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Abstract
In this paper, we present SASA, an open-source SimulAtor
of Self-stabilizing Algorithms. Self-stabilization defines the
ability of a distributed algorithm to recover after transient
failures. SASA is implemented as a faithful representation
of the atomic-state model (also called the locally shared
memory model with composite atomicity). This model is
the most commonly used one in the self-stabilizing area to
prove both the correct operation of self-stabilizing algorithms
and complexity bounds on them. SASA encompasses all
features necessary to debug, test, and analyze self-stabilizing
algorithms. All these facilities are programmable to enable
users to accommodate to their particular needs. For example,
asynchrony is modeled by programmable stochastic daemons
playing the role of input sequence generators. Properties of
algorithms can be checked using formal test oracles. The
SASA distribution also provides several facilities to easily
achieve (batch-mode) simulation campaigns. We show that
the lightweight design of SASA allows to efficiently perform
huge such campaigns. Following a modular approach, we
have aimed at relying as much as possible the design of
SASA on existing tools, including OCAML, DOT, and several
tools developed in the Synchrone Group of the VERIMAG
laboratory.

1 Introduction
Starting from an arbitrary configuration, a self-stabilizing al-
gorithm [1] makes a distributed system eventually reach a so-
called legitimate configuration from which every possible ex-
ecution suffix satisfies the intended specification. Self-stabi-
lization is defined in the reference book by Dolev [2] as a con-
junction of two properties: convergence, which requires ev-
ery execution of the algorithm to eventually reach a legitimate
configuration; and correctness, which requires every execution
starting from a legitimate configuration to satisfy the specifi-
cation. Since an arbitrary configuration may be the result of
transient faults,1 self-stabilization is commonly considered as
a general approach for tolerating such faults in a distributed

1A transient fault occurs at an unpredictable time, but does not result in a
permanent hardware damage. Moreover, as opposed to intermittent faults, the
frequency of transient faults is considered to be low.

system.
Remark that the definition of self-stabilization does not di-

rectly refer to the possibility of (transient) faults. Actually,
this is mainly due to the fact that, in contrast to most of exist-
ing fault tolerance (a.k.a. robust) proposals, self-stabilization
is a non-masking approach: it does not try to hide effects of
faults, but rather aims at repairing the system after faults [3].
So, proving or simulating a self-stabilizing system does not
involve any failure pattern: only the consequences of faults,
modeled by the arbitrary initial configuration, are treated. In
other words, the actual convergence of the system is guaran-
teed only if there is a sufficiently large time window without
any fault, which is indeed the case when faults are transient.

Self-stabilizing algorithms are mainly compared according
to their stabilization time, i.e., the maximum time, starting
from an arbitrary configuration, before reaching a legitimate
configuration. By definition, the stabilization time is impacted
by worst case scenarios which are often unlikely in practice.
So, in many cases, the average-case time complexity may be
a more accurate measure of performance assuming a proba-
bilistic model. However, the arbitrary initialization, the asyn-
chronism, the arbitrary network topology, and the algorithm
design itself often make the probabilistic analysis intractable.
In contrast, another popular approach consists in empirically
evaluating the average-case time complexity via simulations.
A simulation tool is also of prime interest to test and find flaws
early in the design process. Indeed, in the distributed com-
puting area, correctness of distributed algorithms is often sub-
tle. Asynchronous distributed systems often involve numerous
autonomous loosely interconnected processes (referred to as
nodes in the following); and interleaving between their ex-
ecutions is decided by a nondeterministic adversary, which
models the unpredictable timing behavior of the network on
which the system is deployed. In such a context, a good soft-
ware engineering practice consists in conducting an extensive
simulation campaign, including corner cases (generated using
well-chosen scheduling and particular topologies) to increase
the confidence on the correctness of the distributed algorithm
before starting to formally prove it.

We are interested here in simulating the atomic-state model
(ASM), because it is the most commonly used computational
model in the self-stabilizing area. The ASM is a locally shared
memory model which abstracts away the communication be-
tween nodes: in this model, each node can directly read the
local states of its neighbors in the network. As a consequence,

1



the ASM is quite simple to represent since there is no commu-
nication channel and configurations of the system are merely
vectors of node states. Moreover, execution steps are atomic
transitions between configurations.

Contribution. We provide to the self-stabilizing community
an open-source, versatile, lightweight (in terms of memory
footprint), and efficient (in terms of simulation time) simula-
tor, called SASA, to help the design and evaluate the average
performances of self-stabilizing distributed algorithms written
in the atomic-state model (ASM). SASA is a straightforward
implementation of the ASM and so obviously takes advantage
of the inherent simplicity of this model (e.g., SASA does not
require a queue of events) to be efficient both in terms of sim-
ulation time and memory footprint.

The SASA programming interface is simple, yet rich enough
to allow a direct encoding of any distributed algorithm de-
scribed in the ASM. All important concepts used in this model
are available: simulations can be run and evaluated in moves,
atomic steps, and rounds; the three main time units used in
the ASM. Classical execution schedulers, a.k.a. daemons, are
available: central, locally central, distributed, and synchronous
daemons. All levels of anonymity are available, such as fully
anonymous, rooted, or identified. Finally, distributed algo-
rithms can be either uniform (all nodes execute the same local
algorithm), or non-uniform.

SASA can perform batch simulations which can use test ora-
cles to check expected properties. For example, one can check
that the stabilization time in rounds is upper bounded by a
given function. The distribution provides several facilities to
achieve batch-mode simulation campaigns. Simulations can
also be run interactively, step by step, for debugging purposes.

During the simulator development, a constant guideline has
been to take, as much as possible, advantage of existing tools.
SASA relies on OCAML to program the self-stabilizing algo-
rithms, DOT [4] to define topologies, and the Synchrone Re-
active Toolbox [5] for testing using formal oracles and debug-
ging. Another guideline has been to make all SASA’s facilities
easily configurable and programmable so that users can define
specific features tailored for their particular needs.

To validate our approach, we have encoded various bench-
mark algorithms into SASA, e.g., the Dijkstra token ring al-
gorithm [1], a Breadth-First Search (BFS) [3] and a Depth-
First Search (DFS) [6] spanning tree construction, vertex-
coloring algorithms [3, 7, 8], a synchronous [9] and an asyn-
chronous [10] unison. For example, we can execute 1 000
steps of the heavy DFS spanning tree construction of Collin
and Dolev [6], whose memory requirement is Θ(N log(∆)) bits
per node,2 on a grid of 10 000 nodes in 47 minutes and using
381 megabytes of memory only. Moreover, we show that the
lightweight design of SASA allows to efficiently perform huge
simulation campaigns by comparing the average performances
of three vertex-coloring algorithms as a case study.

2N is an upper bound on the number of nodes and ∆ is the maximal degree
of the network.

Related work. Until now, only a few studies deal with
the empirical evaluation of the average performances of self-
stabilizing algorithms, e.g., [11, 12]. Moreover, these exper-
iments are done, most of the time, using homemade engines
that propose only few features and whose design is tailored to
specific needs.

Networking simulators, such as WSNET [13], OM-
NeT [14], or NS2 [15], are not suited for self-stabilizing
algorithms. They usually measure performances in terms of
simulation time which does not correspond to any unit of
time (such as rounds) used by the self-stabilizing community.
Consequently, simulation times cannot be fairly compared
to analytical worst case upper bounds. Moreover, they are
usually dedicated to particular architectures, such as IP
networks or wireless networks, that are far away from the
architecture-independent models in which self-stabilizing
algorithms are written. Consequently, proposed algorithms
should be adapted to fit the architecture targeted by the
simulator [16]. Again, such modifications do not allow fair
comparison with analytical bounds. Finally, networking
simulators are usually implemented using queues of events:
at each step of simulation, an event is dequeued and induces
some computations in the system which may lead to the
generation of new events to be enqueued. SASA is not based
on such a heavy mechanism: its semantics is defined as a
sequence of global steps, from one configuration to another.
This implementation choice makes SASA lightweight in terms
of memory footprint and computation time, allowing then to
simulate algorithms on large networks.

