
HAL Id: hal-03595577
https://cnrs.hal.science/hal-03595577

Submitted on 3 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory-processor co-scheduling for real-time tasks on
network-on-chip manycore architectures

Chawki Benchehida, Mohammed Kamel Benhaoua, Houssam Zahaf, Giuseppe
Lipari

To cite this version:
Chawki Benchehida, Mohammed Kamel Benhaoua, Houssam Zahaf, Giuseppe Lipari. Memory-
processor co-scheduling for real-time tasks on network-on-chip manycore architectures. International
Journal of High Performance Systems Architecture (IJHPSA), 2022, 11 (1), pp.1-11. �10.1504/IJH-
PSA.2022.121877�. �hal-03595577�

https://cnrs.hal.science/hal-03595577
https://hal.archives-ouvertes.fr

MEMORY-PROCESSOR CO-SCHEDULING FOR REAL-TIME TASKS
ON NETWORK-ON-CHIP MANYCORE ARCHITECTURES

Chawki Benchehida
Univ. Oran1 - LAPECI Laboratory, Oran, Algeria

Univ. Lille, CNRS, Inria, Centrale Lille,
UMR 9189 CRIStAL, F-59000 Lille, France
chawki.benchehida@univ-lille.fr

Mohammed Kamel Benhaoua
Univ. Oran1 - LAPECI Laboratory, Oran, Algeria

Univ. Mustapha Stambouli, Mascara, Algeria
k.benhaoua@univ-mascara.dz

Houssam Eddine Zahaf
Univ. Nantes - LS2N UMR 6004

Nantes, France
houssameddine.zahaf@univ-nantes.fr

Giuseppe Lipari
Univ. Lille, CNRS, Inria, Centrale Lille,

UMR 9189 CRIStAL, F-59000 Lille, France
giuseppe.lipari@univ-lille.fr

ABSTRACT

The Network-on-Chip (NoC) provides a viable solution to bus-contention problems in classical
Multi/Many core architectures. However, NoC complex design requires particular attention to
support the execution of real-time workloads. In fact, it is necessary to take into account task-to-core
allocation and inter-task communication, so that all timing constraints are respected. The problem
is more complex when considering task-to-main-memory communication, as the main memory is
off-chip and usually connected to the network edges, within the 2D-Mesh topology, which generates
a particular additional pattern of traffic.
In this paper, we tackle these problems by considering the allocation of tasks and inter-task-
communications, and memory-to-task communications (modeled using Directed Acyclic Graphs
DAGs) at the same time, rather than separating them, as it has been addressed in the literature of
real-time systems. This problem is highly combinatorial, therefore our approach transforms it at
each step, to a simpler problem until reaching the classical single-core scheduling problem. The goal
is to find a trade-off between the problem combinatorial explosion and the loss of generality when
simplifying the problem. We study the effectiveness of the proposed approaches using a large set of
synthetic experiments.

1 Introduction

The Network-on-Chip (NoC) provides an alternative to classical bus-based Multi/Many-core architecture interconnec-
tion, which experiences high contention when a significant number of cores are integrated on the same SoC. A typical
NoC architecture can connect, through an embedded network, more than hundreds of cores. In addition, the NoC itself
communicates with the main memory using a bus, which is connected to one or multiple routers on the edges of the
network, as disclosed in Figure 1. The complexity of this design makes it difficult to support real-time critical systems,
as it requires to incorporate properly the worst-case communication traversal time within the schedulability analysis.

Usually, a real-time system is a compound of several communicating tasks, that might run in parallel on several cores.
In traditional real-time systems, the communication between the different tasks is estimated and included in the task
execution time. Such design leads to a pessimistic estimation and therefore pessimistic analysis of the system behavior.
Such analysis is acceptable for bus-based systems, as the difference between best and worst-case memory access latency
is acceptable. When considering NoC based architectures, the communication overheads depend drastically on the task
to core allocation. For example, the latency when two communicating tasks are allocated on the opposite network edges
is very large compared to the latency when they are allocated to adjacent cores. Hence, it is preferable to separate the
communication overheads from the task worst-case execution time estimation.

In the literature of real-time systems, the task-to-resources allocation, and inter-task communication within NoC-based
architectures have been studied separately. Several works have proposed different techniques to allocate real-time
workload on many-core architecture, while a lot of others have focused on estimating the worst-case communication
time (latency) under different network topology and NoC-design assumptions. Although the proposed solutions are
efficient and very interesting, they provide poor performances when combined [1]. In this work, we tackle both
task-to-core allocation and inter-task communication at the same time, to avoid increasing the pessimism that can be
accounted in the two steps. In addition, we consider task-to-main-memory communication, as they generate additional
and particular traffic patterns. We, therefore, distinguish off-chip traffic (due to main memory operations), and on-chip
traffic (due to inter-task data sharing)

Off-chip communications are costly, as they require to access to main memory, passing therefore by different I/O
components, memory controllers and a shared bus. To avoid costly memory access after a job starts its execution,
and achieve high memory access predictability, real-time systems community has proposed to split the real-time task
execution into two memory phases and one execution phase. During the first memory phase, the data are copied from
the main memory to the core local memory where the task is allocated. Further, the task is executed without any access
to the main-memory and finally the results are copied back to the main memory in the second memory phase. This
execution model is commonly known as The Acquisition Execution Restitution (AER) task model. In this work, we
extend this model to DAG-tasks.

