D93F12; Cell Signaling Technology, Danvers, MA, Cat. No. 4308), polyclonal chicken anti-MAP2 (Thermo Fisher Scientific, Waltham, MA, USA, Cat. No. PA1-10005).

Stained in vitro cultures of primary hippocampal neurons were documented by means of spinning disk confocal fluorescence microscopy (Cell Observer SD equipped with a 63× Plan-Apochromat oil immersion objective, Carl Zeiss Microscopy GmbH). Acquisition settings (excitation, emission) were kept constants for all experimental groups. Protein expression of Tsc2 (tuberin) in successfully transduced, EGFP-positive neurons was quantified using ZEN 2 (Carl Zeiss Microscopy GmbH). A region of interest (ROI) of maximum diameter was selected from all confocal z-planes of recorded EGFP-positive neuronal somata. Within each ROI, the mean fluorescence intensitiy was quantified using ZEN's measure function. KD efficiency was also confirmed at the mRNA level, evaluated by qRT-PCR using duplicate samples from rat primary cortical neurons transduced by the vectors, as previously described [START_REF] Kriebel | The cell adhesion molecule neurofascin stabilizes axo-axonic GABAergic terminals at the axon Page 51 of 75 Cerebral Cortex -For Peer Review -not for publication Cerebral Cortex -For Peer Review -not for publication initial segment[END_REF][START_REF] Kriebel | Interference With Complex IV as a Model of Age-Related Decline in Synaptic Connectivity[END_REF][START_REF] Saha | GABAergic Synapses at the Axon Initial Segment of Basolateral Amygdala Projection Neurons Modulate Fear Extinction[END_REF]) (Fig. 1).

Surgery and viral infusion

According to the growth chart of Sprague Dawley rats provided by animal provider (Envigo, France), the PN50_inj rats had surgery at 300 ± 10 g and PN25_inj rats at 100 ± 5 g.

Surgery preparation

Twenty minutes before surgery, rats were isolated in a cage under a heating lamp. PN50 animals received a subcutaneous injection of the analgesic tolfedine (Tolfedamic Acid, 4 mg/kg), followed by anesthesia with an intraperitoneal (i.p) injection of a mix of ketamine (Imalgene® 1000, 70 mg/kg) and Metedomidine (domitor®, 0.5 mg/kg) diluted in 0.9% NaCl.

According to veterinary recommendations, PN25 rats received the same anesthesia protocol with a dose reduced by 2/3 compared to PN50 rats to limit overdose risks. When necessary, a half dose of ketamine/metedomidine was supplemented at mid-surgery. The rat's body temperature was controlled and maintained during surgery with a warming pad, and the eyes were protected from dryness by calboprol creme (OcryGel). At the end of surgery, the wound was closed with surgical staples (Michel 100, 7.5 x 1.75 mm) after applying lidocaine/prilocaine ointment (Anesderm Gé) to limit pain during waking up. Rats were awakened with an intramuscular injection of Atipamezole (Antisedan®, 1 mg/kg for PN50 and 0.67 mg/kg for PN25) diluted in 0.9 % NaCl, and returned to home cage once fully awake.

Viral infusion

Rats were randomly assigned into different experimental groups, with no more than 2 early adolescents from the same litter in a viral condition group. Once rats were placed in a stereotaxic apparatus (Stoelting, USA), a midline incision was made onto the scalp and holes were made in the skull with a dental drill (Bravo Micromotor portable III, Hager Worlwide) for bilateral injection of the lentiviral preparation into the BLA. Cannulae (26G;Phymep,C3115I) were slowly lowered at the following stereotaxic coordinates for PN50 rats (Anteroposterior (AP): -2.64 mm; Mediolateral (ML): ± 4.6 mm relative to Bregma ; Dorsoventral (DV): -6.8 mm relative to the surface of the brain) [START_REF] Paxinos | The Rat Brain in Stereotaxic Coordinates[END_REF]), and for PN25 rats (AP: -2.9 mm; ML: ± 4.8 mm relative to Bregma ; DV: -6.8 mm relative to the surface of the brain) [START_REF] Khazipov | Atlas of the postnatal rat brain in stereotaxic coordinates[END_REF]. Five minutes after reaching final coordinates, injections were performed using a 10 µl Hamilton Syringe (Hamilton 801 N) with an automated pump (Harvard Apparatus, Pump II Elite, Harvard Bioscience, Inc) delivering 2 µl of lentiviral preparation bilaterally at 0.05 µl/min. The cannulae were progressively withdrawn from the brain 10 min after the end of the infusion.

Behavioral assessment: Fear conditioning

Apparatus

Four identical conditioning chambers (30 x 25 x 30 cm, Coulbourn Instruments, USA) were used, enclosed within a sound-isolation cubicle with a ventilation fan producing a background noise of 60 dB. All rats were pseudo-randomly assigned to each conditioning chamber so that every chamber received the same number of Vir_ctrl, Vir1_Tsc2, or Vir2_Tsc2 animals. Protocols were designed using the Graphic State 3.02 software (Coulbourn Instruments, USA).

Two different contexts were used in distinct phases of the experiment. For context A, each chamber was equipped with a grid floor for delivery of electrical footshocks, a red light located at the top right corner and a speaker at the top left corner of the box. The context B took place in the same conditioning chambers, but with a green light, peppermint odor (Sigma-Aldrich, ref 77411) and a smooth floor with wood litter. Between rats, each chamber was cleaned with water and cellulose tissue, and wood litter was changed. Between days, each chamber was cleaned with 70° ethanol. Each chamber was equipped with an infrared camera (Coulbourn Instruments, USA) placed above the conditioning chamber and connected to a television screen and a DVD recorder. Infrared cues (Coulbourn Instruments, USA) lighted up during the tone presentations to allow the experimenter to recognize the tone periods for off-line scoring.

Protocol

Seven weeks after vector infusion, animals were tested for fear behavior using a Pavlovian auditory fear conditioning paradigm constituted of five sessions spaced by 24 h. Each session lasted from 30 min to 70 min depending on the protocol step, and the intertrial interval (ITI, from the end of a stimulus to the onset of the next one) of 3 min ± 1.5 min was presented in pseudorandom order in each session. At the start of each session, there was a variable period of time, from 2 to 5 min (3 min in average among the 5 sessions), before apparition of the first tone.

Habituation: On Day 1, familiarization to the Context and Tone was achieved by the delivery of 5 conditioned stimuli alone (CS: 30s, 4 kHz, 80 dB) in Context A.

Fear Learning: On Day 2, classical fear conditioning was assessed in context A. During this phase, rats received 7 CS paired with an electric foot-shock (unconditioned stimulus, US, 0.5 mA, 0.5s) delivered immediately at the end of the CS presentation.

Extinction and Extinction Recall: On Day 3, 20 presentations of the CS alone were given in the new Context B (extinction session), followed 24 h later (Day 4) by a session evaluating extinction recall by means of 5 presentations of the CS alone, in context B as well.

Renewal and Generalization: On Day 5, renewal of fear was tested by placing the rats back in the original learning context (context A) with 5 presentations of the CS alone. The generalization of fear to a new tone was then tested, after 3 min, with 5 presentations of an unknown and distinct tone (30s, 11 kHz, 75 dB).

Analysis

Fear intensity was evaluated by off-line quantification of freezing behavior, an instinctive reaction of tonic immobility in response to a threat in rodents, defined by an absence of movement, except respiratory [START_REF] Blanchard | Crouching as an index of fear[END_REF][START_REF] Sigmundi | Conditioned freezing in the rat as a function of shock intensity and CS modality[END_REF]. The percent time spent freezing to the context alone and during the 30s tones was manually recorder for each session; the experiment and scoring was done blind regarding experimental groups. Due to a technical issue, the freezing behavior could not be scored for some rats (PN50_inj groups on Day 1: 2 Vir_ctrl and 4 Vir1_Tsc2; PN25_inj groups on Day 3, between tone 6 to tone 15: 1 Vir_ctrl and 5 Vir1_Tsc2). As a result, fear memory and extinction during Day 3 was statistically assessed by analyzing freezing behavior during the first 5 trials and the last 5 trials, respectively.

Biochemical and molecular studies

Seven weeks after fear conditioning, rats were deeply anesthetized with a high dose of sodium pentobarbital (i.p., Dolethal, 1ml/100g; diluted 1/3 in 0.9% NaCl) and then perfused intracardially at 25 rpm with 300 ml Phosphate buffered saline (PBS, 0.1 M), followed by 300 ml of 4 % paraformaldehyde at room temperature (RT). The brains were removed and stored in the same fixative solution for 24 h at 4°C, and then successively immersed for three consecutive days in 12%, 16% and 18% saccharose solution in Phosphate buffer (PB, 0.1 M).

Brains were then frozen in Isopentane at -40°C during 3 min and stored at -20°C until sectioning. Coronal sections (40 µm thick) were cut using a cryostat (Thermo Scientific Microm HM 560) at -18°C ± 2°C. Each section was individually placed in a well of a 48 multi-well plate containing AMARAL solution (Glycerol, Ethylen Glycol, Distilled water, PB 0.1 M) at 4°C until treatment. Each section containing the BLA was placed on a microscope glass slide, floating in PBS (0.1 M), in order to observe tissue quality, coordinates, and EGFP expression by epifluorescence microscopy (Olympus BX60 with x4 objective, Explora Nova Software). Rats for which the BLA presented no EGFP fluorescence (no vector transduction), holes caused by injection, or having main EGFP signal outside the BLA due to misplaced injection, were excluded from the entire experiment. At the end, a total of nineteen rats injected at PN50 and ten rats injected at PN25 were excluded from the results, whatever their viral condition. In sum, twenty-five animals injected at PN50 (Vir_ctrl or Vir1_Tsc2) and thirty-five animals injected at PN25 (Vir_ctrl, Vir1_Tsc2 or Vir2_Tsc2) were conserved for behavioral and histological analyses.