Only few simulators dedicated to self-stabilization in locally
shared memory models, such as the ASM, have been proposed
[17, 18, 19, 20]. Overall, they all have limited capabilities
and features, and are not extensible since not programmable.
Using these simulators, only few pre-defined properties, such
as convergence, can be checked on the fly.

In more detail, Flatebo and Datta [17] propose a simulator
of the ASM to evaluate leader election, mutual exclusion, and
`-exclusion algorithms on restricted topologies, mainly rings.
This simulator is not available anymore. It proposes limited
facilities including classical daemons and evaluation of stabi-
lization time in moves only.

Müllner et al. [19] present a simulator (written in Erlang) of
the register model, a computational model which is close to the
ASM. This simulator does not allow to evaluate stabilization
time. Actually, it focuses on three fault tolerance measures
initially devoted to masking fault-tolerant systems (namely,
reliability, instantaneous availability, and limiting availabil-
ity [21]) to evaluate them on self-stabilizing systems. How-
ever, these measures are still uncommon today in analyses of
self-stabilizing algorithms. Memory footprints given in [19]
underline the lightweight nature of SASA. As an illustrative
example, Müllner et al. simulate the same spanning tree con-
structions as we do: while they need up to 1 gigabyte of mem-
ory for simulating a 256-node random network, SASA only
need up to 235 megabytes for executing the same algorithms
in the same settings.

The simulator (written in Java) proposed by Har-Tal [18]
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allows to run self-stabilizing algorithms in the register model
on small networks (around 10 nodes). It only proposes a small
amount of facilities, i.e., the execution scheduling is either syn-
chronous, or controlled step by step by the user. Only the le-
gitimacy of the current configuration can be tested. Finally, it
provides neither batch mode, nor debugging tools.

Evcimen et al. describe in [20] a simulation engine (writ-
ten in C#) for self-stabilizing algorithms in message pass-
ing. Their simulator uses heavy mechanisms to implement
this model, such as queue of events, threads, and fault in-
jection. By contrast, the fact that SASA targets the ASM al-
lows its implementation to be lighter. Then, in the Evcimen et
al.’s simulator, the execution scheduler can be only fully asyn-
chronous. Now, being corner cases, central and synchronous
executions are very useful to find bugs or to exhibit a worst-
case scenario. Moreover, using this simulator, performances
can be only measured in terms of simulation time, which does
not correspond to the time units used by the self-stabilizing
community (such as rounds). Finally, the simulator cannot be
executed in batch mode and can only detect whether a legiti-
mate configuration is reached.

A preliminary version of this paper has been published in
a conference [22]. Since then, the SASA distribution has been
further refined and enriched with many new facilities, includ-
ing, in particular, tools for automating simulation campaigns.

Roadmap. Section 2 is a digest of the ASM, illustrated with
a running example. Section 3 presents the SASA simulator.
Section 4 explains the connection between SASA and tools
from the Synchrone Reactive Toolbox. Experimental results
obtained with SASA are presented in Section 5. In Section 6,
we propose an example of simulation campaign whose aim
is to compare the average stabilization time of three vertex-
coloring algorithms. Finally, we conclude in Section 7 with
future work.

Online material. The tool is fully documented online [23]
with a technical report, how-tos, videos, and tutorials. We also
provide a link to an open-access git repository which contains
the necessary material to reproduce the results given in this
article; see [24]. In particular, it contains instructions to install
the necessary tools, to replay the interactive session described
in Section 2, to generate the data in Table 1 of Section 5, and
to generate Figures 4, 5, and 6 of Section 6.

2 An Example: Asynchronous Unison
in the Atomic-State Model

We present the atomic-state model (ASM) using the asyn-
chronous unison algorithm given in [10] as a running exam-
ple. The formal code of this algorithm is presented in Algo-
rithm 1. The asynchronous unison is a clock synchronization
problem which requires the difference between clocks of every
two neighbors to be at most one increment at each instant.

Distributed algorithms. A distributed algorithm consists of
a collection of local algorithms, one per node. The local al-
gorithm of each node p (see Algorithm 1) is made of a finite
set of variables and a finite set of actions (written as guarded
commands) to update them.

Some of the variables, like Np in Algorithm 1, may be con-
stant inputs in which case their values are predefined. Actually,
here, Np represents the local view of the topology at each node
p: Np is the set of p’s neighbors in the network. Algorithm 1
assumes the network is connected and undirected, so q ∈Np
if and only if p ∈Nq. Then, each node holds a single writable
variable, noted p.c and called its local clock. Each clock p.c
is an integer with range 0 to K−1, where K > n2 is a param-
eter common to all nodes, and n denotes the number of nodes.
Communication is carried out by read and write operations on
variables: a node can read its variables and those of its neigh-
bors, but can write only to its own variables. For example, in
Algorithm 1, each node p can read the value of p.c and that of
q.c, for every q ∈Np, but can only write to p.c. The state of a
node is defined by the values of its variables. A configuration
is a vector consisting of the states of each node.

Each action is of the following form: 〈label〉 :: 〈guard〉 ↪→
〈statement〉. Labels are only used to identify actions. A guard
is a Boolean predicate involving the variables of the node and
those of its neighbors. The statement is a sequence of assign-
ments on the node’s variables. An action can be executed only
if its guard evaluates to true, in which case the action is said to
be enabled. More generally, a node is enabled if at least one
of its actions is enabled. In Algorithm 1, we have two (locally
mutually exclusive) actions per node p, I(p) and R(p).

Steps and executions. Nodes run their local algorithm by
atomically executing actions. Asynchronism is modeled by a
nondeterministic adversary called daemon. An execution is a
sequence of configurations, where the system moves from a
configuration to another as follows. Assume the current con-
figuration is γ . If no node is enabled in γ , the execution is
done. Otherwise, the daemon activates a non-empty subset S
of nodes that are enabled in γ; then every node in S atomically
executes one of its action enabled in γ , leading the system to a
new configuration γ ′, and so on. The transition from γ to γ ′ is
called a step. Usual daemons include:

1. the synchronous daemon which activates every enabled
node at each step,

2. the central daemon which activates exactly one enabled
node at each step,

3. the locally central daemon which never activates two
neighbors at the same step, and

4. the distributed daemon which activates at least one node
at each step.

Self-stabilization of Algorithm 1. Recall that Algorithm 1
is an asynchronous unison algorithm where each node has a
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Algorithm 1 Asynchronous unison: local algorithm for each node p
Constant Input: Np, the set of p’s neighbors

Variable: p.c ∈ {0, ...,K−1}, where K > n2, and n is the number of nodes
Predicate: behind(a,b) = ((b.c−a.c) mod K)≤ n

Actions: I(p) :: ∀q ∈Np, behind(p,q) ↪→ p.c← (p.c+1) mod K
R(p) :: p.c 6= 0∧ (∃q ∈Np, ¬behind(p,q)∧¬behind(q, p)) ↪→ p.c← 0

Configuration 3

p0:0 p1:0

p4:0

p2:0

p5:18

p3:19

p6:19 p7:20

p8:18 p9:19 p10:20 p11:21

p14:21 p15:22p12:19 p13:20

Configuration 2

p0:0 p1:0

p4:17

p2:18

p5:18

p3:19

p6:19 p7:20

p8:18 p9:19 p10:20 p11:21

p14:21 p15:22p12:19 p13:20

Configuration 5

p0:1 p1:1

p4:0

p2:0

p5:0

p3:19

p6:0 p7:20

p8:0 p9:19 p10:0 p11:21

p14:21 p15:22p12:0 p13:20

Configuration 6

p0:1 p1:1

p4:0

p2:0

p5:0

p3:0

p6:0 p7:20

p8:0 p9:19 p10:0 p11:0

p14:21 p15:22p12:0 p13:20

Configuration 1

p0:0 p1:17

p4:17

p2:18

p5:18

p3:19

p6:19 p7:20

p8:18 p9:19 p10:20 p11:21

p14:21 p15:22p12:19 p13:20

Configuration 4

p0:0 p1:0

p4:0

p2:0

p5:0

p3:19

p6:0 p7:20

p8:0 p9:19 p10:20 p11:21

p14:21 p15:22p12:19 p13:20

Figure 1: Five steps of Algorithm 1 for K = 257 on a 16-node grid (extracted from SASA). "pi : j" means that pi.c = j. Enabled
nodes are in orange and green. Moreover, orange nodes are activated within the next step.

clock p.c taking values in the range 0 to K − 1, K being a
global parameter satisfying K > n2. The asynchronous unison
specification requires that

1. in each configuration, the difference between clocks of
every two neighbors is at most one modulo K (Safety);
and

2. each clock is incremented infinitely often (Liveness).