Task-to-core allocation problem is an NP-complete. The design space widens when considering inter-task communica-
tion, and task to main-memory communication, hence the problem is more complex. The exact algorithm’s complexity
is very high and very likely untraceable. In this work, we apply a series of conversion transforming the allocation
problem, of different tasks and inter-tasks communications to NoC resources, to a single core scheduling problem. This
allows achieving a fast, and efficient design space exploration, with an acceptable loss of generality. Therefore, we first
extend the directed acyclic task model to include off-chip communication patterns. Further, we propose an efficient
memory-free schedulability analysis by eliminating the cost of communication from the task laxity, to finally apply
single-core schedulability analysis.

The remainder of this article is organized as follows. In Section 2, we review the related work. Task and architecture
models are described in Section 3. In Section 4, we detail the proposed approach. Section 5 extends the proposition
by including the off-chip communications. Synthetic experiments are reported in Section 6. Finally, We draw our
conclusions and future work in Section 7.

2 Related Work

Network-on-chip interconnection paradigm has been introduced by the seminal paper of Benini et al. [2]. As the task
allocation problem is a high conbinatorial problem, many studies are reported on the literature providing techniques
to tackle it efficiently with a less computational complexity. Thus, concerning the non-real time applications, the
authors in [3], [4], [5] have proposed offline (static) as well as on-line (on-the-fly) mapping strategies for both tasks and
communications.

On studies related to bus-based multiprocessors addressed to the real-time systems, the on-chip communication latency
is analyzed and included as a part of the worst case execution time of a task and it doesn’t much depend on the allocation
schema. Obviously, such analysis is not tailored to NoC-based architecture since the communication depends drastically
on the task allocation, and therefore, it must be considered independently from the task worst case execution time.
Several techniques have been proposed allocate real-time tasks onto multicore architecture [6][7][8][9], as well as
communications on NoC. The NoCs can be classified following two categories according to their strategy on network
traffic handling. Indeed, congestion might occurs when two communication flows would like reserve a path through the
network. The first category concerns the use of TDMA (Time-division multiple access) to share the communication
medium among communication flows by time quantum reservation, whereas the second category consist of assigning
priority to flows, and therefore, the arbitration follows the priority map [10]. A comparative study of both strategies is
reported in [1] through the simulation and analysis of several scenarios. Moreover, [11], [12] proposed heuristics to find
the optimal TDMA quantum assignment for a minimum communication latency. An exhaustive survey adressed to
real-time support on NoC is reported in [13].

Regarding the task-to-main-memory communications, many studies have included an off-chip memory, such as DRAM
with the NoC model. In such way, [14] proposed a design of a DRAM-sensitive NoC router consisting of a strategy
to handle the communications to the main memory since the packets issued at this purpose have a high priority and
are routed first. On the other hand, the authors in [15] proposed a mechanism to handle multiple DRAM coupled to a
NoC. Thus, they proposed a solution to sort an out-of-order arrival requests from the NoC to different main memories
by an algorithm that re-orders those requests and routes them to the specified DRAM. However, all those previous

2

work consider a NoC with 2D-Mesh topology. Likewise, Jin et al. [16] proposed a mapping technique in a hierarchical
tree-based NoC where bridges are deployed to connect directly the routers to the DRAM controller. Thus, they proposed
a task allocation algorithm to avoid the congestion since only one task has the access to the off-chip memory through
one bridge and therefore, the tasks are sequentially re-ordered.

Nonetheless, the previous studies do not consider applications with real-time constraint. Hence, in the real-time off-chip
memory-aware field, Giannopoulou et al. [17] have proposed a Simulated Annealing-based mapping technique for
mixed-criticality tasks on Karlay MPPA NoC with a DRAM memory. Moreover, Gomony et al. [18] proposed a
middleware to adapt any TDMA-NoC with a main-memory to support real-time systems. In fact, they proposed an
adaptation of the main-memory controller by computing a network interface (NI) bandwidth and cores operational
frequency to optimize the NoC energy consumption. Besides that, Perret et al. [19] proposed a mapping technique
using constraint programming while the budgeting of real-time applications is calculated a priori, e.i they evaluate the
computing power need as well as the number of memory access of a application.

To the best of our knowledge, there is no study addressing the task mapping problem while the latency of both
off-chip and on-chip communications are considered onto a non-clustered NoC platform using TDMA arbitration. The
non-clusted mode is when the whole NoC is considered as a unique region, by opposition of the COTS (Commercial-
Off-The-Shelf) NoCs where they are mainly sub-divided onto several regions.

3 System Model

3.1 Hardware platform

We consider a NoC-based platform composed of N tiles. Each tile A is composed of a computing element PE, a router
R and the interconnection between them. Routers of the different tiles are connected by a set of unidirectional links.
The router interconnection scheme defines the network topology. In this work we consider 2D-mesh topology, i.e. tiles
are structured as a square matrix of m columns and m rows, i.e. N = m2. Therefore, we additionally denote a tile as
A(x, y), where x is its position on x-axis, and y its position on the y-axis. For sake of simplicity we denote PE(x, y)
(resp. R(x, y)) to denote the processing element (resp. the router) of tile A(x, y). Each router R(x, y) is connected to
its north, south, east and west neighbor, except those on the edges, which have less than 4 neighbors.