Detection of EGFP, Tsc2 and p70S6K-p by Immunofluorescence studies Protocol

For analysis of Tsc2/EGFP expression by immunofluorescence, fourty sections from PN25_inj rats and seventy section from PN50_inj rats correctly injected with Vir_ctrl or Vir1_Tsc2 were chosen depending on the highest immunostaining quality and presenting the denser viral diffusion specifically into the BLA (PN25: 8 amygdalae from 5 Vir_ctrl rats; and 6 amygdalae from 5 Vir1_Tsc2 rats; PN50 : 8 amygdalae from 5 Vir_ctrl rats; and 9 amygdalae from 6 Vir1_Tsc2 rats). They were washed 3 x 10 min in PBS 0.1 M, then once in PBS 0.1 M/Triton 0.5%, and washed again in PBS 0.1 M (3 x 10 min). Then, slices were incubated individually in 250 µl of a blocking solution containing 1% Bovine Serum Albumin (BSA, Sigma Aldrich, A9647-50G), 5% Normal Goat Serum (NGS, Eurobio, CAECHV00-0U) and 0.1% Triton in PBS 0.1 M, for 1h at RT. Sections were then co-incubated with the primary antibodies against EGFP (Chicken anti-GFP, 1:1000 dilution, Ab13970) and against Tsc2 protein (Rabbit anti-Tuberin-N terminal, 1:100 dilution, Abcam, ab189304) diluted in the blocking solution for 24 h at 4°C on a rotor plate. The following day, sections were washed in PBS 0.1 M (3 x 10 min), coincubated in 300 µl of a mix of secondary antibodies, i.e., a Goat anti-chicken Alexa Fluor 488

(1:400, Thermofisher A11039) and a Goat anti-rabbit Alexa Fluor 546 (1:400, Thermofisher A11035) diluted in a blocking solution (BSA 2%, NGS 2% in PBS 0.1 M), during 45 min on a rotor plate at RT, covered by aluminum foil to protect fluorophores from light. Sections were then washed in PBS 0.1 M (3 x 10 min) and mounted on Trajan glass slides (Series 3 Adhesives, Trajan, T7611), embedded with Fluoromount© Aqueous Mounting Medium (Sigma Aldrich, F4680) and stored at 4°C protected from light.

For analysis p70S6K-p/EGFP expression, a similar immunofluorescence protocol was used.

Twenty-nine sections from PN25_inj rats injected with Vir_ctrl, Vir1 and Vir2_Tsc2 and ninety sections from PN50_inj rats injected with Vir_ctrl or Vir1_Tsc2 were chosen (PN25: 13 amygdalae from 9 Vir_ctrl rats; 9 amygdalae from 7 Vir1_Tsc2 rats; and 14 amygdalae from 8 Vir2_Tsc2 rats. PN50: 7 amygdalae from 6 Vir_ctrl rats; and 12 amygdalae from 8 Vir1_Tsc2 rats). Slices were co-incubated with the primary antibodies against the phosphorylated form of protein p70S6K (p70S6K-p; Phospho-p70 S6 Kinase (Thr389) (108D2) Rabbit mAb #9234, Cell Signaling, dilution 1:500) and the primary antibody against EGFP (Chicken anti-GFP, 1:1000 dilution, Ab13970). The following day, after washing, slices were co-incubated in 300 µl of a mix of secondary antibodies as described above.

Analysis

The intensity of Tuberin (red) and EGFP (green) IR was measured in BLA cells using the ImageJ software (ImageJ 1.53c, Wayne Rasband, NIH, USA). Images were acquired using a Zeiss confocal microscope (Zeiss LSM700) using a 10x objective. The fluorescence intensity of each cell within the BLA was thus measured in separate red and/or green channels. For EGFP/Tuberin analysis, in order to individualize every cell in each channel, a duplicate layer of either Tuberin (red) or EGFP (green) fluorescent image was used, each converted into binary 8-bit image (grey); the background was subtracted with a threshold adjusting algorithm, and an automatic contour of each Tuberin(+) and/or EGFP(+) cell was drawn and analyzed with the "Analyze Particle" function of ImageJ. For each channel, each particle (cell) was labeled with a unique number and was added to the ROI manager.
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The mean grey intensity of each cell was calculated from RGB images using the "Analyze/Measure" function in ImageJ. To determine which Tuberin (+) cell was also EGFP (+), reflecting colocalization of the two markers in transduced neurons, the initial EGFP image was taken, and the ROI manager corresponding to the Tuberin (red) channel was superimposed on the EGFP (green) image. Every particle drawn that perfectly overlaid with an EGFP (+) cell was counted as a Tuberin(+)-EGFP(+) colocalization. For every analyzed rat, at least 1mm² of BLA tissue has been analyzed. For p70S6K-p/EGFP analysis, the p70S6K-p protein expression was counted as the number of p70S6K-p fluorescent punctate (red channel) in every EGFP(+) cells (green channel), and expressed as the numbers of punctate per 100µm² of area measured in EGFP(+)-corresponding cells, normalized per cell. Images were acquired using a Zeiss confocal microscope (Zeiss LSM700) using a 20x objective. The same protocol as described above for Tuberin/EGFP analysis was done, and numbers of punctate were measured using the "Analyze Particles" function in ImageJ. For each rat, at least 1mm² of BLA tissue has been analyzed.

Detection of c-Fos(+) cells by immunohistochemistry

Protocol

Three EGFP(+) BLA sections were taken from each rat injected with Vir1_Tsc2 or Vir_ctrl. In addition, three tissue sections from the prefrontal cortex were chosen depending on their anteroposterior (AP) coordinates (for Methods, see [START_REF] Bergstrom | Pavlovian Fear Conditioning Activates a Common Pattern of Neurons in the Lateral Amygdala of Individual Brains[END_REF][START_REF] Jacques | Functional neuronal topography: A statistical approach to micro mapping neuronal location[END_REF] from AP 2.8 to AP 2.6 mm relative to Bregma in order to maximize the mPFC cellular activity analysis through the antero-posteriority axis. Briefly, sections containing prelimbic (PL) and infralimbic (IL) cortices at 3 different AP were chosen based on the shape and length of the corpus callosum, measured as the Ferret Length [START_REF] Jacques | Functional neuronal topography: A statistical approach to micro mapping neuronal location[END_REF]. For each AP, the Ferret length had to be statistically not different between subjects and between experimental conditions, but it had to be statistically different between APs. Sorting the sections with this method allowed us to measure specifically differences in c-Fos(+) cells density at a given AP and for a specific microanatomical zone. Sections of the three structures (BLA, PL and IL) were treated for immunohistochemistry (IHC) at the same time, ran in 3 series (most anterior, middle and posterior slices).

Sections stored in AMARAL at 4°C were washed in PBS 0.1 M (3 x 10 min) at RT using a rotor plate, then incubated 10 min in a mix of 20% Methanol, 77% distilled water (dH2O) and 3% H2O2 in order to deactivate endogenous peroxidases. Sections were then washed in dH2O, then in PBS 0.1 M for 5 min and finally in PBS 0.1 M with 0.2% Triton once for 10 min. Each section was then incubated in 1.5 ml of a blocking solution containing PBS 0.1 M, 0.2% Triton and 5% NGS (Normal Goat Serum, Eurobio, CAECHV00-0U) for 1h at RT using a rotor plate.

Finally, sections were individually incubated for 48 h on a rotor plate at 4°C in 1.5 ml of a primary antibody against c-Fos (Rabbit anti-c-Fos, 1:3000, Proteintech, Euromedex, ref: PR-26192-1-AP) diluted in the blocking solution. Sections were then successively washed in PBS 0.1 M-Triton 0.2% (3 times 10 min each), incubated individually in 1.5 ml of goat anti-rabbit IgG (H+L) biotinylated secondary antibody (1:400, Eurobio, BA-1000) in blocking solution for 90 min at RT using a rotor plate, washed in PBS 0.1 M-Triton 0.2% for 10 min, incubated 90 min in the ABC kit (Kit Vectastain Elite ABC HRPO, Vector Lab, dilution 1:800) prepared 30 min before, and washed again in PBS 0.1 M-Triton 0.2% for 10 min. Immunohistochemistry revelation was finally performed using a Vector SG Peroxidase Substrate Kit (Substrat SG HRP, Eurobio, SK-4700). Sections of mPFC and BLA were individually incubated in 1.5 ml of the Substrate kit solution, and the revelation was stopped at desired coloration (about 4 min for mPFC and 8 min for BLA). Reaction was stopped by transferring slices in dH2O and storing them in PB 0.1 M at 4°C for 24 h. Sections were then mounted on Trajan glass slides, dehydrated in acetone (2 x 5 min), immersed in xylene (2 x 5 min), immediately embedded with Eukitt (Chem Lab, Belgium, ref CL0405030500) and stored at 4°C protected from light.

Analysis Image preparation for quantification of c-Fos(+) cells

Histology images were taken with an Olympus BX 60 optic microscope using a x4 objective.

We first excluded from analysis the sections presenting unreliable staining (heterogeneous staining in the structures due to folding of the tissue during process), no staining or damaged tissue. (BLA : Vir_ctrl : PN50 n = 13; PN25 n = 10; Vir1_Tsc2 PN50; n = 12; PN25; n = 10).