In [10], Algorithm 1 is proven to be self-stabilizing under the
distributed daemon in the sense that starting from an arbitrary
configuration, every asynchronous execution of Algorithm 1
eventually reaches a legitimate configuration from which ev-
ery possible execution suffix satisfies the above asynchronous
unison specification. The legitimate configurations of Algo-
rithm 1 are merely those where for any two neighbors p and q,
we have p.c ∈ {(q.c−1) mod K,q.c,(q.c+1) mod K}.

In Algorithm 1, each node p maintains its clock p.c using
two actions, I(p) and R(p). I(p) is the normal incrementa-
tion action. From a legitimate configuration, only I actions are
executed. R(p) is a reset action whose goal is to correct lo-

cal strong inconsistencies, i.e, a clock is reset when the gap
between its value and that of a neighboring clock is too high.

We now describe these two actions using the sample of ex-
ecution given in Figure 1.

When the clock of p is at most n increments behind the
clock values of all its neighbors, p is enabled to (normally)
increment its clock modulo K by Action I(p). For example, in
Configuration 5 of Figure 1, I(p4) is enabled because p4.c= 0
and the clock values of its neighbors (p0, p5, and p8) belong
to {0,1}.

In contrast, if the clock of p is not equal to 0 and p has
a neighbor q such that p.c is more than n increments be-
hind q.c and q.c more than n increments behind p.c, then p
should reset its clock to 0 using Action R(p). For example, in
Configuration 1 of Figure 1, p1.c = 17 and p0.c = 0. Now,
p1.c (resp., p0.c) should be incremented 240 times (resp.,
17 times) to reach 0 (resp., 17) since K = 257. As n = 16,
¬behind(p1, p0)∧¬behind(p0, p1) holds in Configuration 1.
Moreover, p1.c 6= 0, so R(p1) is enabled. After this reset, the
next time p will move, it will normally increment by I(p), i.e.,
its clock will be at most n increments behind the clock values
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of all its neighbors. To ensure this eventually happens, resets
might be propagated from neighbors to neighbors. Actually,
thanks to resets, the system eventually reaches a configuration
from which the difference between clocks of every two neigh-
bors is at most n increments modulo K. From such a con-
figuration, no clock is further reset and the system inherently
converges (using I actions) to a legitimate configuration from
which the asynchronous unison specification holds.

Time complexity units. Three main units are used for
counting time: steps, moves, and rounds. Steps simply refer to
atomic steps of the execution. A node moves when it executes
an action in a step. Hence, several moves may occur in a
step. Rounds capture the execution time according to the
speed of the slowest node. The first round of an execution e
is the minimal prefix e′ of e during which every node that is
enabled in the first configuration of e either executes an action
or becomes disabled (due to some neighbor actions) at least
once. The second round of e starts from the last configuration
of e′, and so on.

We now illustrate these notions using the sample of execu-
tion given in Figure 1. The second step (from Configuration 2
to 3) contains two moves (by p2 and p4). The first round ends
in Configuration 3. Indeed, there are two enabled nodes, p1
and p4 in Configuration 1. Node p1 moves in the first step,
however in Configuration 2, the round is not done since p4
has neither moved nor become disabled. The first round termi-
nates after p4 has moved in the second step. Consequently, the
second round starts in Configuration 3. This latter terminates
in Configuration 6.

The stabilization time of an execution is the number of time
units (steps, moves, or rounds) before reaching the first legiti-
mate configuration. By extension, the stabilization time of an
algorithm is the maximum stabilization time over all possible
executions. As a matter of fact, the stabilization time of Algo-
rithm 1 has been shown to be in O(nD) rounds, where n is the
number of nodes and D is the diameter of the network [25].

3 The SASA Simulator

An important goal of this section is to convince the future end-
users of SASA, mainly researchers from the self-stabilizing
community, that (1) SASA offers all features they need (in-
cluding classical measures of the model, interactive graphical
step-by-step simulation, batch simulation), and (2) encoding
their algorithms into SASA is straightforward since very close
to usual way they write algorithms in the ASM. Therefore, in
the following, we present the tool from an end-user point of
view.

3.1 Main Features

This section outlines SASA main features. More information
is available online as SASA tutorials [26].

Batch simulations. They are useful to perform simulation
campaigns, to evaluate time complexity of algorithms on wide
families of networks. They can also be used to study the influ-
ence of some parameters.

Interactive graphical simulations. It is possible to run a
simulation step by step, or round by round, forward or back-
ward, while visualizing the network as well as the enabled and
activated nodes; see snapshots in Figure 1. New commands
can be programmed so that users can navigate through the sim-
ulation according to their needs.

Predefined and customized daemons. The daemon, which
parameterizes the simulation, can be configured. First,
SASA provides several predefined daemons, including the
synchronous, central, locally central, or distributed daemon;
for such daemons, non-determinism is resolved uniformly
at random. The user can also build its own customized
daemon: this is useful to experiment new activation heuristics,
or explore worst cases. The daemon can be interactively
controlled using a graphical widget: at each step, the user
selects the nodes to be activated among the enabled ones. The
daemon can also be programmed; such a program can take
advantage of the simulation history to guide the simulation
into particular directions.

Test oracles. Expected safety properties of algorithms can
be formalized and used as test oracles. Typically, they involve
the number of steps, moves, or rounds that are necessary to
reach a (user-defined) legitimate configuration. In order to de-
fine such properties, the user program is given access to node
state values and activation status [26]. Properties are checked
on the fly at every simulation step.

3.2 The Core of SASA

The core of SASA is a stand-alone simulator; see Figure 2. The
user has to define both a network and a self-stabilizing algo-
rithm following the API given in Section 3.3. The algorithm
is written as an OCAML program: the interface has been de-
signed in such a way that the OCAML program implementing
the algorithm is as close as possible to guarded commands,
the usual way to write algorithms in the ASM. The network
topology is specified using the DOT language [4]. The OCAML
algorithm is compiled into a dynamic library which is used,
together with the DOT network file, by SASA to generate sim-
ulation data. A simulation data file contains an execution trace
made of the sequence of configurations. This trace also con-
tains the enabled and activated action history. Such traces can
be visualized using chronogram viewers.

3.3 The Application Programming Interface
The SASA programming interface allows to define the network
using the DOT language and the algorithms using a 48-lines
OCAML interface Module (called the Algo API). Both are pre-
sented below.
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reads

loads

generates

reads generates Dynamic Library

sasa
Simulation DataNetwork Topology

Algorithm ocamlopt
[.cmxs files]

[bin] [.rif file][.dot file]

[.ml files]
[bin]

Figure 2: The SASA core simulator architecture

Networks in DOT. Graphviz [4] is an open-source tool suite
for drawing graphs specified using the DOT language. Many
visualization tools and graph editors support the DOT format
and many bridges from/to other graph tools exist. DOT allows
to define graphs as sets of nodes and edges. Graphs, nodes,
and edges can have attributes specified by name-value pairs.
SASA takes advantage of DOT attributes to:

1. associate nodes with their algorithms;

2. optionally associate nodes with their initial states; and

3. associate graphs with simulation parameters.