A tile on the edge of the network can be connected to a memory sub-controller, denoted as Am(x, y). Am(x, y) is
connected to an edge router R(x, y) and is in charge of handling memory access requests. Different sub-controllers are
connected to the main controller (referred further by DRAM controller), which arbitrates access to the main memory.

R(1,1) R(2,1) R(3,1)

R(1,2) R(2,2) R(3,2)

R(1,3) R(2,3) R(3,3)

A(1,1)

PE

PE

PE

PE

PE

PE

PE

PE

PE

Am
(1,1) Am

(2,1) Am
(3,1)

Am
(1,2) Am

(2,2) Am
(3,2)

D
R

A
M

controller

Bk

Figure 1: The 3×3 NoC architecture connected with the off-chip DRAM memory by 6 memory sub-controllers

In Figure 1, we define an architecture of 9 tiles, arranged in 3 × 3 mesh. We define six memory sub-controllers (in
green) on northern and southern edge routers, which are connected to the DRAM controller (in orange).

We use wormhole switching flow-control protocol to handle the network traffic flow, within routers. In this protocol, a
messageMi is divided to one or several packets Pj , and each packet is divided on a fixed number of small data unit
called FLits (FLow control units). Additionally, Virtual Channels (VC) are deployed onto routers to store flits and
serve as buffers when congestion occurs. In fact, Virtual Channels create a multiplexing over link to allow several
communications to share the medium. The first flit, i.e. header (resp. last flit tail) allocates (resp. release) the virtual

3

channel for exclusive traversal to the packet where it belongs, i.e. a packet has an exclusive access on the VC until its
tail flit moves out from the VC of a given router. Further information about wormhole switching can be found in [20].

We consider the TDMA (Time Division Multiple Access) protocol to arbitrate concurrent communication flows at router
level. The TDMA allows to each VC to be served on the output link for nslot time slots per TDMA cycle, denoted by
∆.

A message is routed from its source router to its destination router, according to the DOR (Dimension Order Routing)
XY protocol. In DOR-XY a message moves between direct neighbor on the x-axis until reaching the y position of its
destination router. Afterward, it moves on Y-axis until it reaches its final destination. This routing policy is deterministic
and predictable.

3.2 DRAM background

The DRAM is a 3D memory structure, as depicted in Figure 2. It is composed of several independent banks Bk. Each
bank is composed of a 2D structure in which a matrix of cells is deployed. By default, a cell holds 1 bit represented by
a specific <bank, row, column> triple, denoted also as the memory coordinate. As usually a given data is encoded by
several bits, it is indexed by an array of memory coordinate accordingly.

The basic read and write operations are triggered by a tile toward the main memory.

Read operation When PE(x, y) requests a read operation, a sequence of operations are triggered:

1. A(x, y) initiates the read operation parameters, and sends the request to its network interface NI.

2. R(x, y) defines according to a lookup table (see Algorithm 2), which memory sub-controller is responsible to
achieve this memory operation, let it be Am(x′, y′).

3. The request is routed between R(x, y) and Am(x′, y′) using the mechanisms described above.

4. The memory sub-controller sends the request to main controller through a single bus.

5. DRAM controller computes the data location and sends back data to Am(x′, y′).

6. Data are routed back from Am(x′, y′) to R(x, y) using the routing protocol.

Write operation The write operation is very similar to the read operation. Instead of sending request and wait for the
reply, the request and the data are sent sequentially between R(x, y) and Am(x′, y′).

3.3 DRAM access latency & bank commands

The latency of memory RW requests between the memory sub-controller and the main memory are difficult to estimate.
Perret et al. [21] have proposed a predictable model that simplify the calculation of the data copy latency from a DRAM
to a NoC inner-tile and vice versa. Their main results can be resumed in Table 1, which discloses different memory
operations costs, expressed by clock cycle.

Bank command Cycles
ACT 68
RD 15
WR 35
PRE 50

Table 1: Bank commands expressed by the number of cycles

Row Activate (ACT) Is the first operation applied on a row, which basically move the row on a dedicated region called
row buffer in order to fetch it. After the operation, the row is denoted as opened.

Read (RD) Read a column from an opened row and retrieve the bit stored in the cell.

Write (WR) Write on a column that belong to an opened row.

Precharge (PRE) Close an opened row. This operation move the row from the row buffer to the bank. It involves the
end of the read/write operation on the row.

4

row
decoder

column decoder

ACT PRE

row buffer (sense amplifier)

data

bank decodermemory access

Figure 2: A bank structure of the 3D SDRAM

Similarly [21], we calculate the latency of the main memory access lat_mem as a function of the volume of requested
data (vol(req)) by Equation (1).

lat_mem(req, x) =

(⌈
vol(req)

volone

⌉
× ttrans

)
× txreq (1)

trreq =tACT + tRD + tPRE

twreq =tACT + tWR + tPRE

Where :

• x: can be either r or w for read or write operation respectively.