Then, for the mPFC, sections with extreme AP coordinates were excluded, and only PL and IL staining at AP 2.7 and 2.6 were common to most of the stained slices among animals. (AP 2.6: Vir_ctrl; PN50, n = 8; PN25, n = 11; Vir1_Tsc2; PN50, n = 8; PN25; n = 13; AP 2.7: Vir_ctrl; PN50, n = 8; PN25, n = 10; Vir1_Tsc2; PN50, n = 8; PN25; n = 16). Two control sections, one from mPFC and one from BLA, incubated in the blocking solution without primary antibody did not show any specific or confounding unspecific background staining.

For c-Fos(+) cells counting, images were acquired using an optic microscope (Olympus BX 60) with a 10x objective in a vertical mosaic manner, forming a vertical grid of 2x4 images for mPFC and with a square 2x2 design for BLA. Individual images where stitched using the Grid/Collection Stitching plugin in Fiji (Fiji software, [START_REF] Schindelin | Fiji: an open-source platform for biological-image analysis[END_REF])); Grid/collection stitching plugin [START_REF] Preibisch | Globally optimal stitching of tiled 3D microscopic image acquisitions[END_REF] to form a single image. The image scale was set, and the contours of PL, IL and BLA were done manually in Fiji, using anatomical landmarks to determine the sizes and edges of the target structures. Typical landmarks in mPFC were the sizes and shapes of the caudate putamen and corpus callosum. For BLA, the lateral ventricle size, external capsule fiber aspect or optical fiber size were relevant anatomical anchors to isolate proper structure contours (for further methods, see [START_REF] Bergstrom | Pavlovian Fear Conditioning Activates a Common Pattern of Neurons in the Lateral Amygdala of Individual Brains[END_REF][START_REF] Jacques | Functional neuronal topography: A statistical approach to micro mapping neuronal location[END_REF])); from [START_REF] Paxinos | The Rat Brain in Stereotaxic Coordinates[END_REF][START_REF] Paxinos | The Rat Brain in Stereotaxic Coordinates[END_REF][START_REF] Paxinos | The Rat Brain in Stereotaxic Coordinates[END_REF].

Cell counting in mPFC and BLA

Areas of each outlined structure were measured and c-Fos(+) cells in this area were manually counted in a semi-quantitative manner using the "multi point" tool in Fiji. Non-colored cells (grey intensity equal to background), particles with non-neuronal shape, and particles under 4 µm of diameter were excluded from counting.

Density heat map analysis of mPFC

Methods to create density heat maps have previously been detailed [START_REF] Jacques | Functional neuronal topography: A statistical approach to micro mapping neuronal location[END_REF]). We followed this method with slight modifications as we used the Fiji software to calibrate counting areas, draw the structures contours and manually count c-Fos(+) cells. The density heat maps were created using a MATLAB script written by the experimenter (MathWork Simulink, Matlab 2019a, USA). Briefly, once all the c-Fos(+) neurons were counted in the calibrated and contoured counting area, their (x,y) coordinates were binned and transformed into matrices to measure the exact localization and density of c-Fos(+) cells. As previously shown [START_REF] Jacques | Functional neuronal topography: A statistical approach to micro mapping neuronal location[END_REF], the number of bins can be calculated based on experimenter parameters or using existing formulas. Here, we calculated bins density with the square root of the total number of cells in each condition. In order to compare conditions (Ctrl/Virus) and groups (PN25/PN50) at the same matrices resolution, we transformed every (x,y) data into matrices containing the same number of bins, corresponding to the number of bins calculated for the viral condition presenting the highest density of c-Fos(+) cells, thus providing the optimal matrices resolution.

Once the final number of bins was defined, (x,y) coordinates of each structure were transformed into two matrices (30x30 for PL and 20x20 for IL), mirrored for both hemispheres, and averaged by conditions (Ctrl vs Virus), using MATLAB. Averaged matrices were then transformed into a binned color map, smoothed and scaled at the same density units to form a final density heat map.

Statistical analysis

Data are expressed as means ± SEM. Parametric ANOVAs were used for most parameter analyses addressing interactions between several factors and repeated measures (RM).

Parametric comparisons (paired and two-group comparison unpaired t-test), planned Helmert contrasts tests, mixed ANOVA with group (age and viral condition) as independent (between) factors and repeated measures (Two-and Three-Way ANOVAs) as dependent (within) factors, followed by Bonferroni post-hoc test, were performed using JASP (JASP Team (2020), version 0.13.1) and JAMOVI (The JAMOVI project (2020), version 1.2). In case of a non-respect of equality of variance, a Welch correction was done. The Two-Way ANOVAs and FDR (False Discovery Rate) analyses for the matrices were done using GraphPad Prism 7 (GraphPad Prism 7.00 for Windows, GraphPad Software, La Jolla California, USA). Principal component analysis was performed using Statview 5.0 software (SPSS, USA). Factor extraction was performed using an orthogonal rotation (Varimax) and the weight of each variable on each extracted factor was calculated. Linear regression was performed using XLSTAT software. For all analyses, the alpha level of significance was set at 0.05, excepting for FDR analysis which was set at 0.1.

Results

Lentiviral transduction efficiency

Before their use in behavioral experiments, the transduction efficacy of the two viral vectors, expressing a miRNA for partial knockdown of Tsc2 ("knock-down" or "KD" vectors, "Vir_Tsc2") was chosen for a better representation of the human heterozygous TSC2 mutation were analyzed and compared to a control vector (Vir_ctrl) in vitro. Two Tsc2 mRNA targeting vectors were applied to a subset of experiments to rule out off-target effects. (Fig. 1A,B, but also Fig. S1 for outline of the lentiviral strategy). The qRT-PCR analyses from transduced primary cortical neurons in duplicates with Vir1_Tsc2 and Vir2_Tsc2 revealed respectively 52.07 % and 40.59 % decrease of Tsc2 mRNA expression (Fig. 1C). Transduced primary hippocampal neurons with Vir1 or Vir2_Tsc2 also showed a 20% significant decrease of Tsc2 protein (tuberin) expression levels compared to cells transduced by the control vector (Fig. 1D Helmert contrast test, Ctrl vs [Vir1,Vir2] t = 5.088; P < 0.001), and no differences were observed between the two KD vectors, demonstrating that (1) all three lentiviral vectors efficiently transduced neurons in vitro, and (2) the two KD viruses successfully reduced Tsc2 mRNA and tuberin levels in vitro. Knowing that tuberous sclerosis complex is a negative regulator of mTOR, impairment of one of its components, hamartin (Tsc1) or tuberin (Tsc2), inhibits its activity. In order to control whether the KD-Tsc2 resulted in the elevation of mTOR pathway's activity, a semi-quantitative analysis of phosphorylated p70S6K (p70S6K-p) protein expression, a well-known marker of mTOR activity (Fig. S1) was assessed on animals injected at PN25 or PN50 with Vir_ctrl or Vir1_Tsc2 (Fig. 2C,D). Results showed that PN25 and PN50 animals injected with Vir1_Tsc2 presented at adult age a significant elevation of p70S6K-p protein expression in EGFPexpressing cells ex vivo (Fig. 2D, unpaired t-test (Welch correction), t(21)=8.69; P = 0.031; Fig. 2E, unpaired t-test (Welch correction), t(18)=15.957; P = 0.019) suggesting here an increased mTOR activity after Tsc2 mRNA knockdown since both time-points. Also, no differences were observed in EGFP or background IR between the two sets of BLAs, reflecting a similar transduction rate between viral conditions (not shown) with a main EGFP localization into the BLA for animals injected at PN25 or PN50 with the control or KD viruses (Fig. S2B,C).

Behavioral outcomes of Tsc2 partial inhibition in basolateral amygdala

Behavioral testing was undertaken in PN25_injected (PN25_inj) and PN50_injected (PN50_inj) rats 7 weeks after viral infusion, once they all had reached adulthood. The animals were tested on behaviors relying on the integrity of the networks involving the amygdala and the prefrontal cortex (i.e., fear conditioning and fear extinction paradigms). The data were analyzed using a Three-Way Repeated Measures (RM) ANOVA comparing freezing behavior during each trial or context Day (within-subject factor) and 2 x 2 between-subject factors: the age of viral injection (PN25 and PN50) and the viral condition (ctrl and knock-down Vir1). Thus, the following analyses were based on a (nTrial or Context Day) x Viral Condition x Age of injection design.

Statistical analysis of the freezing to context, measured before the first tone of each session, showed no difference between viral conditions, nor between ages at which the vector was injected, at any of the five days, but only a global day effect (Fig. S3B, Table S1A).

Bonferroni post hoc analysis revealed a differential level of fear between Day 1 and all the other tested days (Pbonf<0.001) and between Day 2 and all the other days (Pbonf<0.001), revealing an increase in the level of fear to context for all animals after the fear learning session. Planned comparisons between freezing to context A before fear learning (Day 2) and freezing to the new context B at extinction day (Day 3) showed no differential generalization of fear to the new context (Day 2 vs Day 3, Table S1A), and no differences between viral conditions or ages of injection at Day 3 (Table S1A). However, a differential renewal of fear to the initial learning context (Day 4 vs Day 5) was revealed between ages of injection (PN25 and PN50) (Day 4 vs Day 5, Fig. S3B, Table S1A, Day x Age interaction, P = 0.048), which was due to a decreased level of fear to context B at the end of extinction testing for PN25_inj animals. Animals injected with the KD virus, whatever the age of injection, globally showed a lower percentage of freezing at the two testing days (Day 4 and 5) compared to animals injected with the control virus (Viral condition effect, P = 0.043). Bonferroni post hoc analyses revealed that PN25_injected rats, but not PN50_injected rats, showed an increase in freezing Page 25 of 75 Cerebral Cortex -For Peer Review -not for publication Cerebral Cortex -For Peer Review -not for publication between Day 4 and Day 5 (PN25_inj: Pbonf < 0.001; PN50_inj : Pbonf = 0.434). These results revealed that PN25_inj rats showed a higher return of fear to the initial learning context, regardless of the virus condition (Control and KD virus), suggesting a faster extinction to context B and/or a stronger renewal of fear to the conditioning context. This may reflect an impact of the surgical procedure and/or the anesthesia on a developing brain (i.e., PN25_inj rats) that could influence fear behavior at adult age.