Local states. To define an algorithm at each node of the
network, SASA first needs to instantiate the type of its local
state. Node states are defined using the polymorphic type ’st
which can represent any data the designer needs, e.g., integers,
arrays, or structures. Nodes can access their neighbor states
using the abstract type ’st neighbor (the "’st" part means
that the type neighbor is parameterized by the type ’st). The
access to neighboring states is made by function state which
takes a neighbor as input and returns its state; see Listing 1.

type ’st neighbor
val state: ’st neighbor -> ’st

Listing 1: Access to neighbors’ states

Algorithms. To define an instance of the local algorithm of
each node, SASA requires (see Listing 2):

1. a list of action names (made of arbitrary strings);

2. an enable function that encodes the guards of the algo-
rithm;

3. a step function that triggers an enabled action;

4. a state initialization function used if no initial configu-
ration is provided in the DOT file. Indeed, even if self-
stabilization does not require it, initialization is manda-
tory to begin the simulation. For example, pseudo-
random functions can be used to obtain an arbitrary ini-
tial configuration.

type action = string
type ’st enable_fun =

’st -> ’st neighbor list -> action list
type ’st step_fun =

’st -> ’st neighbor list -> action -> ’st
type ’st state_init_fun =

int -> string -> ’st

Listing 2: The step, enable, and initialization function types

A function of type enable_fun takes the current state of the
node and the list of its neighbors as arguments. It returns a list
of enabled actions. A function of type step_fun takes the same
arguments plus the action to activate, and returns an updated
state. The initial configuration can be set using an initializa-
tion function, of type state_init_fun, that takes as argument
the number of neighbors of the node, and a string that holds,
if needed, the node identifier. Indeed, by default, SASA al-
gorithms are anonymous. But, to implement identified algo-
rithms, the user has to explicitly store the identifier of a node
into its state; this can be done during initialization using the
second parameter of the initialization function.

Topological information. Algorithms usually depend on
parameters relative to the network topology. For example,
Algorithm 1 requires to know the number of nodes. SASA
gives access to those parameters through various functions.
Listing 3 presents a few of them: card returns the number of
nodes in the network (card stands for cardinal and unit is the
OCAML equivalent of void); diameter returns the diameter of
the network, (i.e., the maximum distance between every pair
of nodes), min_degree (resp. max_degree) returns the minimum
(resp. maximum) degree of nodes, and is_connected returns a
Boolean indicating whether the network is connected.

val card: unit -> int
val diameter: unit -> int
val min_degree: unit -> int
val max_degree: unit -> int
val is_connected: unit -> bool

Listing 3: Some of the topological parameters provided by the
API

Example. Listing 4 shows the implementation of Algorithm
1 in SASA: notice that we obtain a faithful straightforward
translation of Algorithm 1. In particular, according to the Algo
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API, function enable_f has type enabled_fun and implements
the guards of the algorithm; first the guard of Action I(p) and
then the guard of Action R(p). Similarly, function step_f has
type step_fun and implements the statement of Action I(p) and
R(p) depending on the name of the action (parameter a).

open Algo
let n = card ()
let k = n * n + 1
let (init_state: int state_init_fun) =

fun _ _ -> (Random.int k)
let modulo x n =

if x < 0 then n+x mod n else x mod n
let behind pc qc = (modulo (qc -pc) k) <= n
let (enable_f: int enable_fun) = fun c nl ->

if List.for_all
(fun q -> behind c (state q)) nl

then ["I(p)"]
else if

List.exists
(fun q -> not (behind c (state q))

&& not (behind (state q) c))
nl

&& c <> 0
then ["R(p)"] else []

let (step_f: int step_fun) = fun c nl a ->
match a with
| "I(p)" -> modulo (c + 1) k
| "R(p)" -> 0
| _ -> assert false

let actions = Some ["I(p)"; "R(p)"]

Listing 4: Implementation of Algorithm 1

3.4 Design Choices

To implement SASA, we have chosen to rely as much as pos-
sible on existing tools and languages. In the following, we
justify some of the choices done during the implementation.

Network description using DOT. In order to describe the
network topology, introducing yet another a format was not
an option. Apart from DOT, several other formats exists to
describe and draw graphs (e.g., GML, VISML). Advantages of
DOT include the fact that it is open-source, standard, easy to
edit, and versatile enough thanks to its attribute mechanism.
Moreover, there exists plenty of visualization tools and graph
editors that support the DOT format. Anyway, bridges from
and to most of the other popular alternatives exist.

Implementing algorithms in OCAML. A more difficult
choice was the one for the language used to define the algo-
rithms themselves. An option would have been to design a
new dedicated ad hoc language, i.e., a simple language tai-
lored to the writing usages in the self-stabilizing community. It
would have avoided the need to learn a full-fledged program-
ming language, with concepts that are not necessarily useful
for the kind of programs ones usually write to solve and study
self-stabilizing problems. It would also have allowed to con-
trol its abstract syntax tree and to generate programs in other
languages (e.g., LATEX code for article inclusion).

On the other hand, using an existing language saves a lot of
time: no need to implement and maintain compilers, rich set
of libraries, programming environments, etc.

The main reason for choosing OCAML is that ml-languages
are very popular in several academic communities (the main
target of SASA), in particular thanks to their clean semantics
and type-safety. The OCAML compiler produce efficient bi-
nary code which is important for batch simulations. Moreover,
OCAML is freely and widely available on a lot of architectures,
has an active community, lots of tools and libraries. Its foreign
language interface makes possible the use of other languages
such as C, JAVA, JAVASCRIPT, PYTHON, and more. Support-
ing other languages as input of SASA is thus doable and might
be done in the future.

Dynamic versus static linking. We have chosen to have
a plugin-based architecture (see Figure 2), where user algo-
rithms are (compiled and then) dynamically linked to the SASA
simulator. Another possibility would have been to provide a li-
brary that, once statically linked to the user programs, would
have produced a simulation executable. The major reason for
this choice is that this architecture offers a better separation of
concerns. Indeed, the user program cannot access code that
has not been explicitly exposed by the API, e.g., the SASA en-
gine internals. As a side effect, this approach saves disk space
and eases the installation of the tool since there is no need to
install SASA dependencies.

type value =
I of int | F of float | B of Bool

| A of state array | S of struct | [...]
type env = string -> value

Listing 5: Representing local states with a variant Type: an
alternative to polymo«rphic states

Polymorphic types to represent local states. In SASA,
node local states are represented by a polymorphic type; see
type ’st in Listings 1, 2, and 3. An alternative would have
been to provide a variant type (also called sum, or disjoint
union type 3), such as the type value in Listing 5, for enu-
merating all possible types of local variables required in the
algorithm implementation, and to set up an environment (type
env) that maps any node variable name to its value.

We chose a polymorphic type to represent local states be-
cause it is a more general approach. Indeed, with a variant
type, possible local variable types would have been restricted
to be one element in the value list. Furthermore, using variant
type lengthens the code with unnecessarily heavy construct,
since every occurrence of a local variable in the algorithm
requires a pattern-matching construction to access the value.
Nevertheless, the use of polymorphic functions together with
dynamic linking raises some issues, as explained in the next
paragraph.

3https://en.wikipedia.org/wiki/Algebraic_data_type
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Dynamic type checking of polymorphic types. Distributed
algorithms are linked to the SASA simulation engine at run-
time. The dynamic linking in OCAML does not provide fa-
cilities to access value names defined by the component to
be linked (as in C). Thus, the component should register its
entry points with the main program by modifying tables of
functions. In SASA, the API functions are polymorphic (in the
sense of functional languages parametric polymorphism4; cf.
’st in the algorithm local state type). But storing polymorphic
values into a mutable table of functions is not possible in ML-
languages such as OCAML; one can only store so-called weakly
polymorphic values, which are useless in an interface file (cf.
Chapter 5 of [27]). One solution is to use the Obj module, and
in particular the functions:

• Obj.obj: ’a -> t to be able to register polymorphic func-
tions into tables; and

• Obj.repr: t -> ’a to retrieve them from tables in the sim-
ulation engine.