• vol(req) : is the size of the requested data

• volone : is a constant that represents the size of the maximum copied data in one transaction

• ttrans the cost of in cycles of a single transaction

trreq and twreq are computed using the parameters disclosed in Table 1.

3.4 AER DAG task model

In this paper, we consider the allocation of a set of tasks T = {τ1, τ2, · · · , τn} to a NoC-based architecture. Each task
τi is a Directed Acyclic Graph (DAG), defined by tuple: τi = {Vi, Ei,Di,Ti}.
Vi denotes the set of sub-tasks of task τi. A sub-task of Vi can be one of two types : compute or memory. A compute
sub-task, denoted as vi,j , represents an atomic sequential chunk of code, it is characterized by C(v) denoting its
execution time. Different sub-tasks are allowed to run in parallel or concurrently. Similarly to AER model, we have
a memory read phase, modeled by sub-task vri , i.e. loads data from the main memory, while the memory write-back
operation is denoted by vwi . When it is not necessary, we unload the notation of sub-task vi,j as only v.

Ei denotes the set of edges. Each edge e(v, v′) is a communication between source sub-task v and destination sub-task
v′. An edge e(v, v′) ∈ E expresses also the precedence constraint between v and v′, i.e. v′ can not start its execution
before the completion of v. Each edge is weighted by the maximum amount of data that can be sent from v to v′. Thus,
it is expressed byM(vi, vj), the number of exchanged packets between them.

Ti represents the period of a task, e.i the minimum inter-arrival time between two consecutive instances of τi. Di is
the relative deadline of task τi. Every sub-task of Vi must finish its execution no later than Di time units from the task
arrival time. We consider constrained deadline tasks, that is Di ≤ Ti

Sub-task v′ is an immediate predecessor of sub-task v, if it exists an edge e(v′, v) ∈ E . We denote by pred(v) the set
of all immediate predecessors of sub-task v. The set of all predecessors of a sub-task v is the set of all sub-tasks for

5

which there exists the a path toward vi. The sub-task having no predecessors is the source sub-task of the DAG. In our
task model, the source sub-task is always the memory sub-task vri . Similarly v′ is an immediate successor of v, if v is
an immediate predecessor of sub-task v. We denote by succ(v) as the set of all immediate successors of v. The set
successors of v is the set of sub-tasks for which there is a path from v. Sink node vw is a sub-task having no successor.
In our model, it is always the memory sub-task vwi .

vr

v1

v2

v3 v4

v5

vw

2P

11P9P

3P13P

6P

8P

Figure 3: An AER DAG task example.

Example 1. Let consider τ = {Vi, Ei,D = 120,T = 120} a DAG task, depicted in Figure 3.

When the task is activated, it starts by the read memory sub-task vr to perform a data copy from the main-memory.
v1 begin its execution directly after the data has been copied entirely (6 packets) to the local memory of its PE. After
v1 ends its execution, it sends data to v2 through the network since v2 must wait the end of communication. v3 and
v4 are allowed to run in parallel as soon as they receive the packets (9 and 11 packets respectively). As v5 has two
predecessors, it must waits until both of its predecessors terminate their execution. Finally, the sub-task vw achieves the
write-back operation. The latter must finish no later than the task deadline 120 time units from the task activation.

4 Task and Communication Allocation to PEs and VCs

Meeting timing constraints for a set of DAG real-time tasks requires allocating properly their sub-tasks and communica-
tions to different PEs and VCs. As these sub-tasks communicate, they are forced to respect an execution order dictated
by the precedence constraints imposed by the graph structure. Therefore, every sub-task must wait for the completion of
its immediate predecessors and their communications before it can starts. Analyzing this behavior is complex, due to the
large number of combinations to consider. The number of mapping combination is equal to m ·m · |V C| ·

∑
τ∈T |V(τ)|

where |V C| is the number of VCs per port, thus the design space is extremely large and cannot be completely explored
to find an optimal solution in a reasonable time.

In this work, we apply a set of conversion on the original problem to reduce the complexity of exploring the design
space.

Our algorithm is greedy and iterative. At each iteration it starts by defining an arbitrary allocation to sub-task, according
to one of a set of bin-packing heuristics. Further, it eliminates the communication allocation problem by extracting
the worst-case latency from the task laxity, i.e. the available processor time to execute a given task without missing
deadlines. Further, it defines a list of eligible processor on which the next sub-task will be allocated. Finally, we apply
single core schedulability analysis. Indeed, we use artificial-intermediate deadline and offset assignment techniques
in order to isolate the analysis of the sub-tasks independently of their dependencies. In this section, we describe the
allocation algorithm as well as the schedulabilty analysis to ensure a timing respect.

4.1 Task allocation & communication latency

In order to execute the DAG tasks onto the NoC, we allocate the tasks on the platform at the design time following a
heurstic. Thus, the mapping schema implies to allocate the computing sub-tasks onto processing engines PEi while
we reserve the VCs routers to the communications between sub-tasks. We use in this paper the classical bin-packing
heuristics Best-Fit (BF) and Worst-Fit (WF) for the allocation as disclosed in Algorithm 1.