Freezing levels specific to the tone CS were different depending on the age at which the KD virus was injected during distinct phases of the protocol (Fig. 3B, Table S1B for detailed statistical analyses). During habituation (Day 1), there were no differences between viral conditions or age of injection in the percent freezing to the CS, suggesting a comparable unconditioned reaction between groups. During fear learning (Day 2), there was a rapid increase in the percent freezing to the CS across repetitions of CS-US pairings, with a significant Trial x Age interaction (F(6,276) = 2.825; P = 0.025). Bonferroni post hoc analysis only pointed to slightly different kinetic curves depending on the ages of injection without revealing differences between groups at any trial, reflecting successful fear learning for all viral conditions or age of injection. As freezing increased rapidly between CS1 and CS2 for all groups, there was no evidence of latent inhibition of fear learning due to pre-exposure to the tone alone at Day 1, although it cannot be completely overruled. Overall, fear learning was largely unaffected by pre-exposure to the tone, age of infusion and/or Tsc2 inhibition. Longterm fear memory, assessed through the analysis of the first five CS in a new context the next day (Day 3, trials 1-5), differed depending on the age of injection, with PN25_injected rats showing a lower level of freezing compared to PN50_injected rats (Age effect; (F(1,46) = 6.289, P = 0.016). The level of fear extinction, as assessed through the analysis of the last five CS on that day (Day 3, trials 16-20), revealed an effect of the Viral Condition (F(1,46) = 4.222, P = 0.046), with no effect of the age of lentiviral injection. These results indicate that rats with Tsc2-KD in BLA showed a delayed, slowed rate of extinction compared to control, but similarly whether rats had been injected during early or late adolescence. However, when the long-term memory of extinction was assessed 24h later (Day 4, extinction recall), no differences between ages or viral conditions were detected, with all animals presenting a high level of fear to tone 1 presentation, close to that observed at the beginning of Day 3. As the level of freezing was still somewhat high at the last tone of Day 3 (tone 20), even for control animals, fear extinction acquisition may have been incomplete for all groups, and a strong fear reminiscence effect may have hidden any differential memory of extinction. Statistical analysis through tone presentation at day 4 revealed further extinction, similar for all groups (Trial effect, F(4,184) = 16.338, P < 0.001). This was also true during the renewal test in the original context on Day 5, during which only a global Trial effect was observed (F(4,184) = 27.994, P < 0.001), but no significant main group effect and no significant group x trial interaction, indicating that the rats did not differ in their CS-associated memory whatever the context they were tested in. S1. The significant differences were an effect of the age of injection during the first 5 trials of Day 3 with a higher level of freezing for PN50_injected compared to PN25_injected rats, whatever the viral condition (Age effect, ## P = 0.016) an effect of viral condition for the last 5 trials of Day 3 (Viral condition effect, * P = 0.046) revealing a higher level of freezing in Tsc2-KD rats regardless of the age of injection, and a (viral condition x age) interaction during generalization testing (Day 5, highlighted in gray), revealing a higher level of freezing only in rats injected with Vir1_Tsc2 at PN25 (Bonferroni post hoc test, ¤¤¤ P < 0.001) compared to PN25 rats injected with Vir_ctrl.

In contrast, when fear generalization was assessed by presenting a distinct and unknown tone, a differential level of fear was observed depending on the viral condition and age of injection (Fig. 3B, Day 5 Trials 1' to 5'; Age x Viral Condition interaction, F(1,46) = 7.25, P = 0.010), due to an apparent failure for rats to decrease fear responses during this part of the test, selectively in those injected at PN25 with KD Vir1_Tsc2 vector. Bonferroni post hoc analysis confirmed this by revealing a significant difference between Vir_ctrl and Vir1_Tsc2 conditions in PN25_injected rats (Pbonf < 0.001), but not in PN50_injected rats, suggesting that only PN25_injected rats with Vir1_Tsc2 showed an overgeneralization of fear to a new tone. As no differential level of fear was observed to context A alone or to the tone CS on Day 5, it seems unlikely that either could have played a role in the elevated fear responses to the new tones observed for PN25_Vir1 rats. Hence, elevated generalization of fear observed in PN25 with KD Vir1_Tsc2 vector seems specific to the new tone presentation.

In order to consolidate our conclusion that the knockdown of Tsc2 in BLA was responsible for alterations of fear behavior and discard a putative off-target effect of the virus, we also tested in parallel the impact of the second KD lentivirus, Vir2_Tsc2 when injected in BLA of PN25 rats, by assessing fear conditioning, extinction and generalization following the same protocol as in Fig. 3A. Immunofluorescence results showed a similar effect of Vir2_Tsc2 compared to Vir1_Tsc2 on p70S6K-p activity elevation, confirming a successful effect on Tsc2/mTOR's activity modulation (Fig. S3A). The behavioral results are shown in Fig. S3C,D.

For each phase of the protocol, a Helmert contrast test was used to compare Vir_ctrl vs [Vir1_Tsc2, Vir2_Tsc2] on one hand, and Vir1_Tsc2 vs Vir2_Tsc2 on the other hand (See Table S2 for statistical details). Freezing to the context showed no differences between viral conditions except in context B at the beginning of extinction recall session (Day 4), where PN25_injected rats with Vir2_Tsc2 showed a significantly higher level of fear than animals injected with Vir1_Tsc2 (Fig. S3C; Table S2A; Helmert Contrast Test t(32) = -2.493, P = 0.018). This higher level of fear might reflect an overgeneralization of fear to the safe context, Freezing levels to CS showed that the effects of Vir2_Tsc2 were similar to Vir1_Tsc2 (see Fig. S3D, Table S2B for detailed statistical results), except for habituation (Day 1). On that day, there was no significant difference between the two KD viral conditions and the control virus, but Vir1_Tsc2 injected rats showed a higher level of freezing to the unconditioned tone compared to Vir2_Tsc2 (Helmert contrast test, P = 0.008). However, fear learning (Day 2) was comparable among groups, showing that they correctly and equally learnt the task. Importantly, analyzing the level of freezing during the last five trials of extinction on Day 3 confirmed that PN25 rats injected with a KD virus, Vir1_Tsc2 and Vir2_Tsc2, showed a higher level of freezing compared to animals injected with the control virus, indicating that both KD viral conditions were associated with a delayed fear extinction (Helmert Contrast test, Vir_ctrl vs [Vir1_Tsc2,Vir2_Tsc2], t(32)= -2.539, P = 0.016), with no significant difference between Vir1_Tsc2 and Vir2_Tsc2_injected animals. Analysis of generalization to a new tone on Day 5 (Tones 1'-5') indicated also no difference between Vir1_Tsc2 and Vir2_Tsc2, and a significant difference between these two groups of animals and the Vir_ctrl group (t(32) = -4.587, P <0.001), confirming that rats injected with Vir1_Tsc2 or Vir2_Tsc2 into the BLA during adolescence overgeneralized their fear to the new tone at the adult age.

Thus, Vir2_Tsc2 injections in PN25 rats' BLA mostly altered fear behavior in the same way as Vir1_Tsc2 injected animals at PN25, as reflected by a poorer fear extinction and an overgeneralization of fear to a new tone. This indicates that these behavioral outcomes were not due to unspecific off-target effects and validates our model of Tsc2 knock down effect during brain development. As surgery or anesthetics may impact brain connectivity and behavior [START_REF] Pattwell | Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories[END_REF], the ketamine administration took place lately in brain development, and no signs of abnormal home-cage behavior (apathy, social interaction, food and water intakes) nor behavioral deficits in fear learning and memory, suggesting little effect of surgery on emotional state. In all, the behavioral results showed that a partial knockdown (KD) of Tsc2 into the BLA during early adolescence had a greater impact on behaviors involving the fear circuit compared to a KD of Tsc2 set out in a more mature brain. Indeed, whereas both groups of age showed a higher fear to the tone CS at a late phase of extinction learning, only rats injected with Vir1_Tsc2 and Vir2_Tsc2 at PN25 showed overgeneralization of fear to an unknown tone in the initial learning context.

Basal neural activity changes following Tsc2 partial inhibition in basolateral amygdala.

Knowing the functional role of the BLA -mPFC pathway in fear acquisition and extinction, the behavioral outcomes unveiled in this study are congruent with a potential impact of BLA modification on a still maturing mPFC, with a stronger impact when KD was induced from early adolescence (PN25). Brains were taken for c-Fos immunohistochemistry (IHC) 7 weeks after the fear conditioning protocol, from rats injected with Vir_ctrl or Vir1_Tsc2. Hence, BLA, prelimbic (PL) and infralimbic (IL) parts of the mPFC were analyzed for c-Fos(+) IHC as reflecting basal levels of neural activity (Fig. 4A,B). For these analyses, we considered each hemisphere independently, given the bilateralism of injection [START_REF] Cassell | Topography of projections from the medial prefrontal cortex to the amygdala in the rat[END_REF]. There was a significant effect of the age of injection on c-Fos expression for both PL and IL cortices, with a higher number of c-Fos(+) cells for PN25_inj rats compared to PN50_inj rats, and a significant effect of viral condition for PL cortex (Viral condition effect, **P= 0.002).