Those type erasure and type reification functions do nothing
but breaking the type system and should therefore be used
carefully. Here, the API presented in Section 3.3 imposes that,
for each graph, all nodes agree on the local state type. But us-
ing the Obj library, nothing prevents users to define and com-
pile two nodes working on different types without any com-
piler complaint, which would lead to runtime errors. In order
to let the OCAML type checker make sure that this situation
never occurs, we simply require that all local algorithms are
registered by a single function call, that takes as argument a
list of algorithms; see Listing 6. The algorithms to register
have to be provided as a list, via the algo field. Note that the
polymorphic type ’st is common to all algorithms; hence the
register function, called once, enforces one and the same type
for all local states.

Notice that the FRAMA-C program analyzer uses the same
trick based on the Obj module to deal with plugins that im-
plement a polymorphic interface [28, 29]. They dynamically
check the plugins correctness using phantom types to make
sure that all monomorphic instances of the polymorphic type
are compatible. In our context, this is not necessary as we only
deal with one type instance at a time.

type ’st algo_to_register = {
algo_id : string;
init_state: ’st state_init_fun;
enab : ’st enable_fun;
step : ’st step_fun;

}
type ’st to_register = {

algo: ’st algo_to_register list;
state_to_string: ’st -> string;
state_of_string: (string -> ’st) option;
copy_state: ’st -> ’st;
actions: action list

}
(** To be called once *)
val register: ’st to_register -> unit

Listing 6: Registration function

4https://en.wikipedia.org/wiki/Parametric_polymorphism

4 Connection to the Synchrone Reac-
tive Toolbox

The SASA simulator produces an execution trace which is a se-
quence of output vectors; see the architecture, Figure 2. Fur-
thermore, running the simulator may require some additional
inputs at each step in two cases. First, the algorithm itself may
require external inputs to model, e.g., requests in case of a re-
source allocation algorithm. Second, the user may not want
to use one of the predefined daemons and may instead wish to
control the daemon behavior. In either cases, SASA behaves as
a reactive system, i.e., it consists of an infinite loop where it
first reads its input, then performs a step, and finally produces
outputs. Hence, it was easy and fruitful to connect SASA to
the Synchrone Reactive Toolbox [5], which targets the devel-
opment and validation of reactive systems. Before explaining
how we perform this connection, we briefly present the rele-
vant part of this toolbox.

4.1 A Toolbox Dedicated to the Design of Cor-
rect Reactive Systems

The aforementioned toolbox has been developed over the last
two decades around the LUSTRE synchronous programming
language [30], which targets the design of reactive programs.
A reactive program continuously interacts with its environ-
ment, typically through sensors and actuators. It is often em-
bedded, with limited memory, and critical. This has motivated
the design of languages that forbid programs from using an
unbounded amount of memory and execution time, and where
time is a first class concept. A lot of work has been dedicated
to verification of temporal properties using model checking on
such reactive programs. To formally verify a LUSTRE pro-
gram, model checkers [31, 32] use a formal description of the
program environment and its expected properties in order to
prove, by exploring all reachable states, that no incorrect be-
havior ever occurs. When such an exhaustive program verifi-
cation is not tractable, simulation tools can take advantage of
the formalization to automate tests. The formal description of
the environment is used to generate random (yet realistic) in-
puts, while the formalization of expected properties are used
as test oracles.

We now briefly present three tools from the Synchrone Re-
active Toolbox [5], namely LURETTE, LUCIOLE, and RDBG,
which are used to run SASA simulations. Their involvement
into SASA will be detailed in Subsection 4.2.

LURETTE is a black-box (a.k.a. functional) testing tool ded-
icated to reactive programs [33]. At each discrete logical in-
stant, a reactive program (1) reads inputs, (2) performs a step,
and (3) produces outputs. In order to test such a program
(called SUT, for System Under Test), LURETTE runs the SUT
together (in coroutine) with an environment model; the envi-
ronment is also a reactive program whose inputs (resp. out-
puts) are the SUT outputs (resp. inputs). LURETTE also runs
the test oracle, which is yet another reactive program that for-
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malizes the algorithm expected properties. It reads the envi-
ronment and SUT outputs, and returns a Boolean that states
whether the test succeeds or not.

LUCIOLE is a simple graphical user interface that allows the
user to manually choose the input values of reactive programs,
step by step. LURETTE automatically calls LUCIOLE when an
input of the SUT or its environment is missing.

Figure 3 sums up the dataflow between the various
LURETTE components described so far. If necessary, LU-
CIOLE performs one step and transmits its values to the
environment (ENV) and/or the SUT; the environment per-
forms one step and transmits its values to the SUT and the
oracle; the SUT performs one step and transmits its values
to the oracle; then the oracle performs one step to decide
if the test succeeds. The SUT output is stored (in the PRE
box, see Figure 3) to be used by the environment for the next
simulation step. Afterwards, this whole process is repeated
at will. The simulation data are stored in a RIF file (RIF
stands for Reactive Input Format). RIF simulation data can
be displayed into chronograms using the tools SIM2CHRO or
GNUPLOT-RIF.

RDBG is a programmable Reactive Program DeBugGer [34].
RDBG uses the same infrastructure as LURETTE, has exactly
the same input files and option set, and therefore can be used to
track bugs when some oracle is violated. RDBG runs a corou-
tine between the simulator (the debuggee) and a Real-Eval-
Print-loop (REPL) command interpreter (the debugger) that
let users (1) inspect simulation values, and (2) navigate from
a watch-point to another – watch-points are pre-defined obser-
vation points, where the user can stop to inspect runtime data
such as step counters, or the list of variable values. The RDBG
REPL is actually based on an OCAML REPL interpreter where
all LURETTE modules are loaded; new debugging commands
can therefore be programmed in OCAML by end-users [34],
which facilitated the SASA integration.

4.2 Taking Advantage of the Reactive Toolbox
in SASA

The SASA simulator actually behaves as a reactive program:
it reads its input, performs an atomic step, and produces its
outputs. The LURETTE and RDBG frameworks can therefore
be used to run SASA simulations, and provide new features to
the SASA core simulator, as explained below.

Algorithm properties and test oracles. LURETTE com-
putes whether the simulation is running correctly using test or-
acles. A LURETTE oracle can be any reactive program whose
inputs are the SUT inputs and outputs, and whose output is a
single Boolean value monitoring the execution correctness.

SASA outputs the node state values and two Boolean val-
ues per action to indicate whether the action is enabled, and if
so whether it is activated. For example, the simulation of the
algorithm described in Section 2 outputs five values for each

node p: an integer for its clock, and two Booleans for each
of its two actions I(p) and R(p). Using the algorithm state
values at each step, it is possible to compute whether the cur-
rent configuration is legitimate. Similarly, using the history
of enabled and activated actions, we can count the number of
moves and rounds. More generally, from those data, the the-
orems used in the self-stabilizing literature can be formalized
and used as oracles to detect on-the-fly flaws in theorems or al-
gorithms. The formalization of upper bounds of several classi-
cal self-stabilizing algorithms [3] has been done [26]. Never-
theless, this method can only check safety properties, includ-
ing bounded liveness, since these are the only ones that can be
checked by simulations. Conversely, theorems stating, for ex-
ample, that a bound exists (with no precision about its value)
cannot be checked by running simulations.

Programmable daemons. The second main characteristic
of LURETTE is its ability to provide simulation inputs that can
depend on the SUT outputs (feedback loop). First, this is nec-
essary for algorithms with external inputs that may depend on
the algorithm behavior. For instance, in a resource allocation
problem, the algorithm has to be informed that the allocated
resource has been released so that it can allocate it one more
time.