6

It starts by sorting tasks according to order, that is either by deadline, or utilization increasingly (Line 3). Later, it
selects the task on the top of the ordered task list, let it be τ . For every sub-task v in τ , the algorithm selects a sub-set
of tiles where v is allowed for allocation (Line 6), (according to Definition 4.2 and Theorem 2). Further, the eligible
tile list is sorted according to the bin-packing allocation heuristics (Line 7), BF for increasing utilization order and
WF for a decreasing utilization order. A fast schedulability test is achieved to find the first tile allowing a schedulable
allocation. If all eligible tiles have been investigated without finding an allocation that satisfies the schedulabilty test,
the system aborts on fail. Otherwise, our algorithm moves to the next sub-task. When all sub-tasks have been allocated,
our algorithm moves to the next task. When all tasks have been allocated, Algorithm 1 achieves deadline assignment
for every task (Lines 20-22), by subtracting properly the communication latencies from the available slack time, as
described in Section 4.2.

This procedure allows our algorithm to convert a complex allocation problem to multiple single-processor schedulability
problem, for which well-known techniques are available in the literature of real-time systems (Lines 23-27). If
schedulability fails in a tile, the algorithm aborts on fail, otherwise, it returns the indication of schedulability success
in which every sub-task meets its deadline. We simply resume the task allocation worklflow by Figure 4 as we can
distinguish along the flowchat each step to make the schedulibility analysis much simpler with less complexity.

Algorithm 1 Bin-packing allocation
1: input: Γ: set of tasks, alloc : BF or WF, order : DL or U
2: output: schedulability test
3: sort_tasks_by(order)
4: for (τ ∈ Γ) do
5: for (v ∈ τ) do
6: eligible_list = select_eligible_tiles(v)
7: sort_tiles(alloc, eligible_list)
8: allocated = false
9: for (p ∈ eligible_list) do

10: if ((u(v) + U(Γp) ≤ 1) then
11: add_sub− task_to_taskset(v,Γp)
12: allocated = true
13: end if
14: end for
15: if (allocated == false) then
16: return FAIL
17: end if
18: end for
19: end for
20: for (τ ∈ Γ) do
21: assign_deadlines_and_offsets(τ)
22: end for
23: for (p ∈ P) do
24: if (check_schedulability(p) == FAIL) then
25: return FAIL
26: end if
27: end for
28: return Success

We use in this paper the TDMA arbitration onto NoC routers, as described in Section 3.1. This aims at providing a
predictable communication time, in which the latency is known and calculated following Equation (2) [22] regardless
the impact of concurrent communication flows. It also provides isolation of Flit forwarding and prevents miss-
behaving communications to monopolize the network which might lead to resource starvation. However, it requires
synchronization mechanisms in routers, and thus, we assume that all routers are synchronous.

lat(V C, v, v′) =
Li
nslot

· ∆

ηi
+Hi (2)

Where :

• Li : number of Flits in the message.

7

Start

Tasks & tiles sorting

task-to-tile allocation (heuristic)

If allocated

Deadline & offset assignment

Scheduling
analysis

FAIL

SUCCESS

Yes

Start loop

Init

No

No

Yes

Figure 4: Tasks allocation workflow

• nslot : The amount of data sent in one slot (1 Flit by default) throught Virtual channel (VC).
• ∆ / ηi : The total number of slots in a TDMA cycle / the assigned slot number.
• Hi : Hop number between v (source sub-task) and v′ (destination sub-task).

Once the allocation of every sub-task is achieved, our algorithm computes all the communications costs related to
the task set. However, the schedulability analysis involves the use of complex methods since the sub-tasks remain
correlated and tightly-coupled. In the following, We describe how to provide isolation between sub-tasks and how the
schedulability is checked for each sub-task by the mean of deadline and offset assignment.

4.2 Deadline & offset assignment

Many authors have proposed techniques to assign intermediate deadlines and offsets to DAG tasks. In this paper we
report the two of the most used techniques, proportional share and fair share, reported in [23].

Most of the deadline assignment techniques are based on the computation of the execution time of the critical path. A
path πx = {v1, v2, · · · , vl} is a sequence of sub-tasks of task τ such that:

∀vl, vl+1 ∈ πx,∃e(vl, vl+1) ∈ E .

Let Π(τ) denote the set of all possible paths of task τ . The critical path πcrit(τ) ∈ Π(τ) is defined as the path with the
largest cumulative execution time of the sub-tasks.

In contrast to classical deadline assignment techniques, We define the slack Sl(π,D) along path π as a function of the
execution time of its sub-tasks and also of the communications latency that must be achieved between the sub-tasks of
path π.