Density of c-Fos(+) cells in BLA and prefrontal cortex

Near the site of injection in the BLA, there was no difference in c-Fos(+) cell density between viral conditions (Fig. 4C, Viral condition, F(1,36) = 0.201, P = 0.656), but a significant higher number of c-Fos(+) cells in PN25_inj animals was observed (Fig. 4C, Age effect, F(1,36) = 20.273, P < 0.001; differences of 39% in c-Fos(+) cells density between PN25 and PN50_inj group irrespective of their viral condition).

In contrast, specific changes were detected in the prefrontal cortex. Viral injection resulted in a higher density of c-Fos(+) cells in the prelimbic cortex (PL) depending on the age of injection or the viral condition (Fig. 4D, Two-Way ANOVA; Age effect F(1,39) = 40.07, P < 0.001; Viral condition effect F(1,39) = 10.488, P = 0.002; 40 % changes in c-Fos expression in PL between PN25 and PN50_inj and 37 % changes in c-Fos expression in PL between Vir_ctrl and Vir1_Tsc2 injected animals) with no significant Viral condition x Age interaction (F(1,39) = 3.482, P = 0.07). The same tendency was observed for the infralimbic cortex (IL), but the viral condition effect did not reach significance (Age effect F(1,39) = 22.20, P < 0.001; 27 % changes in c-Fos expression in PL between PN25 and PN50_inj), suggesting a differential effect of Tsc2-KD in BLA, PL and IL depending on the adolescence period (early or late). Knowing that the trajectories of BLA-mPFC and PL-IL projections develop in a laminar-dependent manner, we further investigated the distribution of the increased c-Fos activity within the prefrontal cortex.

Spatial distribution of c-Fos(+) cells in PL and IL cortices

To analyze the spatial distribution of basal cell activity, we created a density heat map (HM) representing the proportion of c-Fos(+) cells in PL or IL cortices at two anteroposterior (AP) levels (AP 2.6 and AP 2.7 mm from Bregma), and analyzed them with a Two-Way RM ANOVA (viral condition x XY coordinates) for each age of injection.

At AP 2.6 from PN25_inj rats, the HM evidenced changes in c-Fos(+) cells density in PL cortex through a significant Viral Condition x XY Coordinates interaction (Fig. 5A, Viral Condition x Coordinates interaction, F(829,18260) = 1.375, P < 0.0001), with significant differences between viral conditions for 29 out of 830 tested bins (Fig. 5A, post hoc False Discovery Rate (FDR), q-values comprised between q < 0.0001 and q = 0.00868). This reflected that Vir1_Tsc2 injected animals had a higher c-Fos(+) cell density selectively in bins located in the deepest and middle layers of the PL structure. Interestingly, the analysis in IL cortex also revealed a significant Viral Condition x XY Coordinates interaction (Fig. 5B, F(399,8778) = 1.191, P = 0.0062), but among the 400 tested bins on FDR analysis, none differed between viral conditions. So, as observed in the heat map, rats injected with Vir1_Tsc2 showed a global higher density in infralimbic cortex compared to Vir_ctrl animals. Warmer colors indicate higher cell density (scales at left). Numbers beside x and y axis (0-30) represent the number of bins in each axis (30x30 bins). The "RSD heat maps" represent the Relative Standard Deviation (RSD) calculated for each bin for each viral condition, with warmer colors representing higher dispersion of data around the mean calculated in each bin (scale at left). The FDR q-value map (in black and white) represents the q-values obtained in each tested bin from a False Discovery Rate (FDR) statistical test, following a significant interaction in the Two-Way RM ANOVA of Density Heat Map; whiter colors represent q-values approaching significant differences (scale at right from q = 0 to 1); the 29 red crosses point to the significant differences detected between groups for each tested bin. (B) Density Heat Maps representing the distribution of c-FOS(+) cells in IL cortex at antero-posteriority 2.6 mm from Bregma (AP 2.6) of adult rats injected into the BLA during early adolescence with Vir_ctrl or Vir1_Tsc2 and their relative RSD heat maps. Numbers beside x and y axis (0-20) represent the number of bins in each axis (20x20 bins). Note that density heat map color scales are different between PL and IL structures. (C) Density Heat Maps representing the mean distribution of c-Fos(+) cells counted in PL cortex at antero-posteriority of 2.6 mm from Bregma (AP 2.6) of rats injected into the BLA at late adolescence (PN50, Vir_ctrl, n = 8; Vir1_Tsc2, n = 8). Warmer colors indicate a higher cell density (scale at left) and their relative RSD heat maps below. Statistical tests revealed no interaction or differences between viral conditions. Statistical tests revealed no interaction or differences between viral conditions. (D) Density Heat Maps representing the mean distribution of c-Fos(+) cells counted in IL cortex at antero-posteriority 2.6 mm from Bregma (AP 2.6) of rats injected into the BLA during late adolescence (Vir_ctrl, n = 8; Vir1_Tsc2, n = 8) and their relative RSD heat maps below. Statistical tests revealed no interaction or differences between viral conditions. Notice that Density Heat Map color scales differ between PL and IL cortices, but also with PN25_inj animals.

The analysis at AP 2.7 also confirmed a significant Viral Condition x XY Coordinates interaction in PL cortex of PN25_inj rats (Table S3, P < 0.0001), although post hoc FDR found only 2 significant bins among the 829 bins tested (Fig. S4A). Finally, differential results were obtained from infralimbic cortex at AP 2.7 (Fig. S4B) compared to AP 2.6, as we found no significant differences in c-Fos(+) cells density but only a significant XY coordinate effect (Table S3, P < 0.0001; 400 bins tested).

In PN50_inj animals, Tsc2-KD did not result in differences in c-Fos(+) cell density within PL or IL cortex at AP 2.6 (Fig. 5C S3). In sum, this topographical analysis of c-Fos(+) cell density in PL or IL cortices unveiled that the spatial distribution of the effects of the vectors depended on the age at which the virus had been injected in the BLA.

To analyze whether the differences observed in c-Fos expression were specific to certain cortical layers, we sorted the total number of c-Fos(+) cells depending on their layers of origin in PL or IL cortices (Fig. 6A). This analysis revealed a significant Viral Condition x Layer interaction in PL cortex at AP 2.6 in rats injected in the BLA at PN25 (Fig. 6B, PL cortex AP 2.6, Viral Condition x Layer interaction, F(2,44) = 7.729, P = 0.001, Table S4), with a significant increase in the number of cells in middle (II III : Vir_ctrl vs Vir1_Tsc2, Pbonf < 0.001) and deep layers (V VI : Vir_ctrl vs Vir1_Tsc2, Pbonf < 0.001) in animals injected at PN25 with Vir1_Tsc2. Similar results were obtained at AP 2.7 (Viral Condition x Layer interaction, F(2,48) = 4.147, P = 0.031), with an increase in the number of cells in PL cortex at layers V VI compared to layers II III only in Vir1_Tsc2 condition (II III vs V VI, Vir1_Tsc2, Pbonf < 0.001).

Interestingly, a significant Viral Condition x Layer interaction was also found in the IL cortex at AP 2.6 (Fig. 6C,F(2.44) = 5.395, P = 0.024), with a significant increase in the number of cells in layers II III (II III : Vir_ctrl vs Vir1_Tsc2, Pbonf = 0.013), for the Vir1_Tsc2 condition, and an increase in the number of cells at layers V VI compared to layers II III in Vir1_Tsc2 condition only (II III vs V VI, Vir1_Tsc2, Pbonf = 0.001). When the same analysis was performed for PN50_inj animals, no differences were found between viral conditions, whatever the brain area (Fig. S5 A,B, Table S4). Animals injected with the KD virus at early adolescence showed an increased basal activity at adulthood in specific layers in the prefrontal cortex and altered fear-related behaviors when subjected to fear conditioning at adulthood, suggesting a potential relationship between these two observations. In order to further determine possible correlations, we generated a principal component analysis (PCA) and a correlation matrix including six variables from behavioral and IHC experiments of PN25_inj rats: number of c-Fos(+) cells in PL or IL cortices in Layers II III or V VI at AP2.6, and percent freezing at the end of extinction (Day 3, or during generalization testing (Day 5, Tones 1'-5'). The PCA extracted two principal components (factor 1 and 2) contributing to 78.39 % of the variance (Fig. S6A), which comprised the number of c-Fos(+) cells in PL cortex and percent of freezing to tones 1'-5' at generalization testing for Factor 1, and the number of c-Fos(+) cells in IL cortex for Factor 2 (Fig. S6A,B). Percent freezing during extinction equally contributed to the two factors.

Bartlett's sphericity test revealed that correlated variables respected homogeneity of variances (χ 2 (20) = 64.031, P < 0.0001).

The associated correlation matrix pointed to a logical high correlation between number of c-Fos(+) cells in middle and deep layers for both PL (R² = 0.645, P = 0.001), and IL (R² = 0.742; P = 0.0002) cortices (Fig. S6C), reflecting the anatomical and functional relationship in cell activity between these two cortical layers in each structure. Interestingly, there was also a significant correlation between the freezing level at generalization test and the number of c-Fos(+) cells in layer II-III of PL cortex (Fig. S6C, R² = 0.37; p = 0.027), suggesting a relationship between the specific increased generalization observed for PN25_inj animals and the elevated basal cellular activity in middle layers of PL cortex. Given the 7 weeks elapsed between the last fear tests and the brain's collection, it is unlikely that the changes in basal c-Fos occurred as a long-term consequence of fear learning, although this cannot be completely ruled out.