Second, we use this feature to program customized
daemons. Indeed, SASA has an option to execute in the
customized-daemon mode; this mode delegates the choice of
actions to activate to its environment. Therefore, in this mode,
the environment plays the role of the daemon: at each step,
SASA (1) reads from the daemon-environment Boolean values
indicating for each action whether it has to be activated,
(2) performs an atomic step, and (3) outputs Boolean values
indicating for each action whether it is enabled for the next
step. This allows the daemon-environment to choose the
actions to activate at next step among the enabled ones.

If SASA is launched via LURETTE in this customized-
daemon mode with no environment program, LURETTE will
automatically call the LUCIOLE GUI: this allows to execute
an interactively controlled daemon, where the user can con-
veniently choose at each step which actions to activate via
graphical widgets. Otherwise, the environment-daemon can
also be programmed as a reactive component. Programmed
daemons can be used to explore worst-case scenarios. Indeed,
in many cases (see, for example, worst-case analyzes given in
[3]), worst-case scenarios are obtained with a specific initial
configuration from which activations are made in a particular
order.

For example, in our framework we can easily program a
central daemon where nondeterminism is resolved using pri-
orities on node (e.g., using node identifiers) instead of ran-
domization. This kind of customized daemon does not fairly
activate processes compared to the standard ones. With well-
chosen priorities, we could use such a daemon to exhibit a
quadratic scenario in steps (i.e., with same order of magni-
tude as the known worst case) for the Dijkstra token ring algo-
rithm [1]. Such scenario is very unlikely to occur when using
standard daemons.
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Figure 3: The LURETTE and RDBG dataflow schema. The SUT inputs is made of the environment outputs. The environment
inputs is made of the SUT outputs. Missing inputs are provided by the LUCIOLE GUI. SUT and environment outputs are
provided to the oracle to decide if the test succeeds. The SIM2CHRO and GNUPLOT-RIF chronogram generators can be used to
visualize simulations data. Simulations data are saved into a .rif file.

Debugging and interactive simulations. Another fruitful
use of the synchrone reactive toolbox consists in running SASA
simulations from RDBG. First, because it allows to perform
simulations step-by-step. Moreover, the programmable capa-
bility of RDBG lets us implement easily a set of debugging
commands dedicated to SASA. For example, to program an
RDBG command that moves forward until the next round, one
just needs to define a OCAML function that (1) gets from the
current watch-point the list of enabled actions and stores it into
a list called list_ref; (2) moves to the next watch-point; (3)
gets the list of activated and neutralized actions at this step,
and uses it to update list_ref; (4) returns to (2) if list_ref is
not empty; otherwise, concludes that a round has elapsed.

Notice that for SASA, no specific instrumentation has been
performed, and thus RDBG can only observe the SASA inter-
face variables, namely the algorithm local states as well as
the enabled and activated actions. But this coarse-grained in-
formation is enough to program RDBG commands useful for
SASA simulation purpose, such as:

• moving backward and forward from step to step, or
from round to round (using the round function explained
above);

• moving forward until a particular (e.g., legitimate) con-
figuration is reached;

• counting the number of steps, moves, or rounds;

• generating a dot file decorated with state values, using
different colors for enabled and activated nodes. This file
can be generated and output to a visualization tool, so
that the user can follow the simulation graphically. That
is actually how Figure 1 was generated.

Those commands, together with a few others, are provided in

the SASA distribution. More user-defined commands can be
added similarly.

5 Validation of the Simulator
To validate the tool, we have implemented and tested classi-
cal algorithms from the literature using various assumptions
on the daemon and topology. The goal of those experiments
is threefold. First, the sample of algorithms and assumptions
is rich enough to guarantee that the SASA API can express a
large set of designer requirements. Second, those algorithms
are used to validate the semantics of the model implemented
in SASA using various test oracles. Third, we evaluate the per-
formances of the simulator by measuring execution time and
memory consumption on large networks.

Algorithms under test. We have implemented many exist-
ing self-stabilizing algorithms. We give a non-exhaustive list
of typical such algorithms below; these latter have been used
as benchmarks to evaluate the performances of SASA.

DTR: A token circulation for rooted unidirectional rings as-
suming a distributed daemon [1].

BFS: A breadth first search spanning tree construction for
connected rooted networks assuming a distributed dae-
mon [3].

DFS: A depth first search spanning tree construction for con-
nected rooted networks assuming a distributed daemon
[6].

This algorithm has been implemented using two different
data structures to encode the local states, namely lists and
arrays. This leads to different performances; see DFS-l
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for list implementation and DFS-a for array implementa-
tion.

COL: A vertex-coloring algorithm for anonymous networks
assuming a locally central daemon [8].

SYN: A synchronous unison for anonymous networks assum-
ing a synchronous daemon [9];

ASY: Algorithm 1, used as the running example all along this
paper [10].

All these algorithms can be found in the SASA gitlab reposi-
tory; see [23].

Methodology. For each algorithm of the list above, we have
written a direct implementation of the original guarded com-
mand algorithm. Such implementations include the running
assumptions, e.g., the topology and daemon. Then, we have
used the interactive graphical feature of SASA through the de-
bugger RDBG to test and debug them on well-chosen small
corner-case topologies. Finally, we have implemented test or-
acles to check known properties on these algorithms, including
correctness from (resp. convergence to) a legitimate configu-
ration, as well as bounds on their stabilization time in moves,
steps, and rounds, when available. Testing all those properties
is a way to check the implementation of the algorithms. But
again, as these properties are well-known results, this is, above
all, a mean to check whether the implementation of SASA fits
the computational model and its semantics.

Performances. Some performance results are given in Ta-
ble 1. They have been obtained on an Intel(R) Core(TM) i7
7 600 CPU at 2.80GHz with 4 gigabytes of RAM. We are in-
terested in comparing the performances of the simulator on the
algorithms under test, according to different topologies. Note
that every algorithm assumes an arbitrary topology, except
DTR which requires a ring network. Hence we only present
measurements on other algorithms in Table 1: BFS, DFS-l,
DFS-a, COL, SYN, ASYN. For each of them, we have run
simulations on several kinds of topologies: two square grids,
named grid.dot and biggrid.dot, of 100 nodes (180 links)
and 10 000 nodes (19 800 links), respectively; as well as two
random graphs, named ER.dot and bigER.dot, built using
the Erdős–Rényi model [35] with 256 nodes (9 811 links, aver-
age degree 76) and 2 000 nodes (600 253 links, average degree
600), respectively; see the results in Table 1.

Every simulation, launched automatically, has been run for
10 000 steps, except for the two big graphs (biggrid.dot
and bigER.dot). For these latter, we have only performed
10 steps. Note that some of the algorithms are silent, i.e., they
aims at reaching a terminal legitimate configuration, where all
nodes are disabled. They may stop their execution because
they have stabilized before achieving such a number of steps.

6Remark that, memory consumptions presented here are quite different
from, and sometimes significantly better than, those given the conference pa-
per [22]. Actually, overtime we have changed the machine used to make our
experiments and also slightly modified the code of SASA.

Therefore, for fair evaluation, we provide the execution time
elapsed per step (Time/Step).

As it only works on rings, DTR does not appear in Table 1.
For the ring of size 1 000, we measured 5 ms per step, and con-
sumed 14 megabytes. For the ring of size 10 000, we measured
less than 1 second per step, and consumed 42 megabytes.

Note that every simulation has been performed without data
file generation. Indeed, for large networks, this would pro-
duce huge files and the simulator would use most of its time
writing the data file. For example, the simulation of DFS-a
on biggrid.dot would generate 0.8 gigabyte of data per step
(100 millions integer values); a 10 000 steps simulation would
therefore need to write several thousands of TB, which would
be disk- and time-consuming. For such examples, being able
to generate inputs and check oracles on the fly is a real advan-
tage.

6 Simulation Campaigns
This section illustrates how to take advantage of SASA in batch
mode to study the time complexity of self-stabilizing algo-
rithms. As an illustrative example, we show how various
vertex-coloring algorithms can be compared and how SASA
can be used to empirically study the influence of topologies
and daemons on their stabilization time in moves, steps, and
rounds.