Sl(π,D) = D−
∑
vl∈P

C(vl)−
∑
vl∈π
vl+1∈π

lat(VC, vl, vl+1)

D(v) = C(v) + calculate_share(v, π)

The calculate_share function computes the slack for sub-task v along the path. This slack can be shared according to
two alternative heuristics:

8

• Fair distribution: assigns slack as the ratio of the original slack by the number of sub-tasks in the path:

calculate_share(v, π) =
Sl(π,D)

|π|
(3)

• Proportional distribution: assigns slack according to the contribution of the sub-task WCET in the path:

calculate_share(v, π) =
C(v)

C(π)
· Sl(π,D) (4)

v5v1 v2
PEa

PEb

PEc

v3

v4

v7 Local deadline

v7 relative deadline

O(v6)

Absolute deadline

Activation time

task relative deadline

Figure 5: Example of offset and local deadline

Figure 5 illustrates the relationship between the activation times, the intermediate offsets, relative deadlines and local
deadlines of the sub-tasks of the task depicted in Figure 3. We assume that v1, v2, v5 have been allocated on the same
PE whereas v3 and v4 each on a different engine. The activation time is the absolute time of the arrival of the sub-task
instance. The activation time of a source sub-task corresponds to the activation time of the task graph. The offset is the
interval between the activation of the task graph and the activation of the sub-task. The local deadline is the interval
between the task graph activation and the sub-task absolute deadline.
Definition 4.1. Sub-task vj ∈ V is feasible if and only if for a given task τ arrived at ai, the sub-task vj it’s executed
in the interval bounded by its arrival time aj = ai + Oi and its absolute deadline aj + Dj.
Lemma 1. A task is feasible if all its sub-tasks are feasible.
Proof. By the definition, the local deadline dl of the virtual sink sub-task is equal to the deadline D of the task. Moreover,
the sub-task offset cannot be shorter than the local deadline of the previous sub-task. Therefore (i) the precedence
constraints are respected (ii) if the sink sub-task is feasible then the task is feasible.
Definition 4.2. Let p a processing engine, v a sub-task of a task τ and Π(τ) a set of processors allocated to τ .

p is an illegible processor for v if:

∀π ∈ Π(τ) such that v ∈ π ⇒ ∃VC ∈ p that can be allocated to v and satisfies the condition SI(π,D) > 0

Theorem 2. Let p a processor and v a sub-task.
if p is not an illegible processor to v, then v can not be feasible on p.
Proof. we perform the proof by counter example. Let assume that p is not illegible to v and the system is schedulable.
By negating the Definition 2, it exists at least one path where SI(π,D) < 0. Therefore, one or more sub-tasks will
continue their execution over their deadline, thus missing their deadline and Lemma 1 cannot be satisfied.

The slack computation allows us to ensure that the achieved communications will not push a sub-task to miss it deadline
as they have their own reserved time which is not included in the distributed slack.

4.3 Single core schedulability analysis

We use the Earliest Deadline First scheduling policy to execute the task on the processing engine. It has been
demonstrated that EDF is an optimal policy for task scheduling on single core. EDF schedulability can be checked using
workload requirement using the schedulability test proposed in [24]. This test has been extended for tasks experiencing
offsets, as follows:

dbf(τ, t) = max
v∈τ

∑
v′∈τ
b t−Θ(v′)−D(v′) + T (τ)

T (τ)
c (5)

9

Memory sub-controllers Routers
Am(1, 1) R(1, 1), R(1, 2)
Am(2, 1) R(2, 1), R(2, 2)
Am(3, 1) R(3, 1)
Am(1, 2) R(1, 3)
Am(2, 2) R(2, 3)
Am(3, 2) R(3, 2), R(3, 3)

Table 2: Routing table to define the corresponding memory sub-controllers for requests coming from or aiming a router

where:
Θ(v′) = (O(v′)−O(v)) mod T (τ)

Thus, through this approach, we converted the task and communication allocation problem to a single core analysis
issue.

5 Off-chip Memory-aware Mapping

We consider memory sub-tasks as routines that interact with the main memory without any compute capacities.
Therefore, we propose a static allocation on which a memory sub-task triggered by tile A(x, y) is allowed exclusively
to perform its memory access through a unique dedicated memory sub-controller defined offline.

We use the classical bin-packing heuristics as mentioned on Section 4. In the following, we propose a new algorithm
that wraps Algorithm 1 and includes also, the memory sub-tasks allocation. Algorithm 2 starts by browsing every
sub-tasks on the task set and check sub-task type (Line 5). Afterward, following the sub-task type (either computing or
memory), it allocates the memory sub-task on a router according to a pre-defined allocation schema(Line 6), otherwise,
the computing sub-task is allocated on a computing engine according to Algorithm 1.

Algorithm 2 compute and memory sub-tasks allocation
1: input: Γ: set of tasks, r_tab: routing table, alloc : BF or WF, order : DL or U
2: output: schedulability test
3: for (τ ∈ Γ) do
4: for (v ∈ τ) do
5: if is_memory(v) then
6: allocate_on_mem_sub_ctrl(v, r_tab)
7: else
8: allocation(v) . Algorithm 1
9: end if

10: end for
11: end for
12: for (τ ∈ Γ) do
13: assign_deadlines_and_offsets(τ)
14: end for
15: for (p ∈ P) do
16: if (check_schedulability(p) == FAIL) then
17: return FAIL
18: end if
19: end for
20: return Success

6 Experiments & Results

In this section, we describe our experimental protocol and discuss the results issued from our synthetic experiments.