Rather, the correlation observed between our variables suggests that the specific elevation of fear observed for PN25_inj animals during the generalization tests may have been a consequence of the elevated basal cellular activity in middle layers of PL cortex at the time of generalization testing and/or when animals experienced fear conditioning and extinction (Fig. 

Discussion

What predisposes to the emergence of fear-related disorder when a trauma or a stressing event is experienced during adulthood is still unclear, and early life insults in combination with genetic factors likely play a role [START_REF] Henigsberg | Neuroimaging research in posttraumatic stress disorder -Focus on amygdala, hippocampus and prefrontal cortex[END_REF][START_REF] Chaby | Determining effects of adolescent stress exposure on risk for posttraumatic stress disorder in adulthood[END_REF][START_REF] Rumball | Experience of Trauma and PTSD Symptoms in Autistic Adults: Risk of PTSD Development Following DSM-5 and Non-DSM-5 Traumatic Life Events[END_REF]. A dysfunctional amygdala-prefrontal (AP) network's activity is a potential predisposal source, since massive maturation is still undergoing until adulthood under the control of the early functional amygdala, a detector/regulator of adverse events (Gee et al. 2013;[START_REF] Hwang | Neurodevelopmental changes in the responsiveness of systems involved in top down attention and emotional responding[END_REF][START_REF] Tottenham | The developing amygdala: a student of the world and a teacher of the cortex[END_REF][START_REF] Vantieghem | Neurobiological programming of early life stress: Functional development of amygdala-prefrontal circuitry and vulnerability for stressrelated psychopathology[END_REF].

In the present study, we used a lentiviral methodology in rats, which mimics changes in Tsc2 seen in TSC patients and intended to produce mTOR dysregulation and altered connectivity within the amygdala and between amygdala and cortical structures. We showed that a partial knock-down of the Tsc2 mRNA in the BLA at early adolescence in rat (PN25) is associated with selective behavioral alterations in a fear conditioning paradigm assessed at adult age and long-term modification of adult neural activity in specific layers of the prelimbic (PL) and infralimbic (IL) parts of the mPFC. These changes could underlie the emergence of fear-related disorders following an auditory fear conditioning at adult age, expressed as a lower rate of fear extinction and overgeneralization of fear to a new sound.

The lentiviral methodology was chosen to spatially circumscribe the incorporation and action of the miRNA as much as possible to the BLA. The KD virus was under a CaMKII promoter, aiming at targeting the 80% excitatory pyramidal cells of BLA, which highly express CaMKII (McDonald 1984;[START_REF] Ouimet | Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain[END_REF]. Pyramidal CaMKII-expressing cells activity in the amygdala is essential for conditioned fear learning and the modulation of its expression [START_REF] Johansen | Optical activation of lateral amygdala pyramidal cells instructs associative fear learning[END_REF]Butlet al. 2017), and a stimulation of BLA CaMKII-projecting cells to the central amygdala may have a role in anxiety in rats [START_REF] Tye | Amygdala circuitry mediating reversible and bidirectional control of anxiety[END_REF]. Moreover, CaMKII is an essential protein for the induction of NMDAR-dependent LTP in the amygdala and in the formation of synaptic plasticity [START_REF] Murakoshi | Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor[END_REF][START_REF] Zalcman | CaMKII Isoforms in Learning and Memory : Localization and Function[END_REF]. Hence, by targeting CaMKII-expressing pyramidal cells, we ensured to target an important class of cells for fear behavior and its related plasticity. Our analyses indicated for both ages of injection that reduced tuberin expression by approximatively 14-20% and concomitant increased mTOR activity does not induce obvious morphological changes in BLA area and volume (not shown), although BLA dendritic arborization still develops through adolescence [START_REF] Koss | Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats[END_REF].

Although Tsc correlates with epilepsy [START_REF] Mizuguchi | Brain Symptoms of Tuberous Sclerosis Complex: Pathogenesis and Treatment[END_REF], the fact that not all of the amygdala cells were transduced by the KD lentiviruses, and the transfection was localized and BLA-restricted, is likely to have lowered the risk for amygdala-generated general epilepsy, as no change in c-Fos(+) cells was observed near the site of injection in BLA, and no overt sign for major epilepsy was ever observed in any of the animals in their home cage nor at any stage of the visually-monitored behavioral experiments. The sole difference observed was agerelated, and not virus-related, with a higher level of BLA neural activity in animals injected during early adolescence (PN25), as compared to those injected at late adolescence (PN50).

As we chose to keep the same delay between surgery and perfusion (14 weeks) to ensure an equivalent time of viral activity in BLA between groups, animals had a difference of 25 days of age at the time of perfusion (respectively PN125 and PN150). Nevertheless, it is unlikely that the observed differences in c-Fos counting were due to this 25-day lag, as the brain is fully mature at these two ages. Rather, the global difference could possibly be due to a long-term age-dependent differential impact of anesthesia and/or surgery, in particular early in development (e.g., [START_REF] Ju | The mTOR Inhibitor Rapamycin Prevents General Anesthesia-Induced Changes in Synaptic Transmission and Mitochondrial Respiration in Late Postnatal Mice[END_REF]). Whether compensatory mechanisms have been at play, to keep BLA micro-networks activity at a homeostatic level when BLA's activity was disrupted by viral activity will need further investigation.

More importantly regarding our initial aim, changes were observed in basal neural activity in mPFC, specifically in animals injected with the Tsc2-KD virus in the BLA at early adolescence (PN25). It seems unlikely that these changes were directly related to the fear conditioning, as all brains were taken directly from the colony room at least 7 weeks after the last fear conditioning session, and no similar changes were observed in BLA. The increased c-Fos(+) cells were seen in all, except superficial layers of PL and IL cortices, and in the deep layers of IL cortex. The middle (II-III) and deep (V-VI) layers are known to be directly interconnected with the BLA, with the development of BLA to mPFC connectivity preceding reciprocal projections [START_REF] Bouwmeester | Neonatal development of projections to the basolateral amygdala from prefrontal and thalamic structures in rat[END_REF][START_REF] Bouwmeester | Neonatal development of projections from the basolateral amygdala to prefrontal, striatal, and thalamic structures in the rat[END_REF][START_REF] Arruda-Carvalho | Optogenetic examination of prefrontal-amygdala synaptic development[END_REF]. At PN25, the connectivity between amygdala and mPFC is still in development, marked by a dense sprouting of projections emerging from the posterior BLA to layer V of PL and IL cortices [START_REF] Cunningham | Amygdalo-cortical sprouting continues into early adulthood: Implications for the development of normal and abnormal function during adolescence[END_REF]. Reciprocally, adolescence is marked by the development of projections from deep layers of mPFC to BLA, mainly to its anterior part, that are significantly pruned from late adolescence to adulthood (PN45 -PN90) [START_REF] Cressman | Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat[END_REF][START_REF] Arruda-Carvalho | Optogenetic examination of prefrontal-amygdala synaptic development[END_REF]. Knowing that bidirectional cortico-cortical connections between PL and IL cortices are made through deep (V-VI) and, to a lesser extent, middle (II-III) layers [START_REF] Marek | Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction[END_REF][START_REF] Mukherjee | Infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity[END_REF], and that projections from IL to BLA originate from layer II-III and V [START_REF] Ferreira | Highly differentiated cellular and circuit properties of infralimbic pyramidal neurons projecting to the periaqueductal gray and amygdala[END_REF], the increase in c-Fos(+) cells' density in layer II-III of IL cortex, but not in the deepest layers, may suggest a dysregulation of activity in the PL-IL-BLA network. Indeed, during this developmental stage, connectivity within the prefrontal cortex is also under construction/refinement (van Eden and Uylings 1985; [START_REF] Kolb | Experience and the developing prefrontal cortex[END_REF][START_REF] Chini | Prefrontal Cortex Development in Health and Disease: Lessons from Rodents and Humans[END_REF], and an imbalance between excitatory and inhibitory drives may have also been at play [START_REF] Caballero | Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence[END_REF][START_REF] Konstantoudaki | Prefrontal cortical-specific differences in behavior and synaptic plasticity between adolescent and adult mice[END_REF]). Thus, Tsc2-KD in the posterior BLA at the time of major development of its connectivity with the prefrontal cortex could have stimulated the development of projections between the two structures, thus producing a longterm alteration of mPFC functioning, particularly in the PL cortex, until adulthood.

At the behavioral level, we found two reliable effects of BLA Tsc2-KD: (1) A delayed fear extinction acquisition in BLA Tsc2-KD animals, whatever the age at which the virus was injected; (2) an overgeneralization of fear to an unknown tone stimulus selectively in animals for which BLA Tsc2-KD was induced at early adolescence (PN25), excepting for slight discrepancies between the effects of the two KD viruses (Vir1, Vir2), possibly due to off-target effects. As only 20 % of BLA cells are engaged in the Pavlovian fear conditioning learning and extinction [START_REF] Han | Neuronal Competition and Selection During Memory Formation[END_REF], and given the known BLA's involvement in contextual fear [START_REF] Chaaya | An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus[END_REF], we could have expected changes in fear learning and fear memory. However, the observed normal fear learning to the CS and the context concurs with the lack of modification in overall BLA basal neural activity. The similar levels of freezing observed in all groups during and 24h after fear conditioning, as well as 24h after extinction, rather support the hypothesis of a differential rate in the acquisition of extinction, not a strengthened fear expression, in Tsc2-KD animals. This slowed extinction could be due to a modified connectivity or cells' reactivity to the CS within BLA, especially given the rather posterior location of our injection sites [START_REF] Zhang | Amygdala Reward Neurons Form and Store Fear Extinction Memory[END_REF]). Since no modification was observed in basal levels of neural activity in the BLA, it is unlikely that the behavioral phenotype reflected a hyper-activity of BLA cells, but rather a modified responsiveness of BLA cells to the CS during the acquisition of extinction.