6.1 Three Vertex-Coloring Algorithms
We consider three randomized vertex-coloring algorithms [3,
7, 8] designed for arbitrary anonymous networks. Those algo-
rithms are randomized variants of Algorithm COL that with-
stand the distributed daemon. Actually, randomness is manda-
tory under the distributed daemon since self-stabilizing vertex-
coloring cannot be solved deterministically in regular anony-
mous networks [3] for example.

In all these variants, the local state of each node p is made
of a single integer variable p.c whose domain is {0, ...,K},
where K is greater than or equal to the maximum degree of
the network. The variable p.c is called the color of p. In a
given configuration, a color x ∈ {0, ...,K} is said to be free at
node p if no neighbor q of p satisfies q.c = x. Each of the
considered algorithms aims at reaching a configuration from
which p.c contains a constant free color, for every node p.
To that goal, each algorithm has a single action at each node,
described below.

COL-a1: “Uniform When Activated” [7].

• A node p is enabled if its color is not free.

• If p is activated, p.c is set to a value selected uni-
formly at random in the set made of p.c and all free
colors.

COL-a2: “Smallest When Activated” [3].

• A node p is enabled if its color is not free.
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grid.dot ER.dot biggrid.dot bigER.dot
100 nodes, 180 links 256 nodes, 9 811 links 10 000 nodes, 19 800 links 2 000 nodes, 600 253 links
density: 3.6 % density: 0.04 % density: 30 % density: 30 %

Time/Step Memory Time/Step Memory Time/Step Memory Time/Step Memory
BFS 0.4 ms 10 MB 15 ms 30 MB 3 s 74 MB 4 s 1218 MB
DFS-l 0.8 ms 12 MB 173 ms 37 MB 3 s 74 MB 93 s 1218 MB
DFS-a 0.5 ms 11 MB 129 ms 34 MB 7 s 3630 MB 147 s 1397 MB
COL 0 ms 10 MB 13 ms 34 MB 21 s 74 MB 10 s 1218 MB
SYN 0.3 ms 11 MB 8 ms 34 MB 2 s 74 MB 5 s 1220 MB
ASY 0.1 ms 11 MB 6 ms 37 MB 53 ms 74 MB 4 s 1218 MB

Table 1: Performance evaluation of SASA on the benchmark algorithms. Time elapsing is measured in user+system time in
seconds or milliseconds, and has been divided by the number of simulation steps. Memory consumption is given in megabytes
(MB), and has been obtained using the “maximum resident set size” given by the GNU time utility.6

Algorithm 2 The “smallest when activated” coloring algorithm (COL-a2, [3]): local algorithm for each node p
Constant Input: Np, the set of p’s neighbors
Variable: p.c ∈ {0, ...,K}, where K ≥ ∆, and ∆ is the maximum degree of the network.
Predicate: f ree(x) = ∀q ∈Np,q.c 6= x

Function: Random(): returns a Boolean value generated uniformly at random.
min{S}: returns the minimum value of the non-empty set S.
Actions:

Con f lict(p) :: ¬ f ree(p.c) ↪→ if Random() then p.c← min{x,x ∈ {0, ...,K}∧ f ree(x)}

• If p is activated, it tosses a coin (uniformly at ran-
dom) to decide between leaving p.c unchanged and
setting p.c to the smallest free color.

COL-a3: “Always the Biggest” [8].

• A node p is enabled if its color is not the biggest
free color.

• If p is activated, it tosses a coin to decide (uniformly
at random) between leaving p.c unchanged and set-
ting p.c to the biggest free color.

The second and third algorithms almost only differ by their
guards, i.e., the condition under which a node is enabled. In-
deed, choosing the biggest or the smallest free colors has no
impact, yet this is the way they were defined in their corre-
sponding papers. However, the third algorithm is more specific
for the choice of colors: a node may be enabled even when its
color is free. As a consequence, the third algorithm has less le-
gitimate configurations, and thus is expected to stabilize more
slowly.

As an illustrative example, the “Smallest When Activated”
coloring algorithm (COL-a2) is presented in Algorithm 2 and
its implementation in SASA is provided in Listing 7. Other
algorithms (COL-a1 and COL-a3) are similar.

6.2 Automating Simulation Campaigns

We provide in the SASA distribution a set of tools that automate
the execution of simulation campaigns. Those programs are
made of a few hundred lines of OCAML and R code; actually,
they could have been written in any language, as they only
depend on command-line tools. The distribution contains:

• tools to generate classical topologies (rings, cliques,
grids, trees, etc.) and random (e.g., Erdõs–Rényi) graphs
in the dot format;

• tools to parameterize and launch simulation campaigns,
(i.e., launch the simulator as many times as required on
specified contexts) and log the results; and

• tools to visualize those results as plots.

A simulation campaign automatically runs SASA on sev-
eral algorithms, using various daemons, on various graphs. A
simulation estimates, for a particular algorithm-daemon-graph
triplet, the average stabilization time according to three com-
plexity mesure units: moves, steps and rounds. To compute
estimations for the three complexity measures, new simula-
tions (at least 10) are computed until a satisfactory precision is
reached. More precisely, new simulations are launched as long
as the size of the confidence interval, with a confidence level
of 95%, is higher than a particular percentage (called precision
percentage, typically 1%) of the estimations.

The simulation campaign is fully described using a simple
and easy to parameterize script (which is available in the SASA
toolbox – see Listing 8 in Appendix for the full script). To ob-
tain the result shown in this paper about the three randomized
coloring algorithms (see Figure 4 to 6), we set the precision
percentage to 1% and chose to perform the simulations us-
ing three daemons (the synchronous, locally central and dis-
tributed daemons) over three families of graphs (rings, cliques
and random graphs). Precisely, we used 10 rings of size 500
to 5 000, 10 cliques of size 30 to 300, and 10 Erdõs–Rényi
random graphs [35] (generated with a probability of 0.4 for
creating an edge) of size 30 to 300.

In order to compute the estimations for the 270 triplets
(about rounds, steps, moves) with a precision of 1%, 180 818
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Figure 4: A simulation campaign performed on rings of size 500 to 5 000 (estimated means)
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Figure 5: A simulation campaign performed on cliques of size 30 to 300 (estimated means)
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Figure 6: A simulation campaign performed on random graphs of size 30 to 300 (estimated means)
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open Algo
let k = max_degree () + 1
let (init_state: int state_init_fun) = fun _ _ -> 0
let get_free nl = (* From a neighbor list , returns the free colors is asc. order: O(n.log(n)) *)

let comp_neg x y = - (compare x y) in (* to get the result in descending order *)
let n_colors = List.map (fun n -> state n) nl in
let n_colors = List.sort_uniq comp_neg n_colors in (* neighbor colors , no dupl , desc order *)
let rec aux free n_colors i = (* for i=k-1 to 0, put i in free if not in n_colors *)

if i < 0 then free else
(match n_colors with
| x::tail -> if x = i then aux free tail (i-1) else aux (i::free) n_colors (i-1)
| [] -> aux (i::free) n_colors (i-1)

)
in
aux [] n_colors (k-1)

let (enable_f: int enable_fun) = fun c nl ->
if List.exists (fun n -> state n=c) nl then ["conflict"] else []

let (step_f: int step_fun) = fun e nl a -> match a with
| ["conflict"] -> if (Random.bool ()) then e else (List.hd (get_free nl))
| _ -> assert false

let actions = ["conflict"]

Listing 7: Implementation of the “smallest when activated” coloring algorithm COL-a2

simulations were necessary (669 simulations per triplet on av-
erage, and 3 116 at worst). By launching 30 jobs in parallel,
we get the result in less than four hours on a machine with 64
Intel Xeon Gold 6138 CPU @ 2.00GHz; those four hours rep-
resents 94 hours of wall-clock cumulative time. Notice that, in
order to take a first glance at the results, one can speed-up the
simulation by relaxing the precision requirements, at the cost
of degrading the curves smoothness. By using a precision of
10% on this campaign, less than 15 minutes were necessary on
the same machine (6 hours of wall-clock cumulative time).