The code has been executed on a regular laptop with Intel Core i5-7200U processor (2×2.5 GHz) and 8 GB of ram.
All simulations are carried out by the same hardware platform description: a 3× 3 2D-Mesh NoC with synchronous
routers that contain 6 V C at each input port. Also, we assign the TDMA configuration by the following quantum slot

10

assignment array [4, 2, 3, 5, 3, 3]. Each simulation scenario includes a task set of DAGs generated by TGFF tool [25].
Afterward, we analyze the task set schedulability by our own analysis tool developed in Python. We disclose in Table 2
which memory sub-controllers is responsible to handle memory requests coming from the inner-NoC routers.

We use UUnifast algorithm to generate a set of utilization factors Ui that suits with the number of DAG tasks, and
afterward, each Ui assgnined to a DAG task is shared among sub-tasks, and we produce several scenarios by varying
the utilization factor. To avoid untractable hyper-periods, the period of every task is randomly generated from a list of
values between the interval of 1000 and 100000 by step of 1000. Communications workload are flit-based quantified,
i.e; for each communication, we assign a random number of flit in the range of 10 and 40. Then, We perform separately
two simulations with the task set following the two models: (i) task allocation while considering only the on-chip
communications (ii) task allocation when both the on-chip and the off-chip communications matter.

0 2 4 6 8 10 12

0

20

40

60

80

Total Utilization index

Sc
he

du
la

bi
lit

y
ra

te
(%

)

BF-Fair
BF-Prop
WF-Fair
WF-Prop

Mem-BF-Prop
Mem-WF-Prop
Mem-BF-Fair
Mem-WF-Fair

Figure 6: Schedulability success of task allocation strategies with and main memory access footprint

We report in Figure 6 the efficiency of each bin-packing mapping strategy coupled with a deadline-assignment technique.
We measure the effectiveness of each method by the average of schedulable task set rate issued from 60 experiences,
and applied for a range of utilization factor. Thus, the calculations use the latency formula and schedulability analysis
presented in Section 4 as well as additional parameters detailed in Table 3 to calculate the communications cost in
seconds with the DRAM.

Network-on-chip External memory
size(P) 32 Flits Nreq

mem 1 cycle
nslot 1 Flit ttrans 1 cycle
Freq 600MHz Freq 200/800 MHz

Table 3: Hardware parameters setting

The simulation results are presented as follows. We denote the results with memory and computing sub-tasks by the
prefix Mem-XX as they include DRAM accesses, otherwise, the experiences concern only the allocation of computing
tasks and on-chip communications. The Best-fit and Worst-fit heuristics are denoted by (BF) and (WF) as well as
Proportional and Fair distribution by (Prop) and (Fair) respectively. We produce similar experiences for both models
– considering the same task and hardware model and varying the utilization factor as well. The results are shown in
Figure 6 and we observe that the experiences with BF heuristic dominate those performed by WF, which is explained
by the fact that BF tries to pack the maximum of tasks on a core. Thus, the inter-sub-task communications are produced
inside the core without using the network, and therefore, the latency of communication is drastically reduced. On the
contrary, WF dispatch equally the tasks among cores which may create multi-hop communications with congestions
while providing high latencies.

We notice also that the experiences with off-chip communications provide a low schedulability success and are
outperformed by the former experiences. This is mainly due to the latency of data copy from DRAM to local memory,
as DRAM is very slow memory compared to on-chip memory. Moreover, Figure 7 reports the difference between
DRAM technologies, the DDDR-SDRAM and DDDR3-SDRAM clocked by 200 MHz and 800 MHz respectively. We
notice that the more the main memory is highly clocked the more data are served fast to the communication bus.

11

1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

1.2

·10−4

Total Utilization index

Sl
ac

k
(s

)

DDR-SDRAM: 200 MHz
DDR3-SDRAM: 800 MHz

Figure 7: Slack time considering different DRAM technologies

7 Conclusion

In this paper, we provided a support for DAG tasks onto NoC-based manycores architecure. Our apporach converts a
complex task and communication allocation problem to a set of classical single core scheduling problem, for which
efficient algorithms exist, while preseving timing properties. We used bin-packing heuristics to allocate tasks on cores
as as well as on-chip communications and communications toward the main memory from the NoC.

As future work, we are considering extending the model to include the main memory as an important part. We
would like also to investigate exact solutions for budgeting VCs and using more sophisticated heuristics for task and
communication allocation.

Acknowledgement

This work was supported in part by MESRS, Algeria and by PHC Tassili project 19MDU213 and by the PRIMA
WATERMED 4.0 project.

References
[1] Chawki Benchehida, Mohammed Kamel Benhaoua, Houssam-Eddine Zahaf, and Giuseppe Lipari. An analysis

and simulation tool of real-time communications in on-chip networks: A comparative study. SIGBED Rev.,
17(1):5–11, July 2020.

[2] Luca Benini and Giovanni De Micheli. Networks on chips: A new soc paradigm. computer, 35(1):70–78, 2002.

[3] Andreas Hansson, Kees Goossens, and Andrei Rǎdulescu. A unified approach to constrained mapping and
routing on network-on-chip architectures. In Proceedings of the 3rd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 75–80. ACM, 2005.

[4] Pradip Kumar Sahu, Tapan Shah, Kanchan Manna, and Santanu Chattopadhyay. Application mapping onto
mesh-based network-on-chip using discrete particle swarm optimization. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 22(2):300–312, 2013.