Nevertheless, the fact that the mPFC-to-BLA connectivity undergoes significant pruning from PN45 to PN90 suggests this process might have been similarly affected in both groups of age [START_REF] Cressman | Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat[END_REF]Cressman, Balaban, Steinfeld, Shemyakin, Parisot, et al. 2010), thus resulting in a similar phenotype in the two groups. Moreover, as Tsc2 gene expression in amygdala seems constant through development in human brains [START_REF] Li | Regionally specific TSC1 and TSC2 gene expression in tuberous sclerosis complex[END_REF], we unlikely interfered with a period of over-or under-regulation of Tsc2 gene through adolescence, but rather on important developmental changes relative to adolescent period. The KD-Tsc2 disruption could have thus impacted the dynamic of connectivity development between the amygdala and the prelimbic cortex [START_REF] Pattwell | Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories[END_REF] during adolescence, potentially amplifying these developmental processes and creating a vulnerability ground to fear-related disorders appearance at adulthood when challenged by stressful events. Whether the delayed extinction was due to the KD-Tsc2 during adolescence and/or at the time of extinction remains an open question that would need the technical development for a temporary knockdown of Tsc2, as well as a temporary rescue of Tsc2 to address it. Interestingly, it has recently been shown that recent recall of fear memory following Pavlovian conditioning engages cells activity in the deep layers of PL cortex, whereas long-term recall of fear memory may depend on activity in layers II III of PL cortex [START_REF] Jacques | Microtopography of fear memory consolidation and extinction retrieval within prefrontal cortex and amygdala[END_REF]. Whether, in our model, specific PL or IL layers are more engaged by the CS at the end of extinction, and whether the modified connectivity concerns the PL or IL afferents to specific cells in the BLA, and/or to within BLA connectivity or cells' reactivity within the BLA, will need further investigation.

The overgeneralization to a new auditory stimulus was selectively observed in Tsc2-KD BLA animals injected early in adolescence (PN25). Generalization is often studied in relation to context, and when studied in relation to cued-fear memory, it is often in a discriminative setting. Here, generalization testing took place in the initial training context where the animals had never been exposed to this new auditory stimulus, which had a higher frequency than the original CS in order to ensure good detection. The overgeneralization was specific to the unknown auditory stimulus, as no elevated fear was observed in these same animals neither to a novel context (context B), nor to the context and CS during the renewal test. The neural basis of cued fear generalization is still poorly understood (for a recent review, see [START_REF] Asok | The neurobiology of fear generalization[END_REF]). Of most interest to us is the involvement of both the amygdala [START_REF] Ghosh | Neuronal encoding of the switch from specific to generalized fear[END_REF] , [START_REF] Resnik | Fear generalization in the primate amygdala[END_REF], and the mPFC, in particular the PL [START_REF] Vieira | Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction[END_REF][START_REF] Concina | Coherent activity between the prelimbic and auditory cortex in the slow-gamma band underlies fear discrimination[END_REF], as Tsc2-KD animals injected at early adolescence showed higher basal neural activity in the PL cortex. The significant correlation found between the specific increase of basal c-Fos activity in layers II-III of PL cortex and the level of fear measured during the new tone presentation suggests a functional link between the basal level of cells' activity in middle layers of PL cortex and the fear-related disorder-like overgeneralization of fear.

Conclusion

In all, our findings indicate that early life Tsc2 -related dysfunction in the rat's amygdala could exert a bias towards fear-related disorder occurrence later in adult life following a threat, and a long-lasting alteration in mPFC activity. The phenotype observed included delayed fear extinction and overgeneralization to a new stimulus when the down-regulation was induced at the time of development of connectivity between the amygdala and the prefrontal cortex (PN25), which resulted in long-term changes in basal neural activity in the prelimbic cortex.

These changes are likely due to changes in functional connectivity between the prefrontal cortex and basolateral amygdala, as well as cue-evoked cells' reactivity to auditory stimuli in both brain regions during fear conditioning, extinction and generalization, which needs to be confirmed in future research. Our findings indicate that early life Tsc2-related dysfunction in the amygdala may induce long-lasting vulnerabilities leading to a bias towards FRD occurrence later in life. As it has been previously shown, animal models of TSC present higher states of anxiety, alterations in contextual fear discrimination, and an imbalance in excitatory/inhibitory transmission [START_REF] Ehninger | Reversal of learning deficits in a Tsc2+/-mouse model of tuberous sclerosis[END_REF][START_REF] Ehninger | Increased levels of anxiety-related behaviors in a Tsc2 dominant negative transgenic mouse model of tuberous sclerosis[END_REF][START_REF] Haji | Tsc1 haploinsufficiency in Nkx2.1 cells upregulates hippocampal interneuron mTORC1 activity, impairs pyramidal cell synaptic inhibition, and alters contextual fear discrimination and spatial working memory in mice[END_REF]. Although Tsc2 is a protein essential for a proper brain development from embryonic stage, our experimental strategy permitted to identify specific post-natal ages during which a KD-Tsc2 may interfere with brain developmental processes and induce long-term effects on emotional behavior and connectivity between the amygdala and its associated structures. Hence, our experimental strategy brings forward a new type of animal model to study how specific genetic conditions associated with environmental stressors could induce long-lasting changes in connectivity between the prefrontal cortex and the amygdala [START_REF] Huang | Hyperconnectivity of prefrontal cortex to amygdala projections in a mouse model of macrocephaly/autism syndrome[END_REF][START_REF] Pagani | A cross-species link between mTOR-related synaptic pathology and functional hyperconnectivity in autism[END_REF], which may predispose to fear-related disorders appearance at adult age, in particular in TSC individuals suffering of GAD, phobias, or PTSD. 
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 12 Figure 1. In vitro characterization of Tsc2-targeting virus efficiency. (A) Viral constructs. The diagrams show the lentiviral construction of the control virus (Vir_ctrl, up) and the two knock-down (KD) viruses targeting Tsc2 (or tuberin) mRNA (Vir1_Tsc2 and Vir2_Tsc2, down). The three constructions expressed EGFP protein under the control of a rat synapsin promoter, targeting neuronal cells; both Vir1_Tsc2 and Vir2_Tsc2 expressed a miRNA targeting Tsc2 mRNA under control of a mouse CaMKII promoter, to constitutively decrease Tsc2 protein expression and activate the mTOR pathway within CaMKII-expressing neuronal cells (see Fig. S1). (B) Sample images show immunoreactivity (IR) for tuberin (Tsc2 protein) (red), the neuronal marker Microtubule Associated Protein 2 (MAP2, yellow) and the viral EGFP expressed by the knock-down virus (kd virus, green) in primary hippocampal neurons transduced by Vir_ctrl (left) or Vir2_Tsc2 (right). Dotted lines represent a single cell contour. Colocalization between TSC2, MAP2 and EGFP is shown in cyan, DAPI nuclear stain in dark blue; the inset shows the punctuate IR of tuberin (red) in neuronal elements. Scale bar = 20 µm (C) Tuberin expression levels in transduced primary cortical neurons. Histograms show the relative expression of Tsc2 mRNA measured in duplicate cell cultures of primary cortical neurons transduced with the 3 viruses. Tsc2 mRNA was detected by RT-qPCR and normalized to GAPDH reporter gene expression. Tsc2 expression levels are presented as percent expression in neurons transduced by the control lentiviral vector. Mean percentage of mRNA changes compared to control are expressed above histograms. (D) Mean intensity of tuberin fluorescence measured in primary hippocampal neurons. Histograms show tuberin expression analyzed in neurons transduced with either Vir_ctrl or one of the two Vir_Tsc2 KD lentiviruses and quantified by measuring the tuberin fluorescence signal intensity in transduced neurons. There was a significant decrease of tuberin levels in cells transduced by Vir1_Tsc2 and Vir2_Tsc2 compared to control (Vir_ctrl, n = 70; Vir1_Tsc2, n = 68; Vir2_Tsc2, n = 63). (Helmert contrast test, Ctrl vs [Vir1, Vir2], t = 5.088; ***P <0.001), and no differences were observed between the two KD vectors (Helmert contrast test, Vir1 vs Vir2, t = 0.848; P = 0.398).

Figure 3 .