The simulation campaign generates raw data files, where
lines are made of the graph name, the algorithm, the com-
plexity measure, as well as their minimal, maximal, and mean
values. From such data files, the script produces several kinds
of visualization (as pdf files), such as the ones provided in
Figures 4, 5 and 6. In those figures, we present the estimated
means; the script also generates similar curves with minimum
and maximum values. More details about this simulation cam-
paign are provided in [36].

Each figure stands for a family of graphs: Figure 4 for rings,
Figure 5 for cliques, and Figure 6 for Erdõs–Rényi graphs.
Sub-pictures in a given raw (resp. line) use the same daemon
(resp. measure). For example, in Figure 4, the bottom-right
sub-picture presents the simulation results obtained for Algo-
rithms COL-a1 (in red), COL-a2 (in green) and COL-a3 (in
blue) executed on ring networks using a synchronous daemon;
the curves represent the number of moves (vertical axis), which
ranges from a few hundred to more than 10 000, depending on
the size of the ring (horizontal axis), which ranges from 500 to
5 000 nodes.

Therefore, for each of the nine sub-pictures of those figures,
one can compare the asymptotic behavior of each algorithm
when the size of the graphs increases, for a particular daemon
and a particular measure. Here, the curves evolve with respect
to the graphs size, since this quantity is interesting for the al-
gorithms under study. Note that for other algorithms, it may

be more interesting to increase the diameter of the graph, or its
maximal degree.

Studying accurately the asymptotic behavior of those algo-
rithms is not the purpose of this paper; nevertheless, observe
that the curves obtained by such kind of simulations may pro-
vide valuable insights before starting any theoretical study.
This can also complete an analytical complexity study. For
example, when an empirical average complexity is drastically
smaller than the known upper bound (like we will see here for
the coloring problem), this suggests that either (1) the worst-
case scenario is infrequent, or (2) the known upper bound is
far from being tight. Follow some remarks raised by those
simulations.

• Algorithm COL-a1 according to [7] is expected to stabi-
lize in at most (∆+ 1) · n moves, where n is the number
of nodes in the network and ∆ its maximum degree. Ac-
tually, the sub-pictures in Figure 4 - bottom-line, show
linear curves which may suggest that, for rings, the mean
case is linear as is the analytical worst case.

• As far as the number of steps is concerned, [8] states that
COL-a3 (see blue curves, middle line in every figure)
should stabilize in O(n ln(n)) on average, while our sim-
ulations suggest that it is far less (it might be linear and
even logarithmic in the ring case).

• To the best of our knowledge, the asymptotic number of
rounds has not been studied for those algorithms. Our
simulations suggest an O(n) average stabilization time
in rounds on cliques (see upper line in Figure 5), while
it seems to be lower - maybe O(ln(n)) - for other fami-
lies, ring and random graphs, see upper lines in Figures 4
and 6.

Those remarks directly come from the shape of the curves;
they can be strengthened using statistical analysis (see script
and results from the SASA toolbox in [37]).
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7 Conclusion and Future Work
This paper presents an open-source SimulAtor of Self-
stabilizing Algorithms, called SASA. Its programming
interface is simple, yet rich enough to allow a direct encoding
of any distributed algorithm written in the atomic-state model,
the most commonly used model in the self-stabilizing area.

In order to limit the engineering effort, SASA relies on ex-
isting tools such as the OCAML programming environment to
define the algorithms, DOT to define the networks, and the Syn-
chrone Reactive Toolbox [5] to carry out formal testing and
interactive simulations.

We will continue to enrich SASA, in particular to handle
more adversarial environments (e.g., to handle topological
changes) and to be able to more tightly evaluate the average
performances of self-stabilizing algorithms. For example, we
have included a fault injection mechanism. We plan to use this
mechanism to inject a few faults after the stabilization of an
given algorithm and then evaluate whether it is efficient (on
the average) w.r.t. fault-containing-related metrics such as the
containment radius, the contamination number, and the fault
gap [38]. Another possible extension would be to develop
tools to construct worst-case executions.

In the spirit of TLA+ [39], an interesting future work con-
sists in connecting SASA to tools enabling formal verification
of self-stabilizing algorithms. By connecting SASA to model-
checkers [32, 31], the expected properties specified as LUSTRE
oracles could be verified on some particular networks.

Furthermore, SASA could be connected to the PADEC
framework [40], which provides libraries to develop mechan-
ically checked proofs of self-stabilizing algorithms using the
Coq proof assistant [41]. Since Coq is able to perform auto-
matic OCAML program extraction, we should be able to simu-
late the certified algorithms using the same source. During the
certification process, it could be useful to perform simulations
in order to guide the formalization into Coq theorems, or find
flaws (e.g., in technical lemmas) early in the proof elaboration.
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A An example of Simulation campaign
script

Listing 8 contains an OCaml program, included in the SASA
distribution, see coloring_campaign.ml, that computes the
simulation campaign explained in the article about the three
randomized coloring algorithms.

1 #use "genExpeMakefiles.ml";;
2 precision := 0.01;;
3 let dir = "../../ test/"
4 let algos = [dir^"alea -coloring -alt"; dir^"alea -coloring -unif"; dir^"alea -coloring"]
5 let daemons = ["-sd"; "-lcd"; "-dd"]
6 let rings = List.init 10 (fun n->Ring (500*(n+1))) (*Rings of size 500, 1000, ..., 5000*)
7 let cliques = List.init 10 (fun n->Clique (30*(n+1))) (* Cliques of size 30, 60, ..., 300*)
8 let er = List.init 10 (fun n->ER (30*(n+1), 0.4)) (*ER of size 30, 60, ..., 300*)
9 let networks = rings @ cliques @ er

10
11 let gen_make_rules () = (* Generate a Makefile that can launch all the simulations *)
12 gen_makefile "Makefile.expe -rules" daemons algos networks ;;
13
14 #use "parseLog.ml";;
15 let gen_pdf () =
16 let gl = ["clique"; "ring"; "er"] in
17 (* Parse simulation log files to extract data and generate graphics via an R script *)
18 parse_log ["Col -a1", "alea -coloring -unif"] gl daemons;
19 parse_log ["Col -a2", "alea -coloring"] gl daemons;
20 parse_log ["Col -a3", "alea -coloring -alt"] gl daemons;
21 List.iter (fun n -> sh ("./ gen_pdf.r "^n^".data coloring")) gl
22 let _ = gen_make_rules (); sh "make; make cmxs; make --jobs 30 log"; gen_pdf ()

Listing 8: How to parameterize a simulation campaign and generate Figures 4, 5, and 6.

The precision is set to 1% in Line 2 and and the algorithms
implementation directories of Algorithm COL-a1, COL-a2
and COL-a3 are supplied in Lines 3 and 4. We have set the
three daemons under which the algorithms will be executed,
see Line 5: the synchronous daemon (-sd), the locally central
daemon (-lcd), and the distributed daemon (-dd).

The networks are described in the networks variable (see
Line 9) which contains the 30 graphs that will be used in the
simulation campaign. Precisely, Line 6 defines 10 rings from
size 500 to 5 000, Line 7 10 cliques of size 30 to 300, and
Line 8 10 Erdõs–Rényi random graphs [35] (generated with a
probability of 0.4 for creating an edge) of size 30 to 300.

This program uses the genExpeMakefiles.ml (see Line 1)
and parseLog.ml (see Line 14) OCAML programs, provided
in the SASA distribution, and generates a Makefile (called
Makefile.expe-rules, see Line 12). This Makefile is used to
launch the simulation campaign (Line 22). Note that simula-
tions can be run in parallel using the –jobs option of make;
see Line 22.
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