[5] Krishnan Srinivasan and Karam S Chatha. A technique for low energy mapping and routing in network-on-chip
architectures. In ISLPED’05. Proceedings of the 2005 International Symposium on Low Power Electronics and
Design, 2005., pages 387–392. IEEE, 2005.

[6] H. Zahaf, G. Lipari, M. Bertogna, and P. Boulet. The parallel multi-mode digraph task model for energy-aware
real-time heterogeneous multi-core systems. IEEE Transactions on Computers, 68(10):1511–1524, 2019.

[7] Houssam-Eddine ZAHAF, Giuseppe Lipari, Smail Niar, et al. Preemption-aware allocation, deadline assignment
for conditional dags on partitioned edf. In 2020 IEEE 26th International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 1–10. IEEE, 2020.

12

[8] José Carlos Fonseca, Vincent Nélis, Gurulingesh Raravi, and Luís Miguel Pinho. A multi-dag model for real-time
parallel applications with conditional execution. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, pages 1925–1932, 2015.

[9] Ashikahmed Bhuiyan, Zhishan Guo, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong. Energy-efficient real-time
scheduling of dag tasks. ACM Transactions on Embedded Computing Systems (TECS), 17(5):1–25, 2018.

[10] Zheng Shi and Alan Burns. Schedulability analysis and task mapping for real-time on-chip communication.
Real-Time Systems, 46(3):360–385, December 2010.

[11] Tim Harde, Matthias Freier, Georg von der Brüggen, and Jian-Jia Chen. Configurations and optimizations of tdma
schedules for periodic packet communication on networks on chip. In RTNS, pages 202–212, 2018.

[12] Borislav Nikolic, Robin Hofmann, and Rolf Ernst. Slot-based transmission protocol for real-time nocs-sbt-noc.
In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[13] Salma Hesham, Jens Rettkowski, Diana Goehringer, and Mohamed A. Abd El Ghany. Survey on Real-Time
Networks-on-Chip. IEEE Transactions on Parallel and Distributed Systems, 28(5):1500–1517, May 2017.

[14] Wooyoung Jang and David Z. Pan. Application-Aware NoC Design for Efficient SDRAM Access. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 30(10):1521–1533, October 2011.

[15] Masoud Daneshtalab, Masoumeh Ebrahimi, Pasi Liljeberg, Juha Plosila, and Hannu Tenhunen. A Low-Latency and
Memory-Efficient On-chip Network. In 2010 Fourth ACM/IEEE International Symposium on Networks-on-Chip,
pages 99–106, Grenoble, France, 2010. IEEE.

[16] Xi Jin, Nan Guan, Qingxu Deng, and Wang Yi. Memory Access Aware Mapping for Networks-on-Chip. In 2011
IEEE 17th International Conference on Embedded and Real-Time Computing Systems and Applications, pages
339–348, Toyama, Japan, August 2011. IEEE.

[17] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele, and Benoît Dupont de Dinechin.
Mixed-criticality scheduling on cluster-based manycores with shared communication and storage resources.
Real-Time Systems, 52(4):399–449, July 2016.

[18] Manil Dev Gomony, Benny Akesson, and Kees Goossens. Coupling TDM NoC and DRAM controller for cost and
performance optimization of real-time systems. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2014, pages 1–6, Dresden, Germany, 2014. IEEE Conference Publications.

[19] Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat, and Benoît Triquet. Mapping hard
real-time applications on many-core processors. In Proceedings of the 24th International Conference on Real-Time
Networks and Systems, pages 235–244, 2016.

[20] Zheng Shi and Alan Burns. Real-time communication analysis for on-chip networks with wormhole switching. In
Second ACM/IEEE International Symposium on Networks-on-Chip (nocs 2008), pages 161–170. IEEE, 2008.

[21] Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat, and Benoît Triquet. Predictable
composition of memory accesses on many-core processors. In 8th European Congress on Embedded Real Time
Software and Systems (ERTS 2016), TOULOUSE, France, January 2016.

[22] Zhonghai Lu and Axel Jantsch. Slot allocation using logical networks for tdm virtual-circuit configuration for
network-on-chip. In Proceedings of the 2007 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’07, page 18–25. IEEE Press, 2007.

[23] Zahaf Houssam-Eddine, Nicola Capodieci, Roberto Cavicchioli, Giuseppe Lipari, and Marko Bertogna. The
hpc-dag task model for heterogeneous real-time systems. IEEE Transactions on Computers, 2020.

[24] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic tasks on one
processor. In [1990] Proceedings 11th Real-Time Systems Symposium, pages 182–190, Dec 1990.

[25] R. P. Dick, D. L. Rhodes, and W. Wolf. Tgff: task graphs for free. In Proceedings of the Sixth International
Workshop on Hardware/Software Codesign. (CODES/CASHE’98), pages 97–101, March 1998.

13

	Introduction
	Related Work
	System Model
	Hardware platform
	DRAM background
	DRAM access latency & bank commands
	AER DAG task model

	Task and Communication Allocation to PEs and VCs
	Task allocation & communication latency
	Deadline & offset assignment
	Single core schedulability analysis

	Off-chip Memory-aware Mapping
	Experiments & Results
	Conclusion