 3 Figure 3. Delayed extinction and overgeneralization to a new tone in rats injected with Vir1_Tsc2 at PN25. (A) Fear conditioning protocol. The protocol consisted in five consecutive days. Habituation (day 1) and Fear Learning (day 2) were conducted in context A, Extinction (day 3) and Extinction Recall (day 4) in context B. Fear Renewal (day 5) was performed in context A with presentation of the CS alone, followed 3 minutes later by generalization testing, consisting of five presentations of a new tone. (B) Rats injected with Vir1_Tsc2 at PN25 displayed retarded fear extinction and fear overgeneralization. The percent freezing to the 30s tone was measured for each trial in groups of rats injected with KD (Vir1_Tsc2) and control (Vir_ctrl) viruses at PN25 or PN50, as indicated (Vir_ctrl PN25_inj, n = 15; Vir1_Tsc2 PN25_inj, n = 10; Vir_ctrl PN50_inj, n = 11; Vir1_Tsc2 PN50_inj, n = 8). Detailed statistics are provided in TableS1. The significant differences were an effect of the age of injection during the first 5 trials of Day 3 with a higher level of freezing for PN50_injected compared to PN25_injected rats, whatever the viral condition (Age effect, ## P = 0.016) an effect of viral condition for the last 5 trials of Day 3 (Viral condition effect, * P = 0.046) revealing a higher level of freezing in Tsc2-KD rats regardless of the age of injection, and a (viral condition x age) interaction
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 4 Figure 4. Basal neural activity was higher in prelimbic cortex later in adulthood in rats injected with KD_Tsc2 (Vir1) in the BLA at PN25. (A) Sample images of c-Fos immunostaining in basolateral amygdala in rats injected with Vir_ctrl or Vir1_Tsc2 at PN25 (left panel) or PN50 (right panel). c-Fos(+) cells (black stain) were counted in basolateral amygdala near the site of injection. BLA: basolateral amygdala; CeA : Central Amygdala; Fmi : Forceps minor corpus callosum. (B) Sample images of c-Fos immunostaining in Prelimbic Cortex (PL) in rats injected with Vir_ctrl or Vir1_Tsc2 at PN25 (left panel) or PN50 (right panel). c-Fos(+) cells (black stain) were counted in PL and infralimbic (IL, not shown) cortices. (C) Density of c-Fos(+) cells in basolateral amygdala (BLA) of rats injected at PN25 or PN50 with Vir_ctrl or Vir1_Tsc2. The histograms show the mean number of c-Fos(+) cells per square millimeter (Vir_ctrl PN25_inj, n = 11; Vir1_Tsc2 PN25_inj, n = 14; Vir_ctrl PN50_inj, n = 9; Vir1_Tsc2 PN50_inj, n = 6), near the site of injection. Dots represent individual data. No differences were observed between viral conditions in the number of c-Fos(+) into the BLA, but only a simple age effect, revealing a higher c-Fos(+) cells density in BLAs for animals injected at PN25. (D) Density of c-Fos(+) cells in prelimbic and infralimbic cortices of rats injected at PN25 or PN50 with Vir_ctrl or Vir1_Tsc2. The histograms show the mean number of c-Fos(+) cells per square millimeter in PL or IL cortices (Vir_ctrl PN25_inj, n = 11; Vir1_Tsc2 PN25_inj, n = 16; Vir_ctrl PN50_inj, n = 8; Vir1_Tsc2 PN50_inj, n = 8). Dots represent individual data.There was a significant effect of the age of injection on c-Fos expression for both PL and IL cortices, with a higher number of c-Fos(+) cells for PN25_inj rats compared to PN50_inj rats, and a significant effect of viral condition for PL cortex (Viral condition effect, **P= 0.002).
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 5 Figure 5. Differential spatial distribution of basal cell activities in PL and IL cortices are induced by Vir1_Tsc2 injection in BLA at early adolescence (PN25). (A) Density heat maps representing the mean distribution of c-FOS(+) cells in PL cortex at antero-posteriority of 2.6 mm from Bregma (AP 2.6) of adult rats injected into the BLA during early adolescence (PN25) (Vir_ctrl, n = 11 or Vir1_Tsc2, n = 13).Warmer colors indicate higher cell density (scales at left). Numbers beside x and y axis (0-30) represent the number of bins in each axis (30x30 bins). The "RSD heat maps" represent the Relative Standard Deviation (RSD) calculated for each bin for each viral condition, with warmer colors representing higher dispersion of data around the mean calculated in each bin (scale at left). The FDR q-value map (in black and white) represents the q-values obtained in each tested

  Fig. S4C, 865 bins tested; IL 2.7: Fig. S4D, 394 bins; Statistical details in TableS3). In sum,
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 6 Figure 6. Differential increase in number of c-Fos(+) cells depending on cortical layers in PL and IL cortices in rats injected in the BLA with Vir1_Tsc2 during early adolescence (PN25). (A) c-Fos immunostaining example image of a PL cortex from a PN25_inj rat with Vir_ctrl showing the cortical layers delimitations (Adapted from (van Eden and Uylings 1985; Van De Werd et al. 2010). Layer I is a thin layer almost acellular; Layers II III and V VI are thicker and densely marked. Cortical layers II to VI are hardly distinguishable with a c-Fos immunostaining, sizes proportions described in literature has been used to do proper delimitations. (B)Layers II III and V VI of PL cortex contained a higher number of c-Fos(+) cells in adult rats injected with Vir1_Tsc2 at early adolescence (PN25). The histograms show the number of c-Fos(+) cells sorted depending on the origin belonging layers at Bregma 2.6 and 2.7 mm from most superficial (Layer I) to deeper (Layers V VI) layers. Rats injected with Vir1_Tsc2 showed a significantly higher number of c-Fos(+) cells in both layers II III and V VI at AP 2.6 (Vir_ctrl, n = 10; Vir1_Tsc2, n = 16), and in layer V VI at AP 2.7 (Bonferroni post-hoc test, between Viral conditions, ***Pbonf < 0.001; between layers for Vir1_Tsc2, ### P bonf < 0.001). (C) Layers II III of IL cortex contained a higher number of c-Fos(+) cells in rats injected with Vir1_Tsc2 at early adolescence (PN25). The histograms show the number of c-Fos(+) cells in IL cortex sorted depending on their origin belonging layers at Bregma 2.6 mm and 2.7 mm. Rats injected with Vir1_Tsc2 showed a significantly higher number of c-Fos(+) cells in layers II III at AP 2.6 (Bonferroni post-hoc test, between viral conditions, *Pbonf = 0.024; between layers for Vir1_Tsc2, ### P bonf = 0.001). (Vir_ctrl, n = 11; Vir1_Tsc2, n = 13).
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Supplementary data are available at Cerebral Cortex online. Supplementary Figure 1 Supplementary Figure 1. Lentiviral-vector mechanisms of action. Diagrams show the Tsc2/mTOR signaling pathway in baseline condition in presence of the control vector (Vir_ctrl, up) that expresses a control miRNA and EGFP, and in presence of the knock-down vectors Vir1_Tsc2 or Vir2_Tsc2 (down) that expresses both EGFP and a miRNA targeting the Tsc2 protein. Tsc2 plays as a negative regulator of mammalian Target of Rapamycin (mTOR), a serine/threonine kinase participating in the formation of the protein complex mTORC1. When activated, the mTORC1 complex promotes protein synthesis and proliferation, as well as cell growth and decreases autophagy processes through the activation of p70-S6 Kinase 1 (p70S6K). Hence, by reducing Tsc2 protein expression in transduced cells, the lentiviral constructions (Vir1_Tsc2 and Vir2_Tsc2) induce a constitutive activation of the mTORC1 pathway. 3
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Cerebral Cortex -For Peer Review -not for publication S2A for context detailed statistics) (D) Rats injected with the second KD virus (Vir2_Tsc2) at PN25 also showed retarded fear extinction and fear overgeneralization to a new tone. Percent freezing was measured as in Fig. 3B (Vir_ctrl n = 15, Vir1_Tsc2 n = 10 or Vir2_Tsc2 n = 10). See Table S2B for freezing to tone detailed statistics. Helmert contrast analysis showing a significant higher level of freezing for rats injected with Vir1_Tsc2 compared to Vir2_Tsc2 during habituation (Day 1, **P = 0.008), and a higher level of freezing for both active viral conditions compared to control at the end of the extinction session on Day 3 (**P = 0.016), as already shown for Vir1_Tsc2 in Fig. 3B. They also presented a higher level of freezing to the new tone during generalization testing on day 5 (highlighted in gray) for both Vir1_Tsc2 and Vir2_Tsc2 injected animals as well (***P < 0.001), reflecting an overgeneralization of cued fear in rats injected with active vectors at PN25. Warmer colors indicate a higher cell density. RSD heat maps represent the Relative Standard Deviation calculated for each bin in each viral condition, with warmer colors representing a higher dispersion of data around the mean calculated in each bin. The FDR q-value map in black and white represents the q-values obtained in each tested bin after a False Discovery Rate (FDR) statistical test, following a significant interaction in the Two-Way RM ANOVA analysis on Density Heat Map. Whiter colors represent q-values approaching significant differences. The two red crosses point to the bins where a statistical difference between viral conditions was found (829 bins analyzed; bin #603 t(19896) = 4.744, q = 0.0017; bin #695 t(19896) = 4.322, q = 0.0065). (B) Density Heat Map representing the mean distribution of c-Fos(+) cells in infralimbic cortex at antero-posteriority 2.7 from Bregma (AP 2.7) of rats injected with Vir_ctrl or Vir1_Tsc2 in BLA at early adolescence (PN25) (Vir_ctrl, n = 10; Vir1_Tsc2, n = 16). Notice that heat map color scale differs between prelimbic and infralimbic structures. (C) Density Heat Map representing the mean distribution of c-Fos(+) cells counted in prelimbic cortex at antero-posteriority 2.7 mm from Bregma (AP 2.7) of rats injected into the BLA at late adolescence (PN50) with Vir_ctrl or Vir1_Tsc2 (Vir_ctrl, n = 8; Vir1_Tsc2, n = 8). Warmer colors indicate a higher cell density. RSD heat maps represent the Relative Standard Deviation calculated for each bin in each viral condition, with warmer colors representing a higher dispersion of data around the mean calculated in each bin. Statistical tests revealed no differences between viral conditions in c-Fos(+) cells density. (D) Density Heat Map representing the mean distribution of c-Fos(+) cells counted in infralimbic cortex at antero-posteriority 2.7 mm from Bregma (AP 2.7) of rats injected into the BLA at late adolescence with Vir_ctrl or Vir1_Tsc2 (Vir_ctrl, n = 8; Vir1_Tsc2, n = 8). Statistical tests revealed no differences between viral conditions in c-Fos(+) cells density. Notice that heat map color scale differs between prelimbic and infralimbic structures, but also with heat map scales from PN25_inj animals.
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